高中数学教学设计1
高中数学教案【优秀10篇】
高中数学教案【优秀10篇】高中数学课教案篇一一、教学目标【知识与技能】在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。
【过程与方法】通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。
【情感态度与价值观】渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
二、教学重难点【重点】掌握圆的一般方程,以及用待定系数法求圆的一般方程。
【难点】二元二次方程与圆的一般方程及标准圆方程的`关系。
三、教学过程(一)复习旧知,引出课题1、复习圆的标准方程,圆心、半径。
2、提问已知圆心为(1,—2)、半径为2的圆的方程是什么?高中数学教案篇二教材分析:前面已学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积。
教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到向量数量积与向量模的大小及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。
在定义了数量积的概念后,进一步探究了两个向量夹角对数量积符号的影响;然后由投影的概念得出了数量积的几何意义;并由数量积的定义推导出一些数量积的重要性质;最后“探究”研究了运算律。
教学目标:(一)知识与技能1.掌握数量积的定义、重要性质及运算律;2.能应用数量积的重要性质及运算律解决问题;3.了解用平面向量数量积可以解决长度、角度、垂直共线等问题,为下节课灵活运用平面向量数量积解决问题打好基础。
(二)过程与方法以物体受力做功为背景引入向量数量积的概念,从数与形两方面引导学生对向量数量积定义进行探究,通过例题分析,使学生明确向量的数量积与数的乘法的联系与区别。
(三)情感、态度与价值观创设适当的问题情境,从物理学中“功”这个概念引入课题,开始就激发学生的学习兴趣,让学生容易切入课题,培养学生用数学的意识,加强数学与其它学科及生活实践的联系。
高中数学教案教学设计10篇
高中数学教案教学设计10篇高中数学教案教学设计篇1一、教材分析1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。
“二面角”是人教版《数学》第二册(下B)中9.7的内容。
它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。
因此,它起着承上启下的作用。
通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。
2、教学目标:知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。
(2)进一步培养学生把空间问题转化为平面问题的化归思想。
能力目标:(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。
(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。
德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。
情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。
3、重点、难点:重点:“二面角”和“二面角的平面角”的概念难点:“二面角的平面角”概念的形成过程二、教法分析1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。
2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。
3、教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用多媒体课件来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。
数学高中教学设计(优秀5篇)
数学高中教学设计(优秀5篇)高中数学教学设计篇一教学目标1.掌握等比数列前项和公式,并能运用公式解决简单的问题。
(1)理解公式的推导过程,体会转化的思想;(2)用方程的思想认识等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二;2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想。
3.通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度。
教学建议教材分析(1)知识结构先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的`前项和。
(2)重点、难点分析教学重点、难点是等比数列前项和公式的推导与应用。
公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法。
等比数列前项和公式是分情况讨论的,在运用中要特别注意和两种情况。
教学建议(1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题。
(2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论。
(3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的兴趣。
(4)编拟例题时要全面,不要忽略的情况。
(5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大。
(6)补充可以化为等差数列、等比数列的数列求和问题。
教学设计示例课题:等比数列前项和的公式教学目标(1)通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和。
(2)通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质。
(3)通过教学进一步渗透从特殊到一般,再从一般到特殊的辩证观点,培养学生严谨的学习态度。
高中数学教学设计(精选7篇)
高中数学教学设计(精选7篇)高中数学教学设计精选篇1一、指导思想:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。
具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学中的作用。
