北师大版数学七年级上册4.5整式与规律探究专题训练

合集下载

七年级数学上册-难点探究:整式中的规律探究问题压轴题七种模型全攻略(解析版)

七年级数学上册-难点探究:整式中的规律探究问题压轴题七种模型全攻略(解析版)

专题11难点探究专题:整式中的规律探究问题压轴题七种模型全攻略【考点导航】目录【典型例题】 (1)【类型一数字类规律探索之单项式问题】 (1)【类型二数字类规律探索之排列问题】 (3)【类型三数字类规律探索之末尾数字问题】 (6)【类型四数字类规律探索之新运算问题】 (8)【类型五数字类规律探索之等式问题】 (12)【类型六图形类规律探索之数字问题】 (17)【类型七图形类规律探索之数量问题】 (19)【典型例题】【类型一数字类规律探索之单项式问题】【变式训练】(1)这组单项式的系数依次为多少?系数的绝对值的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n 个单项式是什么吗?(4)请你根据猜想,写出第2022个、第2023个单项式.【答案】(1)1,3,5,7,,37,39,--- ,系数的绝对值的规律是21n -(2)这组单项式的次数的规律是从1开始的连续自然数(3)()(1)21n nn x--(4)第2022个单项式是20224043x ,第2023个单项式是20234045x -【分析】(1)根据单项式系数的含义进行求解,再观察其绝对值的规律即可;(2)观察次的变化,从而可求解;(3)结合(1)(2)进行分析即可;(4)根据(3)进行求解即可.【详解】(1)解:这组单项式的系数依次是1,3,5,7,,37,39,--- ,系数的绝对值为1,3,5,7,,37,39, ,是从1开始的奇数,∴系数的绝对值的规律是21n -.(2)解:这组单项式的次数的规律是从1开始的连续自然数.(3)解:由(1)问得:符合规律是(1)n -,∵这组单项式的次数的规律是从1开始的连续自然数,∴第n 个单项式是()(1)21n n n x --.(4)解:第2022个单项式是20224043x ,第2023个单项式是20234045x -.【点睛】本题主要考查找规律,能够通过观察题中的单项式找出规律是解题关键.【类型二数字类规律探索之排列问题】例题:(2022秋·浙江金华·七年级校考期中)从3开始的连续奇数按右图的规律排列,其余位置数字均为0.(1)第5行第10列的数字是(2)数字2023在图中的第【答案】04525n-行的第【分析】(1)根据第21n-行第(2)观察数据发现第21【详解】解:(1)观察数据发现根据第【变式训练】1.(2023秋·全国·七年级专题练习)填在下面各正方形中的四个数之间都有相同的规律,根据规律,m的值A.86B.52C.38【答案】A即故选:A.【点睛】本题稍复杂,不但要考虑相邻两个图形中数字的变化规律,还要找出每个图形中四个数之间的规【类型三数字类规律探索之末尾数字问题】例题:(2022秋·江苏连云港·七年级校考阶段练习)观察下列算式:031=,133=,239=,3327=,4381=,53243=,63729=,732187=…归纳各计算结果中个位数字的规律,可得20033的个位数字是()A .1B .3C .9D .7【答案】D【分析】先由前面8个具体的计算归纳得到个位数每四次循环,再利用规律解题即可.【详解】解:031=,133=,239=,3327=,4381=,53243=,63729=,732187=…,归纳可得:个位数每四次循环,∵()200314501+÷=,∴20033与33的个位数相同,是7;故选D【点睛】本题考查的是数字变化规律的探究,乘方的含义,掌握探究的方法并灵活应用规律解决问题是解题关键.【变式训练】【类型四数字类规律探索之新运算问题】例题:(2022·湖南株洲·统考二模)定义一种关于整数n 的“F ”运算:(1)当n 是奇数时,结果为35n +;(2)【变式训练】【类型五数字类规律探索之等式问题】【变式训练】1.(2023春·山东济南·七年级统考期中)已知1x ≠,观察下列等式;()()2111x x x -+=-;()()23111x x x x -++=-;()()234111x x x x x -+++=-;…(1)猜想:()()23111n x x x x x --++++⋅⋅⋅+=________;(2)应用:根据你的猜想请你计算下列式子的值:①()()234512122222-+++++=________;②()()202220212020211x x x x x x -+++⋅⋅⋅+++=________.(3)求10099982222221+++⋅⋅⋅+++的值是多少?【答案】(1)1nx -(2)①63-;②20231x -(3)10121-【分析】(1)根据所列等式所呈现的规律得出答案;(2)①利用(1)中得到的结论得出结果为612-即可;②将原式变为()()220202*********x x x x x x ++-+⋅⋅++-⋅+,再利用(1)中的结论即可得出结果;(3)将原式化为()()210012122...2--⨯++++,再利用(1)中得到的结论得出结果即可.【详解】(1)解:由已知条件可得:()()231111n n x x x x x x --++++⋅⋅⋅+=-;故答案为:1n x -;(2)①()()23456121222221263-+++++=-=-,②()()202220212020211x x x x x x -+++⋅⋅⋅+++,()()220202*********x x x x x x =+++⋅⋅⋅++--+,()20231x =--,20231x =-,故答案为:20231x -;(3)10099982222221+++⋅⋅⋅+++,()()210012122...2=--⨯++++,()10112=--,【类型六图形类规律探索之数字问题】例题:(2022秋·湖北黄冈·七年级校考阶段练习)如图,根据图形中数的规律,可推断出a的值为()A.128B.216C.226D.240【答案】C【分析】根据图形得出右下角三角形中的数字等于左下角与中间三角形中数字的积再加2,然后计算即可.=⨯+,【详解】解:由图可得:2022=⨯+,10242=⨯+,2646250682=⨯+,即右下角三角形中的数字等于左下角与中间三角形中数字的积再加2,a=⨯+=,所以14162226故选:C.【点睛】本题考查了规律型—数字的变化类,解决本题的关键是观察数字的变化寻找规律,总结规律,运用规律.【变式训练】A .450B .463C .465D .526【答案】B 【分析】结合表格找出其中的规律,求出28165x =+=,8658528=⨯+=y ,再计算y x -即可.【详解】解:由表可得:2521=+,12252=⨯+;21741=+,724174=⨯+;23761=+,2286376=⨯+;∴28165x =+=,8658528=⨯+=y ;∴52865463y x -=-=.故选:B .【点睛】本题考查数字规律题,解题的关键是找出其中的规律:28165x =+=,8658528=⨯+=y .2.(2023春·贵州毕节·七年级统考期末)根据图中数字的规律,若第n 个图中A B C D ++-的值为196,则n =()A .12B .13C .14D .15【答案】C 【分析】通过观察可知,若第n 个图中A 位置上的数是1n +,B 位置上的数是2n ,C 位置上的数是n 1-,D 位置上的数是2n ,所以2A B C D n ++-=,带入数值求出即可.【详解】解:通过观察可知,若第n 个图中A 位置上的数是1n +,B 位置上的数是2n ,C 位置上的数是n 1-,D 位置上的数是2n ,所以()()22112A B C D n n n n n ++-=+++--=,当196A B C D ++-=时,2196n \=,n Q 是正整数,14n ∴=.故选:C .【点睛】本题考查了图形中有关数字的变化规律,能准确观察到相关规律是解决问题关键.3.(2022秋·河南周口·七年级校考期中)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,则第n (n 为正整数)个三角形中,用n 表示y 的式子为()A .21n +B .2n n +C .12n n ++D .21n n ++【答案】B 【分析】由题意可得各三角形中下边第三个数是上边两个数字的和,而上边第一个数的数字规律为1,2,3,⋯,n ,第二个数的数字规律为:2,22,32,⋯,2n ,由此即可得到答案.【详解】解:由题意可得:三角形上边第一个数的数字规律为:1,2,3,⋯,n ,三角形上边第二个数的数字规律为:2,22,32,⋯,2n ,三角形下边的数的数字规律为:112123+=+=,224226+=+=,3383211+=+=,⋯,∴第n 个三角形中的数的规律为:2n y n =+,故选:B .【点睛】本题考查了数字类规律探索,根据题意得出:第n 个三角形中的数的规律为:2n y n =+,是解题的关键.【类型七图形类规律探索之数量问题】(1)按图示规律完成下表:(3)搭第15个图形需要多少根火柴棒?【答案】(1)13,17,21(2)41n +(3)61【分析】(1)根据所给的图形进行分析即可得出结果;(2)由(1)进行总结即可;(3)根据(2)所得的式子进行解答即可.【详解】(1)解:第1个图形的火柴棒根数为:5,第2个图形的火柴棒根数为:954541=+=+⨯,第3个图形的火柴棒根数为:13544542=++=+⨯,第4个图形的火柴棒根数为:175444543=+++=+⨯,第5个图形的火柴棒根数为:2154444544=++++=+⨯,⋯⋯故答案为:13,17,21;(2)解:由(1)得:搭第n 个图形需要火柴棒根数为:54(1)41n n +-=+.答:第n 个图形需要火柴棒根数为:41n +;(3)解:当15n =时,41415161n +=⨯+=,所以搭第15个图形需要61根火柴棒.【点睛】本题主要考查规律型:图形的变化类,解答的关键是根据所给的图形分析出其规律.【变式训练】1.(2023秋·河北张家口·七年级统考期末)观察下列“蜂窝图”,按照这样的规律,则第2023个图案中的“”的个数是()A .6074B .6072C .6070D .6068【答案】C【分析】根据题意可得第n 个图案中的“”的个数为((31)n +个,即可求解.【详解】解:∵第1个图案中的“”的个数1314=⨯+=(个),第2个图案中的“”的个数2317=⨯+=(个),第3个图案中的“”的个数33110=⨯+=(个),…,第2023个图案中的“”的个数3202316070==⨯+(个),故选:C .【点睛】本题考查图形的变化规律,解题的关键是根据已知图形得出规律.2.(2023春·湖北武汉·七年级统考开学考试)如图,摆第一个图形需要4根火柴,摆第二个图形需要7根火柴,……,以此类推.那么摆第八个图形需要()根火柴.A .24B .27C .25D .28【答案】C 【分析】根据给出的图形,得到第n 个图形需要()431n +-根火柴,进而求出第八个图形所需要的火柴数.【详解】解:由图可知,摆第一个图形需要4根火柴,摆第二个图形需要437+=根火柴,摆第三个图形需要43210+⨯=根火柴,L∴第n 个图形需要()431n +-根火柴,∴摆第八个图形需要()438125+⨯-=根火柴;故选C .【点睛】本题考查图形类规律探究.解题的关键是得到第n 个图形需要()431n +-根火柴.3.(2023春·山东青岛·七年级统考期中)如图,某品牌自行车每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm .(1)观察图形,填写如表;链条节数/x(节)2345…链条长度/y(cm) 4.2 5.97.6…(2)如果一辆自行车的链条(安装以后)共由60节链条组成,那么链条的总长度是(1)按此规律摆下去,第6个图案有多少个三角形即可求出第6个图案有多少个三角形;(2)由(1)中发现的规律,即可得出第n 个图案有多少个三角形;(3)将2022n =代入31n +即可求解.【详解】(1)第1个图案有4个三角形,即4311⨯=+第2个图案有7个三角形,即7321⨯=+第3个图案有10个三角形,即10331⨯=+第4个图案有13个三角形,即13341⨯=+第5个图案有16个三角形,即16351⨯=+第6个图案有19个三角形,即19361⨯=+(2)按此规律摆下去,第n 个图案有()31n +个三角形.(3)当2022n =时,316067n +=.答:第2022个图案有6067个三角形.【点睛】本题考查了规律型:图形的变化类以及列代数式,根据各图案所需三角形个数的变化,找出变化规律是解题的关键.。

北师大版七年级数学上册第三章《整式及其加减》练习题含答案解析 (31)

北师大版七年级数学上册第三章《整式及其加减》练习题含答案解析 (31)

