飞机总体设计基础 大作业

合集下载

飞机总体设计大报告

飞机总体设计大报告

总体设计大作业目录一、方案设计思想------------------------------------------------------------------------------------ 61.1、设计背景----------------------------------------------------------------------------------- 61.2、设计理念----------------------------------------------------------------------------------- 71.3、设计要求----------------------------------------------------------------------------------- 8二、总体布局 ------------------------------------------------------------------------------------------ 8三、飞机主要总体参数确定--------------------------------------------------------------------- 143.1、初始重量估算 -------------------------------------------------------------------------- 143.1.1、飞机起飞总重的分类 ------------------------------------------------- 143.1.2、估算起飞总重的方法 ------------------------------------------------- 153.1.3、起飞总重的详细估算过程------------------------------------------- 16W-------- 163.1.3.1、确定任务装载重量W PL和机组人员重量crew3.1.3.2、猜测一个起飞总重W--------------------------------- 17TO guessW W -------------------------------------- 173.1.3.3、计算燃油系数/F TOW W -------------------------------------- 193.1.3.4、计算空重系数/E TO3.1.3.5、迭代公式 -------------------------------------------------------- 213.2、飞机升阻特性估算-------------------------------------------------------------------- 223.2.1、确定最大升力系数 ---------------------------------------------------- 223.2.2、确定零升阻力系数 ---------------------------------------------------- 233.2.3、确定升阻比 -------------------------------------------------------------- 263.3、飞机推重比和翼载荷的计算 ------------------------------------------------------- 263.3.1、推重比的确定 ----------------------------------------------------------- 273.3.1.1、根据统计经验值确定推重比------------------------------- 273.3.1.2、根据推重比与最大马赫数关系确定推重比 ----------- 273.3.1.3、根据保证平飞状态统计确定推重比 --------------------- 283.3.1.4、根据爬升性能确定推重比---------------------------------- 293.3.1.5、根据起飞滑跑距离的估算---------------------------------- 293.3.1.6、推重比的选择 -------------------------------------------------- 303.3.2、翼载的确定、 ----------------------------------------------------------- 303.3.2.1、根据统计规律 -------------------------------------------------- 303.3.2.2、根据失速速度的估算 ---------------------------------------- 303.3.2.3、根据起飞距离的估算 ---------------------------------------- 313.3.2.4、根据航程的估算----------------------------------------------- 313.3.2.5、根据航时的估算----------------------------------------------- 323.3.2.6、翼载的选择 ----------------------------------------------------- 33四、动力装置的选择和设计--------------------------------------------------------------------- 334.1、发动机的选择 -------------------------------------------------------------------------- 334.1.1、对发动机总的性能需求 ---------------------------------------------- 334.1.2、对发动机的各项需求 ------------------------------------------------- 334.1.3、具体发动机的确定 ---------------------------------------------------- 344.2、进气道的设计 -------------------------------------------------------------------------- 354.2.1、对进气道的要求-------------------------------------------------------- 354.2.2、亚音速进气道的基本形式------------------------------------------- 354.2.3、进气道主要参数的确定 ---------------------------------------------- 364.2.3.1、确定进口面积F BX --------------------------------------------- 364.2.3.2、确定进气口尺寸----------------------------------------------- 374.2.3.3、进口前缘的曲率半径 ---------------------------------------- 374.2.3.4、进气道最外层的流线与进气道轴线之间的夹角βBX384.2.3.5、管道的半扩展角α-------------------------------------------- 384.2.3.6、发动机短舱头部至圆柱部分的距离L------------------- 384.3、进气道和发动机的相容性 ---------------------------------------------------------- 384.4、尾喷管的设计 -------------------------------------------------------------------------- 394.4.1、尾喷管的功用及要求 ------------------------------------------------- 394.4.2、尾喷管基本形式的选择 ---------------------------------------------- 394.4.3、尾喷管面积的计算 ---------------------------------------------------- 40五、部件外形设计---------------------------------------------------------------------------------- 405.1、机翼设计--------------------------------------------------------------------------------- 405.1.1、几何参数确定 ----------------------------------------------------------- 405.1.2、机翼安装角,扭转角及上反角的选择--------------------------- 425.1.3、副翼、襟翼位置布置 ------------------------------------------------- 425.2、机身几何参数的计算和选择 ------------------------------------------------------- 435.2.1、机身长度初步估算: ------------------------------------------------- 435.2.2、机身长度的详细估算 ------------------------------------------------- 445.2.3、机身宽度的计算-------------------------------------------------------- 455.3、垂尾的几何设计以及参数计算---------------------------------------------------- 465.3.1、垂尾面积的确定-------------------------------------------------------- 465.3.2、垂尾几何参数的确定 ------------------------------------------------- 475.4、起落架几何参数的计算与选择---------------------------------------------------- 475.4.1、停机角Ψ: ------------------------------------------------------------- 485.4.2、防后倒立角Φ:------------------------------------------------------- 485.4.3、主轮伸出角γ:------------------------------------------------------- 485.4.4、纵向轮距b: -------------------------------------------------------------- 485.4.5、前轮伸出量a:--------------------------------------------------------- 485.4.6、主轮距B:--------------------------------------------------------------- 485.4.7、起落架轮胎的选择: ------------------------------------------------- 495.4.8、综述------------------------------------------------------------------------ 49六、机翼和尾翼翼型的选择--------------------------------------------------------------------- 496.1、机翼翼型的选择 ----------------------------------------------------------------------- 506.2、垂尾、竖直翼梢小翼翼型选择---------------------------------------------------- 51七、总体布置 ---------------------------------------------------------------------------------------- 517.1、发动机的布置 -------------------------------------------------------------------------- 527.2、驾驶舱的布局设计-------------------------------------------------------------------- 537.2.1、驾驶舱设计要求和原则 ---------------------------------------------- 537.2.2、驾驶舱布局设计-------------------------------------------------------- 537.3、燃油系统设计 -------------------------------------------------------------------------- 55八、飞机重量校验与飞机重心的计算-------------------------------------------------------- 568.1、飞机重量的校验 ----------------------------------------------------------------------- 568.1.1、起飞重量分类 ----------------------------------------------------------- 568.1.2、部件重量估算法-------------------------------------------------------- 568.1.2.1、机身 --------------------------------------------------------------- 578.1.2.2、机翼 --------------------------------------------------------------- 578.1.2.3、尾翼 --------------------------------------------------------------- 588.1.2.4、起落架------------------------------------------------------------ 598.1.2.5、控制面------------------------------------------------------------ 598.1.2.6、发动机短舱 ----------------------------------------------------- 598.1.2.7、动力系统 -------------------------------------------------------- 608.1.2.8、固定设备 -------------------------------------------------------- 608.1.2.9、空机质量 -------------------------------------------------------- 608.2、重心的估算 ----------------------------------------------------------------------------- 608.3、综述 --------------------------------------------------------------------------------------- 61九、气动特性分析---------------------------------------------------------------------------------- 629.1、C型机翼的气动特性分析----------------------------------------------------------- 629.1.1、竖直段几何参数影响 ------------------------------------------------- 629.1.1.1、竖直段高度影响----------------------------------------------- 639.1.1.2、竖直段尖削比影响-------------------------------------------- 639.1.1.3、竖直段前缘后掠角影响 ------------------------------------- 649.1.1.4、竖直段倾角影响----------------------------------------------- 659.1.2、水平段几何参数影响 ------------------------------------------------- 659.1.2.1、水平段长度影响----------------------------------------------- 659.1.2.2、水平段尖削比影响-------------------------------------------- 669.1.2.3、水平段前缘后掠角影响 ------------------------------------- 679.1.2.4、水平段上反角影响-------------------------------------------- 679.1.3、C型机翼气动性能概括----------------------------------------------- 689.2、升阻比的修正 -------------------------------------------------------------------------- 69十、飞机总体飞行性能参数计算 -------------------------------------------------------------- 6910.1、航程-------------------------------------------------------------------------------------- 6910.2、起飞失速速度------------------------------------------------------------------------- 6910.3、起飞滑跑距离------------------------------------------------------------------------- 6910.4、着陆失速速度------------------------------------------------------------------------- 7010.5、着陆滑跑距离------------------------------------------------------------------------- 7010.6、参数汇总 ------------------------------------------------------------------------------- 70十一、飞机操纵系统设计与分析 -------------------------------------------------------------- 7111.1、飞机操纵系统分析 ------------------------------------------------------------------ 7111.2、余度技术 ------------------------------------------------------------------------------- 7111.3、本飞机操纵系统设计 --------------------------------------------------------------- 73十二、经济性分析---------------------------------------------------------------------------------- 7412.1、使用成本分析------------------------------------------------------------------------- 7512.2、飞机价格 ------------------------------------------------------------------------------- 77十三、三视图、效果图 --------------------------------------------------------------------------- 7713.1、三视图 ---------------------------------------------------------------------------------- 7713.2、效果图 ---------------------------------------------------------------------------------- 78十四、参数汇总------------------------------------------------------------------------------------- 8114.1、几何参数 ------------------------------------------------------------------------------- 8114.2、设计参数 ------------------------------------------------------------------------------- 8114.3、重量数据 ------------------------------------------------------------------------------- 8214.4、性能参数 ------------------------------------------------------------------------------- 82一、方案设计思想1.1、设计背景近年来,由于出现航班延误、航班取消出现的冲突事件越来越多。