通过不同形式的自主学、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、教材特点:我们所使用的教材是人教版《普通高中课程标准实验教科书?数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:1.“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学_。
2.“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3.“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学数学地思考问题的方式,提高数学思维能力,培育理性精神。
4.“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。
三、教法分析:1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。
高中数学教案教学设计范文(7篇)
高中数学教案教学设计范文(7篇)高中数学教案教学设计范文(7篇)数学,是研究数量、结构、变化、空间以及信息等概念的一门学科,更是现代社会学习和研究现代科学技术必不可少的基本工具。
以下是准备的高中数学教案教学设计范文,欢迎借鉴参考。
高中数学教案教学设计范文(篇1)教学目标1、明确等差数列的定义。
2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题3、培养学生观察、归纳能力。
教学重点1、等差数列的概念;2、等差数列的通项公式教学难点等差数列“等差”特点的理解、把握和应用教具准备投影片1张教学过程(I)复习回顾师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。
这两个公式从不同的角度反映数列的特点,下面看一些例子。
(放投影片)(Ⅱ)讲授新课师:看这些数列有什么共同的特点?1,2,3,4,5,6;①10,8,6,4,2,…;②生:积极思考,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)对于数列②-2n(n≥1)(n≥2)对于数列③(n≥1)(n≥2)共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。
具有这种特点的数列,我们把它叫做等差数。
一、定义:等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,-2。
二、等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得。
若一等差数列的首项是,公差是d,则据其定义可得:若将这n-1个等式相加,则可得:即:即:即:……由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)数列②:(n≥1)数列③:(n≥1)由上述关系还可得:即:则:=如:三、例题讲解例1:(1)求等差数列8,5,2…的第20项(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。
高中数学必修一教案(优秀10篇)
高中数学必修一教案(优秀10篇)高中数学必修一教案篇一重点难点教学:1.正确理解映射的概念;2.函数相等的两个条件;3.求函数的定义域和值域。
一。
教学过程:1. 使学生熟练掌握函数的概念和映射的定义;2. 使学生能够根据已知条件求出函数的定义域和值域;3. 使学生掌握函数的三种表示方法。
二。
教学内容:1.函数的定义设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()fx和它对应,那么称:fAB为从集合A到集合B 的一个函数(function),记作:(),yfxxA其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}fxxA叫值域(range)。
显然,值域是集合B的子集。
注意:① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素定义域、对应关系和值域。
3.映射的定义设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。
4. 区间及写法:设a、b是两个实数,且a(1) 满足不等式axb的实数x的集合叫做闭区间,表示为[a,b];(2) 满足不等式axb的实数x的集合叫做开区间,表示为(a,b);5.函数的三种表示方法①解析法②列表法③图像法高中数学教案必修一篇二1.通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进学生全面认识数学的科学价值、应用价值和文化价值。
2.通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高。
如何建立实际问题的目标函数是教学的重点与难点。
一、问题情境问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?问题3做一个容积为256l的方底无盖水箱,它的高为多少时材料最省?二、新课引入导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。
高中数学教学设计优秀14篇
高中数学教学设计优秀14篇高中数学教学设计篇一一、教学目标1.知识与技能(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2.过程与方法学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3.情感态度与价值观(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
二、教学重点、难点重点、难点:用斜二测画法画空间几何值的直观图。
三、学法与教学用具1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。
2.教学用具:三角板、圆规四、教学思路(一)创设情景,揭示课题1.我们都学过画画,这节课我们画一物体:圆柱把实物圆柱放在讲台上让学生画。
2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。
(二)研探新知1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。
强调斜二测画法的步骤。
练习反馈根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。
2.例2,用斜二测画法画水平放置的圆的直观图教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。