一、选择题1. 小明与小亮在操场上练习跑步,小明的速度是 x m/s ,小亮的速度是 y m/s ,小亮比小明跑得快,两人从同一地点同时起跑 a s 后,小明落后小亮 ( ) A . (ax −ay ) m B . (ay −ax ) m C . (ax +ay ) mD . axy m2. 小明用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是 8 时,输出的数据是 ( )输入⋯12345⋯输出⋯3223512310730⋯ A . 839B . 738C . 637D . 5363. 如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是 ( )A .B .C.D.4.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(−1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,⋯,依此规律跳动下去,点P第99次跳动至点P99的坐标是( )A.(26,50)B.(−26,50)C.(25,50)D.(−25,50)5.1883年,康托尔构造的这个分形,称做康托尔集,从长度为1的线段开始,康托尔取走其中间三分之一而达到第一阶段;然后从每人个余下的三分之一线段中取走中间三分之一而达到第二阶段,无限地重复这一过程,余下的无穷点就称做康托尔集,如图是康托尔集的最初几个阶段,当达到第5个阶段时,取走的所有线段的长度之和为( )A.13B.242243C.211243D.322436.如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2,⋯以此类推,第n次平移将长方形A n−1B n−1C n−1D n−1沿A n−1B n−1的方向向右平移5个单位,得到长方形A n B n C n D n(n>2),则AB n长为( )A.5n+6B.5n+1C.5n+4D.5n+37.下列计算正确的是( )A.3a2+a=4a2B.−2(a−b)=−2a+bC.a2b−2a2b=−a2b D.5a−4a=18.下列按照一定规律排列一组图形,其中图形①中共有2个小三角形,图形②中共有6个小“三角形,图形③中共有11个小三角形,图形④中共有17个小三角形,⋯⋯,按此规律,图形⑧中共有n个小三角形,这里的n=( )A.32B.41C.51D.539.为了解决老百姓看病难的问题,卫生部门决定大幅度降低药品价格,某种常用药品降价40%后的价格为a元,则降价前此药品的价格为( )A.52a元B.25a元C.53a元D.35a元10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形,⋯⋯,如此下去,则第2018个图中共有正方形的个数为( )A.2018B.2019C.6052D.6056二、填空题11.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,⋯,则第n−1(n为正整数,n⋯2)个图案由个▲组成.12.下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是.13.有理数a,b,c,d在数轴上的位置如图,则∣a−b∣+∣b−c∣−∣d−a∣=.14.在平面直角坐标系中,正方形ABCD的顶点坐标分别为A(1,1),B(1,−1),C(−1,−1),D(−1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称点P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,⋯⋯,按此操作下去,则P2020的坐标为.15.已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等.小明将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48.若将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0对准乙尺的刻度m,则此时甲尺的刻度n会对准乙尺的刻度为.(用含m,n的式子表示)16.观察下列图形:它们是按一定规律排列的,依照此规律,第10个图形中共有个点.+(b+c)m−m2的值为.17.若a,b互为倒数,b,c互为相反数,m的绝对值为1.则abm三、解答题18.若在运动会颁奖台上面及两侧铺上地毯(如图阴影部分),长为m,宽为n,高为ℎ(单位为:cm).(1) 用m,n,ℎ表示所需地毯的面积;(2) 若m=160,n=60,ℎ=75,求地毯的面积.19.如图所示,一块正方形纸板剪去四个相同的三角形后留下了阴影部分的图形.已知正方形的边长为a,三角形的高为ℎ.(1) 用式子表示阴影部分的面积;(2) 当a=2,ℎ=1时,求阴影部分的面积.220.阅读下面材料:在数轴上5与−2所对的两点之间的距离:∣5−(−2)∣=7;在数轴上−2与3所对的两点之间的距离:∣−2−3∣=5;在数轴上−8与−5所对的两点之间的距离:∣(−8)−(−5)∣=3.在数轴上点A,B分别表示数a,b,则A,B两点之间的距离AB=∣a−b∣=∣b−a∣.回答下列问题:(1) 数轴上表示−2和−5的两点之间的距离是;数轴上表示数x和3的两点之间的距离表示为;数轴上表示数和的两点之间的距离表示为∣x+2∣;(2) 七年级研究性学习小组在数学老师指导下,对式子∣x+2∣+∣x−3∣进行探究:请你在草稿纸上画出数轴,当表示数x的点在−2与3之间移动时,∣x−3∣+∣x+2∣的值总是一个固定的值为:.21.学校操场上的环形跑道长400米,小胖、小杰的速度分别是a米/分,b米/分(其中a>b).两人从同一地点同时出发,求:(1) 如果两人反向而行,则经过多长时间两人第一次相遇?(2) 如果两人同向而行,则经过多长时间两人第一次相遇?22.归纳.人们通过长期观察发现,如果早晨天空中有棉絮状的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学里,我们也常用这样的方法探求规律,例如:三角形有3个顶点,如果在它的内部再画n个点,并以(n+3)个点为顶点画三角形,那么最多以剪得多少个这样的三角形?为了解决这个问题,我们可以从n=1,n=2,n=3等具体的、简单的情形入手,探索最多可以剪得的三角形个数的变化规律.(1) 完成表格信息:,;(2) 通过观察、比较,可以发现:三角形内的点每增加1个,最多可以剪得的三角形增加个.于是,我们可以猜想:当三角形内的点的个数为n时,最多可以剪得个三角形.像这样通过对现象的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.在日常生活中,人们互相交谈时,常常有人在列举了一些现象后,说“这(即列举的现象)说明⋯⋯”其实这就是运用了归纳的方法.用归纳的方法得出的结论不一定正确,是否正确需要加以证实.(3) 请你尝试用归纳的方法探索(用表格呈现,并加以证实):1+3+5+7+⋯+(2n−1)的和是多少?23.探索规律,观察下面由⋇组成的图案和算式,解答问题:1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52.⋯(1) 请猜想1+3+5+7+9+⋯+19=;(2) 请猜想1+3+5+7+9+⋯+(2n−1)+(2n+1)+(2n+3)=;(3) 请计算:101+103+⋯+197+199.24.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”.如图1的“等和格”中,每行、每列及对角线上的3个代数式的和都等于15.(1) 图2是显示部分代数式的“等和格”,可得a=(用含b的代数式表示);(2) 图3是显示部分代数式的“等和格”,可得a=,b=;(3) 图4是显示部分代数式的“等和格”,求b的值(写出具体求解过程).25.A,B两地果园分别有橘子40吨和60吨,C,D两地分别需要橘子30吨和70吨;已知从A,B到C,D的运价如表: 到C地到D地A果园每吨15元每吨12元B果园每吨10元每吨9元(1) 若从A果园运到C地的橘子为x吨,则从A果园运到D地的橘子为吨,从A果园将橘子运往D地的运输费用为元.(2) 用含x的式子表示出总运输费(要求:列式,化简).(3) 求总运输费用的最大值和最小值.(4) 若这批橘子在C地和D地进行再加工,经测算,全部橘子加工完毕后总成本为w元,且w=−(x−25)2+4360.则当x=时,w有最值(填“大”或“小”).这个值是.答案一、选择题 1. 【答案】B【知识点】简单列代数式2. 【答案】D【解析】 ∵ 第 n 个数据的规律是:n+2n (n+1), 故 n =8 时为:8+28×9=1072=536. 【知识点】用代数式表示规律3. 【答案】C【解析】由题意知,原图形中各行、各列中点数之和为 10,符合此要求的只有C . 【知识点】用代数式表示规律4. 【答案】D【知识点】点的平移、用代数式表示规律5. 【答案】C【解析】根据题意知:第一阶段时,余下的线段的长度之和为 23, 第二阶段时,余下的线段的长度之和为 23×23=(23)2, 第三阶段时,余下的线段的长度之和为 23×23×23=(23)3, ⋯, 以此类推,当达到第五个阶段时,余下的线段的长度之和为 (23)5=32243, 取走的线段的长度之和为 1−32243=211243. 【知识点】用代数式表示规律6. 【答案】A【解析】每次平移 5 个单位,n 次平移 5n 个单位,即 BN 的长为 5n ,加上 AB 的长即为 AB n 的长,AB n =5n +AB =5n +6. 【知识点】用代数式表示规律7. 【答案】C【解析】3a2,a不是同类项,不能合并,故A错误;−2(a−b)=−2a+2b,故B错误;a2b−2a2b=−a2b,故C正确;5a−4a=a,故D错误,故选:C.【知识点】合并同类项、去括号8. 【答案】C【解析】设第m个图形中有a m(m为正整数)个小三角形.观察图形,可知:a1=1+1=2,a2=(1+2)+3=6,a3=(1+2+3)+5=11,a4= (1+2+3+4)+7=17,⋯,∴a m=(1+2+⋯+m)+2m−1=m(m+1)2+2m−1=12m2+52m−1(m为正整数),∴n=a8=12×82+52×8−1=51.【知识点】用代数式表示规律9. 【答案】C【知识点】用字母表示数10. 【答案】C【解析】第1个图形有正方形1个,第2个图形有正方形4个,第3个图形有正方形7个,第4个图形有正方形11个,⋯,第n个图形有正方形(3n−2)个,当n=2018时,3×2018−2=6052个正方形.【知识点】用代数式表示规律二、填空题11. 【答案】(3n−2)【解析】观察发现:第一个图形有3×2−3+1=4个三角形;第二个图形有3×3−3+1=7个三角形;第一个图形有3×4−3+1=10个三角形;⋯第n−1个图形有3n−3+1=3n−2个三角形.【知识点】用代数式表示规律12. 【答案】82【知识点】用代数式表示规律13. 【答案】c+d−2b【解析】根据数轴右侧的数大于左侧的数,则右侧数减去左侧数为正,去掉绝对值,∵a−b>0,b−c<0,d−a<0,∴∣a−b∣=a−b,∣b−c∣=−(b−c),∣d−a∣=−(d−a),故∣a−b∣+∣b−c∣−∣d−a∣=a−b−(b−c)+(d−a)=a−b−b+c+d−a=c+d−2b.【知识点】整式的加减运算、绝对值的几何意义14. 【答案】(0,2)【解析】∵点P坐标为(0,2),点A坐标为(1,1),∴点P关于点A的对称点P1的坐标为(2,0),点P1关于点B(1,−1)的对称点P2的坐标(0,−2),点P2关于点C(−1,−1)的对称点P3的坐标为(−2,0),点P3关于点D(−1,1)的对称点P4的坐标为(0,2),即点P4与点P重合了;∵2020÷4=505,∴点P2020的坐标与点P4的坐标相同,∴点P2020的坐标为(0,2).【知识点】坐标平面内图形轴对称变换n+m15. 【答案】43【知识点】简单列代数式16. 【答案】165【解析】第一个图形有3=3×1=3个点,第二个图形有3+6=3×(1+2)=9个点(在第一个图形的基础上,外面又包了一个三角形,三个顶点,在三边上多了三个点);第三个图形有3+6+9=3×(1+2+3)=18个点;(在第二个图形基础上,外面又包了一个三角形,在三边上多了三个点,即:在第一图形的基础上多了两个三角形,从里向外,依次多6个点,9个点,包括增加的三角形的顶点)⋯第n个图形有3+6+9+⋯+3n=3×(1+2+3+⋯+n)=3n(n+1)个点;2=165个点,当n=10时,3×10×112故答案为:165.【知识点】用代数式表示规律17. 【答案】0或−2【解析】ab=1,c+d=0.∣m∣=1.−1=0或−2.原式=1m【知识点】简单的代数式求值三、解答题18. 【答案】(1) 地毯的面积为:(mn+2nℎ)cm2.(2) 地毯总长:60×2+160=280(cm),160×60+2×60×75=18600(cm2),答:地毯的面积为18600cm2.【知识点】简单的代数式求值、简单列代数式19. 【答案】aℎ=a2−2aℎ.(1) 阴影部分的面积为:a2−4×12时,(2) 当a=2,ℎ=12原式=a2−2aℎ=22−2×2×12=2.【知识点】简单列代数式、简单的代数式求值20. 【答案】(1) 3;∣x−3∣;x;−2(2) 5【解析】(1) 数轴上表示−2和−5的两点之间的距离=∣−2−(−5)∣=3;数轴上表示数x和3的两点之间的距离=∣x−3∣;数轴上表示数x和−2的两点之间的距离表示为∣x+2∣.(2) 当−2≤x≤3时,∣x+2∣+∣x−3∣=x+2+3−x=5.【知识点】绝对值的几何意义、整式的加减运算、数轴的概念21. 【答案】(1) 400a+b分钟.(2) 400a−b分钟.【知识点】简单列代数式22. 【答案】(1) 5;7(2) 2;(2n+1)(3)加数的个数和1+3221+3+5321+3+5+742⋯⋯1+3+5+7+⋯+(2n−1)n2证明:∵S=1+3+5+7+⋯+(2n−5)+(2n−3)+(2n−1),∴S=(2n−1)+(2n−3)+(2n−5)+⋯+7+5+3+1,∴S+S=2n⋅n=2n2,2S=2n2,S=n2.【解析】(1) 由图形规律可得,答案为5,7.(2) ∵5−3=7−5=2,∴三角形内的点每增加1个,最多可以剪得的三角形增加2个;∵三角形内点的个数为1时,最多剪出的小三角形个数3=2×1+1,三角形内点的个数为2时,最多剪出的小三角形个数5=2×2+1,三角形内点的个数为3时,最多剪出的小三角形个数7=2×3+1,∴三角形内点的个数为n时,最多剪出的小三角形个数2n+1.【知识点】用代数式表示规律、整式的加减运算23. 【答案】(1) 100(2) (n+2)2(3)101+103+⋯+197+199 =(1+1992)2−(1+992)2=10000−2500=7500.【解析】(1) 1+3+5+7+9+⋯+19=(1+192)2=100.(2)1+3+5+7+9+⋯+(2n−1)+(2n+1)+(2n+3) =(1+2n+32)2=(n+2)2.【知识点】用代数式表示规律24. 【答案】(1) −b(2) −2;2(3) 2a2+a+(a−2a2)=a2+2a+(a+3),a2+a=−3,2a2+a+(a+3)=b+3a2+2a+(a2+2a),b=−2a2−2a+3,b=−2(a2+a)+3=6+3=9.【知识点】整式的加减运算25. 【答案】(1) (40−x),12(40−x).(2) 从A果园运到C地x吨,运费为每吨15元;从A果园运到D地的橘子为(40−x)吨,运费为每吨12元;从B果园运到C地(30−x)吨,运费为每吨10元;从B果园运到D地(30+x)吨,运费为每吨9元;所以总运费为:15x+12(40−x)+10(30−x)+9(30+x)=2x+1050.(3) 因为总运费=2x+1050,当x=30时,有最大值2×30+1050=1110元.当x=0时,有最小值2×0+1050=1050元.(4) 25大4360【解析】(1) 因为从A果园运到C地的橘子是x吨,那么从A果园运到D地的橘子为(40−x)吨,从A运到D地的运费是12元每吨,所以A果园将橘子运往D地的运输费用为12(40−x)吨.(4) w=−(x−25)2+4360,因为二次项系数−1<0,所以抛物线开口向下,当x=25时,w有最大值.最大值时4360.【知识点】二次函数的最值、简单的代数式求值、整式加减的应用、简单列代数式。

最新北师大版七年级数学上册第3章《整式及其加减》同步练习及答案—3.5探索与表达规律【精品】.doc

最新北师大版七年级数学上册第3章《整式及其加减》同步练习及答案—3.5探索与表达规律【精品】.doc

北师大版七年级数学上册第3章《整式及其加减》同步练习及答案—3.5探索与表达规律一、填空题1.每包书有12册,m 包书有__________册.2.矩形的一边长为a -2b ,另一边比第一边大2a +b ,则矩形的周长为__________.3.若|x -2y |+(y -1)2=0,则3x +4y =_____.4.a 2+(3a -b ) =a 2-(_______).5.化简:a 2-3ab +4b 2-(2b 2-3ab -3a 2)=__________.6.若n 为整数,则2)1()1(1+-+-n n =______.7.当b a b a +-=2时,(b a b a +-)2-3·ba b a +-=______.8.若3a 4b m +1=-54a 3n -2b 2是同类项,则m -n =__________.9.当a =-1,b =1时,(3a 2-2ab +2b 2)-(2a 2-b 2-2ab )=__________.10.某种酒精溶液里纯酒精与水的比为1∶2,现配制酒精溶液m 千克,需加水_____千克.11.一列火车保持一定的速度行驶,每小时行90千米,如果用t 表示火车行驶的小时数,那么火车在这段时间行驶的千米数是_____.12.产量由m 千克增长10%就达到____千克.13.a 千克大米售价8元,1千克大米售价______元. 14.圆的周长为P ,则半径R =__________.15.某校男生人数为x ,女生人数为y ,教师与学生的比例为1∶12,则共有教师____人.16.某电影院座位的行数为m ,已知座位的行数是每行座位数的32,教室里共有座位__________. 17.当x =7,y =4,z =0时,代数式x (2x -y +3z )的值为__________.18.某人骑自行车走了0.5小时,然后乘汽车走了1.5小时,最后步行a 千米,已知骑自行车与汽车的速度分别为v 1千米/秒和v 2千米/秒,则这个人所走的全部路程为______.19.教学楼大厅面积S m 2,如果矩形地毯的长为a 米,宽b 米,则大厅需铺这样的地毯________块.二、选择题20.长方体的周长为10,它的长是a ,那么它的宽是( ) A.10-2a B.10-a C.5-a D.5-2a 21.下列说法正确的是( ) A.31πx 2的系数为31 B.21xy 2的系数为21x C.3(-x 2)的系数为3 D.3π(-x 2)的系数为-3π22.若a 为负数,下列结论中不成立的是( ) A.a 2>0 B.a 3<0 C.|a |·a 2-a 3>0D.a 4<a 523.若M =-3(-a )2b 3c 4,N =a 2(-b )3(-c )4,P =21a 3b 4c 3,Q =-31a 3b 2(-c )4,则互为同类项的是( ) A.M 与N B.P 与Q C.M 与P D.N 与Q24.下面合并同类项正确的是( )A.3x +2x 2=5x 3B.2a 2b -a 2b =1C.-ab -ab =0D.-x 2y +x 2y =0 25.将m -{3n -4m +[m -5(m -n )+m ]}化简结果正确的是( ) A.8m +2n B.4m +n C.2m +8n D.8(m -n )26.a 、b 、c 、m 都是有理数,且a +2b +3c =m ,a +b +2c =m ,那么b 与c 的关系是( ) A.互为相反数 B.互为倒数 C.相等 D.无法确定27.水结成冰体积增大111,现有体积为 a 的水结成冰后体积为( ) A.111aB.1112aC.1110aD.1211a 28.你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸再捏合,再拉伸……反复几次,就把这根很粗的面条拉成了许多细的面条,这样捏合到第5次时可拉出细面条( )A.10根B.20根C.5根D.32根三、解答题29.某校举办跳绳比赛,第一组有男生m 人,女生n 人,男生平均每分钟跳105次,女生平均每分钟跳110次,一分钟第一组学生共跳绳多少次?当m =5,n =5时,结果是多少?30.今年初共青团中央发出了“保护母亲河的捐款活动”,某校初一两个班的115名学生积极参加,已知甲班31的学生每人捐款10元,乙班52的学生每人捐款10元,两班其余学生每人捐5元,设甲班有学生x 人,试用代数式表示两班捐款的总额,并化简. 31.研究下列等式,你会发现什么规律? 1×3+1=4=22 2×4+1=9=32 3×5+1=16=42 4×6+1=25=52 …设n 为正整数,请用n 表示出规律性的公式来. 32.已知a =3,b =2,计算 (1)a 2+2ab +b 2;(2)(a +b )2,当a =2,b =1或a =4,b =-3时,分别计算两式的值,从中发现怎样的规律.33.化简(1)(2a 2-1+2a )-3(a -1+a 2)(2)2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy +y 2)]34.某同学计算一多项式加上xy -3yz -2xz 时误认为减去此式计算出错误结果为2xy -3yz +4xz ,试求出正确答案.35.已知:甲的年龄为m 岁,乙的年龄比甲的年龄的3倍少7岁,丙的年龄比乙的年龄的21还多3岁,求甲、乙、丙年龄之和.36.A 、B 两家公司都准备向社会招聘人才,两家公司条件基本相同,只有工资待遇有如下差异:A 公司年薪两万元,每年加工龄工资400元,B 公司半年薪一万元,每半年加工龄工资100元,求A 、B 两家公司,第n 年的年薪分别是多少,从经济角度考虑,选择哪家公司有利?参考答案一、1.12m 2.8a -6b 3.10 4.b -3a5.4a 2+2b 26.07.-28.-19.4 10.31m 11.90t 12.m (1+10%) 13.a 8 14.π2P 15.12y x + 16.23m 217.70 18.0.5v 1+1.5v 2+a 19.abS二、20.C 21.D 22.D 23.A 24.D 25.D 26.A 27.B 28.D 三、29.105m+110n 1075 30.310 x +52(115-x )·10+[32x +53(115-x )]×5=-3x +80531.n (n +2)+1=(m +1)2 32.(a +b )2=a 2+2ab +b 2 33.(1)-a 2-a +2 (2)-2x 2+5xy +2y 2 34.4xy -9yz 35.211m -21536.A 公司收入:20000+(n -1)400B 公司收入[10000+200(n -1)]+[10000+200·(n -1)+100]=20100+400(n -1) 显然选B 公司。

北师大版七年级数学上册《整式》综合练习(含答案)

北师大版七年级数学上册《整式》综合练习(含答案)

