高考理科数学常用公式大全
高中数学必备必考公式大全

高考数学必备必考公式大全一、集合1.并集的运算A∪B={x|x∈A,或x∈B}2. 并集的运算性质(1) A∪A=A(2)A∪∅=A(3)A∪B=B∪A(4) A∪B=A⇔B⊆A3. 交集的运算A∩B={x|x∈A,且x∈B}4. 交集的运算性质(1)A∩A=A(2)A∩∅=∅(3)A∩B=B∩A(4)A∩B=A⇔A⊆B5. 补集的运算∁U A={x|x∈U,且x∉A}6. 补集的运算性质(1) ∁U (∁U A)=A(2) ∁U U=∅,∁U∅=U(3)A∪(∁U A)=U,A∩(∁U A)=∅(4) ∁U (A∩B)=( ∁U A)∪(∁U B), ∁U (A∪B)=( ∁U A)∩(∁U B)二、函数与导数公式1. 有理数指数幂的运算性质(1)a r a s=a r+s(a>0,r,s∈Q)(2)=a r-s(a>0,r,s∈Q)(3)(a r)s=a rs(a>0,r,s∈Q)(4)(ab)r=a r b r(a>0,b>0,r∈Q)2.对数运算公式(1)对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:log a(M·N)=log a M+log a N;log a=log a M-log a N;log a M n=n log a M(n∈R)(2)对数恒等式a log aN =N(a>0,且a≠1,N>0)(3)对数运算的换底公式log a b=(a>0,且a≠1;c>0,且c≠1;b>0)(4)换底公式的变形log a b·log b a=1,即log a b=lo b n=log a blog N M==(5)换底公式的推广log a b·log b c·log c d=log a d3.求导公式及运算法则(1)基本初等函数的导数公式a.若f(x)=c(c为常数),则f'(x)=0.b.若f(x)=x n(n∈Q*),则f'(x)=nx n-1.c.若f(x)=sin x,则f'(x)=cos x.d.若f(x)=cos x,则f'(x)=-sin x.e.若f(x)=a x,则f'(x)=a x ln a.f.若f(x)=e x,则f'(x)=e x.g.若f(x)=log a x,则f'(x)=.h.若f(x)=ln x,则f'(x)=.(2)导数运算法则a.[f(x)±g(x)]'=f'(x)±g'(x)b.[f(x)·g(x)]'=f'(x)g(x)+f(x)g'(x)c.[]'=(g(x)≠0)(3)复合函数的导数(理)设y=f(u),u=φ(x),则y'x=y'u u'x或记作f '[φ(x)]=f '(u)φ'(x).特别地,[f (ax +b )] '=a f' (ax+b).4.定积分的运算性质(理)(1)b a ⎰kf (x )d x=k b a ⎰f (x )d x (k 为常数)(2) b a ⎰[f (x )±g (x )]d x=b a ⎰f (x )d x±b a ⎰g (x )d x (3)b a ⎰f (x )d x=-a b ⎰f (x )d x(4)c a ⎰f (x )d x=b a ⎰f (x )d x+cb ⎰f (x )d x (a<b<c )三、三角函数1. 同角关系:(1)平方关系:sin 2α+cos 2α=1.(2)商的关系:=tan α(α≠+k π,k ∈Z ). 2. 诱导公式:奇变偶不变,符号看象限。
高考数学必考必背公式全集

一、对数运算公式。
log log m n a a n b b m =log log log a a a M M N N-=1. log 10a = 2. log 1a a = 3. log log log a a a M N MN += 4. 5.log log n a a M n M =6. 7. log a M a M =8. 9. 10. 二、 三角函数运算公式。
1. 同角关系:2. 诱导公式:奇变偶不变,符号看象限。
3. 两角和差公式:sin()sin cos sin cos αβαβαα±=± cos()cos cos sin sin αβαβαβ±=二倍角公式:sin 22sin cos ααα= 2222cos 2cos sin 2cos 112sin ααααα=-=-=-4. 辅助角公式:)sin(cos sin 22ϕθθθ++=+b a b a ,其中,2||,tan ,0πϕϕ<=>a b a 5. 降幂公式(二倍角余弦变形):6.角函数定义:角α中边上任意一点P 为),(y x ,设r OP =||则:,cos ,sin rxr y ==ααx y=αtan 三、 三角函数图像与性质。
四、 解三角形公式。
1. 正弦定理2. 余弦定理3. 三角形面积公式 A bc B ac C ab S sin 21sin 21sin 21===4..三角形的四个“心”; 重心:三角形三条中线交点.sin tan cos ααα=22sin cos 1αα+=21cos 2cos 2αα+=21cos 2sin 2αα-=log log log a b a N N b=1log log b a a b =1log log a a Mn=2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C=+-=+-=+-22tan tan 21tan ααα=-外心:三角形三边垂直平分线相交于一点. 内心:三角形三内角的平分线相交于一点.垂心:三角形三边上的高相交于一点.六、向量公式。
高中数学常用公式大全

高中数学常用公式大全一、集合。
1. 集合的基本运算。
- 交集:A∩ B = {xx∈ A且x∈ B}- 并集:A∪ B={xx∈ A或x∈ B}- 补集:∁_UA = {xx∈ U且x∉ A}(U为全集)2. 集合元素个数关系。
- n(A∪ B)=n(A)+n(B)-n(A∩ B)(n(A)表示集合A的元素个数)二、函数。
1. 函数的定义域。
- 分式函数y = (f(x))/(g(x)),g(x)≠0。
- 偶次根式函数y=sqrt[n]{f(x)}(n为偶数),f(x)≥slant0。
2. 函数的单调性。
- 设x_1,x_2∈[a,b],x_1 < x_2- 对于函数y = f(x),若f(x_1),则y = f(x)在[a,b]上单调递增;若f(x_1)>f(x_2),则y = f(x)在[a,b]上单调递减。
3. 函数的奇偶性。
- 对于函数y = f(x),定义域关于原点对称。
- 若f(-x)=f(x),则y = f(x)是偶函数;若f(-x)= - f(x),则y = f(x)是奇函数。
4. 一次函数y=kx + b(k≠0)- 斜率k=(y_2 - y_1)/(x_2 - x_1)。
5. 二次函数y = ax^2+bx + c(a≠0)- 对称轴x =-(b)/(2a),顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})。
- 当a>0时,函数开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a < 0时,函数开口向下,在x=-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。
6. 指数函数y = a^x(a>0,a≠1)- 性质:当a > 1时,函数在R上单调递增;当0 < a < 1时,函数在R上单调递减。
7. 对数函数y=log_ax(a>0,a≠1)- 性质:当a > 1时,函数在(0,+∞)上单调递增;当0 < a < 1时,函数在(0,+∞)上单调递减。
高三数学公式归纳大全

数学考试主要考察大家的公式运用情况,所以要想数学考出好成绩,一定要牢牢记住数学公式。
今天老师就给大家总结了整个高中都会用到的数学公式,一共有五十条,大家一定要熟背哦~1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。
高中理科数学公式大全完整版

高中理科数学公式大全完整版高中理科数学公式大全完整版一、数学公式1、圆的面积 S=πR²2、圆周长 C=2πR3、圆柱体 V=πR²h4、圆锥体 V=πR²h/35、圆周角 a=∠C×π6、勾股定理 c²=a²+b²7、正弦定理 a/sinA=b/sinB=c/sinC=2R8、余弦定理 b²=a²+c²-2accosB9、弧长公式 l=n/180×π×r²10、扇形面积 s=n/360×π×r²11、弓形面积 s=[(b-a)×h]/212、三角形面积 s=√[p(p-a)(p-b)(p-c)] 其中 p=(a+b+c)/213、重心定理三条中线的交点叫重心,重心分中线为2:1(顶点到重心)14、平行四边形性质:平行四边形对边相等;平行四边形对角相等;平行四边形对角线互相平分;平行四边形内角和外角和都为360度。
15、平行四边形判定:一组对边平行且相等的四边形为平行四边形;两组对边分别相等的四边形为平行四边形;对角线互相平分的四边形为平行四边形;两组对角分别相等的四边形为平行四边形。
16、菱形性质:菱形四边都相等;菱形对角线互相垂直;菱形内角和都为360度;菱形是轴对称图形,有四条对称轴。
17、菱形判定:一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边都相等的四边形是菱形;两条对角线分别平分各自对角的四边形为菱形。
18、正方形性质:正方形的四边都相等;正方形的四个角都是直角;正方形的对角线相等并互相垂直平分;正方形的邻边互相垂直;正方形的内角和外角和都为360度。
19、正方形判定:邻边相等的矩形是正方形;有一个角是直角的菱形是正方形;对角线互相垂直的矩形是正方形。
20、等腰梯形性质:等腰梯形两腰相等;等腰梯形两底角相等;等腰梯形的两条对角线相等。
高中数学总结——常用公式与推论