3.探求空间几何体的直观图的画法(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。
高中数学教学设计案例【精彩9篇】
高中数学教学设计案例【精彩9篇】高中数学教学设计案例篇一一、指导思想:贯彻教育部的有关教育教学计划,在学校、年级组的直接领导下,认真执行学校的各项教育教学制度和要求,认真完成各项任务。
教学的宗旨是使学生在获得作为一个现代公民所必须的基本数学知识和技能的同时,在情感、态度、价值观和一般能力等方面都能获得充分的发展,为学生的终身学习、终身受益奠定良好的基础。
二。
学情分析:上学期期末考学生的数学成绩相对于高一期末考有进步,但还不是很理想,理科生数学学习的难度本学期将增大,加上学业水平考试,所以本学期学生面临的压力将更大,任务艰巨。
三。
教学目的任务要求分析:本学期教学的主要任务是数学选修2-2,2-3和学考复习。
(1)认真把握“标准”的教学要求。
(2)通过建立相关知识的联系,渗透“数形结合”等思想方法。
(3)关注现代信息技术的运用。
(4)把握学考大纲复习标准四、主要措施1、明确一个观念:高考好才是真的好。
平时不好高考肯定不好,但平时红旗飘飘高考时未必红旗不倒。
这就要求我们在日常工作中在照顾到学生实际的前提下起点要高,注意培养后劲,从整体上把握好的自己的教学。
2、以老师的精心备课与充满激情的教学,换取学生学习高效率。
3.将学校和教研组安排的有关工作落到实处。
高中数学教学设计案例篇二1.把握菱形的判定。
2.通过运用菱形知识解决具体问题,提高分析能力和观察能力。
3.通过教具的演示培养学生的学习爱好。
4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。
二、教法设计观察分析讨论相结合的方法三、重点·难点·疑点及解决办法1.教学重点:菱形的判定方法。
2.教学难点:菱形判定方法的综合应用。
四、课时安排1课时五、教具学具预备教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具六、师生互动活动设计教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨七、教学步骤复习提问1.叙述菱形的定义与性质。
高中数学教学设计(优秀8篇)
高中数学教学设计(优秀8篇)高中数学教学设计篇一一、指导思想与理论依据数学是一门培养人的思维,发展人的思维的重要学科。
因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。
所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。
因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。
在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
二、教材分析三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。
为此本节内容在三角函数中占有非常重要的地位。
三、学情分析本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。
四、教学目标(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。
高一数学教案设计5篇
高一数学教案设计5篇高一数学教案设计【篇1】一教材分析及处理函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式方程不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。
对函数概念本质的理解,首先应通过与初中定义的比较与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托反复地螺旋式上升地理解函数的本质。
教学重点是函数的概念,难点是对函数概念的本质的理解。
学生现状学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识掌握方法提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。
二教学三维目标分析1知识与技能(重点和难点)(1)通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。
并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。
不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。
(2)了解构成函数的三要素,缺一不可,会求简单函数的定义域值域判断两个函数是否相等等。
(3)掌握定义域的表示法,如区间形式等。
(4)了解映射的概念。
2过程与方法函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题: (1)首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想观察分析归纳类比概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。
高中数学教案设计优秀10篇
高中数学教案设计优秀10篇高中数学教学设计方案篇一函数的奇偶性是函数的重要性质,是对函数概念的深化。
它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称。
这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析。
教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义。
然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例。
最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系。
这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性。
1、通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力。
2、理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性。
3、在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的。
这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,k≠0,二次函数y=ax,a≠0,故可在此基础上,引入奇、偶函数的概念,以便于学生理解。