3.3 整 式一、选择题1.下列说法中正确的是( )A .单项式x 的系数和次数都是零B .343x 是7次单项式C .25R π的系数是5D .0是单项式2.下列说法中正确的是( )A .12323+-x x 是五次三项式B .nm 232-是二次二项式 C .4232--x x D .3222+-x x 中一次项系数为-23.将多项式a a a -++-132按字母a 升幂排列正确的是( )A .123+--a a aB .132++--a a aC .a a a --+231D .321a a a +--4.下列式子中属于二次三项式的是( )A .2x 2+3;B .-x 2+3x-1;C .x 3+2x 2+3;D .x 4-x 2+1.5.多项式-6y 3+4xy 2-x 2+3x 3y 是按( )排列.A .x 的升幂;B .x 的降幂;C .y 的升幂;D .y 的降幂.6.同时都含有a 、b 、c ,且系数1的7次单项式共有( )A .4个B .12个C .15个D .25个二、填空题1.代数式①13-a ,②0,③n m 1+,④322b a +,⑤23xy ,⑥m 1中单项式有______;多项式有_______(填序号).2.553c ab -是_______次单项式,系数是_______. 3.3333224--+-b ab b a a 是______次_______项式,它的项分别是_______,常数项是______.4.把多项式x x x x 213212324--+-按x 的降幂排列为_______.5.把多项式n m n n m 223223---按n 的升幂排列为_________.6.关于m 的多项式1611-+--+n n n m am m 是三次三项式,则______=a ,_____=n 7.c b a m 123+是六次单项式,则._____=m三、解答题1.对于多项式24223.1433xy y x x +--,分别回答下列问题: (1)是几项式;(2)写出它的各项;(3)写出它的最高次项;(4)写出最高次项的次数;(5)写出多项式的次数;(6)写出常数项.2.将多项式2244433314y x y y x xy y x -++-先按x 的降幂排列,再按y 的升幂排列,并指出它是几次几项式,常数项和最高次项系数各是多少?3.写出系数是3,均含有字母a 、b 的所有五次单项式.4.补入下列多项式的缺项,并按字母x 降幂排列(1)53-+-x x (3)5322x x x --+5.一个关于a 、b 的多项式,除常数项为1-外,其余各项的次数都是3,系数都为1-,并且各项都不相同,这个多项式最多有几项?请将这个多项式写出来.并先将它按字母a 降幂排列,再把它按字母b 升幂排列.6.下列关于x 、y 的多项式是一个四次三项式,试确定m 、n 的值,并指出这个多项式是按哪一个字母的升幂还是降幂排列的.243221)3(2y x y nx y x m y x m m m m m ----+--++-7.(1)将)(b a -看成一个字母,把代数式)(2)(2)(32b a b a b a -+-----按字母“b a -”降幂排列,若设b a x -=,将上述代数式改写成关于x 的多项式.(2)已知2+=b a ,先求x ,并求出上述代数式的值.参考答案选择题1.D 2.D 3.D 4.B 5.A 6.C 填空题1.②、⑤;①、④; 2.九、51- 3.四、五、4a 、b a 23-、23ab 、3b -、-3、-3 4.121232234--+-x x x x 5.322223n m n n m --- 6.0,2 7.2解答题 1.(1)四项式;(2)2422,3.1,43,3xy y x x -- (3)y x 443- (4)次; (5)5次; (6)-1.32.4422334431y xy y x y x y x +--+, 4433224431xy y y x y x y x +++-,是六次五项式,常数项为0,最高次项系数为1; 3. 53a ,b a 43,233b a ,323b a ,43ab ,53b .4.(1)5023--⋅+x x x ,(2)2002345+⋅++-⋅+-x x x x x5.五项,13223-----b ab b a a ,32231b ab b a a -----; 6.411=+-m ∴4=m 代入多项式为22232y y nx y x y x +--+ 又∵这个多项式为四次三项式∴022=--y nx y x ∴1-=n ,是按y 的升幂排列7.(1)2)(2)()(23--+----b a b a b a ,2223-+--x x x(2)∵2+=b a ∴2=-b a ,即2=x ,原式=102)2(22223-=-+⨯+--。

北师大版七年级数学上册《探索与表达规律》专项练习(含答案)

北师大版七年级数学上册《探索与表达规律》专项练习(含答案)

试题汇编——找规律1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有__________个小圆圈.(1) (2) (3)2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有 个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为______________.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形1 2 3 n … … 第1个图 第2个图 第3个图…图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.6、 如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子 枚(用含有n 的代数式表示,并写成最简形式).○ ○ ○ ○ ○ ○ ○ ○ ○○ ○ ○ ○ ● ● ○ ○ ● ● ● ○○ ● ○ ○ ● ● ○ ○ ● ● ● ○○ ○ ○ ○ ○ ○ ○ ○ ● ● ● ○○ ○ ○ ○ ○7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形 需 根火柴棒。

8、将正整数按如图5所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是 .9、如图 2 ,用n 表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n 的关系是第一排 第二排 第三排 第四排 6 ┅┅ 10 9 87 32 15 410、观察图4的三角形数阵,则第50行的最后一个数是 ( )1-2 3-4 5 -67 -8 9 -10。

部编数学七年级上册专题05与整式有关的规律探究问题之六大题型(解析版)含答案

部编数学七年级上册专题05与整式有关的规律探究问题之六大题型(解析版)含答案

专题05 与整式有关的规律探究问题之六大题型单项式规律题例题:(2023下·云南玉溪·七年级统考期末)按一定规律排列的单项式:3579112,4,8,16,32,64x x x x x x ×××,第n 个单项式是( )A .()211n n x -+B .212n n x -C .221n n x +D .212n nx +【答案】B【分析】找出给出的一列单项式的系数和次数的规律即可解答.【详解】解:因为给出的一列单项式的系数分别是1234522,42,82,162,322=====L ,次数的规律是从1开始的连续的奇数,所以第n 个单项式是212n n x -.故选:B .【点睛】本题考查了单项式的规律探寻,根据给出的单项式找出系数和次数的规律是解题的关键.【变式训练】1.(2023下·云南昭通·八年级统考期末)一列单项式按以下规律排列:x ,23x -,25x ,7x -,29x ,211x -,13x ,L ,则第2023个单项式是( )A .4045xB .24045x -C .24045x D .4045x-【答案】A【分析】根据规律,系数是从1开始的连续奇数且第偶数个是负数,第奇数个是正数,x 的指数是3个循还一次,且分别是1,2,2,然后求解即可.【详解】解:根据x ,23x -,25x ,7x -,29x ,211x -,13x ,L ,所以系数是从1开始的连续奇数且第偶数个是负数,第奇数个是正数,有理数中分数的规律问题【变式训练】有理数的运算末位数字问题∴20233的末位数字为:7故选:C【点睛】此题考查了数字类变化规律,根据题意得到规律是解题的关键.【变式训练】有理数的新运算规律问题【变式训练】有理数中分数运算的规律问题【变式训练】图形类规律探究问题(1)数一数,完成下列表格.直线的条数2345【变式训练】1.(2023上·河北邢台·七年级统考期末)下面各图均由边长相同的正方形按一定规律拼接而成,请你观察、分析并解决下列问题:(1)第5个图中的正方形的个数是______;(2)求第n 个图中正方形的个数.【答案】(1)16(2)31n +【分析】(1)第1个图中正方形的个数是:3311=´+,第2个图中正方形的个数是:7321=´+,第3个图中正方形的个数是:10331=´+,则第n 个图中正方形的个数是:31n +,即可得;(2)由(1)即可得.【详解】(1)解:第1个图中正方形的个数是:3311=´+,第2个图中正方形的个数是:7321=´+,第3个图中正方形的个数是:10331=´+,…则第n 个图中正方形的个数是:31n +,即第5个图中的正方形的个数是:35116´+=,故答案为:16;(2)解:由(1)得,第n 个图中正方形的个数是31n +.(1)填写下表:三角形个数12345…故答案为:()21n +;(3)不存在三角形的个数是x 由2022根火柴棒拼成.理由如下:由(2)得出的规律可得:212022x +=,解得1010.5x =,∵火柴棒根数x 为正整数,∴1010.5x =不合题意,舍去,∴不存在三角形的个数是x 由2022根火柴棒拼成.【点睛】本题考查了图形类的变化规律,关键是通过观察图形,得出火柴棒数与三角形个数之间的规律.一、单选题A.63个B.87个C.91个【答案】D【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为而可得出答案.A.4044B.4046C.6069【答案】D二、填空题【答案】6068【分析】先根据题中的图形进行研究,分析出图形规律即可作答.【详解】解:第一个图的十字星是2个;(1)第四次裁剪后,得到的最小图形的面积占大正方形面积的______.(2)请你利用(1)中的结论,求下列各式的值:①23202211112222+++×××+=5112347解得78n =,答:需78张餐桌拼成一张大餐桌;(3)如图:由(1)同理可知,n 张桌子共坐()42n +人,42240n +=,解得59.5n =,n 是正整数,6078n =<,答:最少要用60张餐桌.【点睛】本题考查了数据规律的探究与实际应用;解题的关键是从题意观察、发现数据规律.。

七年级数学上册 第三章 整式及其加减 5 探索与表达规律典型例题素材 北师大版(2021学年)

七年级数学上册 第三章 整式及其加减 5 探索与表达规律典型例题素材 北师大版(2021学年)

七年级数学上册第三章整式及其加减5 探索与表达规律典型例题素材(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第三章整式及其加减5 探索与表达规律典型例题素材(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第三章整式及其加减5 探索与表达规律典型例题素材(新版)北师大版的全部内容。

《探索与表达规律》典型例题例1 观察下列数表:1 2 3 4 ……第一行2 3 4 5 ……第二行3 4 5 6 ……第三行4 5 6 7……第四行第第第第一二三四列列列列根据数表所反映的规律,猜想第六行第六列的交叉点上的数是多少?第n行第n列交叉点上的数是多少?例2 用含n(n为自然数)的等式表示你对下列等式隐含的规律性的估计:13=113+23=913+23+33=3613+23+33+43=100…………例3计算:1+2-3-4+5+6-7-8+9+10-11-12+…+1993+1994-1995-1996+1997.例4 (江西省中考题)如图用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:(1)第4个图案中有白色地面砖__________块;(2)第n 个图案中有白色地面砖__________块.例5 下表为杨辉三角系数表,它的作用是指导读者按规律写出形如n b a )(+(其中n 为正整数)展开式的系数,请你仔细观察下表中的规律,填出4)(b a +展开式中所缺的系数.b a b a +=+)(2222)(b ab a b a ++=+3223333)(b ab b a a b a +++=+则432234446____)(b ab b a b a a b a ++++=+例6 (广西中考试题)阅读下列一段话,并解决后面的问题.观察下面一列数:1,2,4,8,……我们发现,这一列数从第2项起,每一项与它前一项的比都等于2.一般地,如果一列数从第2项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数叫做等比数列的公比.(1)等比数列5,-15,45,……的第4项是________;(2)如果一列数4321,,,a a a a ,……是等比数列,且公比为q,那么根据上述的规定,有q a a q a a q a a ===342312,,,…… 所以 q a a 12=,21123)(q a q q a q a a ===,312134)(q a q q a q a a ===,…….______ n a (用1a 与q 的代数式表示)(3)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项.参考答案例1 分析:从左上角到右下角数的排列是1,3,5,7…,所以,第六行第六列的交叉点上的数是11,第n 行第n 列交叉点上的数是12-n .解:第六行第六列的交叉点上的数是11,第n行第n列交叉点上的数是12-n .说明:一个偶数可以写成2n 形式,一个奇数可以写成12-n 形式,其中n是整数.例2 分析:等号右边分别是12,32,62,102,…,由1+2=3,1+2+3=6猜想左边各底数之和,恰为右边写为幂的形式后的底数,而第四个等式恰与此猜想相符。

(常考题)北师大版初中数学七年级数学上册第三单元《整式及其运算》测试题(包含答案解析)(4)

(常考题)北师大版初中数学七年级数学上册第三单元《整式及其运算》测试题(包含答案解析)(4)