飞机总体设计依据

飞机总体设计依据
❖飞机设计要求的基本内容(续) ❖任务剖面
➢ 作战剖面: ➢起飞-爬升 -巡航-待机 - 下降-投弹 -爬升-巡航 -待机-下降 -着陆
飞机的设计要求
❖飞机设计要求的基本内容(续) ❖任务剖面
飞机的设计要求
❖飞机设计要求的基本内容(续) ❖飞行性能 ❖最大飞行速度 ❖升限 ❖航程 ❖爬升性能 ❖加速性能 ❖减速性能 ❖盘旋性能
第3周
8 起落架布置
除位置参数外,还需确定轮胎尺寸
第3周
9 绘制飞机三面图 10 三维建模
对设计草图进行细化,形成三面图 (用Catia、AutoCAD等CAD软件绘 制)
用Catia建立三维模型
第3周 第4周
设计大作业-报告内容与要求
利用catia完成的 部分概念方案
Airbus310 Boeing757
❖方案确定
所有成员
❖ 绘图、CAD
2
❖参数选择 (部件设计) 3-4
❖重量估算
1
❖气动估算
1
❖飞行性能估算
1
设计大作业-评分标准
❖1)完整性 ❖2)正确性 ❖3)可行性 ❖4)清晰性 ❖5)汇报 ❖6)各成员表现
设计大作业-NOTICE
Whether we like it or not, we are all in this together.来源: Boeing
咨询电话:020-. 值班手机:. 网站网址:
在线文档:
飞机的设计要求
❖飞机设计要求的基本内容(续) ❖有效载荷(Payload) ❖军机(飞行员、武器) ❖民机 (机组、乘客、货物) ❖功能系统 ❖航电、安全、飞控等 ❖使用维护要求
飞机的设计要求
❖飞机设计要求的基本内容(续) ❖机体结构方面的要求 ❖正、负最大过载 ❖承受动强度、使用寿命 ❖研制周期和费用 ❖民机的经济性指标 ❖制造成本 ❖直接运营成本(Direct operating costs,

飞行器总体设计 大作业第二章(2)

飞行器总体设计 大作业第二章(2)