在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔。
对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=fx,一定有f0=0既是奇函数,又是偶函数的函数有fx=0,x∈r在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数。
关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果。
一、问题情景1、观察如下两图,思考并讨论以下问题:(1)这两个函数图像有什么共同特征?(2)相应的两个函数值对应表是如何体现这些特征的?可以看到两个函数的图像都关于y轴对称。
高三数学学期教学设计5篇
高三数学学期教学设计5篇高三数学学期教学设计1一、指导思想依托20__届取得的辉煌成绩,实现啸中学校发展蓝图,高三数学组必须团结一致,群策群力抓好高三数学复习,备战20__高考,切实落实“关注差异,开发潜能,多元发展”的教学方针。
二、复习要求1.资源共享提升效率统一使用《优化方案》,合理运用书利华网站上的人教版高三复习课件,适当补充其它课件,实现资源共享,提高备课效率。
2.立足单元形成网络作好单元复习,这是一个将数学知识由“点——线——网”的过程,将分散的知识串成面、串成体,形成知识体系的网络化,将问题归类,进行知识迁移和联想、分解与组合,一题多变、一题多解,举一反三,触类旁通。
不仅重视单元内综合,更注重学科内的综合,关注在知识的交会点处设计问题。
3.注重方法培养能力模拟题要定时定量训练,把训练当考试,积累经验、锤炼心理。
选择题的训练立足基础,提高准确性,注重方法灵活性。
填空题的训练注重训练学生准确、严谨、全面、灵活运用知识的能力和基本运算能力,注重书写结果的规范性。
解答题重视审题过程,思维的发生、发展过程。
在问题的分析、思路发展过程中运用数学思想方法进行思维的导向,在思维过程中点明数学思想方法在解题思路发现过程中所起的重点作用。
4.注重学生卷面表达的训练。
高考要获得好分数,除了具有较高的数学功底外,还要避免出现失误失分。
一方面要通过试题训练使学生减少、避免马虎、失误丢分,还要强调学生的书面表达,训练学生答卷时做到字迹工整、格式规范、推证合理、详略适当,做到会的题目不丢分,不会做的题目也争取得部分步骤分。
5.做好试卷评析工作。
学生将常常面临模拟训练,教师的讲评试卷要分析题目考的哪些知识点、需要哪几种能力、体现哪些数学方法,使学生体会出题者意图。
讲评中还要不断转换条件,进行变式训练,达到举一反三,触类旁通的训练,不能只满足于就题论题,要注重探求解题规律,提高点评的质量和效益。
三、强化训练1.不依靠题海取胜,注重题目的质量和处理水平当训练的题目达到一定的数量后,决定复习效果的关键性因素就不再是题目的数量,而在于题目的质量和处理水平。
高一数学教案(优秀5篇)
高一数学教案(优秀5篇)作为一名无私奉献的老师,时常要开展教案准备工作,借助教案可以有效提升自己的教学能力。
我们该怎么去写教案呢?这次漂亮的我为亲带来了5篇《高一数学教案》,可以帮助到您,就是本文我最大的乐趣哦。
高中数学教案篇一教学目标:1、了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。
2、会求一些简单函数的反函数。
3、在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。
4、进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。
教学重点:求反函数的方法。
教学难点:反函数的概念。
教学过程:教学活动设计意图一、创设情境,引入新课1、复习提问①函数的概念②y=f(x)中各变量的意义2、同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数。
在这种情况下,我们说t=是函数S=vt的反函数。
什么是反函数,如何求反函数,就是本节课学习的内容。
3、板书课题由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。
这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。
二、实例分析,组织探究1、问题组一:(用投影给出函数与;与()的图象)(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x 对称。
是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。
同样,与()也互为逆运算。
)(2)由,已知y能否求x?(3)是否是一个函数?它与有何关系?(4)与有何联系?2、问题组二:(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?(3)函数()的定义域与函数()的值域有什么关系?3、渗透反函数的概念。
高中数学教学设计最新7篇
高中数学教学设计最新7篇高中数学教学设计最新篇1教学目标:1、理解流程图的选择结构这种基本逻辑结构。
2、能识别和理解简单的框图的功能。
3、能运用三种基本逻辑结构设计流程图以解决简单的问题。
教学方法:1、通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知。
2、在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构。
教学过程:一、问题情境情境:某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为其中(单位:)为行李的重量。
试给出计算费用(单位:元)的一个算法,并画出流程图。
二、学生活动学生讨论,教师引导学生进行表达。
解算法为:输入行李的重量;如果,那么,否则;输出行李的重量和运费。
上述算法可以用流程图表示为:教师边讲解边画出第10页图1-2-6。
在上述计费过程中,第二步进行了判断。
三、建构数学1、选择结构的概念:先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构。
如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行。
2、说明:(1)有些问题需要按给定的条件进行分析、比较和判断,并按判断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;(2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执行,但或两个框中可以有一个是空的,即不执行任何操作;(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和两个退出点。