高中数学总结——公式与推论(理科)张皓翔成都二十中一.关于函数1. 抽象函数的周期(1)f(a±x)=f(b±x) T=|b-a|(2)f(a±x)=-f(b±x) T=2|b-a|(3)f(x-a)+f(x+a)=f(x) T=6a(4)f(x-a)=f(x+a) T=2a(5)f(x+a)=-f(x) T=2a2.奇偶函数概念的推广及其周期:(1)对于函数f(x),若存在常数a,使得f(a-x)=f(a+x),则称f(x)为广义(Ⅰ)型偶函数,且当有两个相异实数a,b同时满足时,f(x)为周期函数T=2|b-a|(2)若f(a-x)=-f(a+x),则f(x)是广义(Ⅰ)型奇函数,当有两个相异实数a,b同时满足时,f(x)为周期函数T=2|b-a|3.抽象函数的对称性(1)若f(x)满足f(a+x)+f(b-x)=c则函数关于(,)成中心对称(充要)(2)若f(x)满足f(a+x)=f(b-x)则函数关于直线x=成轴对称(充要)4.洛必达法则,设连续可导函数f(x)和g(x)5.常见奇函数(1). y=sinx y=tanx(2). y=x n(n∈2k+1 k∈Z)(3). y=lg(√1+x2−x)−x→y=lg√1+(ax2)±ax y=lg b−axb=ax(4). f(x)=a x−1(a>0 且 a≠1)a x+1(5). f(x)=|x+a|−|x−a|6.抽象函数模型(1).f(x+y)=f(x)+f(y) f(x)=kx(2).f(x+y)=f(x)f(y) f(x)=a x)=f(x) -f(y) f(x)=log a x(3).f(xy)=f(x)+f(y) f(xy二、三角函数1.三角形恒等式(1)在△中,(2)正切定理&余切定理:在非Rt△中,有tanA+tanB+tanC=tanAtanBtanC(3)(4)(5)2.任意三角形射影定理(又称第一余弦定理):在△ABC中a=bcosC+ccosB;b=ccosA+acosC;c=acosB+bcosA3. 任意三角形内切圆半径r=(S为面积),外接圆半径欧拉不等式:R>2r4.梅涅劳斯定理如下图,E.D.F三点共线的充要条件是5.塞瓦定理如下图,AD、BE、CF三线共点的充要条件是6. 斯特瓦尔特定理:如下图,设已知△ABC及其底边上B、C两点间的一点D,则有A²DC+AC²BD-AD²BC=BC DC BD7、和差化积公式(只记忆第一条)sinα+sinβ=2sin cossinα-sinβ=2cos sincosα+cosβ=2cos coscosα-cosβ=-2sin sin8、积化和差公式sinαsinβ=-cosαcosβ=sinαcosβ=cosαsinβ=9、万能公式10.三角混合不等式:若x∈(0,),sinx<x<tanx当x→0时sinx x tanx11.海伦公式变式如下图,图中的圆为大三角形的内切圆,大三角形三边长分别为a.b.c,大三角形面积为12.双曲函数定义双曲正弦函数sinhx=,双曲余弦函数coshx=易知(1)奇偶性:sinhx为奇函数,coshx为偶函数(2)导函数:(sinhx)’=coshx,(coshx)’=sinhx(3)两角和:sinh(x+y)=sinhxcoshy+coshxsinhycosh(x+y)=coshxcoshy+sinhxsinhy(4)复数域:sinh(ix)=isin(x)cosh(ix)=icos(x)(5)定义域:x∈R(6)值域:sinhx∈R,coshx∈[1,+∞)13.三角形三边a.b.c成等差数列,则14.三角形不等式(1)在锐角△中,(2)在△中,(3)在△中,sinA>sinB cos2A>cos2B15.ASA的面积公式:三、数列(所有通过递推关系得出通项后都要检验首项)1.A n+1=kA n+f(n)两边同除以k n+1,构造数列{},通过累加法得出通项公式2. A n+1=kA n+C设一常数x,A n+1+x=k(A n+x)A n+1 =kA n+(k-1)x则(k-1)x=C,求出x=,得到等比数列{},公比为k3.不动点法:形如A n+1=(d≠0,当d=0时,则是第二种情况),设函数f(x)=,x=的根称为f(x)的不动点,(1)若函数f(x)有2个不动点α,β则数列{}是一个等比数列,A’n==,A n=(2)若函数f(x)只有一个不动点α则数列{}数一个等差数列,A’n=(3)若函数f(x)没有不动点,则数列{A n}是周期数列,周期自己找4.特征方程法:形如A n+2=pA n+1+qA n称为二阶递推数列,我们可以用它的特征方程x²-px-q=0的根来求它的通项公式(1)若方程有两根x1,x2,则A n=x1n-1+x2n-1 (,可根据题目确定)(2)若只有一个根x0A n=(+n)x0n-1(,可根据题目确定)5.变系数一阶递推数列四、不等式1.权方和不等式(赫德尔不等式推出)当且仅当2.黎曼和-定积分不等式级数与定积分之间的关系设可积函数f(x)当f(x)为减时,当f(x)为增时,3.琴生不等式函数的平均数与平均数的函数之间的关系当f(x)为凹函数,即f’’(x)>0时当f(x)为凸函数,即f’’(x)<0时当且仅当x1=x2=∧=x n时,等号成立4.卡尔松不等式5.排序不等式当且时,其中以上可概括为顺序和≥乱序和≥倒序和5.切比雪夫总和不等式(排序不等式推出)当a n与b n逆序时当a n与b n顺序时不等式反向6.舒尔不等式(Schur不等式)x t(x-y)(x-z)+y t(y-x)(y-z)+z t(z-x)(z-y)≥0当x=y=z时,等号成立配Schur法(Schur分拆法)三元齐三次对称轮换式f(x,y,z)≥0的充要条件是因为f(x,y,z)=a+b+cxyz 三元齐四次对称轮换式f(x,y,z)≥0的充要条件是因为f(x,y,z)=三元齐五次对称轮换式f(x,y,z)≥0的充要条件是因为f(x,y,z)=7.常用对数不等式当x〉-1时,当且仅当x=0时等号成立8.伯努利不等式当x≥-1,n≥0时或n为正偶数,x∈R时(1+x)n≥1+nx当n=0或1,或x=0时等号成立9.uvw法和pqr法(解决三元对称轮换式)uvw法:令a+b+c=3u,ab+bc+ca=3v2,abc=w3,得到新不等式pqr法:令a+b+c=p ,ab+bc+ca=q ,abc=r,得到新不等式当a.b.c为非负实数时,用uvw法;当a,b,c∈R时,用pqr法10.SOS法(配方法)不解释11.拉格朗日乘数法(解决条件极值问题)已知f(x,y,z)=0,求F(x,y,z)的极值构造拉格朗日函数L=F(x,y,z)+λf(x,y,z)对F(x,y,z)分别关于x,y,z,λ求偏导,得到四元方程组,其中对F(x,y,z)关于λ求偏导所得方程即f(x,y,z)=0解四元方程组所得解,即F(x,y,z)的极值点,从而算出极值。
高考数学必背必记公式