第二章总体参数设计2.1参数设计的任务和过程(1)飞机总体布局形式(2)起飞总重W0;(3) 最大升力系数 CLmax ;(4) 零升阻力系数 CD0;(5) 推重比 T/W;(6) 翼载 W/S。

本章中假设飞机的任务要求是已知的,任务书中定义的典型参数有:(1) 装载和装载类型;(2) 航程或待机要求;(3) 起飞着陆场长;(4) 爬升要求;(5) 机动要求;(6) 鉴定基准(例如:实验、航标或军用标准●2.2飞机起飞重量的估算●2.2.1飞机起飞重量的分析设计起飞重量包括空机重量和全部载重,如下图所示:以及近似计算过程的框图如下:W 0为飞机的起飞总重,它由以下几部分组成:e f p W W W W ++=0)(eq en st f p W W W W W ++++=Wp ——有效载荷(含乘员)重量;Wf ——燃油重量,包括任务燃油(可用燃油)、备份燃油(安全余油)及死油三部分; We ——空机重量,主要包括结构(机体、起落架、操纵系统等)重量、动力装置重量及设备重量三部分; 因为:e f p W W W W ++=00000)/()/(W W W W W W W e f p ++=e f p W W W W ++=0/(00)/W W所以:000//1W W W W W W e f p--=其中:0/w w f、0/w w e 分别称为燃油重量系数、空机重量系数。

在有效载重Wp 已知的情况下,求出空机重量系数0/w w e 和燃油重量系数 0/w w f (或燃油重量f W ),就可求出0W 。

2.2.2各重量系数的预测一、空机重量系数0/w w e的确定起飞重量中,空机重量可以用对应的空机重量系数乘以起飞重量而得到.空机空重:EE O OW W W W =⨯ 空机重量系数:C EO VS OW AW K W = 相对于O W 的经验空机重量系数统计值对于变后掠翼VS K =1.04, 正常机翼VS K =1.00 取 A=0.93, C=-0.07 VSK =1.00空机重量系数0.070.93ETO TOW W W -= 二、燃油重量系数0/w w f 的确定飞行任务中使用燃油重量为 (1)fused ff TO W m W =-任务燃油重量为 (1)F ff TO fres W m W W =-+ 其中 ff m 为任务燃油系数,fres W 为额外燃油重量, 任务燃油系数ff m = 710i i i iW W =+=∏ 这里注意取0W =TO W 典型飞行任务剖面图各任务段重量比的计算: 任务抛面 i i W W /1+发动机启动和暖机0.9900 取自AAA 典型的暖机段燃油系数 滑 跑 0.9950 取自AAA 典型的滑跑段燃油系数 起 飞 0.9950 取自AAA 典型的起飞段燃油系数爬升到巡航高度并加速到巡航速度0.9850 根据经验公式巡 航 0.8185 根据经验公式待 机 0.9323 根据经验公式取m in 30=ltr E施放有效载荷 1.0000待 机 0.9993 式取m in 5=ltr E根据经验公返 航 0.8185 根据经验公式下 降 0.9850 取自AAA 典型的下降段燃油系数 着陆、滑行和关机0.9950取自AAA 典型的着陆/滑行段燃油系数现在开始计算空中中巡航段和待机段的重量比 (1)巡航段54W W发动机耗油率C 发动机类型巡航耗油率待机耗油率2滑跑1发动机启动和暖机起飞4爬升并加速5巡航6待机7下降8着陆滑行并关机本运输机采用双转子,轴流式,高涵道比涡轮风扇发动机V2500这种发动机推力大、耗油率低。

飞机总体设计课程设计汇总

飞机总体设计课程设计汇总
飞机总体设计需要不断适应新技术和新材料的发展,如复合材料、增材制 造等,以提高飞机的性能和降低成本。
飞机总体设计需要关注环保和可持续发展,如降低油耗、减少排放等,以 符合全球航空工业的发展趋势。
感谢观看
汇报人:
05
飞机总体设计课程设计的展望和发展趋势
飞机总体设计课程设计的未来发展方向
数字化设计:利用计算机辅助设计(CAD)、虚拟现实(VR)等技术 进行飞机设计
绿色环保:注重飞机的环保性能,如降低油耗、减少排放等
智能化设计:利用人工智能(AI)、大数据等技术进行飞机设计,提高 设计效率和质量
复合材料应用:采用复合材料制造飞机,提高飞机性能和寿命
案例二:某型军用运输机总体设计
设计背景:某国空军需要一款新型军用运输机
设计目标:满足运输任务需求,提高运输效率
设计过程:包括需求分析、方案设计、详细设计、试验验证等 设计成果:某型军用运输机总体设计方案,包括气动布局、结构设计、系 统配置等
案例三:某型公务机总体设计
设计目标:满足公务机市场需求,提高舒适性和效率 设计特点:采用先进气动布局,提高飞行性能 设计难点:优化结构设计,降低重量和成本 设计成果:成功完成设计,获得市场认可
课程设计的评价Biblioteka 准和方法评价标准:包括设 计质量、创新性、 实用性等方面
评价方法:采用专 家评审、同行评审、 学生自评等方式
评价内容:包括设 计方案、设计报告、 设计演示等方面
评价结果:给出综 合评价结果,包括 优秀、良好、合格、 不合格等等级
03
飞机总体设计课程设计实践
飞机总体设计的基本原则和方法
单击此处添加副标题
飞机总体设计课程设计汇

汇报人:

