2015年全国初中数学联赛试题及答案
2015年全国初中数学联合竞赛(初三)试题及解答
第一试(A)
一、选择题(本题满分 42 分,每小题 7 分) 1. 设实数 a, b, c 满足: a b c 3, a2 b2 c2 4 ,则 A.0 【答】D. 【解析】 B.3 C.6
a 2 b2 b2 c 2 c 2 a 2 =( 2c 2a 2b
D.9
)
a 2 b2 b2 c 2 c 2 a 2 4 c 2 4 a 2 4 b2 (2 c) (2 a) (2 b) 9 . 2c 2a 2b 2c 2a 2b
2. 若抛物线 y x2 bx c 与 x 轴只有一个公共点, 且过 A(m, n) ,B(m 8, n) , 则 n ( A.8. 【答】 C 【解析】法一(LTX) : 依题意,设抛物线解析式为 y ( x h)2 , 因为它过 A(m, n) , B(m 8, n) , 所以 h m 4 ,故 n (m h)2 (4)2 16 ,选 C . 法二: 由题意, b 8 2m ,
2 2 2
)
A.3 【答】D.
B.6.
C .9
D.12
【解析】设 x y t ,则 x y t , 代入题设等式得 ( y t )2 ( y t ) y y 2 3 ,整理得 3 y 2 3ty t 2 3 0 . 由判别式 (3t )2 12(t 2 3) 3 得 2 3 t 2 3 ,故 ( x y)2 t 2 12 . 5.题目和解答与(A)卷第 4 题相同. 6.设 n 是小于 100 的正整数且使 2n2 3n 2 是 6 的倍数,则符合条件的所有正整数 n 的和 是( ) B.850 C.1536 D.1634
2015年全国初中数学联赛试题及参考答案_第二试_
第二试 ( A) 一、 ( 本题满分2 关于x 的方程 槡 0 分) x -m
2 2 求实数 + 2 x 有且仅 有 一 个 实 数 根 , x - 1= 槡 的取值范围 m . 2 解 将所给方程记为方程 ① , 显然有 x ≥
F-D F C D, ( 如 果B 证 明: 2) = MN = B D A C MD.
证明 ( 使得 1)在 B E 上 取 一 点 P,
①
)- ( m+ n- 1 4 m n-m- n) Δ =( 2 ( ) ( ) = m+ n - 4 m n+ 2 m+ n + 1
2
z x s s . c b t . c n k i . n e t z x s s h i n a o u r n a l . n e t . c n 网址 : 电子邮箱 : @c p j
至少有一个正整数解 , 所以 Δ 应为完全平方数 .
2 注意 到 Δ= ( m -n) +( m +n) +1= 2 2 ( )+ ), m- n+ 1 4 n> ( m- n+ 1 2 ( m- n) + 2 m+ n) + 1 Δ =( 2 ) ) , =( m- n+ 3 -( 4 m- 8 n+ 8 若4 , 即 m> , m- 8 n+ 8 0 2 n- 2 > 2 即 Δ< ( ) , m- n+ 3 2 2 从而有 ( ) ) , m- n+ 1 m- n+ 3 <Δ< (
m 且x≥ 1 .
2 2 若 m <0 , 则 槡 此 x -m +2 x - 1 >x, 槡 不符合题意 , 故 m≥ 时方程 ① 无解 , 0 . 2 2 方程 ① 变 形 得 2 x - 1=x- 槡 x -m , 槡 2 两 边 平 方 后 整 理 得 2 x + m - 4 = 2 再平方 , 整 理 得 8( - 2 x x2 2-m) x = -m , 槡 2 ( ). m- 4
2015年全国初中数学联合竞赛试题(含答案解析)
14.12
【详解】
设三角形的三边长为 ,则 , ,所以 ,故 的可能取值为8,9,10或11,满足题意的数组 可以为:
, , , , , ,
, , , , , .
共12组,所以,三边长均为整数且周长为24的三角形的个数为12
15.4
【详解】
连接 , ,作 于 , 于 .
∵ 平分 ,∴ .
又 ,∴ ,∴ ,∴ .
因此 ,从而可得 ,所以 .
又因为 ,所以有 ,整理即得
20.最小值为
【详解】
解因为 ,所以 ,所以
.
设 ,则 ,
当 时取得等号.
所以, , .
因此,当 , 时, 取得最小值 .
21.(1)证明见解析;(2)证明见解析
【详解】
证明(1)在 上取一点 ,使得 ,则 ,∴ .
又 ,∴ ,∴ ,
∴ ,∴ .
16.在圆周上按序摆放和为15的五个互不相等的正整数 , , , , ,使得 最小,则这个最小值为___________.
三、解答题
17.关于 的方程 有且仅有一个实数根,求实数 的取值范围.
18.如图,圆内接四边形 的对角线 、 交于点 ,且 , .过点 作 ,交 的延长线于点 , 的平分线分别交 、 于点 、 .
3.矩形 中, , , 、 分别为矩形外的两点, , ,则 ()
A. B.15C. D.
4.已知 为坐标原点,位于第一象限的点 在反比例函数 的图象上,位于第二象限的点 在反比例函数 的图象上,且 ,则 的值为()
A. B. C.1D.2
5.已知实数 , 满足关系式 ,则 的最小值为()
A. B. C.1D.
22.若关于 的方程 至少有一个正整数根,求满足条件的正整数 的值.
2015年全国初中数学联赛初二年级试题答案
)
A.9. 【答】A.
B.6.
C.3.
D.0.
∵ a b c 3, a b c 4 ,
2 2 2
∴
a 2 b2 b2 c 2 c 2 a 2 4 c 2 4 a 2 4 b2 (2 c) (2 a) (2 b) 2c 2a 2b 2c 2a 2b
第一试(A)
一、选择题: (本题满分 42 分,每小题 7 分) 1. 若 x2 y 2 2 z 2 xy 2 yz 2 x 2 0 ,则 x y z A.3. 【答】C.
2 2 2
(
)
B.4.
C.5.
2 2
D.6.
2
∵ x y 2 z xy 2 yz 2 x 2 0 ,∴ 2 x 2 y 4 z 2 xy 4 yz 4 x 4 0 , ∴ ( x 2 xy y ) ( x 4 x 4) ( y 4 yz 4 z ) 0 ,
2 2 2 2 2
∴ ( x y) ( x 2) ( y 2 z) 0 ,∴ x y 2 , z 1 ,∴ x y z 5.
2 2 2
2. 设实数 a, b, c 满足: a b c 3 , a b c 4 ,则
2 2 2
a 2 b2 b2 c 2 c 2 a 2 ( 2c 2a 2b
∵ 2n 3n 2 是 6 的倍数,∴ m 1 是 3 的倍数,∴ m 3k 1 或 m 3k 2 ,其中 k 是非负整数.