一、选择题1.如图①是1个小正方体木块水平摆放而成,图②是由6个小正方体木块叠放而成,图③是由15个小正方体木块叠放而成,……,按照这样的规律继续叠放下去,第⑥个叠放的图形中,小正方体木块总个数是( )A .61B .66C .91D .1202.下列图形都是由同样大小的笑脸按一定的规律组成,其中第①个图形一共有2个笑脸,第②个图形一共有8个笑脸,第③个图形一共有18 个笑脸…按此规律,则第⑥个图形中笑脸的个数为( )A .98B .72C .50D .36 3.已知|a|=2,b 2=25,且ab >0,则a ﹣b 的值为( )A .7B .﹣3C .3D .3或﹣34.如图,将一个边长为m 的正方形纸片剪去两个小长方形,得到一个类似“9”的图案,再将剪下的两个小长方形无缝隙地拼成一个新的长方形,则新长方形的周长可表示为( )A .59m n -B .5.58m n -C .45m n -D .58m n -5.已知3a b +=,2c d -=,则()()a c b d +--+的值是( ) A .5 B .5- C .1 D .1- 6.一个正方形的边长减少10%,则它的面积减少( )A .19%B .20%C .1%D .10%7.下列运算正确的是( ) A .2232x x -= B .()a b c a b c --+=--- C .1(3)232-÷⨯=- D .11n =8.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( ) A .18B .12C .9D .79.小张在做数学题时,发现了下面有趣的结果321-=87654+--=1514131211109++---=242322212019181716+++----= ……根据以上规律可知,第20行左起第一个数是( ) A .360B .339C .440D .48310.若代数式()()2226231x ax bx x ++---(,a b 为常数)的值与字母x 的取值无关,则代数式2+a b 的值为( ) A .0B .1-C .2或2-D .611.下列各选项中的两个单项式,是同类项的是( ) A .3和2B .2a -和25-C .215a b -和212ab D .2ab 和2xy12.若327x y 和3211-m x y 的和是单项式,则代数式1224-m 的值是( ) A .3-B .4-C .5-D .12-二、填空题13.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为______,第2021个图形的周长为______.14.若35a x y 与310.2b x y --的和仍是单项式,则a =____,b =____.15.观察后面的一列单项式:23446;810;,;x x x x --…根据你发现的规律,第10个单项式为___________. 16.已知,1231111,,,,1212312341234(1)n a a a a n n ===⋯=++++++++++⋯+++,12,n n S a a a =++⋯⋯+则2020S =_____.17.当1x =-时,代数式21x +=________.18.如图,是一个运算的流程图,输入正整数x 的值,按流程图进行操作并输出y 的值.例如,若输入x =10,则第一次输出y =5.若输入某数x 后,第二次输出y =3,则输入的x 的值为_________.19.计算:-2x 2+3x 2=__________;20.如表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为________. 3abc-52 …三、解答题21.先化简再求值:2(x 2y +xy )﹣3(x 2y ﹣xy )﹣4x 2y ,其中x =1,y =﹣1. 22.先化简,再求值:()()2222522225a ab baab b -+--+,其中2, 1.a b ==-23.如图,有理数a ,b ,c 在数轴上的位置大致如下:(1)去绝对值符号:|a -c |= ,| b -a |= ; (2)化简:|c -b |-|b -a |-|a +c |. 24.综合与探究某餐厅中1张餐桌可坐6人,如果把多张桌子摆在一起,可以有以下两种摆放方式.(1)当有4张桌子时,第一种摆放方式能坐______人,第二种摆放方式能坐人; (2)当有n 张桌子时,第一种摆放方式能坐______人,第二种摆放方式能坐______人; (3)该餐厅有30张这样的长方形桌子,按方式一每3张拼成一张大桌子,则30张桌子可拼成10张大桌子,共可坐______人?按方式二呢?(4)一天中午,该餐厅来了98名顾客共同就餐客(即桌子要摆在一起),但餐厅中只有25张这样的长方形桌子可用,若你是这家餐厅的经理,你打算选用哪种方式来摆餐桌呢? 25.观察下面的三行单项式x ,2x 2,4x 3,8x 4,16x 5…① 2x ,﹣4x 2,8x 3,﹣16x 4,32x 5…② 3x ,5x 2,9x 3,17x 4,33x 5…③ 根据你发现的规律,完成以下各题:(1)第①行第7个单项式为 ;第②行第7个单项式为 . (2)第③行第n 个单项式为 .(3)取每行的第10个单项式,令这三个单项式的和为A .计算当x =12时,256[3A ﹣2(A+14)]的值. 26.如图是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数. (1)填空:a =________,b =________,c =________.(2)先化简,再求值:()22253234a b a b abc a b abc ⎡⎤---+⎣⎦【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】观察所给的前三个图形,把正方体木块的总个数按层数拆分找出规律,解决问题. 【详解】观察前三个图形发现第①个图形是1个正方体木块水平摆放而成,图②是1+5个正方体木块叠放而成,图③是1+5+9个正方体木块叠放而成,由此得到第⑥个图形是1+5+9+13+17+21个正方体木块叠放而成的,而1+5+9+13+17+21=66. 故选:B . 【点睛】此题考查观察发现规律及运用规律的能力,其关键是要结合图形,对前几个图形中的正方体木块的总个数进行拆分.2.B解析:B 【分析】先根据题意求找出其中的规律,即可求出第⑥个图形中笑脸的个数.【详解】解:第①个图形一共有2个笑脸,第②个图形一共有:2+(3×2)=8个笑脸,第③个图形一共有8+(5×2)=18个笑脸,……第n个图形一共有:1×2+3×2+5×2+7×2+…+2(2n-1)=2[1+3+5+…+(2n-1)],=[1+(2n-1)]×n=2n2,则第⑥个图形一共有:2×62=72个笑脸;故选:B.【点睛】本题考查了规律型:图形变化类,把图形分成三部分进行考虑,并找出第n个图形的个数的表达式是解题的关键.3.D解析:D【分析】根据绝对值,乘方的意义求出a、b的值,再代入计算即可.【详解】解:因为|a|=2,所以a=±2,因为b2=25,所以b=±5,又因为ab>0,所以a、b同号,所以a=2,b=5,或a=﹣2,b=﹣5,当a=2,b=5时,a﹣b=2﹣5=﹣3,当a=﹣2,b=﹣5时,a﹣b=﹣2﹣(﹣5)=3,因此a﹣b的值为3或﹣3,故选:D.【点睛】本题主要考查了绝对值的性质和代数式求值,准确计算是解题的关键.4.A解析:A【分析】根据图形给出的已知条件列出算式,进行整式加减即可得结论.【详解】解:由图可得,新长方形的长为()(2)23m n m n m n -+-=-,宽为113(3)222m n m n -=-,则新长方形的周长为13592322592222m n m n m n m n ⎫⎫⎛⎛-+-⨯=-⨯=- ⎪⎪⎝⎝⎭⎭. 故选A . 【点睛】本题考查了整式的加减,解决本题的关键是观察图形正确列出算式.5.A解析:A 【分析】先把()()a c b d +--+变形为()()a b c d ++-,然后再整体代入即可. 【详解】解:∵3a b +=,2c d -=, ∴()()a c b d +--+ =()()a b c d ++- =3+2 =5. 故选:A . 【点睛】本题主要考查了代数式求值,解答此题的关键是灵活运用整体代入法.6.A解析:A 【分析】正方形的面积=边长×边长,设原来正方形的边长为a ,则现在的正方形的边长为(1-10%)a ,代入公式即可求解. 【详解】解:设原来正方形的边长为a ,则现在的正方形的边长为(1-10%)a , (1-10%)a×(1-10%)a =0.81a 2, (a 2-0.81a 2)÷a 2×100% =0.19 a 2÷a 2×100% =19% 故选:A 【点睛】本题主要考查了列代数式和整式的加减运算.通过设原边长为a ,根据已知条件求出原面积及边长减少10%后的面积是完成本题的关键.7.D解析:D【分析】根据合并同类项法则,去括号法则,有理数的混合运算法则以及有理数的乘方运算法则,对各选项分析判断后利用排除法求解. 【详解】解:A 、22223(31)2x x x x -=-=,故本选项计算错误,不符合题意;B 、()+a b c a b c --+=--,故本选项错误,不符合题意;C 、1113(3)23=2224-÷⨯=-⨯⨯-,故本选项错误,不符合题意; D 、11n =,故本选项正确,符合题意. 故选D . 【点睛】本题考查了有理数的混合运算,去括号法则,合并同类项法则,是基础题,熟记运算法则是解题的关键.8.D解析:D 【分析】将x 2﹣2x 当成一个整体,在第一个代数式中可求得x 2﹣2x =1,将其代入后面的代数式即能求得结果. 【详解】解:∵3x 2﹣6x +6=9,即3(x 2﹣2x )=3, ∴x 2﹣2x =1, ∴x 2﹣2x +6=1+6=7. 故选:D . 【点睛】本题考查了代数式求值,解题的关键是将x 2﹣2x 当成一个整体来对待.9.C解析:C 【分析】根据左起第一个数3,8,15,24的变化规律,得出第n 行的左起第一个数为2(11)n +-,由此即可求出第20行的左起第一个数.【详解】根据题意可知,每行的左起第一个数依次为:2321=-, 2831=-, 21541=-, 22451=-,第n 行的左起第一个数为2(11)n +-.∴第20行的左起第一个数为2(201)1440+-=. 故选:C . 【点睛】本题考查数字的变化规律.根据题意找到规律并利用规律解决问题是关键.10.B解析:B 【分析】利用去括号、合并同类项法则化简代数式,得到()()22237b x a x -+++,根据代数式()()2226231xax bx x ++---(,a b 为常数)的值与字母x 的取值无关可得220b -=,30a +=,求出a 和b 的值即可. 【详解】解:()()2226231x ax bx x ++---2226231x ax bx x ++-++= ()()22237b x a x -+++=,∵代数式()()2226231x ax bx x ++---(,a b 为常数)的值与字母x 的取值无关, ∴220b -=,30a +=, ∴1b =,3a =-, ∴2321a b +=-+=-, 故选:B . 【点睛】本题考查整式的加减—字母无关型,掌握去括号、合并同类项法则是解题的关键.11.A解析:A 【分析】根据同类项的定义:所含字母相同,相同字母的指数相同即可判断.两个常数也是同类项. 【详解】解:A. 3和2是常数,是同类项,故A 正确;B. 2a -和25-所含字母不同,故不是同类项,故B 错误;C.215a b -和212ab 相同字母的指数不同,故不是同类项,故C 错误; D. 2ab 和2xy 所含字母不同,故不是同类项,故D 错误.故选:A . 【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.要注意,两个常数是同类项.12.D解析:D【分析】根据单项式的和是单项式,可得同类项,根据同类项的意义,可得答案.【详解】由题意,得3m=3,解得m=1,12m−24=12-24=-12.故选:D.【点睛】本题考查了合并同类项,利用单项式的和是单项式得出同类项是解题关键.二、填空题13.86065【分析】把图形的周长分解成上下边和左右边之和注意表达式中数字个数与序号的关系找到规律求解即可【详解】第1个图形的周长为:1+1+2+1;第2个图形的周长为:1+1+1+2+2+1;第3个图解析:8, 6065.【分析】把图形的周长分解成上下边和左右边之和,注意表达式中数字个数与序号的关系,找到规律求解即可.【详解】第1个图形的周长为:1+1+2+1;第2个图形的周长为:1+1+1+2+2+1;第3个图形的周长为:1+1+1+1+2+2+2+1;由此得到第n个图形的周长为:1111+222+1 n n+++++++个个=3n+2,当n=2时,3n+2=8;当n=2021时,3n+2=3×2021+2=6065;故答案为:8,6065.【点睛】本题考查了图形中数字的规律探索,创新思维视角,探寻合理的解题方法找规律是解题的关键.14.4【分析】由和仍是单项式可知它们是同类项所以根据同类项:所含字母相同并且相同字母的指数也相同可得出a 和b 的值继而代入可得出答案【详解】解:因为单项式与的和仍是单项式所以单项式与是同类项所以a=3b=解析:4 【分析】由和仍是单项式可知它们是同类项,所以根据同类项:所含字母相同,并且相同字母的指数也相同,可得出a 和b 的值,继而代入可得出答案. 【详解】解:因为单项式35a x y 与310.2b x y--的和仍是单项式,所以单项式35a x y 与310.2b x y --是同类项, 所以a=3,b=4, 故答案为:3,4. 【点睛】本题考查合并同类项,熟记同类项的定义是解答本题的关键,注意只有同类项才能合并.15.【分析】把单项式的系数的绝对值系数的符号指数分别与单项式出现的序号建立起联系寻找出其中的规律即可【详解】仔细观察发现奇数项为正偶数项为负可用表示;系数的绝对值依次为4=2×(1+1)6=2×(2+1解析:1022x -. 【分析】把单项式的系数的绝对值,系数的符号,指数分别与单项式出现的序号建立起联系,寻找出其中的规律即可. 【详解】仔细观察,发现奇数项为正,偶数项为负,可用n 1(-1)+表示;系数的绝对值依次为4=2×(1+1),6=2×(2+1),8=2×(3+1),10=2×(4+1),第n 个单项式的系数为2×(n+1);指数依次为1,2,3,4,第n 个单项式的指数为n ; 所以第n 个单项式为n 1(-1)+×2×(n+1)n x ,所以当n=10时,单项式为n 1(-1)+×2×1110x =1022x -.故答案为:1022x -. 【点睛】本题考查了单项式中的规律探究,熟练将单项式的系数,指数与单项式的序号建立起正确的关系是解题的关键.16.【分析】根据将其转化为然后得到然后再计算即可【详解】解:∵∴∴∴故答案是:【点睛】本题考查了数字类的规律探索熟悉相关性质能对数据进行推理分析是解题的关键解析:10101011. 【分析】根据11234(1)n a nn 将其转化为11212na n n,然后得到122nnn S a a a n,然后再计算2020S 即可.【详解】 解:∵111121111234(1)122na n n nn n n∴111121223a2111212334a31112123445a ⋯∴12nn S a a a11111111222223344512n n11111111223344512n n11222n2nn =+, ∴20202020202010102020220221011S , 故答案是:10101011. 【点睛】本题考查了数字类的规律探索,熟悉相关性质,能对数据进行推理分析是解题的关键.17.2【分析】将x=-1代入计算即可【详解】解:当x=-1时(-1)2+1=2故答案为:2【点睛】此题考查已知字母的值求代数式的值正确掌握有理数的混合运算是解题的关键解析:2 【分析】将x=-1代入计算即可. 【详解】解:当x=-1时,21x +=(-1)2+1=2, 故答案为:2. 【点睛】此题考查已知字母的值求代数式的值,正确掌握有理数的混合运算是解题的关键.18.9或10或11或12【分析】由运算流程图先求出第一次输出的数分为偶数或者奇数;然后再分两种情况求出输入的x 的值即可【详解】解:根据题意∵第二次输出设第一次输出的数是奇数m 时则解得:;设第一次输出的数解析:9或10或11或12. 【分析】由运算流程图,先求出第一次输出的数,分为偶数或者奇数;然后再分两种情况求出输入的x 的值即可. 【详解】 解:根据题意, ∵第二次输出3y =,设第一次输出的数是奇数m 时,则132m +=,解得:5m =; 设第一次输出的数是偶数n 时,则32n=,解得:6n =. 当第一次输出为5时,又可以分为两种情况: 当x 为奇数时,则152x +=,解得:9x =; 当x 为偶数时,则52=x,解得:10x =; 当第一次输出为6时,又可以分为两种情况: 当x 为奇数时,则162x +=,解得:11x =; 当x 为偶数时,则62x=,解得:12x =; 故答案为:9或10或11或12. 【点睛】本题考查有理数的运算,结合编程的流程图出题,题目新颖,并且运用到了分类讨论这一重要数学思想.熟练掌握有理数的运算法则是解题的关键.19.x2【分析】合并同类项是指同类项的系数的相加并把得到的结果作为新系数要保持同类项的字母和字母的指数不变据此计算即可【详解】解:-2x2+3x2=(-2+3)x2=x2故答案为:x2【点睛】本题主要考解析:x 2 【分析】合并同类项是指同类项的系数的相加,并把得到的结果作为新系数,要保持同类项的字母和字母的指数不变,据此计算即可.【详解】解:-2x2+3x2=(-2+3)x2= x2故答案为:x2.【点睛】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.20.-5【分析】根据三个相邻格子的整数的和相等列式求出ac的值再根据有一个不同数是2可得b=2然后找出格子中的数每3个为一个循环组依次循环再用2018除以3根据余数的情况确定与第几个数相同即可得解【详解解析:-5【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据有一个不同数是2可得b=2,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴3+a+b=a+b+c,解得c=3,a+b+c=b+c+(−5),解得a=−5,所以数据从左到右依次为3、−5、b、3、−5、b,有一个不同数是2,即b=2,所以每3个数“3、-5、2”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-5.故答案为:-5.【点睛】此题考查数字的变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.三、解答题21.﹣5x2y+5xy,0【分析】先去括号,然后合并同类项得到原式=﹣5x2y+5xy,然后把x、y的值代入计算即可.【详解】解:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x =1,y =﹣1时,原式=﹣5×1×(﹣1)+5×1×(﹣1)=0. 【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键. 22.2a ab -,6 【分析】先去括号,再合并同类项,最后将值代入即可. 【详解】解:原式222255104410a ab b a ab b =-+-+-2a ab =-当2,1a b ==-时,22a -ab=2-2?(-1)=6.【点睛】本题考查整式的加减——化简求值.注意去括号时,括号前面是负号,去掉括号和负号将括号内变号;括号前面是正号,直接去掉括号即可. 23.(1)c -a ,b -a ;(2)2a 【分析】(1)根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简即可;(2)原式利用绝对值的代数意义化简,去括号合并即可得到结果. 【详解】解:(1)根据题意,有理数a ,b ,c 在数轴上的位置得:a <c <0,a <0<b , ∴|a -c|=c-a ,| b -a|=b-a ; 故答案为:c -a , b -a .(2)∵c -b <0,b -a >0,a +c <0, ∴原式=-( c -b )-(b -a )-(-a -c ) =b -c -b +a +a +c =2a . 【点睛】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键. 24.(1)18;12;(2)()42n +;()24n +;(3)140;100;(4)方式一 【分析】(1)仔细观察图形的变化规律解答即可;(2)通过观察图形变化,发现第一种方式每增加一张桌子,就增加4人,第二种方式是每增加一张桌子,就增加2人,由此规律解答即可;(3)根据(2)中发现的规律分别求出每一张大桌子能坐的人数,即可求出10张大桌子共可坐的人数;(4)分别求出25张桌子按两种方式摆放可坐的人数,即可做出判断. 【详解】(1)观察发现:第一种摆放方式,多一张桌子多4人,故有4张桌子能坐18人, 第二种摆放方式,多一张桌子多2人,故有4张桌子能坐12人, 故答案为:18,12;(2)观察发现,第一种摆放方式,有n 张桌子能坐的人数为6+4(n ﹣1)=4n+2, 第二种摆放方式,有n 张桌子能坐的人数为6+2(n ﹣1)=2n+4, 故答案为:()42n +,()24n +;(3)第一种方式:30张桌子拼成10张大桌子可坐的人数为10×(4×3+2)=140人, 第二种方式:30张桌子拼成10张大桌子可坐的人数为10×(2×3+4)=100人, 故答案为:140,100;(4)方式一:当25n =时,425210298⨯+=>, 方式二:当25n =时,22545498⨯+=<, 所以,选用第一种摆放方式来摆放餐桌. 【点睛】本题考查图形的变化规律探索、列代数式、有理数的混合运算,解答的关键是理解题意,认真观察,找到图形的变化规律.25.(1)26x 7,27x 7;(2)(2n +1)x n ;(3)14【分析】(1)观察所给的①与②式子可得①的特点,第n 个数是2n ﹣1x n ,②的特点,第n 个数是(﹣1)n ﹣1(2x )n ;(2)观察③式子的特点,可得第n 个数是(2n +1)x n ,即可求出解; (3)先求出A =29x 10﹣210x 10+(210+1)x 10,再将x =12代入求出A ,最后再求256[3A ﹣2(A+14)]即可. 【详解】解:(1)①的特点,第n 个数是2n ﹣1x n ,∴第7个单项式是26x 7;②的特点,第n 个数是(﹣1)n ﹣1(2x )n , ∴第7个单项式是27x 7; 故答案为:26x 7,27x 7;(2)③的特点,第n 个数是(2n +1)x n , 故答案为:(2n +1)x n ;(3)①的第10个单项式是29x 10,②的第10个单项式是﹣210x 10,③的第10个单项式是(210+1)x 10,∴A =29x 10﹣210x 10+(210+1)x 10=(29+1)x 10, 当x =12时,A =(29+1)×(12)10,∴256[3A ﹣2(A+14)]=256(A ﹣12)=256×[(29+1)×(12)10﹣12]=28×(12)10=14. 【点睛】本题考查数字的变化规律,能够通过所给例子,找到式子的规律,列出每行第n 个式子的代数式是解题的关键.26.(1)1,-3,2;(2)2abc ,-12. 【分析】(1)先根据长方体的平面展开图确定a 、b 、c 所对的面的数字,再根据相对的两个面上的数互为相反数,确定a 、b 、c 的值; (2)化简代数式后代入求值. 【详解】解:(1)由长方体纸盒的平面展开图知,a 与-1、b 与3、c 与-2是相对的两个面上的数字或字母,因为相对的两个面上的数互为相反数, 所以1a =,3b =-,2c =. 故答案为:1;-3;2;(2)原式222536242a b a b abc a b abc abc =-+--=, ∴原式()213212=⨯⨯-⨯=-. 【点睛】本题考查了长方体的平面展开图、相反数及代数式的化简求值.解决本题的关键是根据平面展开图确定a 、b 、c 的值.。