飞机总体设计大作业

飞机总体设计大作业

飞机设计要求喷气支线飞机有效载荷:70人,75kg/人,每人行李重20kg巡航速:0.7Ma最大飞行高度:10000m航程:2300km待机时间:45分钟爬升率:0~10000m<25分钟起飞距离:1600m接地速度<220km/h一、相近飞机资料收集:二、飞机构型设计正常式布局:技术成熟,所积累资料丰富T型尾翼:避开发动机喷流的不利干扰,但重量较重机身尾部单垂尾后掠翼:巡航马赫数0.7,后掠翼能有效提高临界马赫数,延缓激波的产生,避免过早出现波阻下单翼 :气动干扰经整流后可明显降低,结构布置容易,避免由于机翼离地太高而出现的问题-发动机数目和安装位置:双发短舱式进气、尾吊布局,可以保持机翼外形的干净,流过机翼的气流免受干扰。

-起落架的型式和收放位置 :前三点 可以显著提高飞机的着陆速度,具有滑跑稳定性,飞行员视界要求易于满足,可以强烈刹车,有利于减小滑跑距离。

安装于机身三、确定主要参数重量的预估1.根据设计要求:–航程:Range =2800nm=5185.6km –巡航速度:0.8M–巡航高度:35000 ft=10675m ;声速:a=576.4kts=296.5m/s2.预估数据(参考统计数据)–耗油率C =0.6lb/hr/lb=0.0612kg/(h·N)(涵道比为5) –升阻比L/D =143.根据Breguet 航程方程:⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=D L M C a R a n g e W W f i n a l i n i t i a l )l n (代入数据:Range = 1242nm ;a = 581 Knots (巡航高度35000ft) C = 0.5lb/hr/lb (涵道比为5) L/D = 14 M = 0.7 计算得:115.1=finalinitialW W103.0tocruisefuel finalto cruise of end to cruise fuel =-=-=W W W W W W W4.燃油系数的计算飞行任务剖面图1 Engine Start and Warmup 001.0/to F1=W W2 Taxi out 001.0/to F2=W W3 Take off 002.0/to F3=W W4 Climb 016.0/to F4=W W5 Cruise 187.0/to F5=W W6 Descent000.0/to F6=W W 7 Landing and Taxi in 003.0/to F7=W W 8Reserve Fuel049.0/to F8=W W总的燃油系数:175.0049.0003.0000.0103.0016.0002.0001.0001.0tofuel toF8to F7to F5to F4to F3to F2to F1to fuel =+++++++=+++++=W W W W W W W W W W W W W W W W W W5.根据同类飞机,假设3个最大起飞重量值to W80000 lbs 100000 lbs 120000 lbs fuel W14000 lbs 17500lbs 21000lbspayload W14600 lbs 14600 lbs 14600 lbs avail empty W51400 lbs67900lbs84400 lbs重量关系图交点:(30723kg,18688kg)6.所以最终求得的重量数据:emptyW18688 kg 0.608 fuelW5376 kg 0.175 payloadW6650 kg 0.216 toW30723 kg 1 推重比和翼载的初步确定界限线图翼载荷(N/m2)推重比地毯图4最大起飞重量(kg)选取翼载荷W/S=4500 2N/m; 推重比T/W=0.35四、发动机选择:由推重比T/W=0.35 ,W=30723kg得T=10753,单发推力为:5376kg=11852lb参考同类型飞机ARJ-21、ERJ170、CRJ700选择发动机型号为通用电气CF34-8五、机身外形的初步设计1.客舱布置单级:全经济舱14排每排5人共70人座椅宽度:20in过道宽度:19in座椅排距:32in客舱剖面图:2.机身外形尺寸当量直径:3.4m前机身长度:4.32m中机身长度:13.97m后机身长度:7.62m机身总长:25.9m上翘角:14degλ7.6(M较低时,选用较小长径比)长径比=六.机翼外形设计CL=(W/S)/(0.5ρV²S)=0.496选择超临界翼型,由升力系数CL为0.496(翼载荷为4500N/m²),选择型号为NASA SC(2)-04041.展弦比AR=82.梯度比λ=0.4,原因:升力分布接近椭圆形,诱导阻力较小,有利于减轻机翼重量和起落架布置。

飞机总体大作业——四代机设计方案2

飞机总体大作业——四代机设计方案2

取,0025.0=feC S 浸湿/S 参考=3.2参考浸湿S S C C feD =0=0.0025×3.2=0.00820201LD LD D C Ae C KC C C π+=+=其中:C D0 为零升阻力(废阻力)系数,C L 为升力系数;K 为诱导阻力 因子,A 为机翼展弦比,e 为奥斯瓦尔德效率因子。

3.2,1==A Ae K π其中0.680.154.61(10.045)(cos ) 3.1LE e A =-Λ-=4.61(1-0.045×2.30.68)(cos42°)0.15-3.1=0.9596 亚音速下(L/D )max =0.5(πAe/C D0)0.5=14.72.6推重比的确定T/W 直接影响飞机的性能。

一架飞机的T/W 越高,加速就越快,爬升也就越迅速,能够达到的最大速度也越高,转弯角速度也越大。

另一方面,发动机越大,执行全部任务中的油耗也越多,从而使完成设计任务的飞机的起飞总重增加。

T/W 不是一个常数。

在飞行过程中,随着燃油消耗,飞机重量在减小。

另外,发动机的推力也随高度和速度变化。

当提到飞机的推重比时,通常指的是在海平面静止状态(零速度)和标准大气条件下、而且是在设计起飞重量和最大油门状态下的推重比。

对于战斗机,另一个常被提到的推重比是格斗(作战)时的推重比 影响起飞推重比的主要性能指标有:(1) 起飞性能 (2) 最大平飞速度 (3) 加速性 (4) 巡航性能 (5) 爬升性能 (6) 盘旋性能 (7) 最小平飞速度推重比估算的几点说明:1 为满足各个性能指标的要求,需根据各个性能指标所确定的推重比的最大值来确定全机的推重比。