高考数学必背必记公式1、有限集合子集个数:子集个数:2n 个,真子集个数:12n −个;2、集合里面重要结论:①A B A A B ⋂=⇒⊆;②A B A B A ⋃=⇒⊆;③A B A B ⇒⇔⊆ ④A B A B ⇔⇔=3、同时满足求交集,分类讨论求并集4、集合元素个数公式:()()()()n A B n A n B n A B =+−U I5、几个近似值:2 1.414,3 1.732,5 2.236, 3.142, 2.718e π≈≈≈≈≈6、分数指数幂公式:n m n ma a = 7、对数换底公式:log 1log ;log log log c a a c b b b b a a ==8、单调性的快速法:①.增+增→增;增—减→增;②.减+减→减;减—增→减;③.乘正加常,单调不变: ④.乘负取倒,单调不变:9、奇偶性的快速法:①.奇±奇→奇;偶±偶→偶;②.奇()⨯÷奇→偶;偶()⨯÷偶→偶;奇()⨯÷偶→奇;10、函数的切线方程:000()()y y f x x x '−=−11、函数有零点min max ()0()0f x f x ≤⎧⇔⎨≥⎩第一章 集合第二章 函数12、函数无零点max min ()0()0f x f x ⇔≤≥或13、函数周期性:()()f a x f b x +=+的周期Tb a =−; 14、函数对称性:()()f a x f b x +=−的对称轴2a bx +=; 15、抽象函数对数型:若()()()f xy f x f y =+,则()log a f x x =; 16、抽象函数指数型:若()()()f x y f x f y +=,则()x f x a =; 17、抽象函数正比型:若()()()f x y f x f y +=+,则()f x kx =; 18、抽象函数一次型:若()f x c '=,则()f x cx b =+; 19、抽象函数导数型:若()()f x f x '=,则()x f x ke =或()0f x =;20、两个重要不等式:1ln(1)1(0)ln 1x x e x x x e x x x ⎧≥+⇒+≤≤−==⎨≤−⎩当且仅当时“”成立21、洛必达法则:()()()()limlim x ax a f x f x g x g x →→'='(当()0()0f x g x ∞→∞或时使用) 22、恒成立问题:max min(1)()()(2)()()a f x a f x a f x a f x ≥⇔≥<⇔<23、证明()()f x g x >思路:思路1:(1)()()()()0h x f x g x h x =−⇔>(常规首选方法)思路2:min max ()()f x g x >(思路1无法完成)24、等差数列通项公式:1(1)n a a n d =+− 25、等差数列通项公式:11()(1)22n n n a a n n S na d +−==+ 26、等比数列通项公式:11n n a a q −=27、等比数列通项公式:11(1)11n n n a a qa q S q q+−==−−第三章 数列28、等差数列的性质:若m n p q +=+,则m n p q a a a a +=+ 29、等比数列的性质:若m n p q +=+,则m n p q a a a a = 30、等差中项:若,,a A b 成等差数列,则2A a b =+ 31、等比中项:若,,a G b 成等比数列,则2G ab = 32、裂项相消法1:若111(1)1n n nn −++=,则有1111n n T n n =−=++ 33、裂项相消法2:若1111(2)22n n n n −++⎛⎫= ⎪⎝⎭,则有1111(1)2212n T n n =+−−++ 34、裂项相消法3:若111111n nnn a a d a a ++=−⎛⎫⎪⎝⎭,则有11111()nn T d a a +=− 35、裂项相消法4:若1111(21)(21)22121n n n n −+−−+⎛⎫= ⎪⎝⎭,则有11(1)221n T n =−+ 36、错位相减法求和通式:1112()1(1)1n n n n dq b b a b q a b T q q q −=+−−−−37、三角函数的定义:正弦:sin y r α=;余弦:cos x r α=;正切:tan yxα=;其中:22r x y =+38、诱导公式:π倍加减名不变,符号只需看象限;半π加减名要变,符号还是看象限。
高考数学公式理科总结

高考数学公式理科总结高考数学公式理科总结数学作为高考的一门科目,深受大多数理科生的青睐。
因为无论是数学的思维锻炼还是需要掌握的数学公式,都是高考备考不可或缺的一部分。
今天,我们就来总结一下理科数学中常用的数学公式及其应用。
一、代数部分1.一元二次方程公式:ax²+bx+c=0,求根公式为x=(-b±√b²-4ac)/2a。
应用:用于求解一元二次方程,例如求解公路修建所需要的材料和成本等。
2.等比数列公式:an=a1q^(n-1)(其中a1为首项,q为公比,an为第n项)。
应用:用于解决各种与成长或增长相关的问题,如人口增长、利润的增长等。
3.排列组合公式:排列公式为A(n,m)=n!/(n-m)!,组合公式为C(n,m)=n!/m!(n-m)!。
应用:用于处理不同的复杂问题,例如排列组合问题、选择问题、不重复随机抽样问题等。
二、几何部分1.三角函数公式:sinθ=对边/斜边,cosθ=邻边/斜边,tanθ=对边/邻边。
应用:用于三角函数问题,例如角度求解、三角函数值等。
2.圆公式:圆的面积公式为A=πr²,圆的周长公式为C=2πr。
应用:用于解决圆形问题,例如圆周运动、圆的切线、圆的切点等。
3.立体几何公式:三棱锥表面积公式为S=ab+a√(a²+b²+c²-2abcosA),三棱锥体积公式为V=1/3abh。
应用:用于解决空间几何问题,例如三棱锥表面积和体积的计算等。
三、概率统计部分1.样本调查公式:样本调查中常用的统计量有平均数、中位数、众数、方差、标准差、相关系数、回归方程等。
应用:用于处理随机事件、样本调查、统计数据等问题。
2.基本概率公式:P(A)=m/n,其中m表示事件A的样本点个数,n表示整个样本点个数。
应用:用于基本的统计概率问题,例如计算事件发生的概率等。
3.正态分布公式:正态分布的概率密度函数为f(x)=1/σ√2πexp(-(x-μ)²/(2σ²))。
(完整版)高考数学公式大全