2 2
∴ n 2(3k 1) 6k 2 或 n 2(3k 2) 6k 4 ,其中 k 是非负整数. ∴符合条件的所有正整数 n 的和是(2+8+14+…+86+92+98)+(4+10+16+…+82+88+94) =1634. 4.将数字 1,2,3,……,34,35,36 填在 6×6 的方格中,每个方格填一个数字,要求每行数字从 左到右是从小到大的顺序,则第三列所填 6 个数字的和的最小值为______. 【答】63. 设第三列所填 6 个数字按从小到大的顺序排列后依次为 A , B , C , D , E , F . 因为 A 所在行前面需要填两个比 A 小的数字, 所以 A 不小于 3; 因为 B 所在行前面需要填两个比 B 小 的数字,且 A 及 A 所在行前面两个数字都比 B 小,所以 B 不小于 6. 同理可知: C 不小于 9, D 不小于 12, E 不小于 15, F 不小于 18. 因此,第三列所填 6 个数字之和 A + B + C + D + E + F 3 6 9 12 15 18 63 . 如图即为使得第三列所填 6 个数字之和取得最小值的一种填法(后三列的数字填法不唯一). 1 4 7 10 13 16 2 5 8 11 14 17 3 6 9 12 15 18 19 25 22 26 31 32 20 27 23 28 34 33 21 29 24 30 35 36 第 3 页(共 6 页)
2015全国初中数学联合竞赛(初二组)第一试、第二试试题(C卷)(含答案解析)
2015全国初中数学联合竞赛(初二组)第一试、第二试试题(C 卷)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知a 为实数,关于x ,y 的方程组22422ax y x y a +=⎧⎨+=⎩有整数解,则a 的个数为( ) A .2B .3C .4D .5 2.定义运算()()()()()()12211221a a a a b a b a b b b b --⨯⋅⋅⋅⨯-+-+*=--⨯⋅⋅⋅⨯⨯,则107*=( ) A .720 B .120 C .240 D .803.如图,在四边形ABCD 中,AC BD ⊥,若AB =AD =12CD =,则BC =( )A B .C .5 D .134.定义()!121n n =⨯⨯⋅⋅⋅⨯-,则222014201520162016201720182015!2017!⨯-⨯-+=( ) A .11112011!2012!2016!2017!+-- B .11112012!2013!2016!2017!+-- C .11112013!2014!2016!2017!+-- D .11112014!2015!2016!2017!+-- 5.已知1x y z ++=,1110x y y z z x ++=+++,则222x y z ++的值为( ). A .13 B .1 C .32 D .36.在边长为1的正方形ABCD 中,P 、Q 分别为AD ,DC 上的两点.若QPB 的面积为14,则AP CQ +的最小值为( )A B .1 C D .32二、填空题7.已知a ,b 为实数,且2481124811111++++-++++x x x x x 可化简为1ab x -,则a b +=______. 8.若实数a ,b 满足221a b +=,则22a b -的取值范围为______.9.将1米1⨯米的地砖m 块,铺成2米宽的道路(仅允许最后1米可以少于2块地砖)比铺成4米宽的道路(仅允许最后1米可以少于4块地砖)长5米,则m 的最大值为______.10.若nn =______.三、解答题11.三只蚂蚁同时从点A 出发,沿三角形道路A B C A →→→爬行,已知第一只蚂蚁在AB ,BC ,CA 上爬行速度分别为12厘米/秒,10厘米/秒,15厘米/秒;第二只蚂蚁在此三段道路上的速度分别为15厘米/秒,15厘米/秒,10厘米/秒;第三只蚂蚁在此三段上的速度分别为10厘米/秒,20厘米/秒,12厘米/秒.若三只蚂蚁同时回到A 点,求ABC ∠的值.12.如图,在ABC 中,59ABC ∠=︒,30.5ACB ∠=︒,延长ABC ∠的内角平分线BD 至E ,使得DE DA =,求E ∠的值.13.求满足20152025201520252015242025x x y z x y z ≤<⎧⎪≤++<⎨⎪≤++<⎩的不同的有序整数组(),,x y z 的个数.参考答案1.C【详解】由()22422422ax y a x a x y a +=⎧⇒-=-⎨+=⎩,∴2422122a x a a -==-+--. 由22x y a +=,可知a 必为偶数, 又2212a -+-为整数,所以0,4,24,20a =-.故选C . 2.B【详解】略3.D【详解】记AC 与BD 交点为O ,222BC BO CO =+,222CD CO DO =+,222AD AO DO =+,222AB AO BO =+,∴2222BC AD AB CD +=+,∴13BC =,选D . 4.B【详解】222014201520162016201720182015!2017!⨯-⨯-+ 222014201520162016201720182015!2015!2017!2017!⨯⨯=-+- 20142016201620182013!2015!2015!2017!=-+- 200420182013!2017!=- 20131201712013!2017!++=- 11112012!2013!2016!2017!=+--. 5.D【分析】 先把1110x y y z z x++=+++进行通分,再利用完全平方公式,即可解答 【详解】将1110x y y z z x ++=+++化简为()()()()()20xy yz zx x y z x y y z z x +++++=+++, 则()21xy yz zx x y z ++=-++=-,即()()22222123x y z x y z xy yz zx ++=++-++=+=.【点睛】此题考查分式的化简求值,掌握运算法则是解题关键6.C【详解】 ∵14QPB S =△,设AP a =,CQ b =, ∴()()()113111224DPQ ABP BCQ S S S a b a b ab ++=--++=+=⎡⎤⎣⎦△△△, ∴12ab =.∵20≥,∴a b +≥C .7.32【详解】 ∵248161124816111111x x x x x x ++++=-++++-. ∴16a =,16b =,32a b +=.8.21222a b -≤-≤ 【详解】 令22a b t -=,联立2222105t a b a ++=⇒≤=,1205t b -≤=.∴21222a b -≤-≤. 9.22【详解】(1)4m k =时,k 为整数.44254k k k -==,∴20m =; (2)41m k =+,(21)(1)5k k k +-+==,∴21m =(3)42m k =+,(21)(1)5k k k +-+==,22m =(4)43m k =+,(22)(1)15k k k +-+=+=,∴4k =,∴19m =.∴m 的最大值为22.10.14-或7-或2-或5【详解】p =(p 为非负整数),则2222229304361204(29)394n n p n n p n p ++=⇒++=⇒++= 39(229)(229)p n p n ⇒=++--,2291102293914p n p p n n ++==⎧⎧⇒⎨⎨--==-⎩⎩或229391022915p n p p n n ++==⎧⎧⇒⎨⎨--==⎩⎩ 或22934229137p n p p n n ++==⎧⎧⇒⎨⎨--==-⎩⎩或22913422932p n p p n n ++==⎧⎧⇒⎨⎨--==-⎩⎩ ∴14n =-或7-或2-或511.90︒【详解】解:记AB c =,BC a =,=CA b , 则121015151510102012c a b c a b c a b ++=++=++, 得564446635c a b c a b c a b ++=++=++22::3:5:43c a b a b c c a b +=⎧⇒⇒=⎨-+=⎩, ∴90ABC ∠=︒.12.89.5︒【详解】证明:在BC 上取一点G ,使得AB BG =.∵BE 平分ABC ∠,∴129.52ABE EBC ABC ∠=∠=∠=°. 又BD BD =,故ABD △≌GBD △. (10)1801805930.590.5BAC ABC ACB ∠=-∠-∠=--=°°°°°, ∴90.5BGD BAC ∠=∠=°,18029.590.560BDA BDG ∠=∠=--=°°°°∴180606060GDC EDC ∠=--==∠°°°°,又DG AD DE ==,DC DC =,所以DGC ≌DEC .∴30.5DCE DCG ∠=∠=°∴1806030.589.5CED ∠=--=°°°°.13.500种【详解】解:(1)2015x =,09y z ≤+≤,0249y z ≤+≤,24y z +取0,2,4,6,8;y z +取0,1,2,…,9;共50组. (2)2016x =,18y z -≤+≤,1248y z -≤+≤24y z +取0,2,4,6,8;y z +取1-,0,…,8;共50组. 同理,2017,2018,,2024x =⋅⋅⋅,每种情况,y ,z 恒有50种, 故共有500种.。
2015 年全国初中数学联合竞赛试题参考答案及评分标准
C E
B
G
∴ GF 11, GE 10 ,∴ EF GE2 GF 2 221 .
4. 已知 O 为坐标原点,位于第一象限的点 A 在反比例函数 y 1 (x 0) 的图象上,位于第二象限的 x
点 B 在反比例函数 y 4 (x 0) 的图象上,且 OA OB ,则 tan ABO 的值为 x
5. 已知实数 x, y 满足关系式 xy x y 1,则 2 2 .
B. 6 4 2 .
C.1.
D. 6 4 2 .
【答】B.
设 x y t , 则 由 题 设 条 件 可 知 xy x y 1 t 1 , 所 以 x, y 是 关 于 m 的 一 元 二 次 方 程
则 5n2 3n 5 125m2 15m 5 120m2 15m 5(m2 1) .
∵ 5n2 3n 5 是 15 的倍数,∴ m2 1是 3 的倍数,∴ m 3k 1或 m 3k 2 ,其中 k 是非负整数.
∴ n 5(3k 1) 15k 5或 n 5(3k 2) 15k 10 ,其中 k 是非负整数. ∴符合条件的所有正整数 n 的和是(5+20+35+50+65+80+95)+(10+25+40+55+70+85)
A. 8. 【答】C.
B. 12.
C. 16.
D.24.
依题意,有 n m2 bm c (m 8)2 b(m 8) c ,于是可得 b 8 2m .
∵抛物线 y x2 bx c 与 x 轴只有一个公共点,∴ b2 4c 0 ,∴ c 1 b2 (4 m)2 . 4
6. 设 n 是小于 100 的正整数且使 5n2 3n 5 是 15 的倍数,则符合条件的所有正整数 n 的和是( )
A.285. 【答】D.