3、思考:教材第7页图所示的算法中,哪一步进行了判断?高中数学教学设计最新篇2一、教学目标【知识与技能】在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。
【过程与方法】通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。
2022最新高一年级数学课程教学设计5篇
2022最新高一年级数学课程教学设计5篇高一新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。
接下来是关于高一年级数学课程教学设计的文章,希望能帮助到大家!高一年级数学课程教学设计1目标:(1)使学生初步理解集合的概念,知道常用数集的概念及其记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义重点:集合的基本概念教学过程:1.引入(1)章头导言(2)集合论与集合论的-----康托尔(有关介绍可引用附录中的内容)2.讲授新课阅读教材,并思考下列问题:(1)有那些概念?(2)有那些符号?(3)集合中元素的特性是什么?(4)如何给集合分类?(一)有关概念:1、集合的概念(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.(3)元素:集合中每个对象叫做这个集合的元素.集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……2、元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作要注意“∈”的方向,不能把a∈A颠倒过来写.3、集合中元素的特性(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.(2)互异性:集合中的元素一定是不同的.(3)无序性:集合中的元素没有固定的顺序.4、集合分类根据集合所含元素个属不同,可把集合分为如下几类:(1)把不含任何元素的集合叫做空集Ф(2)含有有限个元素的集合叫做有限集(3)含有无穷个元素的集合叫做无限集注:应区分,0等符号的含义5、常用数集及其表示方法(1)非负整数集(自然数集):全体非负整数的集合.记作N(2)正整数集:非负整数集内排除0的集.记作N_或N+(3)整数集:全体整数的集合.记作Z(4)有理数集:全体有理数的集合.记作Q(5)实数集:全体实数的集合.记作R注:(1)自然数集包括数0.(2)非负整数集内排除0的集.记作N_或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z_课堂练习:教材第5页练习A、B小结:本节课我们了解集合论的发展,学习了集合的概念及有关性质课后作业:第十页习题1-1B第3题高一年级数学课程教学设计2一、教学目标:1.通过高速公路上的实际例子,引起积极的思考和交流,从而认识到生活中处处可以遇到变量间的依赖关系.能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系.2.培养广泛联想的能力和热爱数学的态度.二、教学重点:在于让学生领悟生活中处处有变量,变量之间充满了关系教学难点:培养广泛联想的能力和热爱数学的态度三、教学方法:探究交流法四、教学过程(一)、知识探索:阅读课文P25页。
高中数学优秀教学设计【精选10篇】
高中数学优秀教学设计【精选10篇】高中数学优秀教学设计【篇1】【教学目的】(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义【重点难点】教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪【内容分析】1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明【教学过程】一、复习引入:1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N__或N+(3)整数集:全体整数的集合记作Z ,(4)有理数集:全体有理数的集合记作Q ,(5)实数集:全体实数的集合记作R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0 (2)非负整数集内排除0的集记作N__或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z__3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q……⑵“∈”的开口方向,不能把a∈A颠倒过来写三、练习题:1、教材P5练习1、22、下列各组对象能确定一个集合吗?(1)所有很大的实数 (不确定)(2)好心的人 (不确定)(3)1,2,2,3,4,5.(有重复)3、设a,b是非零实数,那么可能取的值组成集合的元素是 -2,0,24、由实数x,-x,|x|, 所组成的集合,最多含( A )(A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:(1) 当x∈N时, x∈G;(2) 若x∈G,y∈G,则x+y∈G,而不一定属于集合G证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0, 则x= x+0__ = a+b ∈G,即x∈G证明(2):∵x∈G,y∈G,∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)∴x+y=( a+b )+( c+d )=(a+c)+(b+d)∵a∈Z, b∈Z,c∈Z, d∈Z∴(a+c) ∈Z, (b+d) ∈Z∴x+y =(a+c)+(b+d) ∈G,又∵ =且不一定都是整数,∴ = 不一定属于集合G【小结】1.集合的有关概念:(集合、元素、属于、不属于)2.集合元素的性质:确定性,互异性,无序性3.常用数集的定义及记法高中数学优秀教学设计【篇2】学习目标明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题.学习过程一、学前准备复习:1.(课本P28A13)填空:(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是 ;(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是 ;(3)5名工人要在3天中各自选择1天休息,不同方法的`种数是 ;(4)集合A有个元素,集合B有个元素,从两个集合中各取1个元素,不同方法的种数是 ;二、新课导学探究新知(复习教材P14~P25,找出疑惑之处)问题1:判断下列问题哪个是排列问题,哪个是组合问题:(1)从4个风景点中选出2个安排游览,有多少种不同的方法?(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?应用示例例1.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?例2.7位同学站成一排,分别求出符合下列要求的不同排法的种数.(1) 甲站在中间;(2)甲、乙必须相邻;(3)甲在乙的左边(但不一定相邻);(4)甲、乙必须相邻,且丙不能站在排头和排尾;(5)甲、乙、丙相邻;(6)甲、乙不相邻;(7)甲、乙、丙两两不相邻。