1高考数学公式大全 一、集合1.集合的运算符号:交集“ ”,并集“ "补集“C ”子集“⊆”2.非空集合的子集个数:n 2(n 是指该集合元素的个数)3。
空集的符号为∅ 二、函数1。
定义域(整式型:R x ∈;分式型:分母0≠;零次幂型:底数0≠;对数型:真数0>;根式型:被开方数0≥)2.偶函数:)()(x f x f -= 奇函数:0)()(=-+x f x f 在计算时:偶函数常用:)1()1(-=f f奇函数常用:0)0(=f 或0)1()1(=-+f f3.单调增函数:当在x 递增,y 也递增;当x 在递减,y 也递减 单调减函数:与增函数相反4.指数函数计算:nm nmaa a +=⋅;nm n m aa a -=÷;nm n m aa ⋅=)(;m n mn a a =;10=a指数函数的性质:x a y =;当1>a 时,x a y =为增函数; 当10<<a 时,x a y =为减函数 指数函数必过定点)1,0(5。
对数函数计算:1log =aa ;0log 1=a;nm an a m a ⋅=+log log log ;nm ana m a log log log =-;ma m an nlog log =;m a mannlog 1log =对数的性质:xa y log = ;当10<<a 时,xa y log =为减函数.当1>a 时,xa y log =为增函数 对数函数必过定点)0,1( 6.幂函数:a x y =7。
函数的零点:①)(x f y =的零点指0)(=x f②)(x f y =在),(b a 内有零点;则0)()(<•b f a f三、三角函数①计算:1cos sin 22=+αα;θθθtan cos sin =2②正负符号判断:“一全正,二正弦,三切,四余弦” ③和差公式:βαβαβαsin cos cos sin )sin(±=± βαββαsin sin cos cos )cos( a =± βαβαβαtan tan 1tan tan )tan(•±=±④二倍角公式:αααcos sin 22sin •=;ααααα2222sin cos sin 211cos 22cos -=-=-= ααα2tan 1tan 2)2tan(-=; ⑤特殊角⑥诱导公式口诀“奇变偶不变;符号看象限.”⑦如何将三角函数化为)sin()(ϕ+=wx A x f ;利用三角函数相关的公式三看:一看平方:)2cos 1(21cos );2cos 1(21sin 22αααα+=-=二看乘积:ααα2sin 21cos sin =•三看加减:)sin(cos sin 22ϕααα±+=±b a b a 其中a b =ϕtan ; 41πϕ=⇒=a b633πϕ=⇒=a b33πϕ=⇒=a b3特别强调当a<0时:)sin(cos sin 22ϕααα±+-=+b a b a ⑧三角函数 )sin(ϕ+=wx A y 的性质:⑴单调增减区间:⎥⎦⎤⎢⎣⎡+-22,22ππππk k ↑ ⎥⎦⎤⎢⎣⎡++232,22ππππk k ↓⑵对称轴方程: 2ππ+=k x ;对称中心:)0,(πk⑶周期: wT π2=④max y 时,22;22min ππππ-=+=k x y k x 时:⑸值域:[]A A ,- ⑥记死:两条相邻对称轴之间距离为2T 两条相邻对称中心距离为2T9.由图像求)sin(ϕ+=wx A y ,三步:第一步:由图找到振幅A第二步:由图找到周期T ,然后由wT π2=求出w 具体值 第三步:代“特殊点”利用特殊角求出ϕ的值10.)sin(ϕ+=wx A y −−−−−→−个单位向左右平移a []ϕ+±=)(sin a x w A y 11.wx A y sin =−−−→−如何变成)sin(ϕ+=wx A y 平移wϕ个单位四、正余弦定理①边与角之间的转化:用正弦定理R A a 2sin =;R B b 2sin =;R Cc2sin = A R a sin 2=, B R b sin 2=,C R c sin 2= (把边转化为角)R a A 2sin = ,R b B 2sin =,R cC 2sin = (把角转化成边)②余弦定理:夹边夹边对边夹边夹边•+=2-cos 222θ③面积公式:B ac A bc C ab S ABC sin 21sin 21sin 21===∆ ④诱导公式:C B A sin )sin(=+ C B A cos )cos(-=+五、向量①),(11y x a =→),(22y x b =→则),(2121y y x x b a ++=+→→,),(2121y y x x b a --=-→→4θcos 2121⋅•=+⋅=•→→→→b a y y x x b a②2121y x a += 212122y x a a +== →b 向量同理 ③→→b 与a 的夹角公式:222221212121cos yx yx y y x x +++=θ④002121=+⇒⊥=•⇒⊥→→→→y y x x b a b a b a 或者 ⑤0//1221=-⇒→→→→y x y x b a b a 共线与或者 ⑥()2wb a wb a ±=±λλ⑦单位向量指“模”为1:a a 则1=为单位向量 六、数列①后一项减去前一项的值为一个常数:d a a n n =--1 ②后一项除以前一项的值为一个常数:q a a n n=-1③等差数列通项公式:()d n a a n 11-+= 等比数列通项公式:11-=n n q a a ④等差数列求和公式:()()d n n nan a a s n n 21211-+=⨯+=等比数列求和公式:()qq a s nn --=111⑤111s a a s s n n n ==--且⑥等差数列中项公式:112-++=n n n a a a 等比数列中项公式:112-+•=n n n a a a ⑦求和公式:“分组求和 ”等比求和等差求和nn b b a a a a ++++++...b (21321)“裂项相消”⎪⎭⎫⎝⎛-•-=大小小大111n a“错位相减”:等比通项等差通项•七、统计以概率:①众数指“出现次数最多的那个数” 中位数指“从小排到大的中间那个数”②方差 []2212)(...)()(1x x x x x x ns n -++-+-=5标准方差:2s ③频率;总数频数概率==频率组距组距频率=⨯各组频率之和=1④极差:极差=-min max⑤学会认茎叶图⑥分层抽样:第一步求出各组的比例 第二步用样本总数⨯比例=分组频数 ⑦回归方程当0>∧b 时,x 与y 正相关 当0<∧b 时,x 与y 负相关⑧))()()(())((22d c b a d b c a bc ad d c b a k ++++-+++=;二联表总a bcd总八、命题①原命题:否命题(条件和结论都否定);逆命题(条件和结论互换位置);逆否命题(将逆命题进行否定)②“或"∨⇒ “且”∧⇒ “非”⌝⇒p一真全真 ↓ 一假全假 ↓ 真假互换 ↓③B A ⊆则A 是B 充分不必要6B A ⊇则A 是B 的必要不充分B A =则A 是B 的充要条件④全称量词:符号:∀ 存在量词:符号∃“ ∀”与 “ ∃" 相互否定,“所有” −−→←否定“存在 ” 九、导数①基本函数求导:1')(-•=m m nx m nx ;)0(1)(ln '>=x xx ;x x e e =')((本身) 0'=c (常数求导=0);x x cos )(sin '=;x x sin )(cos '-=②乘法求导:[])()()()()()('''x f x g x g x f x g x f ⋅+⋅=•;除法求导:)()()()()()()(2''x g x f x g x g x f x g x f -= ③复合求导:[][]→=)().()('''x g f x g x g f 这个公式记题型④斜率)(0'x f k = 切线方程:)(00x x k y y -=- ⑤在a x =处取极值⇒0)('=a f⑥求单调区间:令0)('>x f 求单调增区间 。
高中公式大全

高中公式大全高中阶段是学习数理化知识的关键时期,而掌握一些常用的数理化公式是非常重要的。
下面将为大家整理一份高中公式大全,帮助大家更好地学习和记忆这些重要的公式。
数学公式:1. 一元二次方程的根公式:对于方程ax^2+bx+c=0,其根的公式为x=(-b±√(b^2-4ac))/(2a)。
2. 三角函数的关系公式:包括正弦定理、余弦定理、正切定理等,用于求解三角形的各种问题。
3. 二项式定理:(a+b)^n的展开公式为∑(k=0)^n(C(n,k)a^(n-k)b^k)。
4. 等差数列的通项公式:对于公差为d的等差数列an=a1+(n-1)d。
5. 等比数列的通项公式:对于公比为q的等比数列an=a1*q^(n-1)。
6. 三角函数的导数公式:包括sin(x)的导数为cos(x),cos(x)的导数为-sin(x),tan(x)的导数为sec^2(x)等。
7. 积分的基本公式:包括定积分的计算公式,如∫f(x)dx=F(x)+C。
物理公式:1. 运动学公式:包括匀速直线运动公式、匀加速直线运动公式、自由落体运动公式等,用于描述物体运动的规律。
2. 牛顿定律:包括牛顿第一定律、牛顿第二定律、牛顿第三定律,用于描述物体受力和运动的关系。
3. 力学功和功率公式:功的公式为W=F·s·cosθ,功率的公式为P=W/t。
4. 万有引力定律:F=G*(m1*m2)/r^2,用于描述物体之间的引力关系。
5. 电学公式:包括欧姆定律、库仑定律、电场强度公式等,用于描述电流、电荷和电场的关系。
6. 磁学公式:包括洛伦兹力公式、磁感应强度公式、电磁感应公式等,用于描述磁场和电磁感应的关系。
化学公式:1. 摩尔定律:V1/n1=V2/n2,用于描述气体的摩尔关系。
2. 热力学公式:包括焓的计算公式、熵的计算公式、自由能的计算公式等,用于描述化学反应的热力学性质。
3. 化学平衡常数公式:Kc=[C]^c[D]^d/[A]^a[B]^b,用于描述化学平衡反应的平衡常数。
(完整word版)高考数学公式大全

高考数学公式大全 一、集合1.集合的运算符号:交集“ ”,并集“ ”补集“C ”子集“⊆”2.非空集合的子集个数:n 2(n 是指该集合元素的个数)3.空集的符号为∅ 二、函数1.定义域(整式型:R x ∈;分式型:分母0≠;零次幂型:底数0≠;对数型:真数0>;根式型:被开方数0≥)2.偶函数:)()(x f x f -= 奇函数:0)()(=-+x f x f 在计算时:偶函数常用:)1()1(-=f f奇函数常用:0)0(=f 或0)1()1(=-+f f3.单调增函数:当在x 递增,y 也递增;当x 在递减,y 也递减 单调减函数:与增函数相反4.指数函数计算:nm nmaa a +=⋅;nm n m aa a -=÷;nm n m aa ⋅=)(;m n mn a a=;10=a指数函数的性质:x a y =;当1>a 时,x a y =为增函数; 当10<<a 时,x a y =为减函数 指数函数必过定点)1,0(5.对数函数计算:1l o g =aa ;0log 1=a ;nm ana ma ⋅=+log log log ;nma na m a log log log =-; ma m an nl o g l o g =;ma mannlog 1log =对数的性质:xa y log = ;当10<<a 时,xa y log =为减函数.当1>a 时,xa y log =为增函数对数函数必过定点)0,1( 6.幂函数:a x y =7.函数的零点:①)(x f y =的零点指0)(=x f②)(x f y =在),(b a 内有零点;则0)()(<∙b f a f三、三角函数①计算:1cos sin 22=+αα;θθθtan cos sin = ②正负符号判断:“一全正,二正弦,三切,四余弦” ③和差公式:βαβαβαsin cos cos sin )sin(±=± βαββαsin sin cos cos )cos( a =± βαβαβαtan tan 1tan tan )tan(∙±=±④二倍角公式:αααcos sin 22sin ∙=;ααααα2222sin cos sin 211cos 22cos -=-=-=ααα2tan 1tan 2)2tan(-=;⑤特殊角00 030 045 060 0900120 0135 0150 0180sin0 212223 123 22 21 0 cos1 2322 21 0 21-22-23-1-tan0 3313不存在3-1-33- 0⑥诱导公式口诀“奇变偶不变;符号看象限。
高中理科数学公式大全(完整版)