北师大版七年级数学上册同步练习第三章整式及其加减第5节探索与表达规律

北师大版七年级数学上册同步练习第三章整式及其加减第5节探索与表达规律

北师大版七年级数学上册同步练习第三章整式及其加减第5节探索与表达规律班级姓名第三章整式及其加减5探求与表达规律1. 如图是2021年1月份的日历,现用一个正方形在日历中恣意框出4个数a bc d,请用一个等式表示a,b,c,d之间的关系.解:观察图可知,同一列相邻两数相差7,同一行相邻两数相差1,由此可知b=a+1,c=a+1,d=a+8.故可得出a+d=b+c.2.观察下面几个算式,找出规律:1+2+1=4=22,1+2+3+2+1=9=32,1+2+3+4+3+2+1=16=42,1+2+3+4+5+4+3+2+1=25=52,应用下面的规律,请回答以下效果:(1)1+2+3+…+99+100+99+…+3+2+1的值是多少?(2)你能算出1+2+3+…+100是多少吗?(3)你能推导出1+2+3+…+n的计算公式吗?解:(1)1+2+3+…+99+100+99+…+3+2+1=1002=10 000.(2)1+2+3+…+100=12(1+2+3+…+100+99+…+3+2+1)+1002=12×1002+1002=5 050.(3)1+2+3+…+n=12[1+2+3+…+(n-1)+n+(n-1)+…+3+2+1]+n2=n22+n2=n2+n 2=n〔n+1〕2.3.在日历上恣意选择2×2方格中的4个数,假定最小的数为x,那么最大的数可表示为(D)A.x+7B.x+1C .x +2D .x +84.观察以下3个数:20+0.5,30+1,40+1.5,那么第6个数是( D )A .42B .52C .62.5D .735.一组数3,5,9,17,…,用代数式表示第n 个数为( C )A .3+2nB .n 2+1C .2n +1D .不能确定6.为庆贺〝六一〞儿童节,某幼儿园举行用火柴棒摆〝金鱼〞竞赛,如下图.依照这样的规律,摆第(n )个图,需用火柴棒的根数为 __6n +2__.7.一组数23,45,67,89,…,按一定的规律陈列着,请你依据陈列规律,推测这组数的第10个数应为( B )A .1819 B .2021 C .2223 D .24258.观察以下一组数:1,-2,3,-4,5,-6,7,-8,…,那么第100个数是( B )A .100B .-100C .101D .-1019.礼堂第一排有a 个座位,前面每排都比前一排多一个座位,那么第n 排座位个数是( A )A .a +(n -1)B .n +1C .a +nD .a +(n +1)10.将全体正奇数排成一个三角形数阵:13 57911131517192123252729依照以上陈列的规律,第25行第20个数是(A)A.639 B.637C.635 D.63311.将正整数1至2 018按一定规律陈列如下表:平移表中带阴影的方框,方框中三个数的和能够是(D)A.2 019B.2 018C.2 016D.2 01312.把26个英语字母按〝ABBBCCCCCDDDDDDD…〞的顺序有规律陈列,字母〝F〞出现的次数是__11__.13.观察以下图,先填空,然后回答以下效果:(1)由上而下第10行,白球有__10__个;黑球有__19__个;(2)假定第n行白球与黑球的总数记作y,那么请你用含n的代数式表示y.14.观察以下图形中点的个数,假定按其规律再画下去,可以失掉第(n)个图形中一切的点的个数为__(n+1)2__(用含n的代数式表示).15.甲、乙两同窗玩猜数游戏,甲说〝你随意选定一个三位数,按如下的步骤做:(1)百位上的数字乘5;(2)结果加上5;(3)再乘2;(4)再加上十位上的数字;(5)乘10;(6)最后加上个位数字.只需你通知我最后的结果,我便可以说出那个三位数.〞乙同窗试了几次,果真如此.请你指出甲同窗是如何猜出这个三位数的,并用数学知识说明理由.解:只需将说出的三位数减去100就知道了.理由:设百位上的数字为a,十位上的数字为b,个位上的数字为c,那么乙按步骤所得的三位数为10[2(5a+5)+b]+c,化简后为100a+10b+c+100,减去100就是原三位数.16.如图是由非负偶数排成的数阵:(1)写出图中〝H〞形框中七个数的和与中间数的关系;(2)在数阵中恣意做一个这样的〝H〞形框,(1)中的关系能否仍成立?并写出理由;(3)用这样的〝H〞形框能框出和为2 023的七个数吗?假设能,求出这七个数中间的数;假设不能,请写出理由.解:(1)∵22+40+58+42+26+44+62=294=7×42,∴图中〝H〞形框中七个数的和是中间数的7倍.(2)成立.理由如下:设中间数为x,那么其他六个数从小到大区分为x-20,x-16,x-2,x+2,x+16,x+20,∴x-20+x-16+x-2+x+2+x+16+x+20=7x,所以图中〝H〞形框中七个数的和是中间数的7倍.(3)不能,理由如下:2 023÷7=289.∵数阵中的数都是非负偶数,而289是奇数,∴不能框出和为2 023的七个数.。

初中数学北师大七年级上册(2023年修订) 整式及其加减探索规律2的学案

初中数学北师大七年级上册(2023年修订) 整式及其加减探索规律2的学案

《探索与表达规律(2)》学案——图形规律问题学习目标:通过具体问题,能用代数式表示并借助代数式运算验证所探索规律的一般性,并能总结出“探索规律的一般步骤”学习重难点:代数式表示所探索图形之间规律的一般性学习准备:1、知识准备:通过上一节课的学习,能够将数量之间的一般性规律用代数式表示,并会验证规律2、学具准备:以两人为学习小组准备:纸制4个长方形(代替餐桌)和18个圆形(代替凳子)学习过程:例150张餐桌可坐多少人?一张餐桌两张餐桌三张餐桌(2)、该餐厅现有50张餐桌,可坐人。

探索规律的一般步骤有哪些?练习:若按方式二摆放餐桌,50张餐桌可坐多少人?一张餐桌两张餐桌三张餐桌(1)、按照上图的方式继续排列餐桌,完成下表:(表格中n表示n张餐桌)桌子张数12345。

n可坐人数(2)、该餐厅现有50张餐桌,可坐人。

例2:下列图①中有3个小黑圆点,图②中有8个小黑圆点,图③中有15个小黑圆点,图④中有24个小黑圆点,按照此规律,第n个图形中小黑圆点的个数为,第10个图形中小黑圆点的个数为练习:下图是在正方形网格中按规律填成的阴影,根据此规律,则第n个图中阴影部分小正方形的个数是.二、反馈练习:1、用火柴棒按下图的方式搭三角形:1 2 3 4三角形个数12345(1)填写下表:火柴棒根数(2)照这样的规律搭下去,搭n 个这样的三角形需要根火柴棒。

搭100个这样的三角形需要根火柴棒2、用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖块,第n个图形中需要黑色瓷砖块3、用火柴棒按下面的方式搭图形,搭第1个图形需要7根火柴棒,搭第2个图形需要12根火柴棒,搭第3个图形需要17根火柴棒,…,照这样的规律搭下去,搭第n个图形需要的火柴棒的根数是4、如图,将一张正三角形纸片剪成四个小正三角形,得到4个小正三角形,称为第一次操作;然后,将其中的一个正三角形再剪成四个小正三角形,共得到7个小正三角形,称为第二次操作;再将其中的一个正三角形再剪成四个小正三角形,共得到10个小正三角形,称为第三次操作;…,根据以上操作,若要得到2023个小正三角形,则需要操作的次数是()次.A.669B.670C.671D.672三、中考链接:如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个10×10的正方形图案,则其中完整的圆共有个.四、自我检测:1、用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干个图案,完成下表:第1个图第2个图第3个图图案个数123……n20白色地砖数2、观察下列图形的构成规律,按此规律,第n个图形中棋子的个数为第100个图形中棋子的个数为五、课时小结:。

北师大版七年级上册数学第三章整式及其加减——图形找规律专项练习60题(含答案)

北师大版七年级上册数学第三章整式及其加减——图形找规律专项练习60题(含答案)