高中数学优秀教学设计7篇
高中数学优秀教学设计7篇高中数学优秀教学设计篇1一、课程性质与任务数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。
数学课程是中等职业学校学生必修的一门公共基础课。
本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。
二、课程教学目标1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。
2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。
3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。
三、教学内容结构本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。
1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。
2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。
3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。
四、教学内容与要求(一)本大纲教学要求用语的表述1.认知要求(分为三个层次)了解:初步知道知识的含义及其简单应用。
理解:懂得知识的概念和规律(定义、定理、法则等)以及与其它相关知识的联系。
掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。
2.技能与能力培养要求(分为三项技能与四项能力)计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。
计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。
数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。
观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。
空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。
高中数学教案(优秀4篇)
高中数学教案(优秀4篇)高中数学教学设计篇一一、课程说明(一)教材分析:此次一对一家教所使用教材为北师大版高中数学必修5。
辅导内容为第一章第二节等差数列。
前一节的内容为数列,学生已初步了解到数列的概念,知道什么是首项,什么是通项等等。
以及了解到什么是递增数列,什么是递减数列。
通过第一节的学习的铺垫,可以让学生更自主的探究,学习等差数列。
而我也是在这些基础上为她讲解第二节等差数列。
(二)学生分析:此次所带学生是一名高二的学生。
聪明但是不踏实,做题浮躁。
基础知识掌握不够牢靠,知识的运用能力较差,分析能力较弱,解题思路不清。
每次她遇到会的题,就快快的草率做完,总会有因马虎而犯的错误。
遇到稍不会的,总是很浮躁,不能冷静下来慢慢思考。
就由略不会变成不会。
但她也是个虚心听教的孩子,给她讲课,她也会很认真地听讲。
(三)教学目标:1、通过教与学的配合,让她能够懂得什么是等差数列,以及等差数列的通项公式。
2、通过对公式的推导,让她加深对内容的理解,以及学会自己对公式的推导。
并且能够灵活运用。
3、在教学中让她通过对公式的推导来明白推理的艺术,并且培养她学习,做题条理清晰,思路缜密的好习惯。
4、让她在学习,做题中一步步抽丝剥茧,寻找解决问题的方法,培养她敢于面对数学学习中的困难,并培养她对克服困难和运用知识。
耐心地解决问题。
5、让她在学习中发现数学的独特的美,能够爱上数学这门课。
并且认真对待,自主学习。
(四)教学重点:1、让学生正确掌握等差数列及其通项公式,以及其性质。
并能独立的推导。
2、能够灵活运用公式并且能把相应公式与题相结合。
(五)教学难点:1、让学生掌握公式的推导及其意义。
2、如何把所学知识运用到相应的题中。
二、课前准备(一)教学器材对于一对一教教采用传统讲课。
一张挂历。
(二)教学方法通过对生活中的有规律数据的观察来提出问题,让学生结合前一节所学,思考有什么规律。
从生活中着手有利于激发学生的兴趣爱好,并能更积极地学习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等比数列的前n项和(第一课时)一.教材分析。
(1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学(5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。
(2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫。
二.学情分析。
(1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。
(2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。
(3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。
不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。
三.教学目标。
根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。
(2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.(3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。
四.重点,难点分析。
教学重点:公式的推导、公式的特点和公式的运用。
教学难点:公式的推导方法及公式应用中q与1的关系。
五.教法与学法分析.培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。
如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。
”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。