W确定的情况下,可以由起飞性能要求(起飞滑跑距离)2 在起飞翼载荷ST。

来估算起飞推重比WT也可以用统计方法给出。

3 起飞推重比WT=0.9 , W=27648 kg(1)在空中格斗时:W所以T=24883kgT=0.6 , W=27648 kg(2) 在其他的状况下:W所以T=16589 kg鉴于我们设计喷气式战斗机技术要求,故我们可以取飞机的推重比为0.75。

飞机总体设计大作业

飞机总体设计大作业

飞机总体设计大作业作业名称 J-22 战斗机的设计项目组员靳国涛马献伟张凯郑正路所在班级 01010406班目录第一章任务设计书................................................3 第二章 J-22初始总体参数和方案设计................................5 2.1重量估算................................................5 2.2确定翼载和推重比..........................................6 2.1.1确定推重比............................................9 2.1.2 确定翼载..............................................10 2.3 飞机升阻特性估算.........................................12 2.3.1 零升阻力的估算.......................................12 2.3.2 飞机升阻比的估算.....................................14 2.4 确定起飞滑跑距离.........................................15 2.5 飞机气动布局的选择.......................................17 2.6 J-22隐身设计.............................................18 第三章 J-22飞机部件设计...........................................20 3.1 机翼设计..................................................21 3.1.1机翼安装形式的选择.....................................22 3.1.2机翼具体参数的计算.....................................243.2 机身设计..................................................28 3.2.1本机身的设计要求...................................... 29 3.2.2机身的主要几何参数.....................................29 3.2.3机身外形的初步设计.....................................30 3.2.4本机机身外形的设计特点.................................31 3.3 起落架的设计..............................................32 3.3.1本机起落架的设计要求..................................323.3.2本机起落架的设计参数..................................333.4 推进系统的设计............................................333.4.1推进系统设计原则.......................................333.4.2本机所采用的推进系统...................................343.4.3 本机所采用的矢量推进技术..............................363.5机上采用的雷达.............................................383.6飞机内部装载的布置.........................................403.6.1飞机内部装载布置的原则和方法...........................403.6.2 本机驾驶座舱的设计....................................413.7 本机的武器系统............................................42第四章本机费用与效能分析.........................................43小结............................................................. 50第一章设计任务书(1)主要设计目标:本机以四代战机为参照,为单座双发重型战机,具备隐身性能好、起降距离短、超机动性能、超音速巡航等特点。

北航飞机总体设计第2次作业

北航飞机总体设计第2次作业

1、飞机设计的三个主要阶段是什么?各有些什么主要任务?答:飞机设计分为概念设计、初步设计、详细设计三个阶段;在概念设计阶段主要解决飞机的布局与构型,主要参数,发动机、装载的布置,三面图,初步估算性能,方案评估,参数选择与权衡研究,方案优化等问题;初步设计阶段进行飞机冻结布局,完善飞机的几何外形设计、完整的三面图和理论外形(三维CAD 模型),详细绘出飞机的总体布置图,机载设备,分系统,载荷和结构承力系统,较精确的计算,(重量重心、气动、性能和操稳等),模型吹风试验;详细设计阶段包括飞机结构的设计和各系统的设计,绘出能够指导生产的图纸,详细的重量计算和强度计算报告,大量的实验,准备原型机的生产。

2、飞机总体设计的重要性和特点主要体现在哪些方面?答:飞机总体设计的重要性主要体现在:概念设计阶段就已经确定了整架飞机的布置;总体设计阶段所占时间相对较短,但需要作出大量的关键决策;设计前期的失误,将造成后期工作的巨大浪费;投入的人员和花费相对较少,但却决定了一架飞机大约80%的全寿命周期成本。

其特点表现为:科学性与创造性(应用航空科学技术相关的众多领域(如空气动力学、结构力学、材料学、自动控制、动力技术、隐身技术)的成果);是一个反复循环迭代的过程;高度的综合性(综合考虑设计要求的各个方面,进行不同学科专业间的权衡与协调);3、 Boeing的团队协作戒律有哪些?答:1. 每个成员都为团队的进展与成功负责;2. 参加所有的团队会议并且准时达到;3. 按计划分配任务;4. 倾听并尊重其他成员的观点;5. 对想法进行批评,而不是对人;6. 利用并且期待建设性的反馈意见;7. 建设性地解决争端;8. 永远致力于争取双赢的局面;9. 集中注意力—避免导致分裂的行为;10. 在你不明白的时候提问。

4、高效的团队和低效的团队各有什么表现?答:高效的团队表现为1. 氛围-非正式、放松的和舒适的2. 所有的成员都参加讨论3. 团队的目标能被充分的理解/接受4. 成员们能倾听彼此的意见5. 存在不同意见,但团队允许它的存在6. 绝大多数的决定能取得某种共识7. 批评是经常的、坦诚的和建设性的;不是针对个人的8. 成员们能自由地表达感受和想法9. 行动:分配明确,得到接受10. 领导者并不独裁11. 集团对行动进行评估并解决问题。

2019-飞机总体设计试卷-推荐word版 (14页)

2019-飞机总体设计试卷-推荐word版 (14页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==飞机总体设计试卷篇一:201X年北航飞机总体设计期末考试回忆版201X年北航飞机总体设计期末考试题回忆版13系适航专业适用一、填空题10分跟百度上搜的其他两套考试题的填空题一模一样,背了都能填进去,都在上面二、简单题 50分1、结合飞机总体设计具体流程说说:航空器的适航性是飞机设计所赋予的。

7分2、说说动力装置的选型流程以及其依据的原则(至少5条)8分3、写出尾翼的尾容量的定义式以及各参数的具体含义 6分4、说说起落架的主要参数以及起落架设计在总体设计过程中依据的主要原则?8分5、画出一次近似法进行初步重量估算的流程 5分6、一架飞机在进行重心计算的过程中发现它超出了后限,有什么重心调整方法?同时请写出调整方向。