2015年全国初中数学联赛(初二组)初赛试卷(含答案)(完整资料).doc
(2)若 ,求PM的值。
2015年全国初中数学联赛(初二组)初赛试题
参考解答
一、选择题
1.D.
2.C.
3.A 延长FD至点G,使得DG=BE.显然△ABE≌△ADG.
∴AE=AG.易证△FAG≌△FAE. ∴FG=FE. ∴△ECF的周长=CF+FE+EC=CF+FG+EC=CF+FD+DG+EC=(CF+FD)+(BE+EC)=CD+BC=2.选A.
C、2或 D、2或
6、已知2015年3月13日是星期五,则 天之后是星期( )
A、一 、二C、三D、四
二、填空题(本题满分28分,每小题7分)
7、计算: .
8、已知 ,则 的值为.
9、如图,在四边形ABCD中, , , , , ,则BD的值为.
10、如果关于x的不等式组 的整数解仅为1,2,3,那么适合这个不等式组的整数a,b组成的有序数对(a,b)的个数为.
10.12. 即是 .因为原不等式组的整数解仅为1,2,3,所以 即 .所以 可以取9,10,11共3个数, 可以取1,2,3,4共4个数. 所以适合原不等式组的整数 组成的有序数对 的个数为 个.
三、解答题
11.解:∵a2+2ab+b2-6a-6b+9=0,……………………………………..…………………5分
∵AP=PC,CM=ME, ∴PM∥ 且PM= .………………………………….……….20分
∴PQ=PM, PQ⊥PM.
∴△MPQ为等腰直角三角形.
∴PM=PQ=2.5. .…………………………………………………………………………….25分
(完整版)2015年全国初中数学联合竞赛试题及参考答案
2015年全国初中数学联合竞赛试题第一试(A )一、选择题(每小题7分,共42分)1.设实数a ,b ,c 满足:3a b c ++=,2224a b c ++=,则222222222a b b c c ac a b +++++=---( ) A. 0B. 3C. 6D. 92.若抛物线2y x bx c =++与x 轴只有一个公共点,且过点A (m ,n ),B (m -8,n ),则n =( )A. 8B. 12C. 16D. 243.矩形ABCD 中,AD =5,AB =10,E 、F 分别为矩形外的两点,BE =DF =4,AF =CE =3,则EF =( ) A. B .15 CD.4.已知O 为䝐标原点,位于第一象限的点A 在反比例函数1(0)y x x=>的图象上,位于第二象限的瀹B 在反比例函数4(0)y x x=-<的图象上且OA ⊥OB ,则tan ∠ABO 的值为( ) A .12B.2 C .1 D .25.已知实数x (y 满足关系式1xy x y --=,则22x y +的最小值为( )A.3-B.6-C .1 D.6+6.设n 是小于100的正整数且使2535n n +-是15的倍数,则符合条件的所有正整数n 的和是( ) A .285 B .350 C .540 D .635 二、填空题(每小题7分,共28分)7.设a ,b 是一元二次方程210x x --=的两根,则32234a b a ++的值为 . 8.从三边长均为整数且周长为24的三角形中任取一个,它是直角三角形 的概率为 .9.已知锐角△ABC 的外心为O ,AO 交BC 于D ,E 、F 分别为△ABD 、 △ACD 的外心,若AB >AC ,EF =BC ,则∠C -∠B = .10.将数字1,2,3,…,34,35,36填在6×6的方格中,每个方格填一个数字,要求每行数字从左到右是从小到大的顺序,则第三列所填6个数字的和的最小值为 .第一试(B )一、选择题(每小题7分,共42分)1.设实数a ,b ,c 满足:3a b c ++=,2224a b c ++=,则222222222a b b c c a c a b+++++=---( )A. 12B. 9C. 6D. 32.若抛物线2y x bx c =++与x 轴只有一个公共点,且过点A (m ,n ),B (m -8,n ),则n =( )A. 8B. 12C. 16D. 243.矩形ABCD 中,AD =5,AB =10,E 、F 分别为矩形外的两点,BE =DF =4,AF =CE =3,则EF =( ) A. B .15CD.4.已知实数x ,y 满足关系式223x xy y ++=,则2()x y -的最大值为( )A .3B .6C .9D .125.已知O 为坐标原点,位于第一象限的点A 在反比例函数1(0)y x x=>的图象上,位于第二象限的点B 在反比例函数4(0)y x x=-<的图象上,且OA ⊥OB ,则tan ∠ABO 的值为( ) A .12BC .1D .26.设n 是小于100的正整数且使2232n n --是6的倍数,则符合条件的所有正整数n 的和是( ) A .784B .850C .1536D .1634二、填空题(每小题7分,共28分)7.设a ,b 是一元二次方程210x x --=的两根,则32234a b a ++的值为 . 8.三边长均为整数且周长为24的三角形的个数为 .9.C 、D 两点在以AB 为直径的半圆周上,AD 平分∠BAC ,AB =20, AD=AC 的长为 .10.在圆周上按序摆放和为15的五个互不相等的正整数a ,b ,c ,d ,e ,使得ab +bc +cd +de +ea最小,则这个最小值为 .ABCD EF第二试(A )1.(20分)关于xx 有且仅有一个实数根,求实数m 的取值范围. 2.(25分)如图,圆内接四边形ABCD 的对角线AC 、BD 交于点E ,且AC ⊥BD ,AB =AC . 过点D 作DF ⊥BD ,交BA 的延长线于点F ,∠BFD 的平分线分别交AD 、BD 于点M 、N . (1)证明:∠BAD =3∠DAC ; (2)如果BF DF CDBD AC-=,证明:MN =MD .3.(25分)设正整数m ,n 满足:关于x 的方程()()x m x n x m n ++=++至少有一个正整数解,证明:222()5m n mn +<.第二试(B )1.(20分)若正数a ,b 满足ab =1,求11112M a b=+++的最小值. 2.(25分)如图,圆内接四边形ABCD 的对角线AC 、BD 交于点E ,且AC ⊥BD ,AB =AC =BD . 过点D 作DF ⊥BD ,交BA 的延长线于点F ,∠BFD 的平分线分别交AD 、BD 于点M 、N . (1)证明:∠BAD =3∠DAC ;(2)如果MN =MD ,证明:BF =CD +DF .3.(25分)若关于x 的方程2343410x x k -+-=至少有一个正整数根,求满足条件的正整数k 的值.2015年全国初中数学联合竞赛试题参考答案第一试(A )1. 解:D. 提示:∵3a b c ++=,2224a b c ++=,∴222222222444(2)(2)(2)222222a b b c c a c a b c a b c a b c a b +++---++=++=+++++------6()9a b c =+++=.2. 解:C. 提示:依题意,有22(8)(8)n m bm c m b m c =++=-+-+,于是可得82b m =-. ∵抛物线2y x bx c =++与x 轴只有一个公共点,∴240b c -=,∴221(4)4c b m ==-.因此222(82)(4)16n m bm c m m m m =++=+-+-=.3. 解:C. 提示:易知∠AFD =∠BEC =90°,△BEC ≌△DF A ,∴∠DAF =∠BCE . 延长F A ,EB 交于点G . ∵∠GAB =90°-∠DAF =∠ADF ,∠GBA =90°-∠CBE =∠BCE =∠DAF ,∴△BGA ∽△AFD ,且∠AGB =90°,∴AG =8,BG =6, ∴GF =11,GE =10,∴EF ==4. 解:A. 提示:过点A 、B 分别作AC ⊥x 轴,BD ⊥x 轴,垂足为C 、D . 由OA ⊥OB 得∠AOB =90°,于是可得△AOC ∽△OBD ,∴12OAABO OB∠===. 5. 解:B. 提示:设x y t +=,则由题设条件可知11xy x y t =++=+, ∴x ,y 是关于m 的一元二次方程210m tm t -++=的两个实数根, 于是有:24(1)0t t ∆=-+≥,解得2t ≥+2t ≤-又∵22222()22(1)(1)3x y x y xy t t t +=+-=-+=--,∴当2t =-1x y ==22x y +取得最小值,最小值为2(21)36--=-6. 解:D. 提示:∵2535n n +-是15的倍数, ∴25|(535)n n +-,∴5|3n ,∴5|n . 设5n m =(m 是正整数),则2222535125155120155(1)n n m m m m m +-=+-=++-.