高中理科数学公式大全(完整版)l高中数学公式大全(最新整理版)§01. 集合与简易逻辑1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==I U U I .3.包含关系A B A A B B=⇔=I U U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦI U C A B R ⇔=U4.容斥原理()()card A B cardA cardB card A B =+-U I .5.集合12{,,,}n a a a L 子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个;非空的真子集有2n–2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 .设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或⎩⎨⎧>=0)(0)(n f m f 或⎩⎨⎧>=0)(0)(m f n f ; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .8.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩. 9.10.四种命题的相互关系原命题:与逆命题互逆,与否命题互否,与逆否命题互为逆否;逆命题:与原命题互逆,与逆否命题互否,与否命题互为逆否;否命题:与原命题互否,与逆命题互为逆否,与逆否命题互逆;逆否命题:与逆命题互否,与否命题互逆,与原命题互为逆否;15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件. (3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.§02. 函数11.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f为减函数.12.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.13.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.14.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.15.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2ba x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称.16若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称;若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.17.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=- (2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.18.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.19.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.20.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.21.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数.22.几个常见的函数方程 (1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,0()(0)1,lim 1x g x f x→==.23.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x =+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.24.分数指数幂(1)m na =(0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).25.根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.26.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)rr rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.27.指数式与对数式的互化式log ba Nb a N =⇔=(0,1,0)a a N >≠>.28.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).29.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log a a a MM N N =-; (3)log log ()na a M n M n R =∈.§03. 数 列30. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+.31.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++L ).32.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 33.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s qna q ⎧-≠⎪=-⎨⎪=⎩ 或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.34.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩.§04. 三角函数35.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.36.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.37.正弦、余弦的诱导公式(奇变偶不变,符号看象限)212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s,s()2(1)sin,nnconcoαπαα+⎧-⎪+=⎨⎪-⎩38.和角与差角公式sin()sin cos cos sinαβαβαβ±=±;cos()cos cos sin sinαβαβαβ±=m;tan tantan()1tan tanαβαβαβ±±=m.22sin()sin()sin sinαβαβαβ+-=-(平方正弦公式);22cos()cos()cos sinαβαβαβ+-=-.sin cosa bαα+)αϕ+(辅助角ϕ所在象限由点(,)a b的象限决定,tanbaϕ= ).39.二倍角公式sin2sin cosααα=.2222cos2cos sin2cos112sinααααα=-=-=-.22tantan21tanααα=-.40.三角函数的周期公式函数sin()y xωϕ=+,x∈R及函数cos()y xωϕ=+,x∈R(A,ω,ϕ为常数,且A≠0,ω>0)的周期2Tπω=;函数tan()y xωϕ=+,,2x k k Zππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期Tπω=.41.正弦定理2sin sin sina b cRA B C===.42.余弦定理2222cosa b c bc A=+-;2222cosb c a ca B=+-;2222cosc a b ab C=+-.43.面积定理(1)111222a b cS ah bh ch===(a b ch h h、、分别表示a、b、c边上的高).(2)111sin sin sin222S ab C bc A ca B===.(3)OABS∆=44.三角形内角和定理在△ABC中,有()A B C C A Bππ++=⇔=-+222C A Bπ+⇔=-222()C A Bπ⇔=-+.45.实数与向量的积的运算律设λ、μ为实数,那么(1) 结合律:λ(μa)=(λμ)a;(2)第一分配律:(λ+μ)a=λa+μa;(3)第二分配律:λ(a+b)=λa+λb.46.向量的数量积的运算律:(1) a·b= b·a(交换律);(2)(λa)·b= λ(a·b)=λa·b= a·(λb);(3)(a+b)·c= a·c +b·c.47.平面向量基本定理如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.48.向量平行的坐标表示设a=11(,)x y,b=22(,)x y,且b≠0,则a P b(b≠0)12210x y x y⇔-=.49. a与b的数量积(或内积)a·b=|a||b|cosθ.50. a·b的几何意义数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.51.平面向量的坐标运算(1)设a=11(,)x y,b=22(,)x y,则a+b=1212(,)x x y y++.(2)设a=11(,)x y,b=22(,)x y,则a-b=1212(,)x x y y--.(3)设A11(,)x y,B22(,)x y,则2121(,)AB OB OA x x y y=-=--u u u r u u u r u u u r.(4)设a=(,),x y Rλ∈,则λa=(,)x yλλ.(5)设a=11(,)x y,b=22(,)x y,则a·b=1212()x x y y+.52.两向量的夹角公式cosθ=(a=11(,)x y,b=22(,)x y).53.平面两点间的距离公式,A Bd=||AB=u u u r=11(,)x y,B22(,)x y).54.向量的平行与垂直设a=11(,)x y,b=22(,)x y,且b≠0,则A||b ⇔b=λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 55.线段的定比分公式 设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点,λ是实数,且12PP PP λ=u u u r u u u r,则 121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+u u u r u u u r u u u r ⇔12(1)OP tOP t OP =+-u u u r u u u r u u u r (11t λ=+). 56.三角形重心坐标公式△ABC 三个顶点坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++.57.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+u u u r u u u r u u u r . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP u u u r的坐标为(,)h k .58.“按向量平移”的几个结论(1)点(,)P x y 按向量a=(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a=(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a=(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a=(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m=(,)x y 按向量a=(,)h k 平移后得到的向量仍然为m=(,)x y .59. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔==u u u r u u u r u u u r .(2)O 为ABC ∆的重心0OA OB OC ⇔++=u u u r u u u r u u u r r. (3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r .(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=u u u r u u u r u u u r r .(5)O 为ABC ∆的A ∠旁心aOA bOB cOC ⇔=+u u u r u u u r u u u r.§06. 不 等 式60.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号).(3)3333(0,0,0).a b c abc a b c ++≥>>> (4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-.61.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;(2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+(1)若积xy 是定值,则当||y x -最大时,||y x +最大;当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时,||xy 最小;当||y x -最小时, ||xy 最大.62.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.63.无理不等式 (1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩.(2)2()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或.(32()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩. 64.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩§07. 直线和圆的方程65.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).66.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y(12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).67.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B Cl l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; 68.夹角公式(1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 69. 1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π. 70.四种常用直线系方程 (1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.71.点到直线的距离d =(点00(,)P x y ,直线l :Ax By +).72. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).73. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----=1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.74.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.75.直线与圆的位置关系 直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.76.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .77.圆的切线方程(1)已知圆220x y Dx Ey F ++++=. ①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x x E y y x x y y F ++++++=. 当00(,)x y 圆外时, 0000()()022D x x E y y x x y y F ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k的圆的切线方程为y kx =±. §08. 圆锥曲线方程78.椭圆22221(0)x y a b a b+=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩. 79.椭圆22221(0)x y a b a b+=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.80.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的内部2200221x y a b⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的外部2200221x y a b⇔+>.81. 椭圆的切线方程(1)椭圆22221(0)x y a b a b+=>>上一点00(,)P x y 处的切线方程是00221x x y ya b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线切点弦方程是 00221x x y ya b+=. (3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.82.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ⇔-<. 83.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by a x ⇒渐近线方程:22220x y a b -=⇔x ab y ±=. (2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222by a x .(3)若双曲线与12222=-by a x 有公共渐近线,可设为λ=-2222b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).84. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b-=>>上一点00(,)P x y 处的切线方程是00221x x y ya b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是 00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切条件是22222A a B b c -=.100. 