(至少5点)6分三、看图或作图题40分1、给你下图,说出典型的设计形式方案,比如:机身剖面什么形式?发动机的布局形式?至少给出5点10分2、画出下面各个翼的平均气动弦、找出机翼的焦点。

10分3、根据下面的综合界限线图选择翼载和推重比(至少三中参数组合),并说说你的依据。

10分4、压轴、、、分析起飞过程中的离地前的过程,推出离地距离的公式,画出受力分析图。

(老师让推的公式给出了一个样式,需要确定参数a、b(下图只是方便大家联想到考什么)肯定是各种积分公式转换、、、学长没写出来,到是书写一大堆过程}篇二:北航201X年5系复试大纲航空科学与工程学院201X年研究生入学考试复试大纲一、复试方式:笔试+面试二、复试组织:1、笔试:由航空学院统一组织,考试科目及复试大纲另见《航空科学与工程学院201X年考研复试安排》。

2、口试:以学科专业组为单位,由3-5位硕士生导师组成面试小组(组长为教授),每位考生的面试时间为20分钟。

三、复试流程和评分标准:1)检查并核实考生面试所必备的个人证件和材料;考生可以提供有助于证明自己背景和能力的相关材料,证件和材料完备是面试的必要条件。

飞机总体设计大作业

飞机总体设计大作业
浸湿面积比机翼展弦比浸湿面积翼展的平方浸湿展弦比机翼面积浸湿面积浸湿面积比估算阶段取浸湿面积比为052最大航程最大航程最大航时喷气飞机0866ldmaxldmax螺桨飞机ldmax0866ldmax10由浸湿面积比估算出ld约为1324燃油重量系数wfw0飞机所需要的燃油量取决于飞行任务航程活动半径飞机外形气动特性发动机特性耗油率推力及飞行状态速度迎角等
2
4.1 机翼设计 .......................................................................................................... 26 4.1.1 机翼具体参数的确定:............................................................................. 26 4.1.2 机翼的气动力特性.................................................................................... 32 4.1.3 机翼的增升装置和副翼............................................................................. 34 4.2 机身设计 ........................................................................................................... 38 4.3 尾翼及其操纵面的设计 .........................................................................

飞机总体设计课程设计

飞机总体设计课程设计

南京航空航天大学飞机总体设计报告——150座级客机概念设计011110XXXXXX设计要求一、有效载荷–二级布置,150座–每人加行李总重,225 lbs二、飞行性能指标–巡航速度:M 0.78–飞行高度:35000英尺–航程:2800(nm)–备用油规则:5%任务飞行用油+ 1,500英尺待机30分钟用油+ 200海里备降用油。

–起飞场长:小于2100(m)–着陆场长:小于1650(m)–进场速度:小于250 (km/h)飞机总体布局一、尾翼的数目及其与机翼、机身的相对位置(一)平尾前、后位置与数目的三种形式1.正常式(Conventional)优点:技术成熟,所积累的经验和资料丰富,设计容易成功。

缺点:机翼的下洗对尾翼的干扰往往不利,布置不当配平阻力比较大采用情况:现代民航客机均采用此布局,大部分飞机采用的位移布局形式2.鸭式(Canard)优点:1.全机升力系数较大;2.L/D可能较大;3.不易失速缺点:1.为保证飞机纵向稳定性,前翼迎角一般大于机翼迎角;2.前翼应先失速,否则飞机有可能无法控制采用情况:轻型亚音速飞机及军机采用3.无尾式( Tailless )优点:1.结构重量较轻:无水平尾翼的重量。

2.气动阻力较小——由于采用大后掠的三角翼,超音速的阻力更小缺点:1. 具有稳定性的无尾飞机进行配平时,襟副翼的升力方向向下,引起升力损失2. 起飞着陆性能不容易保证采用情况:少量军机采用综上所述,采用正常式尾翼布局(二)水平尾翼高低位置选择(a) 上平尾(b) 中平尾(c) 下平尾(d) 高置平尾(e) “T”平尾选择平尾高低位置的原则1.避开机翼尾涡的不利干扰:将平尾布置在机翼翼弦平面上下不超过5%平均气动力弦长的位置,有可能满足大迎角时纵向稳定性的要求。

2.避开发动机尾喷流的不利干扰综合考虑后,选择上平尾(三)垂尾的位置和数目位置-机身尾部-机翼上部数目单垂尾:多数飞机采用单垂尾,高速飞机加装背鳍和腹鳍双垂尾:1.压力中心的高度显著降低,可以减小由侧力所造成的机身扭矩。

飞行器习题1

飞行器习题1

(4) 从以上计算结果,你对结构重量对全机重量的影响可以得出什么结论? 从以上计算结果,你对结构重量对全机重量的影响可以得出什么结论? (1) K 载重 = 1 K 结构 K 动力 K 设备 K 燃油
= 1 0.32 0.14 0.09 0.28 = 0.17 ,
W0 = W载重 / K 载重 = 3000 / 0.17 = 17647 Kg
习题课1 习题课
二、对错 1. 减小翼载荷对飞机的巡航性能有利。 () ×
4
√ 2. 进气道的功用是将流入进气道的空气减速增压。
3. 4.
机身结构重量大致与机身浸湿面积成正比。

飞机的载油量是根据飞机所执行任务的任务剖面要求确 定的

5.
前三点式起落架几何参数选择时,应考虑的主要因素之 一是防止飞机翻倒和防止飞机倒立。
0
飞行器总体与结构设计基础
王心美 Tel: 88431002 E-mail: xin_mei_w@
Northwestern Polytechnical University, China
习题课1 习题课
1
1. 飞机设计可分为 3 个阶段,分别是