∵2535n n +-是15的倍数,∴21m -是3的倍数,∴31m k =+或32m k =+,其中k 是非负整数.∴5(31)155n k k =+=+或5(32)1510n k k =+=+,其中k 是非负整数.∴符合条件的所有正整数n 的和是(5203550658095)(102540557085)635++++++++++++=. 7. 解:11. 提示:∵a ,b 是一元二次方程210x x --=的两根, ∴1ab =-,1a b +=,21a a =+,21b b =+, ∴332222343423(1)42(1)3362a b a b b a a b b a a b a++=++=++++=+++ 3(1)3626()511a a b a b =++++=++=.8. 解:112. 提示:设三角形的三边长为a ,b ,c (a b c ≥≥), 则324a a b c ≥++=,2()24a a b c <++=,∴812a ≤<,故a 的可能取值为8,9,10或11,满足题意的数组(a ,b ,c )可以为: (8,8,8),(9,9,6),(9,8,7),(10,10,4),(10,9,5),(10,8,6), (10,7,7),(11,11,2),(11,10,3),(11,9,4),(11,8,5),(11,7,6). 共12组,其中,只有一组是直角三角形的三边长,∴所求概率为112. 9. 解:60°. 提示:作EM ⊥BC 于点M ,FN ⊥BC 于点N ,FP ⊥EM 于点P . ∵E 、F 分别为△ABD 、△ACD 的外心, ∴M 、N 分别为BD 、CD 的中点.又EF =BC ,∴PF =MN =12BC =12EF ,∴∠PEF =30°.又EF ⊥AD ,EM ⊥BC ,∴∠ADC =∠PEF =30°. 又∠ADC =∠B +∠BAD =∠B +12(180°-2∠C )=90°+∠B -∠C ,∴∠C -∠B =90°-∠ADC =60°.10. 解:63. 提示:设第三列所填6个数字按从小到大的顺序排列后依次为A ,B ,C ,D ,E ,F .∵A 所在行前面需要填两个比A 小的数字,∴A 不小于3; ∵B 所在行前面需要填两个比B 小的数字,且A 及A 所在行前面两个数字都比B 小,∴B 不小于6.同理可知:C 不小于9,D 不小于12,E 不小于15,F 不小于18.因此,第三列所填6个数字之和A +B +C +D +E +F ≥3+6+9+12+15+18=63.如图即为使得第三列所填6个数字之和取得最小值的一种填法(后三列的数字填法不唯一).ABCD E F G第一试(B )1. 解:B. 提示:∵3a b c ++=,2224a b c ++=,∴222222222444(2)(2)(2)222222a b b c c a c a b c a b c a b c a b +++---++=++=+++++------6()9a b c =+++=.2. 解:C. 提示:依题意,有22(8)(8)n m bm c m b m c =++=-+-+,于是可得82b m =-. ∵抛物线2y x bx c =++与x 轴只有一个公共点,∴240b c -=,∴221(4)4c b m ==-.因此222(82)(4)16n m bm c m m m m =++=+-+-=.3. 解:C. 提示:易知∠AFD =∠BEC =90°,△BEC ≌△DF A ,∴∠DAF =∠BCE . 延长F A ,EB 交于点G . ∵∠GAB =90°-∠DAF =∠ADF ,∠GBA =90°-∠CBE =∠BCE =∠DAF ,∴△BGA ∽△AFD ,且∠AGB =90°,∴AG =8,BG =6, ∴GF =11,GE =10,∴EF ==4. 解:D. 提示:设x y t -=,则x y t =+,代入题设等式得22()()3y t y t y y +++++=,整理得223330y ty t ++-=. 由判别式22(3)12(3)3t t ∆=--≥得t -≤22()12x y t -=≤. 5. 解:A. 提示:过点A 、B 分别作AC ⊥x 轴,BD ⊥x 轴,垂足为C 、D . 由OA ⊥OB 得∠AOB =90°,于是可得△AOC ∽△OBD ,∴12OAABO OB∠===. 6. 解:D. 提示:∵2232n n --是6的倍数, ∴22|(232)n n --,∴2|3n ,∴2|n .设2n m =(m 是正整数),则2222232862662(1)n n m m m m m --=--=-+-. ∵2232n n --是6的倍数,∴21m -是3的倍数,∴31m k =+或32m k =+,其中k 是非负整数.∴2(31)62n k k =+=+或2(32)64n k k =+=+,其中k 是非负整数. ∴符合条件的所有正整数n 的和是(2814869298)(41016828894)1634++++++++++++=L L . 7. 解:11. 提示:∵a ,b 是一元二次方程210x x --=的两根, ∴1ab =-,1a b +=,21a a =+,21b b =+, ∴332222343423(1)42(1)3362a b a b b a a b b a a b a++=++=++++=+++ 3(1)3626()511a a b a b =++++=++=.8. 解:12. 提示:设三角形的三边长为a ,b ,c (a b c ≥≥), 则324a a b c ≥++=,2()24a a b c <++=,∴812a ≤<,故a 的可能取值为8,9,10或11, 满足题意的数组(a ,b ,c )可以为: (8,8,8),(9,9,6),(9,8,7),(10,10,4),(10,9,5),(10,8,6), (10,7,7),(11,11,2),(11,10,3),(11,9,4),(11,8,5),(11,7,6). 共12组,∴三边长均为整数且周长为24的三角形的个数为12. 9. 解:4. 提示:连接OD 、OC ,作DE ⊥AB 于E ,OF ⊥AC 于F .∵AD 平分∠BAC ,∴∠DOB =2∠BAD =∠OAC .又OA =OD ,∴△AOF ≌△ODE ,∴OE =AF ,∴AC =2OF =2OE .设AC =2x ,则OE =AF =x . 在Rt △ODE中,由勾股定理得DE ==在Rt △ADE 中,AD 2=DE 2+AE 2,即222(100)(10)x x =-++,解得x =2.∴AC =2x =4.10. 解:37. 提示:和为15的五个互不相等的正整数只能是1,2,3,4,5.注意到五个数在圆周上是按序摆放的,且考虑的是和式ab bc cd de ea ++++,不妨设a =5.如果1和5的位置不相邻,不妨设c =1(如图2),此时的和式为155P b b d ed e =++++; 交换1和b 的位置后,得到如图3的摆法, 此时的和式为255P b bd ed e =++++.∵1255(5)(1)0P P b dbd d b -=+--=-->,∴12P P >.因此,交换1和b 的位置使得1和5相邻(如图3)以后,和式的值会变小. 如图3,如果d =2,此时的和式为35225P b b e e =++++;交换e 和2的位置以后,得到如图4的摆法,此时的和式为45210P b be e =++++. ∵342510(5)(2)0P P b e be b e -=+--=-->,∴34P P >. 因此,交换e 和2的位置使得2和5相邻以后和式的值会变小. 如果b =2,此时的和式为55225P d ed e =++++;交换e 和2的位置以后,得到如图5的摆法,此时的和式为65210P e ed d =++++. ∵5625104(2)0P P e e e -=+--=->,∴56P P >.因此,交换e 和2的位置使得2和5相邻以后和式的值会变小. 综上可知:1和2摆在5的两边(如图5)时,和式的值会变小.AB CD E F Gd d d de 图1 图2 图3 图4 图5当d =3,e =4时,和式的值为754126103P =++++=; 当d =4,e =3时,和式的值为853*******P =++++=. 因此,所求最小值为37.第二试(A )1. 解:将所给方程记为方程①,显然有2x m ≥且1x ≥.若0m <x ,此时方程①无解,不符合题意,故0m ≥.方程①变形得x两边平方后整理得2242x m +-=- 再平方,整理得228(2)(4)m x m -=-.显然,应该有02m ≤<,并且此时方程①只可能有解x =将x =1=-,化简整理得???,于是有403m ≤≤,此时方程①有唯一解x =.综上所述,所求实数m 的取值范围为403m ≤≤. 2. 证明:(1)在BE 上取一点P ,使得∠BAP =∠DAC , 则△BAP ≌△CAD ,∴AP =AD . 