抛物线px y 22=焦半径公式 抛物线22(0)y px p =>焦半径02p CF x =+. 过焦点弦长p x x px p x CD ++=+++=212122. 85.抛物线px y 22=上的动点可设为P ),2(2οοy py 或或)2,2(2pt pt P P (,)x y o o ,其中 22y px =o o .86.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a--;(2)焦点的坐标为241(,)24b ac b a a-+-;(3)准线方程是2414ac b y a--=.87.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>.点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>.(2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->.点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->.(3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>.点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>.(4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>.点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->.88. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+.(3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =. 89.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线. 90.直线与圆锥曲线相交的弦长公式AB =或1212|||AB x x y y ==-=-(弦端点A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F bkx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).91.圆锥曲线的两类对称问题 (1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=.(2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是 22222()2()(,)0A Ax By C B Ax By C F x y A B A B++++--=++.92.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y +代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.§09. 立体几何93.证明直线与直线的平行的思考途径(1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行. 94.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面面平行. 95.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面垂直.96.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直; (3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直.97.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(5)转化为该直线与两个垂直平面的交线垂直. 98.证明平面与平面的垂直的思考途径(1)转化为判断二面角是直二面角;(2)转化为线面垂直.99.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b=b +a .(2)加法结合律:(a +b)+c=a +(b +c). (3)数乘分配律:λ(a +b)=λa +λb .100.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量. 101.共线向量定理 对空间任意两个向量a 、b(b ≠0 ),a ∥b ⇔存在实数λ使a=λb . P A B 、、三点共线⇔||AP AB ⇔AP t AB =u u u r u u u r ⇔(1)OP t OA tOB =-+u u u r u u u r u u u r . ||AB CD ⇔AB u u u r 、CD u u u r共线且AB CD 、不共线⇔AB tCD =u u u r u u u r 且AB CD 、不共线.102.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+u u u r u u u r u u u r ,或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++u u u r u u u u r u u u r u u u r .103.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++u u u r u u u r u u u r u u u r(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD u u u r 与AB u u u r 、AC u u u r共面⇔AD xAB yAC =+u u u r u u u r u u u r⇔ (1)OD x y OA xOB yOC =--++u u u r u u u r u u u r u u u r(O ∉平面ABC ).104.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =xa +yb +zc .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r .105.向量直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b =112233a b a b a b ++; 106.设A 111(,,)x y z ,B 222(,,)x y z ,则 AB OB OA =-u u u r u u u r u u u r= 212121(,,)x x y y z z ---.107.空间线线平行或垂直设111(,,)a x y z =r ,222(,,)b x y z =r,则 a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r⇔0a b ⋅=r r ⇔1212120x x y y z z ++=.109.空间两点间的距离公式 若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d=||AB =u u u r=110.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a=PA uu u r ,向量b=PQ u u u r).111.异面直线间的距离||||CD n d n ⋅=u u u r u u r r (12,l l 是两异面直线,其公垂向量为n r,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).112.点B 到平面α的距离||||AB n d n ⋅=u u u r u u r r (n r 为平面α的法向量,AB 是经过面α的一条斜线,A α∈).113.异面直线上两点距离公式d =.d =d =('E AAF ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =).已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.114.球的半径是R ,则其体积343V R π=, 其表面积24S R π=.115.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为aa ,外. 116.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).§10. 排列组合二项定理117.分类计数原理(加法原理)12n N m m m =+++L . 118.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯L . 119.排列数公式m n A =)1()1(+--m n n n Λ=!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. 120.排列恒等式(1)1(1)m m n nA n m A -=-+; (2)1mmn n n A A n m -=-; (3)11m m n n A nA --=;(4)11n n n n n n nA A A ++=-; (5)11m m m n n nA A mA -+=+. (6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-L . 121.组合数公式m n C =m n mmA A =m m n n n ⨯⨯⨯+--ΛΛ21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).122.组合数的两个性质(1)mn C =mn n C - ;(2) mn C +1-m n C =mn C 1+.注:规定10=nC . 123.组合恒等式(1)11mm n n n m C C m --+=; (2)1m mn n n C C n m -=-; (3)11mm n n n C C m--=;(4)∑=nr r nC0=n2;(5)1121++++=++++r n r nr r r r r rCC CC C Λ.(6)nn n r n n n n C C C C C 2210=++++++ΛΛ负整数解有 11n m n C +--个. 124.二项式定理n n n rrn r nn nn nnnnb C b aC b aC b aC a C b a ++++++=+---ΛΛ222110)( ;二项展开式的通项公式rr n r n r b a C T -+=1)210(n r ,,,Λ=.§11、12. 概率与统计125.等可能性事件的概率()mP A n=. 126.互斥事件A ,B 分别发生的概率的和 P(A +B)=P(A)+P(B).127.n 个互斥事件分别发生的概率的和 P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ).128.独立事件A ,B 同时发生的概率 P(A ·B)= P(A)·P(B).129.n 个独立事件同时发生的概率P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ).130.n 次独立重复试验中某事件恰好发生k 次的概率()(1).k k n kn n P k C P P -=- 131.离散型随机变量的分布列的两个性质 (1)0(1,2,)i P i ≥=L ; (2)121P P ++=L . 132.数学期望1122n n E x P x P x P ξ=++++L L133.数学期望的性质(1)()()E a b aE b ξξ+=+. (2)若ξ~(,)B n p ,则E np ξ=. (3) 若ξ服从几何分布,且1()(,)k P k g k p q p ξ-===,则1E pξ=. 134.方差()()()2221122n n D x E p x E p x E p ξξξξ=-⋅+-⋅++-⋅+L L135.标准差σξ=ξD .136.方差的性质(1)()2D a b a D ξξ+=;(2)若ξ~(,)B n p ,则(1)D np p ξ=-.(3) 若ξ服从几何分布,且1()(,)k P k g k p q p ξ-===,则2qD pξ=. 137.方差与期望的关系()22D E E ξξξ=-. 138.正态分布密度函数()()()2226,,x f x x μ--=∈-∞+∞,式中的实数μ,σ(σ>0)是参数,分别表示个体的平均数与标准差.139.标准正态分布密度函数()()22,,x f x x -=∈-∞+∞..140.回归直线方程$y a bx =+,其中()()()1122211n ni i i i i i n ni ii i x x y y x y nx y b x x x nx a y bx====⎧---⎪⎪==⎨--⎪⎪=-⎩∑∑∑∑. 141.相关系数()()niix x y y r --=∑()()niix x y y --=∑|r|≤1,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.§13. 极 限142.特殊数列的极限(1)0||1lim 11||11nn q q q q q →∞<⎧⎪==⎨⎪<=-⎩不存在或.(2)1101100()lim ()()k k k k t t t n t t kk t a n a n a a k t b n b n b b k t ---→∞-⎧<⎪+++⎪==⎨+++⎪⎪>⎩L L 不存在 . (3)()111lim11nn a q a S qq→∞-==--(S 无穷等比数列}{11n a q - (||1q <)的和).143. 函数的极限定理lim ()x x f x a →=⇔0lim ()lim ()x x x x f x f x a -+→→==.144.函数的夹逼性定理如果函数f(x),g(x),h(x)在点x 0的附近满足: (1)()()()g x f x h x ≤≤;(2)0lim (),lim ()x x x x g x a h x a →→==(常数),则lim ()x x f x a →=.本定理对于单侧极限和∞→x 的情况仍然成立. 145.几个常用极限(1)1lim0n n →∞=,lim 0n n a →∞=(||1a <); (2)00lim x x x x →=,0011lim x x x x →=.146.两个重要的极限 (1)0sin lim1x xx→=;(2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭(e=2.718281845…).147.函数极限的四则运算法则若0lim ()x x f x a →=,0lim ()x x g x b →=,则(1)()()0lim x x f x g x a b →±=±⎡⎤⎣⎦;(2)()()0lim x x f x g x a b →⋅=⋅⎡⎤⎣⎦;(3)()()()0lim0x x f x ab g x b→=≠. 148.数列极限的四则运算法则 若lim ,lim n n n n a a b b →∞→∞==,则(1)()lim n n n a b a b →∞±=±;(2)()lim n n n a b a b →∞⋅=⋅;(3)()lim0n n na ab b b →∞=≠(4)()lim lim lim n n n n n c a c a c a →∞→∞→∞⋅=⋅=⋅( c 是常数).§14. 导 数149.)(x f 在0x 处的导数(或变化率或微商)000000()()()lim limx x x x f x x f x yf x y x x=∆→∆→+∆-∆''===∆∆.150.瞬时速度00()()()limlim t t s s t t s t s t t tυ∆→∆→∆+∆-'===∆∆.151.瞬时加速度00()()()limlimt t v v t t v t a v t t t∆→∆→∆+∆-'===∆∆. 152.)(x f 在),(b a 的导数()dy dff x y dx dx''===00()()lim limx x y f x x f x x x∆→∆→∆+∆-==∆∆. 153. 函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.154.几种常见函数的导数 (1) 0='C (C 为常数). (2) '1()()n n x nx n Q -=∈. (3) x x cos )(sin ='. (4) x x sin )(cos -='. (5) x x 1)(ln =';e a xx a log 1)(log ='. (6) x x e e =')(; a a a xx ln )(='.155.导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v -=≠. 156.复合函数的求导法则设函数()u x ϕ=在点x 处有导数''()x u x ϕ=,函数)(u f y =在点x 处的对应点U 处有导数''()u y f u =,则复合函数(())y f x ϕ=在点x 处有导数,且'''x u xy y u =⋅,或写作'''(())()()x f x f u x ϕϕ=.§15. 复 数157.复数的相等,a bi c di a c b d +=+⇔==.(,,,a b c d R ∈)158.复数z a bi =+的模(或绝对值) ||z =||a bi +159.复数四则运算法则(1)()()()()a bi c di a c b d i +++=+++; (2)()()()()a bi c di a c b d i +-+=-+-; (3)()()()()a bi c di ac bd bc ad i ++=-++; (4)2222()()(0)ac bd bc ada bi c di i c di c d c d+-+÷+=++≠++. 160.复数乘法的运算律对于任何123,,z z z C ∈,有 交换律:1221z z z z ⋅=⋅.结合律:123123()()z z z z z z ⋅⋅=⋅⋅. 分配律:1231213()z z z z z z z ⋅+=⋅+⋅ . 161.复平面上的两点间的距离公式12||d z z =-=(111z x y i =+,222z x y i =+).162.向量的垂直非零复数1z a bi =+,2z c di =+对应的向量分别是1OZ u u u u r ,2OZ u u u u r,则12OZ OZ ⊥u u u u r u u u u r ⇔12z z ⋅的实部为零⇔21zz 为纯虚数⇔2221212||||||z z z z +=+⇔2221212||||||z z z z -=+⇔1212||||z z z z +=-⇔0ac bd +=⇔12z iz λ= (λ为非零实数).163.实系数一元二次方程的解 实系数一元二次方程20ax bx c ++=,①若240b ac ∆=->,则1,22b x a -=;②若240b ac ∆=-=,则122b x x a==-;③若240b ac ∆=-<,它在实数集R 内没有实数根;在复数集C内有且仅有两个共轭复数根240)x b ac =-<.。
高考数学知识点总结及公式大全(实用)