答案:方案设计、初步设计、详细设计
2. 最重要的三个飞机总体设计参数是 、 、 。
Northwestern Polytechnical University, China
3
答案:正常式、鸭式、无尾/飞翼、三翼面
8. 飞机的尾翼是用来保证飞机的 和
答案:稳定性、操纵性
9. 飞机推进装置包括 、 、
答案发动机、进气系统、排气系统
10. 飞机的起落架的 4 种形式为 、 、 、
答案:后三点式、前三点式、自行车式、多支点式

飞机总体设计---设计过程及算例

飞机总体设计---设计过程及算例

无人机总体设计算例任务要求:飞行高度:30-200m,飞行速度:40-90km/h,巡航速度:18m/s,最大飞行速度28m/s,爬升率4m/s,续航时间:1h ,最大过载1.7,任务载荷重量:0.5kg,背包式运输,发射方式:手抛式,回收方式:机腹着陆设计过程:1.布局形式及布局初步设计无尾布局【方法:参考已有同类无人机】确定布局形式:主要是机翼、垂尾、动力、起落架等。

(1)机翼根据经验或同类飞机确定:展弦比5.5-6,尖削比0.4-0.5,后掠角28°,下反角1.5°,安装角2°展弦比【展弦比增大,升致阻力减小,升阻比增大】【展弦比增大,弦长减小,雷诺数降低,气动效率降低】【展弦比增大,弦长减小,翼型厚度减小,机翼结构重量上升】尖削比【尖削比影响升力展向分布,当展向升力分布接近椭圆时,升致阻力最小,低速机翼一般取0.4-0.5】后掠角【后掠角增加,横向稳定性增大,配下反角】【后掠角增加,尾翼舵效增加】【后掠角增加,纵向阻尼增强,纵向动稳定性增强】下反角【上反角增加,横向稳定性增加,下反角相反】安装角【巡航阻力最小对应机翼的迎角,通用航空飞机和自制飞机的安装角大约为2°,运输机大约为1°,军用飞机大约为0°,在以后的设计阶段,可通过气动计算来检查设计状态所需要的机翼实际的安装角。

】机翼外型草图(2)垂尾垂尾形式:翼尖垂尾尾空系数:Cvt=0.04/2=0.02 【双重尾】(3)动力系统形式电动无人机推进系统安装位置主要有:机头拉进式、机尾推进式、单发机翼前缘拉进式、双发形式、单发机翼后缘推进式。

下面研究各种布置形式对布局设计的影响。

本方案为:机尾推进式2.无人机升阻特性(极曲线)估算前面确定了机翼的基本参数,要确定无人机的具体机翼参数,还需要知道“起飞重量”、“翼载荷”,然后进行布局缩放。

确定起飞重量,关键是电池重量,电池重量由飞机需要的能量决定,能量由飞机升阻特性决定。

飞机总体大作业——四代机设计方案3

飞机总体大作业——四代机设计方案3

草图如下:●尾翼的功用,组成和设计要求:尾翼的功用:保证飞机的稳定性和操纵性。

尾翼的组成:平尾(前翼):水平安定面,方向舵。

垂尾:垂直安定面,升降舵。

尾翼的设计要求:按设计要求。

平尾参数的选择:平尾设计,主要根据平尾尾容量(平尾静面矩系数)确定其主要几何参数。

平尾尾容量为4.4起落架设计4.4.1起落架形式的选择:①.本机为高速飞机,故用可收放式起落架。

②.现代高速飞机一般都采用前三点式起落架,所以我们也采用前三点式。

③.本机采用的上单翼,起落架不易安装在机翼上,故起落架安装在机身上;本机采用的是宽体机身,能保证起落架有足够的收缩空间。

4.4.2起落架主要参数的确定●停机角Ψ通常取:︒→︒=ψ40,其最佳值应使飞机滑跑时迎面阻力最小,以缩短起飞滑跑距离。

本机的停机角Ψ=1°。

●着地角φ本机的着地角取︒=15ϕ●防后倒立角γ原则:γ角不能过小,防止发生尾部倒立事故;也不能过大,过大会使前轮伸出量减小,造成前轮载荷过大,起飞时抬前轮困难,致使起飞滑跑距离延长。

()︒︒+=2~1ϕγ (前苏联)︒=15γ(美国)我们采用前苏联的标准,15 1.516.5γ︒︒︒=+=●前、主轮距b原则:前轮所承受的载荷为起飞重量6%~12%;(0.3~0.4)b L =机身;要与防后倒立角γ相协调。

由机身估算知机身长度为18.9米,故b 应取值5.67~7.56m 之间,考虑到 要与防后倒立角相协调,本机取b=6.5m 。

选择前轮伸出量a 的条件是保证停机时前轮上承受的载荷为飞机重量的 6%~12%。

机身初次估算让前轮承受载荷为飞机重量的10%。

前轮伸出量 a=0.9b=5.85m 主轮伸出量 e=0.1b=6.50m ●起落架高度h原则:根据防后倒立角和着地角确定;考虑在机体上的安装和收藏位置的需要;地面与飞机之间距离不小于200~250mm.初步估算取起落架高度h=2.00m ●起落架宽度 B原则:按飞机起飞、着陆以及在地面滑行时的稳定性,越宽越好;主要决定于飞机重心距地面的高度h ,最小的主轮距应该满足不致使飞机向侧向翻倒的要求。

飞机总体设计 - 设计过程及算例

飞机总体设计 - 设计过程及算例

无人机总体设计算例任务要求:飞行高度:30-200m,飞行速度:40-90km/h,巡航速度:18m/s,最大飞行速度28m/s,爬升率4m/s,续航时间:1h ,最大过载1。