图形找规律专项练习60题(有答案)1.按如下方式摆放餐桌和椅子:填表中缺少可坐人数_________ ;_________ .2.观察表中三角形个数的变化规律:图形0 1 2 …n横截线条数6 ??…?三角形个数若三角形的横截线有0条,则三角形的个数是6;若三角形的横截线有n条,则三角形的个数是_________ (用含n的代数式表示).3.如图,在线段AB上,画1个点,可得3条线段;画2个不同点,可得6条线段;画3个不同点,可得10条线段;…照此规律,画10个不同点,可得线段_________ 条.4.如图是由数字组成的三角形,除最顶端的1以外,以下出现的数字都按一定的规律排列.根据它的规律,则最下排数字中x的值是_________ ,y的值是_________ .5.下列图形都是由相同大小的单位正方形构成,依照图中规律,第六个图形中有_________ 个单位正方形.6.如图,用相同的火柴棒拼三角形,依此拼图规律,第7个图形中共有_________ 根火柴棒.7.图1是一个正方形,分别连接这个正方形的对边中点,得到图2;分别连接图2中右下角的小正方形对边中点,得到图3;再分别连接图3中右下角的小正方形对边中点,得到图4;按此方法继续下去,第n个图的所有正方形个数是_________ 个.8.观察下列图案:它们是按照一定规律排列的,依照此规律,第6个图案中共有_________ 个三角形.9.如图,依次连接一个边长为1的正方形各边的中点,得到第二个正方形,再依次连接第二个正方形各边的中点,得到第三个正方形,按此方法继续下去,则第二个正方形的面积是_________ ;第六个正方形的面积是_________ .10.下列各图形中的小正方形是按照一定规律排列的,根据图形所揭示的规律我们可以发现:第1个图形有1个小正方形,第2个图形有3个小正方形,第3个图形有6个小正方形,第4个图形有10个小正方形…,按照这样的规律,则第10个图形有_________ 个小正方形.11.如图,用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数为_________ .12.为庆祝“六一”儿童节,幼儿园举行用火柴棒摆“金鱼”比赛,如图所示,则摆n条“金鱼”需用火柴棒的根数为_________ .13.如图,两条直线相交只有1个交点,三条直线相交最多有3个交点,四条直线相交最多有6个交点,五条直线相交最多有10个交点,六条直线相交最多有_________ 个交点,二十条直线相交最多有_________ 个交点.14.用火柴棒按如图所示的方式搭图形,按照这样的规律搭下去,填写下表:图形编号(1)(2)(3)…n火柴根数从左到右依次为_________ _________ _________ _________ .15.图(1)是一个黑色的正三角形,顺次连接三边中点,得到如图(2)所示的第2个图形(它的中间为一个白色的正三角形);在图(2)的每个黑色的正三角形中分别重复上述的作法,得到如图(3)所示的第3个图形.如此继续作下去,则在得到的第5个图形中,白色的正三角形的个数是_________ .16.如图,一块圆形烙饼切一刀可以切成2块,若切两刀最多可以切成4块,切三刀最多可以切成7块…通过观察、计算填下表(其中S表示切n刀最多可以切成的块数)后,可探究一圆形烙饼切n刀最多能切成_________ 块(结果用n的代数式表示).n 0 1 2 3 4 5 …n17.如图,是用相同的等腰梯形拼成的等腰梯形图案.第(1)个图案只有1个等腰梯形,其两腰之和为4,上下底之和为3,周长为7;第(2)个图案由3个等腰梯形拼成,其周长为13;…第(n)个图案由(2n﹣1)个等腰梯形拼成,其周长为_________ .(用正整数n表示)18.下列各图均是用有一定规律的点组成的图案,用S表示第n个图案中点的总数,则S= _________ (用含n 的式子表示).19.如图,由若干盆花摆成图案,每个点表示一盆花,几何图形的每条边上(包括两个顶点)都摆有n(n≥3)盆花,每个图案中花盆总数为S,按照图中的规律可以推断S与n(n≥3)的关系是_________ .20.用火柴棍象如图这样搭图形,搭第n个图形需要_________ 根火柴棍.21.现有黑色三角形“”和白色三角形“”共有2011个,按照一定的规律排列如下:则黑色三角形有_________ 个.22.假设有足够多的黑白围棋子,按照一定的规律排成一行:○●●○○●○●●○○●○●●○○●○●●○○●…请问第2011个棋子是黑的还是白的?答:_________ .23.观察下列由等腰梯形组成的图形和所给表中数据的规律后填空:1 2 3 4 5 …梯形的个数图形的周5 8 11 14 17 …长当梯形个数为2007个时,这时图形的周长为_________24.如图,下面是一些小正方形组成的图案,第4个图案有_________ 个小正方形组成;第n个图案有_________个小正方形组成.25.如图所示是由火柴棒按一定规律拼出的一系列图形:依照此规律,第7个图形中火柴棒的根数是_________ .26.图中的每个图形都是由若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有n(n≥2)个棋子,每个图案的棋子总数为s,按图的排列规律推断,s与n之间的关系可用式子_________ 表示.27.观察下列图形,它是按一定规律排列的,那么第_________ 个图形中,十字星与五角星的个数和为27个.28.2条直线最多只有1个交点;3条直线最多只有3个交点;4条直线最多只有6个交点;2000条直线最多只有_________ 个交点.29.以下各图分别由一些边长为1的小正方形组成,请填写图2、图3中的周长,并以此推断出图10的周长为_________ .30.如图所示,第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么设第n个图案中有白色地面砖m块,则m与n的函数关系式是_________ .31.用同样大小的黑色棋子按如图所示的规律摆放:(1)分别写出第6、7两个图形各有多少颗黑色棋子?(2)写出第n个图形黑色棋子的颗数?(3)是否存在某个图形有2012颗黑色棋子?若存在,求出是第几个图形;若不存在,请说明理由.32.如图,给出四个点阵,s表示每个点阵中点的个数,按照图形中的点的个数变化规律,(1)猜想第n个点阵中的点的个数s= _________ .(2)若已知点阵中点的个数为37,问这个点阵是第几个?33.用棋子摆出下列一组图形:(1)填写下表:图形编号 1 2 3 4 5 6图中棋子数 5 8 11 14 17 20(2)照这样的方式摆下去,写出摆第n个图形所需棋子的枚数;(3)其中某一图形可能共有2011枚棋子吗?若不可能,请说明理由;若可能,请你求出是第几个图形.34.观察图中四个顶点的数字规律:(1)数字“30”在_________ 个正方形的_________ ;(2)请你用含有n(n≥1的整数)的式子表示正方形四个顶点的数字规律;(3)数字“2011”应标在什么位置.35.如图,各图表示若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案中花盆的总数为S.问:①当每条边有2盆花时,花盆的总数S是多少?②当每条边有3盆花时,花盆的总数S是多少?③当每条边有4盆花时,花盆的总数S是多少?④当每条边有10盆花时,花盆的总数S是多少?⑤按此规律推断,当每条边有n盆花时,花盆的总数S是多少?36.如下图是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第④、第⑤个“上”字分别需用_________ 和_________ 枚棋子;(2)第n个“上”字需用_________ 枚棋子;(3)七(3)班有50名同学,把每一位同学当做一枚棋子,能否让这50枚“棋子”按照以上规律恰好站成一个“上”字?若能,请计算最下一“横”的学生数;若不能,请说明理由.37.下列表格是一张对同一线段上的个数变化及线段总条数的探究统计.线段上点的个数线段的总条数11+2=31+2+3=6……(1)请你完成探究,并把探究结果填在相应的表格里;(2)若在同一线段上有10个点,则线段的总条数为_________ ;若在同一线段上有n个点,则有_________ 条线段(用含n 的式子表示)(3)若你所在的班级有60名学生,20年后参加同学聚会,见面时每两个同学之间握一次手,共握手_________ 次.38.如图是用棋子摆成的“H”字.(1)摆成第一个“H”字需要_________ 个棋子;摆第x个“H”字需要的棋子数可用含x的代数式表示为_________ ;(2)问第几个“H”字棋子数量正好是2012个棋子?39.我们知道,两条直线相交只有一个交点.请你探究:(1)三条直线两两相交,最多有_________ 个交点;(2)四条直线两两相交,最多有_________ 个交点;(3)n条直线两两相交,最多有_________ 个交点(n为正整数,且n≥2).40.如图所示,小王玩游戏:一张纸片,第一次将其撕成四小片,手中共有4张纸片,以后每次都将其中一片撕成更小的四片.如此进行下去,当小王撕到第n次时,手张共有S张纸片.根据上述情况:(1)用含n的代数式表示S;(2)当小王撕到第几次时,他手中共有70张小纸片?41.如图①是一张长方形餐桌,四周可坐6人,2张这样的桌子按图②方式拼接,四周可坐10人.现将若干张这样的餐桌按图③方式拼接起来:(1)三张餐桌按题中的拼接方式,四周可坐_________ 人;(2)n张餐桌按上面的方式拼接,四周可坐_________ 人(用含n的代数式表示).若用餐人数为26人,则这样的餐桌需要_________ 张.42.用棋子摆出下列一组图形:(1)填写下表:图形编号 1 2 3 4 5 6图形中的棋子(2)照这样的方式摆下去,写出摆第n个图形棋子的枚数;(用含n的代数式表示)(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?43.如图①,图②,图③,图④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,(1)第5个“广”字中的棋子个数是_________ .(2)第n个“广”字需要多少枚棋子?44.如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察图形并解答有关问题:(1)在第n个图中共有_________ 块黑瓷砖,_________ 块白瓷砖;(2)是否存在黑瓷砖与白瓷砖块数相等的情形?你能通过计算说明吗?45.用火柴棒按如图的方式搭三角形.(1)搭4个这样的三角形要用_________ 根火柴棒;13根火柴棒可以搭_________ 个这样的三角形;(2)搭n个这样的三角形要用_________ 根火柴棒(用含n的代数式表示).46.观察图中的棋子:(1)按照这样的规律摆下去,第4个图形中的棋子个数是多少?(2)用含n的代数式表示第n个图形的棋子个数;(3)求第20个图形需棋子多少个?47.如图,用正方体石墩垒石梯,下图分别表示垒到一、二、三阶梯时的情况.那么照这样垒下去,请你观察规律,并完成下列问题.(1)填出下表中未填的两个空格:阶梯级数一级二级三级四级石墩块数 3 9(2)当垒到第n级阶梯时,共用正方体石墩多少块(用含n的代数式表示)?并求当n=100时,共用正方体石墩多少块?48.有一张厚度为0.05毫米的纸,将它对折1次后,厚度为2×0.05毫米.(1)对折3次后,厚度为多少毫米?(2)对折n次后,厚度为多少毫米?(3)对折n次后,可以得到多少条折痕?49.如图所示,用同样规格正方形瓷砖铺设矩形地面,请观察下图:按此规律,第n个图形,每一横行有_________ 块瓷砖,每一竖列有_________ 块瓷砖(用含n的代数式表示)按此规律,铺设了一矩形地面,共用瓷砖506块,请问这一矩形的每一横行有多少块瓷砖,每一竖列有多少瓷砖?50.找规律:观察下面的星阵图和相应的等式,探究其中的规律.(1)在④、⑤和⑥后面的横线上分别写出相应的等式:①1=12②1+3=22③1+3+5=32④_________ ;⑤_________ ;⑥_________ ;(2)通过猜想,写出第n个星阵图相对应的等式.51.将一张正方形纸片剪成四个大小一样的小正方形,然后将其中的一个正方形再剪成四个小正方形,如此循环下去,如图所示:(1)完成下表:所剪次数n 1 2 3 4 5正方形个数Sn 4(2)剪n次共有S n个正方形,请用含n的代数式表示S n= _________ ;(3)若原正方形的边长为1,则第n次所剪得的正方形边长是_________ (用含n的代数式表示).52.如图是用五角星摆成的三角形图案,每条边上有n(n>1)个点(即五角星),每个图案的总点数(即五角星总数)用S表示.(1)观察图案,当n=6时,S= _________ ;(2)分析上面的一些特例,你能得出怎样的规律?(用n表示S)(3)当n=2008时,求S.53.用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点.观察图中每一个正方形(实线)四条边上的格点的个数,请回答下列问题:(1)由里向外第1个正方形(实线)四条边上的格点个数共有_________ 个;由里向外第2个正方形(实线)四条边上的格点个数共有_________ 个;由里向外第3个正方形(实线)四条边上的格点个数共有_________ 个;(2)由里向外第10个正方形(实线)四条边上的格点个数共有_________ 个;(3)由里向外第n个正方形(实线)四条边上的格点个数共有_________ 个.54.下列各图是由若干花盆组成的形如正方形的图案,每条边(包括两个顶点)有n(n>1)个花盆,每个图案花盆总数是S.(1)按要求填表:n 2 3 4 5 …S 4 8 12 …(2)写出当n=10时,S= _________ .(3)写出S与n的关系式:S= _________ .(4)用42个花盆能摆出类似的图案吗?55.如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究并解答下列问题.(1)在第1个图中,共有白色瓷砖_________ 块.(2)在第2个图中,共有白色瓷砖_________ 块.(3)在第3个图中,共有白色瓷砖_________ 块.(4)在第10个图中,共有白色瓷砖_________ 块.(5)在第n个图中,共有白色瓷砖_________ 块.56.淮北市为创建文明城市,各种颜色的菊花摆成如下三角形的图案,每条边(包括两个顶点)上有n(n>1)盆花,每个图案花盆的总数为S,当n=2时,S=3;n=3时,S=6;n=4时,S=10.(1)当n=6时,S= _________ ;n=100时,S= _________ .(2)你能得出怎样的规律?用n表示S.57.下面是按照一定规律画出的一系列“树枝”经观察,图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出4个“树枝”,图(4)比图(3)多出8个“树枝”,按此规律:图(5)比图(4)多出_________ 个树枝;图(6)比图(5)多出_________ 个树枝;图(8)比图(7)多出_________ 个树枝;…图(n+1)比图(n)多出_________ 个树枝.58.如图是用棋子成的“T”字图案.从图案中可以出,第一个“T”字图案需要5枚棋子,第二个“T”字图案需要8枚棋子,第三个“T”图案需要11枚棋子.(1)照此规律,摆成第八个图案需要几枚棋子?(2)摆成第n个图案需要几枚棋子?(3)摆成第2010个图案需要几枚棋子?59.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:(1)当黑砖n=1时,白砖有_________ 块,当黑砖n=2时,白砖有_________ 块,当黑砖n=3时,白砖有_________ 块.(2)第n个图案中,白色地砖共_________ 块.60.下列图案是晋商大院窗格的一部分.其中,“o”代表窗纸上所贴的剪纸.探索并回答下列问题:(1)第6个图案中所贴剪纸“o”的个数是_________ ;(2)第n个图案中所贴剪纸“o”的个数是_________ ;(3)是否存在一个图案,其上所贴剪纸“o”的个数为2012个?若存在,指出是第几个;若不存在,请说明理由.图形找规律60题参考答案:1.结合图形和表格,不难发现:1张桌子座6人,多一张桌子多2人.4张桌子可以座10+2=12.即n张桌子时,共座6+2(n﹣1)=2n+4.2.当横截线有n条时,在6个的基础上多了n个6,即三角形的个数共有6+6n=6(n+1)个.故应填6(n+1)或6n+63.∵画1个点,可得3条线段,2+1=3;画2个点,可得6条线段,3+2+1=6;画3个点,可得10条线段,4+3+2+1=10;…;画n个点,则可得(1+2+3+…+n+n+1)=条线段.所以画10个点,可得=66条线段;4.根据图形可以发现,第七排的第一个数和第二数与第八排的第二个数相等,而第八排的第二个数就是x,所以x=61.另外,由图形可知,x右边的数是2×61=122,y左边的数是2×61+56=178,所以y=178+46=2245.根据题意分析可得:第1个图案中正方形的个数2个,第2个图案中正方形的个数比第1个图案中正方形的个数多4个,第3个图案中正方形的个数比第2个图案中正方形的个数多6个…,依照图中规律,第六个图形中有2+4+6+8+10+12=42个单位正方形6.图形从上到下可以分成几行,第n行中,斜放的火柴有2n根,下面横放的有n根,因而图形中有n排三角形时,火柴的根数是:斜放的是2+4+…+2n=2(1+2+…+n)横放的是:1+2+3+…+n,则每排放n根时总计有火柴数是:3(1+2+…+n)=21)nn3(把n=7代入就可以求出.故第7个图形中共有=84根火柴棒7.图1中,是1个正方形;图2中,是1+4=5个正方形;图3中,是1+4×2=9个正方形;依此类推,第n个图的所有正方形个数是1+4(n﹣1)=4n﹣3.8.∵第1个图案中有2×2+2×1=6个三角形;第2个图案中有2×3+2×2=10个三角形;第3个图案中有2×4+2×3=14个三角形;…∴第6个图案中有2×7+2×6=26个三角形.故答案为269.∵正方形的边长是1,所以它的斜边长是:=,所以第二个正方形的面积是:×=,第三个正方形的面积为=()2,以此类推,第n个正方形的面积为()n﹣1,所以第六个正方形的面积是()6﹣1=;故答案为:,.10.∵第一个有1个小正方形,第二个有1+2个,第三个有1+2+3个,第四个有1+2+3+4,第五个有1+2+3+4+5,∴则第10个图形有1+2+3+4+5+6+7+8+9+10=55个.故答案为:5511.依题意得:(1)摆第1个“小屋子”需要5个点;摆第2个“小屋子”需要11个点;摆第3个“小屋子”需要17个点.当n=n时,需要的点数为(6n﹣1)个.故答案为6n﹣112.由图形可知:第一个金鱼需用火柴棒的根数为:2+6=8;第二个金鱼需用火柴棒的根数为:2+2×6=14;第三个金鱼需用火柴棒的根数为:2+3×6=20;…;第n个金鱼需用火柴棒的根数为:2+n×6=2+6n.故答案为2+6n13.6条直线两两相交,最多有n(n﹣1)=×6×5=15,20条直线两两相交,最多有n(n﹣1)=×20×19=190.故答案为:15,190.14.如表格所示:(1)(2)(3)…n图形编号7 12 17 …5n+2火柴根数15.设白三角形x个,黑三角形y个,则:n=1时,x=0,y=1;n=2时,x=0+1=1,y=3;n=3时,x=3+1=4,y=9;n=4时,x=4+9=13,y=27;当n=5时,x=13+27=40,所以白的正三角形个数为:40,故答案为:4016.n=1时,S=1+1=2,n=2时,S=1+1+2=4,n=3时,S=1+1+2+3=7,n=4时,S=1+1+2+3+4=11,…所以当切n刀时,S=1+1+2+3+4+…+n=1+n(n+1)=n2+n+1.故答案为n2+n+117.根据题意得:第(1)个图案只有1个等腰梯形,周长为3×1+4=7;第(2)个图案由3个等腰梯形拼成,其周长为3×3+4=13;第(3)个图案由5个等腰梯形拼成,其周长为3×5+4=19;…第(n)个图案由(2n﹣1)个等腰梯形拼成,其周长为3(2n﹣1)+4=6n+1;故答案为:6n+118.观察发现:第1个图形有S=9×1+1=10个点,第2个图形有S=9×2+1=19个点,第3个图形有S=9×3+1=28个点,…第n个图形有S=9n+1个点.故答案为:9n+119.n=3时,S=6=3×3﹣3=3,n=4时,S=12=4×4﹣4,n=5时,S=20=5×5﹣5,…,依此类推,边数为n数,S=n•n﹣n=n(n﹣1).故答案为:n(n﹣1).20.结合图形,发现:搭第n个三角形,需要3+2(n﹣1)=2n+1(根).故答案为2n+121.因为2011÷6=335…1.余下的1个根据顺序应是黑色三角形,所以共有1+335×3=1006.故答案为:100622.从所给的图中可以看出,每六个棋子为一个循环,∵2011÷6=335…1,∴第2011个棋子是白的.故答案为:白23.依题意可求出梯形个数与图形周长的关系为3n+2=周长,当梯形个数为2007个时,这时图形的周长为3×2007+2=6023.故答案为:6023.24.观察图形知:第一个图形有1=12个小正方形;第二个图形有1+3=4=22个小正方形;第三个图形有1+3+5=9=32个小正方形;…第n个图形共有1+2+3+…+(2n﹣1)=n2个小正方形,当n=4时,有n2=42=16个小正方形.故答案为:16,n225.根据已知图形可以发现:第2个图形中,火柴棒的根数是7;第3个图形中,火柴棒的根数是10;第4个图形中,火柴棒的根数是13;∵每增加一个正方形火柴棒数增加3,∴第n个图形中应有的火柴棒数为:4+3(n﹣1)=3n+1.当n=7时,4+3(n﹣1)=4+3×6=22,故答案为:2226.观察图形发现:当n=2时,s=4,当n=3时,s=9,当n=4时,s=16,当n=5时,s=25,…当n=n时,s=n2,故答案为:s=n227.∵第1个图形中,十字星与五角星的个数和为3×2=6,第2个图形中,十字星与五角星的个数和为3×3=9,第3个图形中,十字星与五角星的个数和为3×4=12,…而27=3×9,∴第8个图形中,十字星与五角星的个数和=3×9=27.故答案为:828.2条直线最多的交点个数为1,3条直线最多的交点个数为1+2=3,4条直线最多的交点个数为1+2+3=6,5条直线最多的交点个数为1+2+3+4=10,…所以2000条直线最多的交点个数为1+2+3+4+…+1999==1999000.故答案为199900029.∵小正方形的边长是1,∴图1的周长是:1×4=4,图2的周长是:2×4=8,图3的周长是3×4=12,…第n个图的周长是4n,∴图10的周长是10×4=40;故答案为:8,12,4030.首先发现:第一个图案中,有白色的是6个,后边是依次多4个.所以第n个图案中,是6+4(n﹣1)=4n+2.∴m与n的函数关系式是m=4n+2.故答案为:4n+2.31.第一个图需棋子6,第二个图需棋子9,第三个图需棋子12,第四个图需棋子15,第五个图需棋子18,…第n个图需棋子3(n+1)枚.(1)当n=6时,3×(6+1)=21;当n=7时,3×(7+1)=24;(2)第n个图需棋子3(n+1)枚.(3)设第n个图形有2012颗黑色棋子,根据(1)得3(n+1)=2012解得n=,所以不存在某个图形有2012颗黑色棋子32.(1)由点阵图形可得它们的点的个数分别为:1,5,9,13,…,并得出以下规律:第一个点数:1=1+4×(1﹣1)第二个点数:5=1+4×(2﹣1)第三个点数:9=1+4×(3﹣1)第四个点数:13=1+4×(4﹣1)…因此可得:第n个点数:1+4×(n﹣1)=4n﹣3.故答案为:4n﹣3;(2)设这个点阵是x个,根据(1)得:1+4×(x﹣1)=37解得:x=10.答:这个点阵是10个33.(1)观察图形,得出枚数分别是,5,8,11,…,每个比前一个多3个,所以图形编号为5,6的棋字子数分别为17,20.故答案为:17和20.(2)由(1)得,图中棋子数是首项为5,公差为3的等差数列,所以摆第n个图形所需棋子的枚数为:5+3(n﹣1)=3n+2.(3)不可能由3n+2=2010,解得:n=669,∵n为整数,∴n=669不合题意故其中某一图形不可能共有2011枚棋子34.(1)由图可知,每个正方形标4个数字,∵30÷4=7…2,∴数字30在第8个正方形的第2个位置,即右上角;故答案为:8,右上角;(2)左下角是4的倍数,按照逆时针顺序依次减1,即正方形左下角顶点数字:4n,正方形左上角顶点数字:4n﹣1,正方形右上角顶点数字:4n﹣2,正方形右下角顶点数字:4n﹣3;(3)2011÷4=502…3,所以,数字“2011”应标第503个正方形的左上角顶点处35.依题意得:①n=2,S=3=3×2﹣3.②n=3,S=6=3×3﹣3.③n=4,S=9=3×4﹣3④n=10,S=27=3×10﹣3.…⑤按此规律推断,当每条边有n盆花时,S=3n﹣336.(1)第①个图形中有6个棋子;第②个图形中有6+4=10个棋子;第③个图形中有6+2×4=14个棋子;∴第⑤个图形中有6+3×4=18个棋子;第⑥个图形中有6+4×4=22个棋子.故答案为18、22;(3分)(2)第n个图形中有6+(n﹣1)×4=4n+2.故答案为4n+2.(3分)(3)4n+2=50,解得n=12.最下一横人数为2n+1=25.(4分)37.(1)5个点时,线段的条数:1+2+3+4=10,6个点时,线段的条数:1+2+3+4+5=15;(2)10个点时,线段的条数:1+2+3+4+5+6+7+8+9=45,n个点时,线段的条数:1+2+3+…+(n﹣1)=;(3)60人握手次数==1770.故答案为:(2)45,;(3)1770.38.(1)摆成第一个“H”字需要7个棋子,第二个“H”字需要棋子12个;第三个“H”字需要棋子17个;…第x个图中,有7+5(x﹣1)=5x+2(个).(2)当5x+2=2012时,解得:x=402,故第402个“H”字棋子数量正好是2012个棋子39.(1)如图(1),可得三条直线两两相交,最多有3个交点;(2)如图(2),可得三条直线两两相交,最多有6个交点;(3)由(1)得,=3,由(2)得,=6;∴可得,n 条直线两两相交,最多有个交点(n为正整数,且n≥2).故答案为3;6;.40.(1)由题目中的“每次都将其中﹣片撕成更小的四片”,可知:小王每撕一次,比上一次多增加3张小纸片.∴s=4+3(n﹣1)=3n+1;(2)当s=70时,有3n+1=70,n=23.即小王撕纸23次41.(1)结合图形,发现:每个图中,两端都是坐2人,剩下的两边则是每一张桌子是4人.则三张餐桌按题中的拼接方式,四周可坐3×4+2=14(人);(2)n张餐桌按上面的方式拼接,四周可坐(4n+2)人;若用餐人数为26人,则4n+2=26,解得n=6.故答案为:14;(4n+2),642.(1)如图所示:图形编号1 2 3 4 5 6图形中的棋子6 912 15 18 21(2)依题意可得当摆到第n个图形时棋子的枚数应为:6+3(n﹣1)=6+3n﹣3=3n+3;(3)由上题可知此时3n+3=99,∴n=32.答:第32个图形共有99枚棋子13.由题目得:第1个“广”字中的棋子个数是7;第2个“广”字中的棋子个数是7+(2﹣1)×2=9;第3个“广”字中的棋子个数是7+(3﹣1)×2=11;第4个“广”字中的棋子个数是7+(4﹣1)×2=13;发现第5个“广”字中的棋子个数是7+(5﹣1)×2=15…进一步发现规律:第n个“广”字中的棋子个数是7+(n﹣1)×2=2n+5.故答案为:1544.(1)在第n个图形中,需用黑瓷砖4n+6块,白瓷砖n(n+1)块;(2)根据题意得n(n+1)=4n+6,n2﹣3n﹣6=0,此时没有整数解,所以不存在.故答案为:4n+6;n(n+1)45.(1)结合图形,发现:后边每多一个三角形,则需要多2根火柴.则搭4个这样的三角形要用3+2×3=9根火柴棒;13根火柴棒可以搭(13﹣3)÷2+1=6个这样的三角形;(2)根据(1)中的规律,得搭n个这样的三角形要用3+2(n﹣1)=2n+1根火柴棒.故答案为9;6;2n+146.(1)第4个图形中的棋子个数是13;(2)第n个图形的棋子个数是3n+1;(3)当n=20时,3n+1=3×20+1=61∴第20个图形需棋子61个47.(1)第一级台阶中正方体石墩的块数为:=3;第一级台阶中正方体石墩的块数为:=9;第一级台阶中正方体石墩的块数为:;…依此类推,可以发现:第几级台阶中正方体石墩的块数为:3与几的乘积乘以几加1,然后除以2.阶梯级一级二级三级四级数3 9 18 30石墩块数(2)按照(1)中总结的规律可得:当垒到第n级阶梯时,共用正方体石墩块;当n=100时,∴当n=100时,共用正方体石墩15150块.答:当垒到第n级阶梯时,共用正方体石墩块;当n=100时,共用正方体石墩15150块48.由题意可知:第一次对折后,纸的厚度为2×0.05;可以得到折痕为1条;第二次对折后,纸的厚度为2×2×0.05=22×0.05;可以得到折痕为3=22﹣1条;第三次对折后,纸的厚度为2×2×2×0.05=23×0.05;可以得到折痕为7=23﹣1条;…;第n次对折后,纸的厚度为2×2×2×2×…×2×0.05=2n×0.05.可以得到折痕为2n﹣1条.故:(1)对折3次后,厚度为0.4毫米;(2)对折n次后,厚度为2n×0.05毫米;(3)对折n次后,可以得到2n﹣1条折痕49.由图形我们不难看出横行砖数量为n+3,竖行砖数量为n+2,总数量为n2+5n+6;若用瓷砖506块,可以求n2+5n+6=506;所以答案为:(1)n+3,n+2;(2)每一行有23块,每一列有22块50.等号左边是从1开始,连续奇数相加,等号右边是奇数个数也就是n的平方.(1)①1+3+5+7=42;②1+3+5+7+9=52;③1+3+5+7+9+11=62.(2)1+3+5+…+(2n﹣1)=n2(n≥1的正整数)51.(1)依题意得:所剪次数n 1 2 3 4 54 7 10 13 16正方形个数Sn(2)可知剪n次时,S n=3n+1.(3)n=1时,边长=;n=2时,边长=;n=3时,边长=;…;剪n次时,边长=.52.(1)S=15(2)∵n=2时,S=3×(2﹣1)=3;n=3时,S=3×(3﹣1)=6;n=4时,S=3×(4﹣1)=9;…∴S=3×(n﹣1)=3n﹣3.(3)当n=2008时,S=3×2008﹣3=6021.53.第1个正方形四条边上的格点共有4个第2个正方形四条边上的格点个数共有(4+4×1)个第3个正方形四条边上的格点个数共有(4+4×2)个…第10个正方形四条边上的格点个数共有(4+4×9)=40个第n个正方形四条边上的格点个数共有[4+4×(n﹣1)]=4n个54.由图可知,每个图形为边长是n的正方形,因此四条边的花盆数为4n,再减去重复的四个角的花盆数,即S=4n﹣4;(1)将n=5代入S=4n﹣4,得S=16;(2)将n=10入S=4n﹣4,得S=36;(3)S=4n﹣4;(4)将S=42代入S=4n﹣4得,4n﹣4=42解得n=11.5所以用42个花盆不能摆出类似的图案。