高考数学知识点总结及公式大全(实用)高考数学必备公式1、函数的单调性(1)设x1、x2[a,b],x1x2那么f(x1)f(x2)0f(x)在[a,b]上是增函数;f(x1)f(x2)0f(x)在[a,b]上是减函数.(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.2、函数的奇偶性对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
3、判别式b2-4ac=0 注:方程有两个相等的实根b2-4acgt;0 注:方程有两个不等的实根b2-4aclt;0 注:方程没有实根,有共轭复数根4、两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)5、倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a6、抛物线1、抛物线:y=ax__+bx+c就是y等于ax的平方加上bx再加上c。
agt;0时,抛物线开口向上;alt;0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。
2、顶点式y=a(x+h)__+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。
高考必备数学公式大全

高考必备数学公式大全一、集合。
1. 集合的基本运算。
- 交集:A∩ B={xx∈ A且x∈ B}- 并集:A∪ B ={xx∈ A或x∈ B}- 补集:∁_UA={xx∈ U且x∉ A}(U为全集)2. 集合元素个数公式。
- n(A∪ B)=n(A)+n(B)-n(A∩ B)二、函数。
1. 函数的定义域。
- 分式函数y = (f(x))/(g(x)),定义域为g(x)≠0的x的取值范围。
- 偶次根式函数y=sqrt[n]{f(x)}(n为偶数),定义域为f(x)≥slant0的x的取值范围。
2. 函数的单调性。
- 设x_1,x_2∈[a,b]且x_1,对于函数y = f(x)- 若f(x_1),则y = f(x)在[a,b]上是增函数,f^′(x)≥slant0(可导函数时)。
- 若f(x_1)>f(x_2),则y = f(x)在[a,b]上是减函数,f^′(x)≤slant0(可导函数时)。
3. 函数的奇偶性。
- 对于函数y = f(x),定义域关于原点对称。
- 若f(-x)=f(x),则y = f(x)是偶函数,其图象关于y轴对称。
- 若f(-x)= - f(x),则y = f(x)是奇函数,其图象关于原点对称。
4. 一次函数y=kx + b(k≠0)- 斜率k=frac{y_2-y_1}{x_2-x_1},截距为b。
5. 二次函数y = ax^2+bx + c(a≠0)- 对称轴x =-(b)/(2a)。
- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})。
- 当a>0时,函数开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a<0时,函数开口向下,在x =-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。
6. 指数函数y = a^x(a>0,a≠1)- 性质:当a > 1时,函数在R上单调递增;当0 < a < 1时,函数在R上单调递减。
高中数学必备公式汇总

高中数学必备公式汇总在高中数学的学习中,公式是解题的基础和关键。
熟练掌握各种公式,能够让我们在解题时更加得心应手,提高解题的效率和准确性。
下面为大家汇总了高中数学中一些必备的公式。
一、函数相关公式1、一次函数:y = kx + b(k 为斜率,b 为截距)2、二次函数:y = ax²+ bx + c(a ≠ 0),其顶点坐标为(b/2a, (4ac b²)/4a) ,对称轴为 x = b/2a3、反比例函数:y = k/x(k 为常数)二、三角函数公式1、同角三角函数基本关系:sin²α +cos²α = 1,tanα =sinα/cosα2、诱导公式:sin(π +α) =sinα,cos(π +α) =cosα,sin(α) =sinα,cos(α) =cosα 等3、和差角公式:sin(α ± β) =sinαcosβ ± cosαsinβ,cos(α ± β) =cosαcosβ ∓ sinαsinβ4、二倍角公式:sin2α =2sinαcosα,cos2α =cos²α sin²α =2cos²α1 =1 2sin²α,tan2α =2tanα/(1 tan²α)三、数列相关公式1、等差数列通项公式:an = a1 +(n 1)d,前 n 项和公式:Sn =n(a1 + an)/2 = na1 + n(n 1)d/22、等比数列通项公式:an = a1q^(n 1),前 n 项和公式:当q ≠ 1 时,Sn = a1(1 q^n)/(1 q);当 q = 1 时,Sn = na1四、导数相关公式1、(C)'= 0(C 为常数)2、(x^n)'= nx^(n 1)3、(sin x)'= cos x4、(cos x)'= sin x5、(ln x)'= 1/x6、(e^x)'= e^x五、向量相关公式1、向量的数量积:a·b =|a||b|cosθ2、向量的模:|a| =√(x²+ y²)(a =(x, y))3、向量的加法:a + b =(x1 + x2, y1 + y2)4、向量的减法:a b =(x1 x2, y1 y2)六、立体几何相关公式1、长方体的体积:V = lwh(l 为长,w 为宽,h 为高)2、正方体的体积:V = a³(a 为棱长)3、圆柱的体积:V =πr²h(r 为底面半径,h 为高)4、圆锥的体积:V =1/3πr²h5、球的体积:V =4/3πr³6、球的表面积:S =4πr²七、概率相关公式1、古典概型概率:P(A) = A 包含的基本事件数/基本事件总数2、互斥事件概率:P(A + B) = P(A) + P(B)3、独立事件概率:P(AB) = P(A)P(B)八、统计相关公式1、平均数:x=(x1 + x2 ++ xn)/n2、方差:s²=(x1 x)²+(x2 x)²++(xn x)²/n3、标准差:s =√s²以上只是高中数学中的一部分必备公式,同学们在学习过程中要理解公式的推导过程,多做练习,熟练运用这些公式来解决各种数学问题。
高考理科数学公式总结

高考理科数学公式总结1.代数公式(1)二项式定理:(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+...+C(n,n-1)a^1b^(n-1)+C(n,n)a^0b^n,其中C(n,r)表示从n个不同元素中选取r个元素的组合数。
(2) 二次方程求根公式:对于一般的二次方程 ax^2+bx+c=0,求根公式为 x = [-b±√(b^2-4ac)]/(2a)。
(3) 三角函数和反三角函数的关系:sin^2θ + cos^2θ = 1,tanθ = sinθ/cosθ,cotθ = 1/tanθ,sin(π/2-θ) = cosθ,cos(π/2-θ) = sinθ,tan(π/2-θ) = 1/tanθ,cot(π/2-θ) = 1/cotθ。
2.几何公式(1)直角三角形的勾股定理:c^2=a^2+b^2,其中c是斜边,a和b是直角边。
(2)三角形面积公式:S=1/2×底×高,其中底为底边长度,高为从底边到对顶点的垂直距离。
(3)平行四边形面积公式:S=底边×高,其中底边为底边长度,高为从底边到对顶边的垂直距离。
(4)圆的周长公式:C=2πr,其中r为圆的半径。
(5)圆的面积公式:S=πr^2,其中r为圆的半径。
(6) 三角函数的定义:sinθ = 对边/斜边,cosθ = 临边/斜边,tanθ = 对边/临边。
(7)弧度制和角度制的换算关系:180°=π,1°=π/180。
3.排列组合与概率公式(1)排列公式:A(n,m)=n!/(n-m)!,表示从n个不同元素中选取m个元素的排列数。
(2)组合公式:C(n,m)=n!/[m!(n-m)!],表示从n个不同元素中选取m个元素的组合数。
(3)阶乘公式:n!=n×(n-1)×...×2×1(4) 乘法原理:如果一件事情可以分别由 n1 种方法完成,第一种方法有 n1 种情况,第二种方法有 n2 种情况,..., 第 k 种方法有 nk 种情况,那么这件事情一共有n1 × n2 × ... × nk 种情况。
高考数学公式理科总结归纳