因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。
一句话:还课堂以生命力,还学生以活力。
六.课堂设计(一)创设情境,提出问题。
(时间设定:3分钟)[利用投影展示]在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。
西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。
国王令宫廷数学家计算,结果出来后,国王大吃一惊。
为什么呢?[设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点]提出问题1:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数236312222+++++ (二)师生互动,探究问题[5分钟]提出问题2:?⋅⋅⋅⋅⋅⋅23631+2+2+2++2究竟等于多少呢有学生会说:用计算器来求(老师当然肯定这种做法,但学生很快发现比较难求。
)提出问题3:同学们,我们来分析一下这个和式有什么特征?(学生会发现,后一项都是前一项的2倍)提出问题4:如果我们把每一项都乘以2,就变成了它的后一项,那么我们若在此等式两边同以2,得到另一式:[[利用投影展示]2363642346464...12222 (1)222222 (2)S S =+++++=+++++ 比较(1)(2)两式,你有什么发现?(学生经过比较发现:(1)、(2)两式有许多相同的项)提出问题5:将两式相减,相同的项就消去了,得到什么呢?。
(学生会发现:646421S =-[这五个问题的设计意图:层层深入,剖析了错位相减法中减的妙用,使学生容易接受为什么要错位相减,经过繁难的计算之苦后,突然发现上述解法,也让学生感受到这种方法的神奇]这时,老师向同学们介绍错位相减法,并提出问题6:同学们反思一下我们错位相减法求此题的过程,为什么(1)式两边要同乘以2呢?[这个问题的设计意图:让学生对错位相减法有一个深刻的认识,也为探究等比数列求和公式的推导做好铺垫](三)类比联想,解决问题。
[时间设定:10分钟]提出问题7:{}n 1n设等比数列a 的首项为a ,公比为q,求它的前项和S 123n a a a a =++++ n 即 S 学生开展合作学习,讨论交流,老师巡视课堂,发现有典型解法的,叫同学板书在黑板上。
[设计意图:从特殊到一般,从模仿到创新,有利于学生的知识迁移和能力提高,让学生在探索过程中,充分感受到成功的情感体验](四)分析比较,开拓思维。
[时间设定:5分钟]将不同的的方法进行分析评价。
根据学生的认识状况,可能有如下几种方法:错位相减法1:错位相减法2提出公比q累加法可能也有同学会想到由等比定理得123321212312111(1)n nn n n n n n nn n S a a a a a a a q a a a a a a q a a a S a q S a q S a a q--=++++====+++∴=+++-=-∴-=-即 【设计意图:共享学习成果,开拓了思维,感受数学的奇异美】(五).归纳提炼,构建新知。
[时间设定:3分钟]提出问题8:由nn 11(1-q)s =a -a q 得n11n a -a q s =1-q 对不对?这里的q 能不能等于1?等比数列中的公比能不能为1?1q =时是什么数列?此时n S =?【设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,增强思维的严谨性】.提出问题9:等比数列的前n项和公式怎样?学生归纳出1111(1),1,111,1,1n n n n a a q a q q q q S S q na q na q -⎧-⎧≠≠⎪⎪-=⇒=-⎨⎨⎪⎪==⎩⎩【设计意图:向学生渗透分类讨论数学思想,加深对公式特征的了解】(六)层层深入,掌握新知。
[时间设定:15分钟]{}2,1,q ====n 1n 1n 基础练习1已知a 是等比数列,公比为q21(1)若a =,q=,则S 33(2).则a 则S ()2382381(12)1(12)(2).1222212(1)(3).1n n n n a a a a a a a⨯-=--⨯-+++++=--++++=- 练习2 判断是非(1).1-2+4-8+16-+-2【设计意图:通过两道简单题来剖析公式中的基本量.进行正反两方面的“短、浅、快”练习.通过总结、辨析和反思,强化公式的结构特征.】{}n 例1 已知数列a 是等比数列,完成下表题号a 1qn a n Sn (1)1/21/28(2)272/38(3)-2-96-63【设计意图:渗透方程思想.通过公式的正用和逆用进一步提高学生运用知识的能力.掌握公式中”知三求二”的题型】练习3:求等比数列⋅⋅⋅1111,,,, 24816前8项和;变式1、等比数列⋅⋅⋅1111,,,, 24816前多少项的和是6364;变式2、等比数列⋅⋅⋅1111,,,, 24816求第5项到第10项的和;变式3、等比数列,n a ⋅⋅⋅ 23a,a ,a , 求前2n 项中所有偶数项的和。
(先由学生独立求解,然后抽学生板演,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬。
)【设计意图:变式训练,深化认识,增加思维的梯度的同时,提高学生的模式识别能力,渗透转化思想】.练习4有一位大学生毕业后到一家私营企业去工作,试用期过后,老板对这位大学生很欣赏,有意留下他,就让这位大学生提出待遇方面的要求,这位学生提出了两种方案让老板选择,其一:工作一年,月薪五千元;其二:工作一年,第一个月的工资为20元,以后每个月的工资是上月工资的2倍,此时,老板不假思索就选择了第二种方案,于是他们之间就订了一个劳动待遇合同。
请你分析一下,老板的选择是否正确?【设计意图:让学生进一步认识到数学来源于生活并应用于生活,生活中处处有数学.】(七)总结归纳,加深理解。
[时间设定:2分钟](1)等比数列的求和公式是什么?应用时要注意什么?(2)用什么方法可以推导了等比数列的求和公式?【设计意图:形成知识模块,从知识的归纳延伸到思想方法的提炼,优化学生的认知结构】(八)课后作业,巩固提高。
[时间设定:1分钟]必做:(1)P66练习1研究性作业:请上网查阅“芝诺悖论”选做:求和:234122232422nn ⨯+⨯+⨯+⨯++⨯ 【设计意图:为了使所有学生巩固所学知识,布置了“必做题”;“选做题”又为学有余力者留有自由发展的空间,布置了“探究题”以利于学生开展研究性学习,拓展学生的视野.】七、教学反思:本节课立足课本,着力挖掘,设计合理,层次分明。
充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。
在教学思想上既注重知识形成过程的教学,还特别突出学生学习方法的指导,探究能力的训练,引导学生发现数学的美,体验求知的乐趣。