北师大版七年级数学上册难点探究专题:整式中的规律探究同步测试题

北师大版七年级数学上册难点探究专题:整式中的规律探究同步测试题

北师大版七年级数学测试卷(考试题)难点探究专题:整式中的规律探究(选做)——从特殊到一般,探寻多方规律 ◆类型一 整式规律探究一、有规律的一列数1.已知一组数:1,3,5,7,9,…按此规律,第n 个数是 .【方法9①】2.观察下列一组数:32,1,710,917,1126,…它们是按一定规律排列的,那么这组数的第n 个数是 (n 为正整数).二、有规律的一列单项式3.有一组单项式:a 2,-a 32,a 43,-a 54,a 65,…则第10个单项式是 ,第n 个单项式是 .4.观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…按照上述规律,第2017个单项式是【方法9①】( )A .2017x 2017B .4033x 2016C .4033x 2017D .4035x 2017三、数的循环规律或式中的规律5.如图是钢琴键盘的一部分,若从4开始,依次弹出4,5,6,7,1,4,5,6,7,1,…按照上述规律弹到第2016个音符是 .6.设a n 为n 4(n 为正整数)的末位数,如a 1=1,a 2=6,a 3=1,a 4=6.则a 1+a 2+a 3+…+a 24+a 25= .7.(2016·滨州中考)观察下列式子: 1×3+1=22; 7×9+1=82; 25×27+1=262; 79×81+1=802; …可猜想第2016个式子为____________________________________________________. 四、数表中的规律 8.(2016·邵阳中考)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y =2n +1B .y =2n +nC .y =2n +1+n D .y =2n +n +19.(2016·新疆中考)如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x 的值为 .10.如图所示的数表是由1开始的连续自然数排列而成的,根据你观察的规律完成下面问题:(1)第8行共有 个数,最后一个数是 ;(2)第n 行共有 个数,第一个数是 ,最后一个数是 . ◆类型二 图形规律探究 11.(2016·临沂中考)用大小相等的小正方形按一定规律拼成下列图形,则第n 个图形中小正方形的个数是【方法9②】( )A .2n +1B .n 2-1C .n 2+2nD .5n -212.如图是用棋子摆成的图案:【方法9②】根据图中棋子的排列规律解决下列问题:(1)第4个图中有 枚棋子,第5个图中有 枚棋子; (2)猜想第n 个图中棋子的数量(用含n 的式子表示).参考答案与解析1.2n -12.2n +1n 2+1解析:1=55,这样分子为从3开始的一列奇数,即2n +1,而分母为2=12+1,5=22+1,10=32+1,17=42+1,26=52+1,即n 2+1.故这组数的第n 个数为2n +1n 2+1.3.-a 1110 (-1)n +1·a n +1n4.C 解析:第n 个单项式为(2n -1)x n . 5.46.85 解析:a 1~a 10依次为1,6,1,6,5,6,1,6,1,0,a 11~a 20与a 1~a 10分别相等,a21~a25与a1~a5分别相等,因此a1+a2+a3+…+a24+a25=(4×6+1×4+5+0)×2+(6×2+1×2+5)=85.7.(33016-2)×32016+1=(32016-1)28.B解析:∵观察可知:左边三角形的数字规律为1,2,…,n,右边三角形的数字规律为2,22,…,2n,下边三角形的数字规律为1+2,2+22,…,n+2n,∴y=2n+n.9.370解析:∵左下角数字为偶数,右上角数字为奇数,∴2n=20,m=2n-1,解得n=10,m=19.∵右下角数字:第一个为1=1×2-1,第二个为10=3×4-2,第三个为27=5×6-3,∴第n个为2n(2n-1)-n,∴x=19×20-10=370.故答案为370.10.(1)1564(2)2n-1(n-1)2+1n211.C12.解:(1)2232(2)第n个图中棋子的数量为[n(n+1)+2]枚.附赠材料:怎样提高答题效率直觉答题法相信自己的第一感觉厦门英才学校彭超老师说,“经验表明,从做题的过程来看,同学们要相信自己的第一感觉,不要轻易改动第一次做出的选择,第一感觉的正确率在80%以上。

最新北师大版七年级数学上册《整式中的规律探究》名师精品课件

最新北师大版七年级数学上册《整式中的规律探究》名师精品课件

非常感谢您的参与与配合,我非常喜欢你们 ,您是最聪明的孩子
整式中的规律探究
我们经常遇到与整式相关的排列问题或图形排列问题, 如①x,-2x2,4x3,-8x4,……
②.


……

……
n
这些整式或表示图形的整式通常“匀增加”或“成倍增加”,找到这些规 律就找到了解题的方法.
类型一:整式规律探究
例:观察下面的单项式:x,-2x2,4x3,-8x4,……,根据你发现的规律,第7个单
项式为____6_4__x_7___,第n个单项式为__(_-___1__)_n_+_1_•_2__n_-1•xn.
解:观察发现:①奇数项的符号为正号,偶数项的符号为负号; ②系数的绝对值依次为1,2,22,23,…… ③字母x的指数依次为1,2,3,4,…… 所以第7个单项式为64x7,第n个单项式为(-1)n+1•2n-1•xn.
观察下列图形:若图形⑴中阴影部分的面积为 1,图形⑵中阴影部分的面积为 3 , 4
图形⑶中阴影部分的面积为 9 ,图形⑷中阴影部分的面积为 27 ,则第 n 个图形中 Nhomakorabea16
64
阴影部分的面积用字母表示为( C )
A. 3 n B.(3)n C. ( 3)n1 D. ( 3)n1
4
4
4
4
图⑴ 图⑵ 图⑶ 图⑷
方法总结
图形排列规律的问题其实也可以看成是整式排列规律问题,将图形中相 关的数据用含项数字母的整式表示出来,再看看这些整式排列有什么规律, 最后根据所推导的规律解题.
同学们我们本节课的学习内 容,你掌握了吗?下面我们一起 来回顾好吗?
1.请同学之间相互说说本课的收获。 2.师生共同回顾总结本课知识 点。