又AE ⊥PD ,∴△ADE ≌△APE ,∴∠P AE =∠DAE ,∴∠P AE =∠BAP =∠DAC ,∴∠BAD =3∠DAC .(2)设∠DAC =α,则∠BAC =2α,∠BAD =3α,∠NDM =90°-α. 在FB 上截取FQ =FD ,连接QD ,则BQ =BF -FQ =BF -FD .又BF DF CD BD AC -=,∴BQ CD BD AC=. 又∠QBD =∠DCA ,∴△QBD ∽△DCA ,∴∠QDB =∠DAC .又∵∠DBC =∠DAC ,∴∠QDB =∠DBC ,∴QD ∥BC ,∴∠FQD =∠ABC . 又AB =AC ,∠BAC =2α,∴∠ABC =90°-α,∴∠FQD =90°-α. 又FQ =FD ,∴∠BFD =2α.∵FN 平分∠BFD ,∴∠AFM =α,∴∠NMD =∠AMF =∠BAD -∠AFM =3α-α=2α, ∴∠MND =180°-∠NMD -∠NDM =90°-α=∠MDN ,∴MN =MD .3. 证明:方程即2(1)0x m n x mn m n ++-+--= ①,方程①的判别式222(1)4()()42()1()2()1m n mn m n m n mn m n m n m n ∆=+----=+-+++=-+++.不妨设m n ≥,由题设可知,整系数方程①至少有一个正整数解,∴∆应为完全平方数. 注意到222()2()1(1)4(1)m n m n m n n m n ∆=-+++=-++>-+,22()2()1(3)(488)m n m n m n m n ∆=-+++=-+--+,若4880m n -+>,即22m n >-,则2(3)m n ∆<-+,从而有22(1)(3)m n m n -+<∆<-+,故只可能2(2)m n ∆<-+, 即22()2()1(2)m n m n m n -+++=-+,整理得332m n =-, 这与m ,n 均为正整数矛盾.因此22m n ≤-,从而可得2m n <,∴2mn<. 又∵112m n >>,∴有1()(2)02m m n n --<,整理即得222()5m n mn +<.第二试(B )1. 解:∵1ab =,∴1b a=, ∴2111111211211211212321a aM a b a a a a a a a a =+=+=+=+-=-++++++++++. 设232a a N a++=,则22333N a a =++=+++当a .∴103N <≤=-111(32M N=-≥--=.因此,当a =2b =时,11112M a b=+++取得最小值2. 2. 证明:(1)在BE 上取一点P ,使得∠BAP =∠DAC , 则△BAP ≌△CAD ,∴AP =AD .又AE ⊥PD ,∴△ADE ≌△APE ,∴∠P AE =∠DAE , ∴∠P AE =∠BAP =∠DAC ,∴∠BAD =3∠DAC . (2)设∠DAC =α,则∠BAC =2α,∠BAD =3α. ∵AC ⊥BD ,∴∠NDM =90°-α.∵MN =MD ,∴∠MND =∠MDN =90°-α, ∴∠NMD =180°-∠MND -∠NDM =2α,∴∠AMF =2α, ∴∠AFM =∠BAD -∠AMF =3α-2α=α.FN 平分∠BFD ,∴∠BFD =2∠AFM =2α.在FB 上截取FQ =FD ,连接QD ,则∠FQD =90°-α. 又AB =AC ,∠BAC =2α,∴∠ABC =90°-α,∴∠FQD =∠ABC , ∴QD ∥BC ,∴∠QDB =∠DBC .又∵∠DBC =∠DAC ,∴∠QDB =∠DAC .又∵DB =AC ,∠QBD =∠DCA ,∴△QBD ∽△DCA ,∴BQ =CD , ∴BF =BQ +FQ =CD +DF .3. 解:设方程的两个根为x 1,x 2,且x 1为正整数, 则1234x x +=,12341x x k =-.由1234x x +=知2134x x =-,∴ x 2也是整数.由k 为正整数及12341x x k =-可知20x >,∴x 2是正整数. 注意到121212(1)(1)134(1)x x x x x x k ++=+++=+, ∴1217|(1)(1)x x ++,∴117|(1)x +或217|(1)x +.若117|(1)x +,则由112134x x x +≤+=知:1117x +=或1134x +=. 当1117x +=时,116x =,218x =,此时3411618k -=⨯,k 无整数解; 当1134x +=时,133x =,21x =,此时341331k -=⨯,解得k =1. 若217|(1)x +,同样可得k =1. ∴满足条件的正整数k =1.。
2015年全国初中数学联合竞赛试题及参考答案
2015年全国初中数学联合竞赛试题第一试(A )一、选择题(每小题7分,共42分)1.设实数a ,b ,c 满足:3a b c ++=,2224a b c ++=,则222222222a b b c c ac a b +++++=---( ) A. 0B. 3C. 6D. 92.若抛物线2y x bx c =++与x 轴只有一个公共点,且过点A (m ,n ),B (m -8,n ),则n =( )A. 8B. 12C. 16D. 243.矩形ABCD 中,AD =5,AB =10,E 、F 分别为矩形外的两点,BE =DF =4,AF =CE =3,则EF =( ) A. B .15 CD.4.已知O 为䝐标原点,位于第一象限的点A 在反比例函数1(0)y x x=>的图象上,位于第二象限的瀹B 在反比例函数4(0)y x x=-<的图象上且OA ⊥OB ,则tan ∠ABO 的值为( ) A .12B.2 C .1 D .25.已知实数x (y 满足关系式1xy x y --=,则22x y +的最小值为( )A.3-B.6-C .1 D.6+6.设n 是小于100的正整数且使2535n n +-是15的倍数,则符合条件的所有正整数n 的和是( ) A .285 B .350 C .540 D .635 二、填空题(每小题7分,共28分)7.设a ,b 是一元二次方程210x x --=的两根,则32234a b a ++的值为 . 8.从三边长均为整数且周长为24的三角形中任取一个,它是直角三角形 的概率为 .9.已知锐角△ABC 的外心为O ,AO 交BC 于D ,E 、F 分别为△ABD 、 △ACD 的外心,若AB >AC ,EF =BC ,则∠C -∠B = .10.将数字1,2,3,…,34,35,36填在6×6的方格中,每个方格填一个数字,要求每行数字从左到右是从小到大的顺序,则第三列所填6个数字的和的最小值为 .第一试(B )一、选择题(每小题7分,共42分)1.设实数a ,b ,c 满足:3a b c ++=,2224a b c ++=,则222222222a b b c c a c a b+++++=---( )A. 12B. 9C. 6D. 32.若抛物线2y x bx c =++与x 轴只有一个公共点,且过点A (m ,n ),B (m -8,n ),则n =( )A. 8B. 12C. 16D. 243.矩形ABCD 中,AD =5,AB =10,E 、F 分别为矩形外的两点,BE =DF =4,AF =CE =3,则EF =( ) A. B .15CD.4.已知实数x ,y 满足关系式223x xy y ++=,则2()x y -的最大值为( )A .3B .6C .9D .125.已知O 为坐标原点,位于第一象限的点A 在反比例函数1(0)y x x=>的图象上,位于第二象限的点B 在反比例函数4(0)y x x=-<的图象上,且OA ⊥OB ,则tan ∠ABO 的值为( ) A .12BC .1D .26.设n 是小于100的正整数且使2232n n --是6的倍数,则符合条件的所有正整数n 的和是( ) A .784B .850C .1536D .1634二、填空题(每小题7分,共28分)7.设a ,b 是一元二次方程210x x --=的两根,则32234a b a ++的值为 . 8.三边长均为整数且周长为24的三角形的个数为 .9.C 、D 两点在以AB 为直径的半圆周上,AD 平分∠BAC ,AB =20, AD=AC 的长为 .10.在圆周上按序摆放和为15的五个互不相等的正整数a ,b ,c ,d ,e ,使得ab +bc +cd +de +ea最小,则这个最小值为 .ABCD EF第二试(A )1.(20分)关于xx 有且仅有一个实数根,求实数m 的取值范围. 2.(25分)如图,圆内接四边形ABCD 的对角线AC 、BD 交于点E ,且AC ⊥BD ,AB =AC . 过点D 作DF ⊥BD ,交BA 的延长线于点F ,∠BFD 的平分线分别交AD 、BD 于点M 、N . (1)证明:∠BAD =3∠DAC ; (2)如果BF DF CDBD AC-=,证明:MN =MD .3.