7,任务载荷重量:0.5kg,背包式运输,发射方式:手抛式,回收方式:机腹着陆设计过程:1。

布局形式及布局初步设计无尾布局【方法:参考已有同类无人机】确定布局形式:主要是机翼、垂尾、动力、起落架等。

(1)机翼根据经验或同类飞机确定:展弦比5.5-6,尖削比0。

4-0。

5,后掠角28°,下反角1.5°,安装角2°展弦比【展弦比增大,升致阻力减小,升阻比增大】【展弦比增大,弦长减小,雷诺数降低,气动效率降低】【展弦比增大,弦长减小,翼型厚度减小,机翼结构重量上升】尖削比【尖削比影响升力展向分布,当展向升力分布接近椭圆时,升致阻力最小,低速机翼一般取0.4-0。

5】后掠角【后掠角增加,横向稳定性增大,配下反角】【后掠角增加,尾翼舵效增加】【后掠角增加,纵向阻尼增强,纵向动稳定性增强】下反角【上反角增加,横向稳定性增加,下反角相反】安装角【巡航阻力最小对应机翼的迎角,通用航空飞机和自制飞机的安装角大约为2°,运输机大约为1°,军用飞机大约为0°,在以后的设计阶段,可通过气动计算来检查设计状态所需要的机翼实际的安装角。

】机翼外型草图(2)垂尾垂尾形式:翼尖垂尾尾空系数:Cvt=0。

04/2=0。

02 【双重尾】(3)动力系统形式电动无人机推进系统安装位置主要有:机头拉进式、机尾推进式、单发机翼前缘拉进式、双发形式、单发机翼后缘推进式。

下面研究各种布置形式对布局设计的影响.动力形式优点缺点实例机头拉进式螺旋桨前方进气稳定未被干扰;容易实现重心位置设计;手抛发射不会对发射员造成危害;排气被机身和机翼阻止,影响动力系统的效率;回收降落时,电动机和螺旋桨容易触地损坏机尾推进式机头可以安装任务设备;螺旋桨也不容易在着陆时触地损坏;对螺旋桨的干扰较小;重心配置在设计重心点非常困难;单发翼前缘拉进式电动机不在占用机头位置;以便在机头安装任务设备;机身的阻力会产生一个较大的低头力矩;过高的机身也增大的结构重量,浸润面积也比较大 双发翼前缘拉进式机头安装摄像设备布置需要两台电动机,增加了系统的复杂性单发机翼后缘推进式机头安装摄像设备螺旋桨的滑流直接吹在尾翼上,造成无人机的稳定性变化本方案为:机尾推进式2。

飞机总体设计期末试卷_武哲(带答案)

飞机总体设计期末试卷_武哲(带答案)

一、填空题.......................................... (每空0.5分,共15分)1.按照三个主要阶段的划分方式,飞机设计包括:,:其中第一个阶段的英文名称为2.飞机的主要总体设计参数是,,.相对参数是,.3.在机翼和机身的各种相对位置中,二者之间的气动干扰以的气动干扰最小,从结构布置的情况看,的中翼段比较容易布置.4.对于鸭式飞机而言,机翼的迎角应前翼的迎角.5.机翼的主要平面形状参数中的组合参数为,.6.假设某型战斗机的巡航马赫数为1. 3,若使其在巡航时处于亚音速前缘状态,则机翼前缘后掠角的范围应为.7.武器的外挂方式包括(列举4种),,8.根据衡量进气道工作效率的重要参数,一个设计良好的进气道应当9.布置前三点式起落架时应考虑的主要几何参数包括二、简答题: ............................................................................................................... (65 分)1.飞机总体设计有什么主要特点(需简要阐述)?(6分)2.飞机型式选择的主要工作有哪几个方面?(9分)3.简述鸭式布局的设计特点(5分)4.在综合界限线围成的可选平面域中选取设计点对应的推重比与翼载荷时,应考虑哪些基本原则?(6分)5.对比圆形和多圆形机身剖面的构型特点及优缺点(5分)6.民机机身剖面直接影响飞机的经济性和舒适性,请列举出剖面设计中的主要参数(10分)7.机翼下吊舱式进气道有哪些主要的优点?(4分)8.列举机身外形设计的基本步骤并进行简要阐述(6分)9.飞机的型式选择和外形设计中可采取哪些措施提高隐身性能?(6分)(2010.高效的团队有什么表现(列出至少8项)? (8分)分)1. 绘制一架对地攻击机的典型任务剖面,标出各个任务段的名称(5 分)2. 根据下图所示的某方案三个主要翼面的投影形状,在原图上用作图 法分别确定它们的平均气动弦位置和长度(不需要具体数值),并标注 出机翼亚音速气动中心位置(15分)机翼参考答条(每空0. 5分,共15分)、填空题题:鸭翼平尾1.按照三个主要阶段的划分方式,飞机设计包括概念设计,初步设计,详细设计;其中第一个阶段的英文名称为Conceptual Design。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016.11.30
1. 飞行器设计涉及的学科有哪些?
飞行器是由多个子系统组成的复杂大系统,从全局的观点来考虑飞行器的设计问题,它覆盖了诸多学科,是多个学科领域高新技术的高效整合体。

所涉及到的学科主要包括四大块:气动、结构、推进、控制。

其中每一个大的学科又分为多个子学科。

气动设计:空气动力学、
力学学科:结构力学,空气动力学,材料力学,热力学
电磁学:航电系统
工业设计:
管理学
2. 多目标优化方法有哪些?并说明。

3. 飞行器总体设计中多学科设计优化的应用,举例说明。

首先阐述飞行器总体设计中多学科设计优化的概念。

飞行器总体设计涵盖了多个学科专业,包含大量的设计变量、状态变量、约束方程以及学科专业之间的相互影响,是一个典型的复杂系统。

复杂系统设计面临模型、信息交换、计算和组织复杂性等很多困难,因此必须利用各学科专门的技术手段来设计。

优化设计理论与这些专门技术的结合就构成了多学科设计优化的主要内容。

查文献:《飞行器总体不确定性多学科设计优化研究》国防科学技术大学姚雯导师:陈小前。

相关文档
最新文档