北师大版数学七年级上册第三章整式及其加减第5节探索与表达规律课后练习

北师大版数学七年级上册第三章整式及其加减第5节探索与表达规律课后练习

第三章整式及其加减第5节探索与表达规律课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是()A.2010B.2012C.2014D.20162.观察下列一组图形中的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,……,按此规律第5个图中共有点的个数是()A.31B.46C.51D.663.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第n个图形中需要黑色瓷砖多少块(用含n的代数式表示)()A.4n B.3n+1C.4n+3D.3n+24.如图是将正整数从小到大按1,2,3,4,…,n,…的顺序组成的鱼状图案,则数“n”出现的个数为()A.2n-1B.2n C.2n+1D.2n+25.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在()A.射线OA上B.射线OB上C.射线OD上D.射线OF上6.对于任意非零实数a、b,定义运算“⊕”,使下列式子成立:1⊕2=﹣32,2⊕1=32,(﹣2)⊕5=2110,5⊕(﹣2)=﹣2110,…,则(﹣3)⊕(﹣4)=()A.﹣712B.712C.-2512D.25127.如图所示的三角形数垒,a、b是某行的前两个数,当a=7时,b=()A.20B.21C.22D.238.将正奇数按下表排成5列:第一列第二列第三列第四列第五列第一行1357第二行1513119第三行17192123第四行31292725…根据上面规律,2007应在()A.125行,3列B.125行,2列C.251行,2列D.251行,5列9.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()A.135B.170C.209D.25210.观察下列各数:1,1,57,715,931,…按你发现的规律计算这列数的第7个数为()A.15255B.13127C.11127D.1163评卷人得分二、填空题11.观察下列等式:2=2=1×22+4=6=2×32+4+6=12=3×42+4+6+8=20=4×5……(1)可以猜想,从2开始到第n(n为自然数)个连续偶数的和是__________;(2)当n=10时,从2开始到第10个连续偶数的和是__________________.12.如图,下列图形都由同样大小的十字星图案按一定的规律组成,其中第一个图形有1个十字星图案,第二个图形有2个十字星图案,第三个图形有5个十字星图案,第四个图形有10个十字星图案,…,则第101个图形有________个十字星图案.13.按如图所示的程序计算,若开始输入的x的值为48,我们发现第一次得到的结果为24,第2次得到的结果为12,…,请你探索第2013次得到的结果为________.14.从2开始,连续的偶数相加,它们和的情况如下表:加数的个数n 连续偶数的和S1 2=1×22 2+4=6=2×33 2+4+6=12=3×44 2+4+6+8=20=4×55 2+4+6+8+10=30=5×6根据表中的规律猜想:用n的代数式表示S的公式为:S=2+4+6+8+…+2n=________.15.下表中的数字是按一定规律填写的,表中a的值应是_____.1235813a…2358132134…16.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n个图,需用火柴棒的根数为_______________.17.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第6行的最后一个数是________,第n行的最后一个数是________;(2)若用(a,b)表示一个数在数表中的位置,如9的位置是(4,3),则168的位置是________.18.(2016黑龙江省绥化市)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为an,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400=________________________________.19.观察下列等式:在上述数字宝塔中,从上往下数,2016在第____层.评卷人得分三、解答题20.本题表格中前三列三个数之间的关系为:2×7+1=15 0×5+1=1 3×4+1=13按以上规律,在表格的空格内填上所缺的数:20387m 75463n 1511321.如图a是一个三角形,分别连接这个三角形三变的中点得到图b,在分别连接图b 中间的小三角形三边中点,得到图c,按此方法继续下去,请你根据每个图中三角形个数的规律,完成下列问题:(1)将下表填写完整图形编号12345…三角形个数159…(2)在第n个图形中有多少个三角形(用含n的式子表示)22.(1)填写下表,并观察下列两个代数式的值的变化情况.n123456785n+6n2(2)随着n的值逐渐变大,两个代数式的值如何变化?(3)估计一下,哪个代数式的值先超过100?23.(1)计算并填表:n1234561010210321nn+(2)观察上表,描述所求得的这一列数的变化规律;(3)当n非常大时,21nn+的值接近与什么数?24.观察下面数表:123 43456745678910……(1)依此规律:第6行最后一个数字是________;第n行最后一个数字是________.(2)其中某一行最后一个数字可能是2014吗?若不可能,请说明理由;若可能,请求出是第几行?25.观察以下一系列等式:⊕21﹣20=2﹣1=20;⊕22﹣21=4﹣2=21;⊕23﹣22=8﹣4=22;⊕_____:…(1)请按这个顺序仿照前面的等式写出第⊕个等式:_____;(2)根据你上面所发现的规律,用含字母n的式子表示第n个等式:_____;(3)请利用上述规律计算:20+21+22+23+ (2100)参考答案:1.D 【解析】 【分析】观察发现,三角形数都是3的倍数,正方形数都是4的倍数,所以既是三角形数又是正方形数的一定是12的倍数,然后对各选项计算进行判断即可得解. 【详解】⊕2010÷12=167…6,2012÷12=167…8,2014÷12=167…10,2016÷12=168, ⊕2016既是三角形数又是正方形数. 故选D . 2.B 【解析】 【详解】试题分析:由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…由此规律得出第n 个图有1+1×3+2×3+3×3+…+3n 个点. 解:第1个图中共有1+1×3=4个点, 第2个图中共有1+1×3+2×3=10个点, 第3个图中共有1+1×3+2×3+3×3=19个点, …第n 个图有1+1×3+2×3+3×3+…+3n 个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46. 故选B .考点:规律型:图形的变化类. 3.B 【解析】 【详解】通过观察可得:第1个图中正方形的个数是4,第2个图中正方形的个数是437,+=第3个图中正方形的个数是43310,++=所以第n 个数是()43131n n +-=+,故选:B. 4.A【解析】 【详解】通过观察可得:第1列个数是1,第2列个数是123,+=第3列个数是1225,++=第4个数是12227+++=,所以第n 个数是()12121n n +-=-,故选:A.5.D 【解析】 【详解】试题分析:分析图形,可得出各射线上点的特点,再看2016符合哪条射线,即可解决问题.解:由图可知OF 上的点为6n ,OA 上的点为6n+1,OB 上的点为6n+2,OC 上的点为6n+3,OD 上的点为6n+4,OE 上的点为6n+5,(n⊕N ) ⊕2016÷6=336, ⊕2016在射线OF 上. 故选D考点:规律型:数字的变化类. 6.A 【解析】 【详解】试题解析:由上面的式子可以看出22a b a b ab-⊕=,所以()()9167341212--⊕-==-,故本题应选A. 7.C 【解析】 【详解】试题解析:由图中的规律可知,第六排的数字依次是6,16,25,25,16,6,则第七排的前两个数字为7,22,所以722a b ==, ,故本题应选C. 8.D 【解析】 【详解】试题解析:由上表可以看出,表中的数字是奇数的蛇形排列,因为200081251÷+=,所以2007应该在251行5列,故本题应选D. 9.C 【解析】 【详解】解:⊕a +(a +2)=20, ⊕a =9, ⊕b=a +1, ⊕b=a +1=9+1=10, ⊕x =20b+a =20×10+9 =200+9 =209 故选C . 10.B 【解析】 【分析】根据数字规律和含乘方的有理数混合运算性质计算,即可得到答案. 【详解】第一个数为:112111121⨯-==- 第二个数为:232211321⨯-==- 第三个数为:35231721⨯-=- 第四个数为:472411521⨯-=- 第五个数为:592513121⨯-=- …第n 个数为:2121n n -- ⊕第7个数为:72711321127⨯-=- 故选:B .【点睛】本题考查了含乘方的有理数混合运算、数字规律的知识;解题的关键是熟练掌握数字规律的性质,从而完成求解.11. n (n +1) 110【解析】【详解】试题分析:仔细分析所给式子即可得到规律,再应用于计算即可.(1)可以猜想,从2开始到第n (n 为自然数)个连续偶数的和是n (n +1); (2)当n =10时,从2开始到第10个连续偶数的和是10×11=110.考点:本题考查的是找规律点评:解答本题的关键是认真分析所给式子,得出规律,再应用发现的规律解决问题. 12.10001【解析】【分析】1、2、5、10……看作一数列.1=(1-1)2+1、2=(2-1)2+1、5=(3-1)2+1、10=(4-1)2+1……第n (n 为不等于0的自然数)用(n-1)2+1个十字星图案.根据这一规律即可求出第101个图形有多少个十字星图案.【详解】第1个图形:2101=+个十字,第2个图形:2 211=+个十字,第3个图形:2521=+个十字, 第4个图形:21?031=+个十字,第n 个图形:()21011n =-+个十字,所以第101个图形:()21011110001-+=,故答案为:10001.13.6【解析】【详解】第1次得到的结果为24,第2次得到的结果为12,第3次得到的结果为6,第4次得到的结果为8,第5次得到的结果为4,第6次得到的结果为4,第7次得到的结果为2,第8次得到的结果为1,第9次得到的结果为6,第10次得到的结果为3,从第3次开始,每6次计算为一个循环组依次循环,()2013263351,-÷=余所以第2013次得到的结果为第336循环组的第1次,与第3次的结果相同是6,故答案为:6.14.n(n+1)【解析】【详解】根据表格观察,从2开始的连续偶数的和等于偶数的个数乘以比个数大1的数,所以第n的表达式为: n(n+1),故答案为: n(n+1).15.21【解析】【分析】由数表可知:每一行的数,从第3个开始,每一个数都是它前面两个数字的和,由此得出答案即可.【详解】解:由数表可知:每一行的数,从第3个开始,每一个数都是它前面两个数字的和,由此得8+13=a,即a=21.故答案为:21.【点睛】此题考查数字的变化规律,找出数字之间的联系,利用数字之间的运算规律,解决问题.16.6n+2【解析】【详解】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n个图形有(6n+2)根火柴棒.故答案为:6n+2.17.21(1)2n n(18,15)【解析】【详解】试题分析:⊕通过观察可知第六行最后一个数为21,第n 行最后一个数为()12n n +. ⊕当17n = 时,第17行最后一个数为153,当18n = 时,第18行最后一个数为171,而第18行有18个数,168排在第15个,故它的位置是(18,15).试题解析: (1)第一行,最后一个数是1=; 第二行,最后一个数是3=; 第三行,最后一个数是6=; …第六行,最后一个数是==21; 通过观察可知:第n 行,最后一个数=; (2)当n=17时,最后一个数=153;当n=18时,最后一个数=171;153<168小于171.∴ 168位于第18行,且第18行第一个数字为154.∴ 168为第18行第15个数字.∴ 168的位置是(18,15).点睛:本题考查了数字变化的规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.18.1.6×105或160000.【解析】【分析】首先计算a 1+a 2,a 2+a 3,a 3+a 4的值,然后总结规律,根据规律可以得出结论.【详解】解:⊕21242a a +==;2233693a a +=+==;234610164a a +=+==;…⊕21(1)n n a a n ++=+;⊕2399400400a a +==160000.故答案为1.6×105或160000.【点睛】本题考查的是规律发现,根据计算a 1+a 2,a 2+a 3,a 3+a 4的值可以发现规律为a n +a n+1=(n+1)2,发现规律是解决本题的关键.19.44【解析】【详解】试题分析:先按图示规律计算出每一层的第一个数和最后一个数;发现第一个数分别是每一层层数的平方,那么只要知道2016介于哪两个数的平方即可,通过计算可知:442<2016<452,则2016在第44层.第一层:第一个数为12=1,最后一个数为22﹣1=3,第二层:第一个数为22=4,最后一个数为23﹣1=8,第三层:第一个数为32=9,最后一个数为24﹣1=15,⊕442=1936,452=2025, 又⊕1936<2016<2025, ⊕在上述数字宝塔中,从上往下数,2016在第44层考点:(1)规律型:(2)数字的变化类20.49,22,mn +1【解析】【详解】试题分析:仔细分析所给式子可得:第三行的数等于前两行的数的乘积加1,即得结果. 由题意得,表格中依次填8×6+1=49,7×3+1=22,mn +1.考点:本题考查的是找规律点评:解答本题的关键是认真分析所给式子,得出规律,再应用发现的规律解决问题. 21.(1)13,17;(2)4n -3【解析】【分析】易得第一个图形中有1个三角形,找到第n 个图形中三角形的个数在1的基础上增加几个4即可.【详解】解:(1)第1个图形中有1个三角形;第2个图形中有1+4=5个三角形;第3个图形中有1+2×4=9个三角形;第4个图形中有1+3×4=13个三角形;第5个图形中有1+4×4=17个三角形.故答案为:13,17;(2)1+4(n-1)=4n-3.【点睛】解答本题的关键是认真分析所给图形,得出规律,再应用发现的规律解决问题. 22.(1)第一排依次填11,16,21,26,31,36,41,46,第二排依次填1,4,9,16,25,36,49,64;(2)随n的值逐渐增大,两代数式的值也相应增大;(3)n2的值先超过100【解析】【详解】试题分析:(1)分别把n的值代入两个代数式即可得到结果.(2)根据所求的代数式的值即可判断;(3)根据两个代数式所求的值的变化趋势即可判断.(1)第一排依次填11,16,21,26,31,36,41,46,第二排依次填1,4,9,16,25,36,49,64;(2)随n的值逐渐增大,两代数式的值也相应增大;(3)根据观察,n2的值增加速度较快,故n2的值先超过100.考点:本题考查的是代数式求值,找规律点评:解答本题的关键是正确计算出代数式的值,根据代数式的值的变化情况分析得到变化趋势,变化规律.23.(1)填表见解析(2)答案见解析(3)n非常大时,21nn的值接近于2【解析】【详解】试题分析:(1)把n的值分别代入计算即可;(2)观察各数的分子、分母,容易得到变化规律;(3)由最后一个比较大的数1000时,得出结论.试题解析:(1)填表依次为1,43,64,85,106,127,2011,2101010101⨯⨯⨯+,21010101010101⨯⨯⨯⨯⨯+;(2)这一列数中的分子以2为首的连续偶数,分母是以2为首的连续自然数;(3)n非常大时,的值接近于2.24.(1) 6 ,3n-2(2) 可能,672行【解析】【详解】试题分析:(1)通过观察可得: 第1行最后的数字是1,第2行最后的数字是4,第3行最后的数字是7,第4行最后的数字是10,所以根据数据排列的规律,可得到每一行最后一个数字与它前一行最后一个数字的差为3,所以按照这个规律可得到第n行的最后的数字为:1+3(n-1)=3n-2,然后把n=6,代入即可求出第6行最后一个数字,(2)要求第几行的最后一个数是2014,只需要令3n-2=2014,解方程即可求解.试题解析:(1)因为第1行最后的数字是1,第2行最后的数字是4,第3行最后的数字是7,第4行最后的数字是10,所以根据数据排列的规律,可得到每一行最后一个数字与它前一行最后一个数字的差为3,所以按照这个规律可得到第n行的最后的数字为:1+3(n-1)=3n-2,所以第6行最后一个数字是3×6-2=16,(2)由3n-2=2014,解得n=672,所以672行最后一个数字为2014.25.24-23=16-8=2324﹣23=16﹣8=232n﹣2(n﹣1)═2(n﹣1)【解析】【详解】试题分析:(1)根据已知规律写出⊕即可.(2)根据已知规律写出n个等式,利用提公因式法即可证明规律的正确性.(3)写出前101个等式,将这些等式相加,整理即可得出答案.试题解析:(1)根据已知等式:⊕21-20=2-1=20;⊕22-21=4-2=21;⊕23-22=8-4=22;得出以下:⊕24-23=16-8=23,(2)⊕21-20=2-1=20;⊕22-21=4-2=21;⊕23-22=8-4=22;⊕24-23=16-8=23;得出第n个等式:2n-2(n-1)=2(n-1);证明:2n-2(n-1),=2(n-1)×(2-1),=2(n-1);(3)根据规律:21-20=2-1=20;22-21=4-2=21;23-22=8-4=22;24-23=16-8=23;…2101-2100=2100;将这些等式相加得:20+21+22+23+ (2100)=2101-20,=2101-1.⊕20+21+22+23+…+2100=2101-1.。

北师大版七年级上册数学练习课件-第3章 整式及其加减 5探索与表达规律

北师大版七年级上册数学练习课件-第3章 整式及其加减 5探索与表达规律
▪ 注意:要避免写出的关系式不能反映整个规律,出现以偏概 4
基础过关
▪ 1.【2018·广西梧州中考】按一定规律排列的一列数依次为: 2,3,10,15,26, 35,…,按此规律排列下去,则这列数中的第A 100个数是 ( )
▪ A.9999 B.10 000 ▪ C.10 001 D.10 002
▪ A.2025 ▪ B.2020 ▪ C.2017 ▪ D.2018
14
▪ 11.已知整数a1、a2、a3、a4、…满足下列条件:a1=-1, a2=-|a1+2|,a3=-|a2+3|,a4=-|a3+4|,…,an+1= -|an+-1n01+0 1|(n为正整数),以此类推,则a2019的值为 __________.
等.
3
▪ 知识点2 探索图形中的规律
▪ 图形中规律的探究方法:通常将图形转化为一列数,由这一 列数寻找规律,或观察图形结构特点,归纳相对于某个基础 图形的递推规律,从而将图形转化为一列数或等式,继而探 究规律.
▪ 知识点3 根据数与算式的特点探索规律
▪ 对于有关数与算式的规律问题,首先要认真观察数与数之间 的规律及算式本身存在的规律,把等式横向、纵向分别进行 比较,找出其中的不变部分与变化部分、数与式子的序号之 间的关系,然后找出其中的变化规律.
()
B
▪ A.160 B.161
▪ C.162 D.163
▪ 解析:第1个图形中正三角形的个数为5,第2个图形中正三 角形的个数为5×3+2=17,第3个图形中正三角形的个数为 17×3+2=53,第4个图形中正三角形的个数为53×3+2=12
▪ 9.【2018·湖北宜昌中考】1261年,
我国南宋数学家杨辉用图中的三角形
可以看作两个相邻“三角形数”之和.下列等式中,符合这C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式与规律探究专题训练
一、基本知识点
1.探究规律;
2.整式的有关知识 二、基本方法
数字探究;图形探究;整式的运算 三、知识讲练 【小检测】
1. 如图,用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数为____________
2. 下列说法中,不正确的是( ).
A 、0既不是正数,也不是负数
B 、1是绝对值最小的数
C 、0的相反数是0
D 、0的绝对值是0. 3. |–2|的相反数是( ). A 、2
1
-
B 、–2
C 、21
D 、2.
4. 已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是1,则m 2-2cd +
m
b
a +的值为_____ 5. 一个两位数,a 表示十位数,
b 表示个位数,那么这个两位数可表示为( ) A 、a+b B 、ab C 、10ab D 、10a+b 6. 若|x|-|y|=0,则( )
A.x=y
B.x =-y
C.x=y=0
D.x=y 或x =-y 【例1】列代数式
1. 百位数字是a,十位数字比百位数字小1,个位数字是百位数字的2倍 ,则这个三位数表示为
2. 若a 是一个三位数,b 是一个两位数,若把b 放在a 的左边,组成一个五位数,则这个五位数为( )
A. b+a
B.10b+a
C.100b+a
D. 1000b+a 〖练习1〗列代数式
1. 温度由30℃下降到t ℃后是
2. 产量由m 千克增长15%后,达到 千克
3. 某市出租车收费标准是:起步价9元,3千米后,每千米1.5元,某人乘坐出租车x 千米(x>3).应付费
_________________________________元
4. 一个两位数,各位数字a 比十位数字大7,则这个数可表示为
5. 某校有女生a 个,其中男生人数占53%,则该校共有学生( )人
A.(1-53%)a
B.53%a
C.
a D. a
n=2
n=3
6. n 在如下运算程序n ⇒n 2⇒+n ⇒÷n ⇒+2⇒结果是( ) A .n 2 +3 B.n+3 C.n 2+2n D.n 2+2
7. 若已知1+3=22 1+3+5=32 ,1+3+5+7=4 2 …,则1+3+5+7+…+(2n —1)等于( ) A. (2n -3)2 B. (2n -1)2 C. (2n)2 D. n 2 〖练习2〗
1、写出-2x 2yz 的两个同类项
2、若2x
m -1
y 2与-x 2y n 是同类项,则(-m)n =
3、已知-3x 2-a
y 2与ky b+1x 3的和等于0,则a= , b= , k= 。

4、两个班去植树,一班植树a 棵,二班植树棵树比一班的2倍还多b 棵,两班一共种了 ______________________________棵。

5、三个连续偶数,中间一个是a ,则这三个数的和为 。

6、把下列各式中的括号去掉:
① 2-3(a -2b+3c)= ② 8[2a -(3b+4c)]=
7、从多边形一个顶点出发连接其余各顶点,可以把四边形分成 个三角形,可以把五边形分成 个三角形,依此类推,可以把n 边形分成 个三角形。

8、观察下列等式: 4×1×2+1=32 4×2×3+1=52 4×3×4+1=72 4×4×5+1=92
用含n 的等式表示出来 【例2】计算求值
1、 x 2y -3xy 2+2yx 2
-y 2x 2、 4(ab c -2a )-3a(6-2abc)
3、化简求值:3x 2y 2+2x y -7x 2y 2
-2
3
xy+2,其中x=-2,y=-1。

4、已知x=2时 px 3 +qx+1=2005 求当x =-2时,代数式px 3 +qx+1的值.
〖练习3〗
1.下列判断中正确的是( )
(A )3a 2bc 与bca 2不是同类项 (B )5
2n
m 不是整式
(C )单项式-x 3y 2的系数是-1 (D )3x 2-y +5xy 2是二次三项式 2. 下列各组式子中,不是同类项的是( )
A 、23与-15
B 、5a 4与3ay 4
C 、abc 与10cba
D 、-4x 2y 与3x 2y 3. 下列计算结果正确的是( )
A 、-(2x -y)=-2x -y
B 、-3a+(4a 2+2)=-3a+4a 2
-2 C 、-[-(2a -3y)]=2a -3y D 、-3(a -7)= -3a+7 4. 将(a+b)+2(a+b)-4(a+b)合并同类项等于( ) A 、a+b B 、-(a+b) C 、-a+b D 、a-b 5. 下列各式中与代数式x-(2y-3z)相等的是( )
A 、x+(-2y+3z)
B 、x+(-2y)-3z
C 、x+(2y+3z)
D 、x+[-(2y+3z)] 6. 若2a 与1-a 互为相反数,则a=( ) A 、1 B 、-1 C 、21 D 、3
1 〖练习4〗计算题
1、7x -3y -10y -9x
2、3a 4+5a 2b -10-3a 2b+a 4-1
3、5a+(4b -3a )-(-3a+b)
4、3x -[5x+(3x -1)]
5、先化简再求值:5x 2
-(3y 2+5x 2)+(4y 2+7xy),其中x =-1,y=2。




【例3】探究规律
1、用火柴棒摆如下图形:仔细观察其中的规律,
(2)搭n 个这样的三角形需要多少根火柴棒?
〖练习5〗
1. 用火柴棒摆“金鱼”比赛,如图所示:
仔细观察其中的规律,
(2)写出第n 个图形需要的火柴棒数
(3)小明说他用300根火柴棒摆成了这样的图案,你相信吗?请说明理由.
(1)填写表格中的空缺部分
(2)请你计算37名同学一共握手多少次?
(3)请你计算n 名同学握手活动,一共握手多少次?
……。

相关文档
最新文档