(25分)设正整数m ,n 满足:关于x 的方程()()x m x n x m n ++=++至少有一个正整数解,证明:222()5m n mn +<.第二试(B )1.(20分)若正数a ,b 满足ab =1,求11112M a b=+++的最小值. 2.(25分)如图,圆内接四边形ABCD 的对角线AC 、BD 交于点E ,且AC ⊥BD ,AB =AC =BD . 过点D 作DF ⊥BD ,交BA 的延长线于点F ,∠BFD 的平分线分别交AD 、BD 于点M 、N . (1)证明:∠BAD =3∠DAC ;(2)如果MN =MD ,证明:BF =CD +DF .3.(25分)若关于x 的方程2343410x x k -+-=至少有一个正整数根,求满足条件的正整数k 的值.2015年全国初中数学联合竞赛试题参考答案第一试(A )1. 解:D. 提示:∵3a b c ++=,2224a b c ++=,∴222222222444(2)(2)(2)222222a b b c c a c a b c a b c a b c a b +++---++=++=+++++------6()9a b c =+++=.2. 解:C. 提示:依题意,有22(8)(8)n m bm c m b m c =++=-+-+,于是可得82b m =-. ∵抛物线2y x bx c =++与x 轴只有一个公共点,∴240b c -=,∴221(4)4c b m ==-.因此222(82)(4)16n m bm c m m m m =++=+-+-=.3. 解:C. 提示:易知∠AFD =∠BEC =90°,△BEC ≌△DF A ,∴∠DAF =∠BCE . 延长F A ,EB 交于点G . ∵∠GAB =90°-∠DAF =∠ADF ,∠GBA =90°-∠CBE =∠BCE =∠DAF ,∴△BGA ∽△AFD ,且∠AGB =90°,∴AG =8,BG =6, ∴GF =11,GE =10,∴EF ==4. 解:A. 提示:过点A 、B 分别作AC ⊥x 轴,BD ⊥x 轴,垂足为C 、D . 由OA ⊥OB 得∠AOB =90°,于是可得△AOC ∽△OBD ,∴12OAABO OB∠===. 5. 解:B. 提示:设x y t +=,则由题设条件可知11xy x y t =++=+, ∴x ,y 是关于m 的一元二次方程210m tm t -++=的两个实数根, 于是有:24(1)0t t ∆=-+≥,解得2t ≥+2t ≤-又∵22222()22(1)(1)3x y x y xy t t t +=+-=-+=--,∴当2t =-1x y ==22x y +取得最小值,最小值为2(21)36--=-6. 解:D. 提示:∵2535n n +-是15的倍数, ∴25|(535)n n +-,∴5|3n ,∴5|n . 设5n m =(m 是正整数),则2222535125155120155(1)n n m m m m m +-=+-=++-.∵2535n n +-是15的倍数,∴21m -是3的倍数,∴31m k =+或32m k =+,其中k 是非负整数.∴5(31)155n k k =+=+或5(32)1510n k k =+=+,其中k 是非负整数.∴符合条件的所有正整数n 的和是(5203550658095)(102540557085)635++++++++++++=. 7. 解:11. 提示:∵a ,b 是一元二次方程210x x --=的两根, ∴1ab =-,1a b +=,21a a =+,21b b =+, ∴332222343423(1)42(1)3362a b a b b a a b b a a b a++=++=++++=+++ 3(1)3626()511a a b a b =++++=++=.8. 解:112. 提示:设三角形的三边长为a ,b ,c (a b c ≥≥), 则324a a b c ≥++=,2()24a a b c <++=,∴812a ≤<,故a 的可能取值为8,9,10或11,满足题意的数组(a ,b ,c )可以为: (8,8,8),(9,9,6),(9,8,7),(10,10,4),(10,9,5),(10,8,6), (10,7,7),(11,11,2),(11,10,3),(11,9,4),(11,8,5),(11,7,6). 共12组,其中,只有一组是直角三角形的三边长,∴所求概率为112. 9. 解:60°. 提示:作EM ⊥BC 于点M ,FN ⊥BC 于点N ,FP ⊥EM 于点P . ∵E 、F 分别为△ABD 、△ACD 的外心, ∴M 、N 分别为BD 、CD 的中点.又EF =BC ,∴PF =MN =12BC =12EF ,∴∠PEF =30°.又EF ⊥AD ,EM ⊥BC ,∴∠ADC =∠PEF =30°. 又∠ADC =∠B +∠BAD =∠B +12(180°-2∠C )=90°+∠B -∠C ,∴∠C -∠B =90°-∠ADC =60°.10. 解:63. 提示:设第三列所填6个数字按从小到大的顺序排列后依次为A ,B ,C ,D ,E ,F .∵A 所在行前面需要填两个比A 小的数字,∴A 不小于3; ∵B 所在行前面需要填两个比B 小的数字,且A 及A 所在行前面两个数字都比B 小,∴B 不小于6.同理可知:C 不小于9,D 不小于12,E 不小于15,F 不小于18.因此,第三列所填6个数字之和A +B +C +D +E +F ≥3+6+9+12+15+18=63.如图即为使得第三列所填6个数字之和取得最小值的一种填法(后三列的数字填法不唯一).ABCD E F G第一试(B )1. 解:B. 提示:∵3a b c ++=,2224a b c ++=,∴222222222444(2)(2)(2)222222a b b c c a c a b c a b c a b c a b +++---++=++=+++++------6()9a b c =+++=.2. 解:C. 提示:依题意,有22(8)(8)n m bm c m b m c =++=-+-+,于是可得82b m =-. ∵抛物线2y x bx c =++与x 轴只有一个公共点,∴240b c -=,∴221(4)4c b m ==-.因此222(82)(4)16n m bm c m m m m =++=+-+-=.3. 解:C. 提示:易知∠AFD =∠BEC =90°,△BEC ≌△DF A ,∴∠DAF =∠BCE . 延长F A ,EB 交于点G . ∵∠GAB =90°-∠DAF =∠ADF ,∠GBA =90°-∠CBE =∠BCE =∠DAF ,∴△BGA ∽△AFD ,且∠AGB =90°,∴AG =8,BG =6, ∴GF =11,GE =10,∴EF ==4. 解:D. 提示:设x y t -=,则x y t =+,代入题设等式得22()()3y t y t y y +++++=,整理得223330y ty t ++-=. 由判别式22(3)12(3)3t t ∆=--≥得t -≤22()12x y t -=≤. 5. 解:A. 提示:过点A 、B 分别作AC ⊥x 轴,BD ⊥x 轴,垂足为C 、D . 由OA ⊥OB 得∠AOB =90°,于是可得△AOC ∽△OBD ,∴12OAABO OB∠===. 6. 解:D. 提示:∵2232n n --是6的倍数, ∴22|(232)n n --,∴2|3n ,∴2|n .设2n m =(m 是正整数),则2222232862662(1)n n m m m m m --=--=-+-. ∵2232n n --是6的倍数,∴21m -是3的倍数,∴31m k =+或32m k =+,其中k 是非负整数.∴2(31)62n k k =+=+或2(32)64n k k =+=+,其中k 是非负整数. ∴符合条件的所有正整数n 的和是(2814869298)(41016828894)1634++++++++++++=.7. 解:11. 提示:∵a ,b 是一元二次方程210x x --=的两根, ∴1ab =-,1a b +=,21a a =+,21b b =+, ∴332222343423(1)42(1)3362a b a b b a a b b a a b a++=++=++++=+++ 3(1)3626()511a a b a b =++++=++=.8. 解:12. 提示:设三角形的三边长为a ,b ,c (a b c ≥≥), 则324a a b c ≥++=,2()24a a b c <++=,∴812a ≤<,故a 的可能取值为8,9,10或11, 满足题意的数组(a ,b ,c )可以为: (8,8,8),(9,9,6),(9,8,7),(10,10,4),(10,9,5),(10,8,6), (10,7,7),(11,11,2),(11,10,3),(11,9,4),(11,8,5),(11,7,6). 共12组,∴三边长均为整数且周长为24的三角形的个数为12. 9. 解:4. 提示:连接OD 、OC ,作DE ⊥AB 于E ,OF ⊥AC 于F .∵AD 平分∠BAC ,∴∠DOB =2∠BAD =∠OAC .又OA =OD ,∴△AOF ≌△ODE ,∴OE =AF ,∴AC =2OF =2OE .设AC =2x ,则OE =AF =x . 在Rt △ODE中,由勾股定理得DE ==在Rt △ADE 中,AD 2=DE 2+AE 2,即222(100)(10)x x =-++,解得x =2.∴AC =2x =4.10. 解:37. 提示:和为15的五个互不相等的正整数只能是1,2,3,4,5.注意到五个数在圆周上是按序摆放的,且考虑的是和式ab bc cd de ea ++++,不妨设a =5.如果1和5的位置不相邻,不妨设c =1(如图2),此时的和式为155P b b d ed e =++++; 交换1和b 的位置后,得到如图3的摆法, 此时的和式为255P b bd ed e =++++.∵1255(5)(1)0P P b d bdd b -=+--=-->,∴12P P >.因此,交换1和b 的位置使得1和5相邻(如图3)以后,和式的值会变小. 如图3,如果d =2,此时的和式为35225P b b e e =++++;交换e 和2的位置以后,得到如图4的摆法,此时的和式为45210P b be e =++++. ∵342510(5)(2)0P P b e be b e -=+--=-->,∴34P P >. 因此,交换e 和2的位置使得2和5相邻以后和式的值会变小. 如果b =2,此时的和式为55225P d ed e =++++;交换e 和2的位置以后,得到如图5的摆法,此时的和式为65210P e ed d =++++. ∵5625104(2)0P P e e e -=+--=->,∴56P P >.因此,交换e 和2的位置使得2和5相邻以后和式的值会变小. 综上可知:1和2摆在5的两边(如图5)时,和式的值会变小.AB CD E F Gd d d de 图1 图2 图3 图4 图5当d =3,e =4时,和式的值为754126103P =++++=; 当d =4,e =3时,和式的值为853*******P =++++=. 因此,所求最小值为37.第二试(A )1. 解:将所给方程记为方程①,显然有2x m ≥且1x ≥.若0m <x ,此时方程①无解,不符合题意,故0m ≥.方程①变形得x两边平方后整理得2242x m +-=- 再平方,整理得228(2)(4)m x m -=-.显然,应该有02m ≤<,并且此时方程①只可能有解x =将x =1=-,化简整理得,于是有403m ≤≤,此时方程①有唯一解x =.综上所述,所求实数m 的取值范围为403m ≤≤. 2. 证明:(1)在BE 上取一点P ,使得∠BAP =∠DAC , 则△BAP ≌△CAD ,∴AP =AD . 又AE ⊥PD ,∴△ADE ≌△APE ,∴∠P AE =∠DAE ,∴∠P AE =∠BAP =∠DAC ,∴∠BAD =3∠DAC .(2)设∠DAC =α,则∠BAC =2α,∠BAD =3α,∠NDM =90°-α. 在FB 上截取FQ =FD ,连接QD ,则BQ =BF -FQ =BF -FD .又BF DF CD BD AC -=,∴BQ CD BD AC=. 又∠QBD =∠DCA ,∴△QBD ∽△DCA ,∴∠QDB =∠DAC .又∵∠DBC =∠DAC ,∴∠QDB =∠DBC ,∴QD ∥BC ,∴∠FQD =∠ABC . 又AB =AC ,∠BAC =2α,∴∠ABC =90°-α,∴∠FQD =90°-α. 又FQ =FD ,∴∠BFD =2α.∵FN 平分∠BFD ,∴∠AFM =α,∴∠NMD =∠AMF =∠BAD -∠AFM =3α-α=2α, ∴∠MND =180°-∠NMD -∠NDM =90°-α=∠MDN ,∴MN =MD .3. 证明:方程即2(1)0x m n x mn m n ++-+--= ①,方程①的判别式222(1)4()()42()1()2()1m n mn m n m n mn m n m n m n ∆=+----=+-+++=-+++.不妨设m n ≥,由题设可知,整系数方程①至少有一个正整数解,∴∆应为完全平方数. 注意到222()2()1(1)4(1)m n m n m n n m n ∆=-+++=-++>-+,22()2()1(3)(488)m n m n m n m n ∆=-+++=-+--+,若4880m n -+>,即22m n >-,则2(3)m n ∆<-+,从而有22(1)(3)m n m n -+<∆<-+,故只可能2(2)m n ∆<-+, 即22()2()1(2)m n m n m n -+++=-+,整理得332m n =-, 这与m ,n 均为正整数矛盾.因此22m n ≤-,从而可得2m n <,∴2mn<. 又∵112m n >>,∴有1()(2)02m m n n --<,整理即得222()5m n mn +<.第二试(B )1. 解:∵1ab =,∴1b a=, ∴2111111211211211212321a aM a b a a a a a a a a =+=+=+=+-=-++++++++++. 设232a a N a++=,则22333N a a =++=+++当a .∴103N <≤=-111(32M N=-≥--=.因此,当a =2b =时,11112M a b=+++取得最小值2. 2. 证明:(1)在BE 上取一点P ,使得∠BAP =∠DAC , 则△BAP ≌△CAD ,∴AP =AD .又AE ⊥PD ,∴△ADE ≌△APE ,∴∠P AE =∠DAE , ∴∠P AE =∠BAP =∠DAC ,∴∠BAD =3∠DAC . (2)设∠DAC =α,则∠BAC =2α,∠BAD =3α. ∵AC ⊥BD ,∴∠NDM =90°-α.∵MN =MD ,∴∠MND =∠MDN =90°-α, ∴∠NMD =180°-∠MND -∠NDM =2α,∴∠AMF =2α, ∴∠AFM =∠BAD -∠AMF =3α-2α=α.FN 平分∠BFD ,∴∠BFD =2∠AFM =2α.在FB 上截取FQ =FD ,连接QD ,则∠FQD =90°-α. 又AB =AC ,∠BAC =2α,∴∠ABC =90°-α,∴∠FQD =∠ABC , ∴QD ∥BC ,∴∠QDB =∠DBC .又∵∠DBC =∠DAC ,∴∠QDB =∠DAC .又∵DB =AC ,∠QBD =∠DCA ,∴△QBD ∽△DCA ,∴BQ =CD , ∴BF =BQ +FQ =CD +DF .3. 解:设方程的两个根为x 1,x 2,且x 1为正整数, 则1234x x +=,12341x x k =-.由1234x x +=知2134x x =-,∴ x 2也是整数.由k 为正整数及12341x x k =-可知20x >,∴x 2是正整数. 注意到121212(1)(1)134(1)x x x x x x k ++=+++=+, ∴1217|(1)(1)x x ++,∴117|(1)x +或217|(1)x +.若117|(1)x +,则由112134x x x +≤+=知:1117x +=或1134x +=. 当1117x +=时,116x =,218x =,此时3411618k -=⨯,k 无整数解; 当1134x +=时,133x =,21x =,此时341331k -=⨯,解得k =1. 若217|(1)x +,同样可得k =1. ∴满足条件的正整数k =1.。
2015年全国初中数学联赛试题及参考答案第一试(有答案)
2016年全国初中数学联赛试题及参考答案(第一试)第一试(A)一、选择题(本题满分42分,每小题7分)1.用[x]表示不超过x的最大整数,把x-[x]称为x的小数部分,已知t=12-槡3,a是t的小数部分,b是-t的小数部分,则12b-1a=( ).(A)12 (B)槡32 (C)1 (D)槡3[答](A).∵ t=12-槡3=2+槡3而3<2+槡3<4,∴ a=t-3=槡3-1又∵ -t=-2-槡3,而-4<-2-槡3<-3,∴ b=-t-(-4)=2-槡3.∴ 12b-1a=12(2-槡3)-1槡3-1=2+槡32-槡3+12=12.2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案共有( ).(A)9种 (B)10种(C)11种 (D)12种[答](C).设购买三种图书的数量分别为a,b,c,则a+b+c=30,10a+15b+20c=500,易得b=20-2a,c=10+a,于是a有11种可能的取值(分别为0,1,2,3,4,5,6,7,8,9,10).对于每一个a值,对应地可求出唯一的b和c,所以,不同的购书方案共有11种.3.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”。
如:2=13-(-1)3,26=33-13,2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为( ).(A)6858 (B)6860(C)9260 (D)9262.[答](B).注意到(2k+1)3-(2k-1)3=2(12k2+1),由2(12k2+1)≤2016得|k|<10.取k=0,1,2,3,4,5,6,7,8,9,即得所有的不超过2016的“和谐数”,它们的和为[13-(-1)3]+(33-13)+(53-63)+…+(193-173)=193+1=6860.4.已知⊙O的半径OD垂直于弦AB,交AB于点C,连接AO并延长交⊙O于点E,若AB=8,CD=2,则△BCE的面积为( ).(A)12 (B)15 (C)16 (D)18[答](A).设OC=x,则OA=OD=x+2,在Rt△OAC中,由勾股定理得OC2+AC2=OA2,即x2+42=(x+2)2,解得x=3.又OC为△ABE的中位线,所以BE=2OC=6.所以直角△BCE的面积为12CB·BE=12.5.如图,在四边形ABCD中,∠BAC=∠BDC=90°,AB=AC=槡5,CD=1,对角线的交点为M,则DM=( ).(A)槡32 (B)槡53(C)槡22 (D)12[答](D).作AH⊥BD于点H,易知△AMH∽△CMD,所以AHCD=AMCM,又CD=1,所以AH=AMCM①设AM=x,则CM槡=5-x.在Rt△ABM中,可得AH=AB·AMBM=槡5x5+x槡2.所以,由①式得槡5x5+x槡2=x槡5-x,解得x=槡52(另一解x槡=2 5舍去).所以CM=槡52,DM=CM2-CD槡2=12.6.设实数x,y,z满足x+y+z=1,则M=xy+2yz+3xz的最大值为( ).(A)12 (B)23 (C)34 (D)1[答](C).M=xy+2yz+3xz=xy+(2y+3x)(1-x-y)=-3x2-4xy-2y2+3x+2y=-2[y2+2(x-12)y+(x-12)2]-3x2+3x+2(x-12)2=-2(y+x-12)2-x2+x+12=-2(y+x-12)2-(x-12)2+34≤34,所以M=xy+2yz+3xz的最大值为34.二、填空题(本题满分28分,每小题7分)1.已知△ABC的顶点A、C在反比例函数y=槡3x(x>0)的图像上,∠ACB=90°,∠ABC=30°,AB⊥x轴,点B在点A的上方,且AB=6,则点C的坐标为.[答](槡32,2).作CD⊥AB于点D,易求得CD3 =槡32,AD=32.设C(m,槡3m),A(n,槡3n),结合题意可知n>m>0,D(n,槡3m),所以CD=n-m,AD=槡3m-槡3n,故n-m3 =槡32,槡3m-槡3n=32,联立解得m=槡32,n槡=2 3.所以,点C的坐标为(槡32,2).2.在四边形ABCD中,BC∥AD,CA平分∠BCD,O为对角线的交点,CD=AO,BC=OD,则∠ABC=.[答]126°.因为BC∥AD,CA平分∠BCD,所以∠DAC=∠ACB=∠ACD,所以DA=DC,又CD=AO,所以AD=AO,所以∠ADO=∠AOD.记∠DAC=∠ACB=∠ACD=α,∠ADO=∠AOD=β.又BC∥AD,所以△ADO∽△CBO,结合AD=AO可得OC=BC,且∠CBO=∠COB=β.又BC=OD,所以OC=OD,所以∠ODC=∠OCD=α.结合图形可得:β=2α且α+2β=180°,解得α=36°,β=72°.所以∠DBC=∠DCB=72°,所以BD=CD=AD,所以∠DAB=∠DBA=54°,于是可得∠ABC=∠ABD=∠DBC=126°. 3.有位学生忘记写两个三位数间的乘号,得到一个六位数,这个六位数恰好为原来两个三位数的乘积的3倍,这个六位数是.[答]167334.设两个三位数分别为和y,由题设知1000x+y=3xy①由①式得y=3xy-1000x=(3y-1000)x,故y是x的整数倍,不妨设y=tx(t为正整数),代入①式得1000+t=3tx,所以x=1000+t3t.因为是三位数,所以x=1000+t3t≥100,从而可得t≤1000299,又t为正整数,故t的可能的取值只能是1,2,3.验证可知:只有t=2符合题意,所以t=2,x=167,y=334,所求的六位数为167334.4.将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M,则M的最大值为.[答]10.依据5个1分布的列数的不同情形分别求M的最大值,若5个1分布在同一列,则M=5;若5个1分布在两列中,则由题设知这两列中出现的最大数至多为3,故2 M≤5×1+5×3=20,所以M≤10;若5个1分布在三列中,则由题设知这三列中出现的最大数至多为3,故3 M≤5×1+5×2+5×3=30,所以M≤10;若5个1分布在至少四列中,则其中某一列至少有一个数大于3,与题设矛盾.1 1 1 4 51 1 2 4 52 2 2 4 53 3 3 4 53 3 3 4 5 综上所述,M≤10;另一方面,右边给出的例子说明M可以取到10.故M的最大值为10.第一试(B)一、选择题(本题满分42分,每小题7分)1.题目和解答与(A)卷第1题相同.2.题目和解答与(A)卷第2题相同.3.已知二次函数y=ax2+bx+1(a≠0)的图像的顶点在第二象限,且过点(1,0).当a-b为整数时,ab=( ).(A)0 (B)14 (C)-34 (D)-2[答](B).由于二次函数y=ax2+bx+1(a≠0)的图象的顶点在第二象限,且过点(1,0)和(0,1),故a<0,-b2a<0,a+b+1=0,所以b<0且b=-a-1,于是可得-1<a<0.当a-b=2a+1为整数时,因为-1<2a+1<1,所以2a+1=0,a=-12,b=-12,所以ab=14.4.题目和解答与(A)卷第4题相同.5.题目和解答与(A)卷第5题相同.6.题目和解答与(A)卷第6题相同.二、填空题(本题满分28分,每小题7分)1.已知△ABC的最大边BC上的高线AD和中线AM恰好把∠BAC三等分,AD=槡3,则AM=.[答]2.显然∠ABC≠∠ACB.若∠ABC∠ACB,则由已知条件易知△ADM≌△ADB,所以BD=DM=12CM.又因为AM平分∠DAC,所以,由角平分线定理可得ADAC=DMCM=12,即cos∠DAC=12,所以∠DAC=60°,进而可得∠BAC=90°,∠ACD=30°.在Rt△ADC中,AD槡=3,∠ACD=30°,可求得CD=3,所以DM=1.在Rt△ADM中,由勾股定理得AM=AD2+DM槡2=2.若∠ABC<∠ACB,同理可求得AM=2.2.题目和解答与(A)卷第1题相同.3.若质数p,q满足:3q-p-4=0,p+q<111.则pq的最大值为.[答]1007.由3q-p-4=0得p=3q-4,所以pq=q(3q-4),显然q(3q-4)的值随着质数q的增大而增大,当且仅当q取得最大值时pq取得最大值.又因为p+q<111即p+q=4q-4<111,所以q<29.因为q为质数,所以q的可能的取值为23,19,17,13,11,7,5,3,2.当q=23时,p=3q-4=65,不是质数;当q=19时,p=3q-4=53,是质数.所以,q的最大值为19,pq的最大值为53×19=1007.4.题目和解答与(A)卷第3题相同.。
2015全国初中联赛初一(含答案)最新出炉!
· · · · · · · · · · · · · ·10 分
2
1 b b 2 q b 3 6b 6b 2 而 b 9 9b 9b 9b 3
∴
· · · · · · · · · · · · · ·20 分
a c 2 b d 3 2 。 3
设数轴上数 x 对应点 P ∴原式 2 | PA | | PB | | PC | | PD |
| PA | | PD | | PA | | PC | | PB | | AD | | AC | 4
∴当 P 在 B 点即 x 1 时,原式有最小值 4. 10.若正整数 n 有 6 个正约数(包括 1 和本身) ,称其为“好数” ,则不超过 50 的好数有_____个. 【答】8. ∵ n 有 6 个正约数 故 n 的标准质因数分解式为 n P 或 n pq ( p、 q 为素数, p, q 1 )
3 2 2
4. 如图所示, AOC 50 , BOD 80 , COD 2AOB ,则 BOC ( )
A. 15
B. 20
C. 25 【答】B。
D. 30
设 AOB , BOC 所以, COD 2 ,所以,
50 30 2 80 20
设 b 2k ,由 * 知 a 2k 1 ∴ a b 4k 1 ,故 4 | n 1 · · · · · · · · · · · · ·25 分
2 2
所以, a b a b 0 ,所以, a b a b 1 0