高考数学公式理科总结归纳高考数学是理科生必考的一门科目,其中公式的掌握和运用对于考试的成绩至关重要。
本文将对高考数学中常见的公式进行总结归纳,帮助理科生们更好地备考。
1. 代数部分1.1 二次函数的顶点公式:在二次函数 y = ax^2 + bx + c 中,顶点坐标为 (-b/2a, f(-b/2a))。
1.2 三角函数的和差化积公式:sin(A±B) = sinAcosB ± cosAsinBcos(A±B) = cosAcosB ∓ sinAsinBtan(A±B) = (tanA ± tanB) / (1 ∓ tanAtanB)1.3 指数函数的性质:a^m * a^n = a^(m+n)(a^m)^n = a^(mn)1.4 对数函数的换底公式:logₐb = logcb / logca2. 几何部分2.1 三角形的面积公式:已知三角形的三边长为 a、b、c,则三角形的面积 S 可以由海伦公式计算:S = √[s(s-a)(s-b)(s-c)],其中 s 为半周长,即 s = (a + b + c) / 2。
2.2 直线与平面的距离公式:已知过点 P(x₀, y₀, z₀) 的直线方程为 l:(x-x₀)/m = (y-y₀)/n = (z-z₀)/p,点Q(x₁, y₁, z₁) 处的直线到平面A(x,y,z)·n+d=0 的距离为:d = |Ax₁ + By₁ + Cz₁ + D| / √(A^2 + B^2 + C^2)2.3 圆的面积公式:已知圆的半径为 r,则圆的面积 S 为πr^2。
2.4 空间向量的模长公式:设空间向量 a = (x,y,z),则向量 a 的模长为|a| = √(x^2 + y^2 +z^2)。
3. 概率与统计部分3.1 排列组合公式:排列公式:Aₓⁿ = n! / (n-x)!组合公式:Cₓⁿ = n! / (x!(n-x)!)3.2 二项分布公式:在一次试验中,成功的概率为 p,失败的概率为 q=1-p。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考理科常用数学公式总结1.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==.2.U U A B A A B B A B C B C A =⇔=⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=3.()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card CA card ABC ---+.4.二次函数的解析式的三种形式 ①一般式2()(0)f x ax bx c a =++≠;② 顶点式2()()(0)f x a x h k a =-+≠;③零点式12()()()(0)f x a x x x x a =--≠.5.设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]1212()()0(),f x f x f x a b x x ->⇔-在上是增函数;[]1212()()()0x x f x f x --<⇔[]1212()()0(),f x f x f x a b x x -<⇔-在上是减函数.设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数. 6.函数()y f x =的图象的对称性:①函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.②函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=. 7.两个函数图象的对称性:①函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.②函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称.③函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称. 8.分数指数幂mn a =(0,,a m n N *>∈,且1n >).1m n m na a -=(0,,a m n N *>∈,且1n >).9. log (0,1,0)b a N b a N a a N =⇔=>≠>.10.对数的换底公式 log log log m a m N N a =.推论 log log m n a a nb b m =.11.11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).12.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式 1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 13.等比数列的通项公式1*11()n n n aa a q q n N q-==⋅∈;其前n 项的和公式11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.14.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),11(),1111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 15.分期付款(按揭贷款) 每次还款(1)(1)1nn ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).16.同角三角函数的基本关系式 22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.17.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩ 212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩18.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).19.二倍角公式 sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 20.三角函数的周期公式 函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. 21.正弦定理2sin sin sin a b cR A B C===. 22.余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-; 2222cos c a b ab C =+-.23.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222S ab C bc A ca B ===.(3)22(||||)()OAB S OA OB OA OB ∆=⋅-⋅.24.三角形内角和定理 在△ABC 中,有()222C A BA B C C A B πππ+++=⇔=-+⇔=-222()C A B π⇔=-+. 25.平面两点间的距离公式,AB d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ). 26.向量的平行与垂直 设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 a b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=.27.线段的定比分公式 设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+⇔12(1)OP tOP t OP =+-(11t λ=+). 28.三角形的重心坐标公式 △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 29.点的平移公式 ''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ (图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k ). 30.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈ (5)b a b a b a +≤+≤-31.极值定理 已知y x ,都是正数,则有(1)如果积xy 是定值p ,那么当y x =时和y x +有最小值p 2;(2)如果和y x +是定值s ,那么当y x =时积xy 有最大值241s .32.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间. 121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.33.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-. 34.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩. 35.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>; ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩36.斜率公式 2121y y k x x -=-(111(,)P x y 、222(,)P x y ). 37.直线的四种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)一般式 0Ax By C ++=(其中A 、B 不同时为0).38.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+①121212,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; 39.夹角公式 2121tan ||1k kk k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)12211212tan A B A B A A B B α-=+(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l⊥时,直线l 1与l 2的夹角是2π. 40.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=).41. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).42.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.43.椭圆22221(0)x y a b a b +=>>焦半径公式 )(21c a x e PF +=,)(22x c a e PF -=.44.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.45.抛物线px y 22=上的动点可设为P ),2(2y py或或)2,2(2pt pt P P (,)x y ,其中22y px =.46.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-;(3)准线方程是2414ac b y a--=.47.直线与圆锥曲线相交的弦长公式AB=1212|||AB x x y y ==-=-(弦端点A ),(),,(2211y xB y x ,由方程⎩⎨⎧=+=0)y ,x (F bkx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率). 48.圆锥曲线的两类对称问题:(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B++++--=++. 49.“四线”一方程 对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y+代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.50.共线向量定理 对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .51.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++, 则四点P 、A 、B 、C 是共面⇔1x y z ++=. 52. 空间两个向量的夹角公式 cos 〈a ,b 〉=(a =123(,,)a a a ,b =123(,,)b b b ).53.直线AB 与平面所成角sin||||AB marc AB m β⋅=(m 为平面α的法向量).54.二面角l αβ--的平面角cos ||||m n arc m n θ⋅=或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).55.设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=. 56.若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+(当且仅当90θ=时等号成立).57.空间两点间的距离公式 若A 111(,,)x y z ,B 222(,,)x y z ,则 ,A B d =||AB AB AB =⋅=58.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA ,向量b =PQ ).59.异面直线间的距离 ||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).60.点B 到平面α的距离 ||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈).61.异面直线上两点距离公式 d =(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =). 62. 2222123l l l l =++222123cos cos cos 1θθθ⇔++=(长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、)(立几中长方体对角线长的公式是其特例).63. 面积射影定理 'cos S S θ=(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 64.欧拉定理(欧拉公式) 2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F)65.球的半径是R ,则其体积是343V R π=,其表面积是24S R π=.66.分类计数原理(加法原理)12n N m m m =+++.67.分步计数原理(乘法原理)12n N m m m =⨯⨯⨯.68.排列数公式 m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).69.排列恒等式 (1)1(1)m m n n A n m A -=-+;(2)1m mn n n A A n m-=-;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-;(5)11m m m n n n A A mA -+=+. 70.组合数公式 mnC =m n m mA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ,m ∈N *,且m n ≤).71.组合数的两个性质(1) m n C =mn n C - ;(2) m n C +1-m n C =m n C 1+72.组合恒等式(1)11m m n n n m C C m --+=;(2)1m m n n n C C n m -=-;(3)11mm nn n C C m--=; (4)∑=nr rn C 0=n 2;(5)1121++++=++++r n r n r r r r r r C C C C C .73.排列数与组合数的关系是:m mn n A m C =⋅! .74.二项式定理 nn n r r n r n n n n n n nn b C b a C b a C b a C a C b a ++++++=+--- 222110)( ; 二项展开式的通项公式:rr n r nr b a C T -+=1)210(n r ,,, =. 75.等可能性事件的概率()m P A n=. 76.互斥事件A ,B 分别发生的概率的和P(A +B)=P(A)+P(B).77.n 个互斥事件分别发生的概率的和P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ).78.独立事件A ,B 同时发生的概率P(A ·B)= P(A)·P(B). 79.n 个独立事件同时发生的概率 P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ).80.n 次独立重复试验中某事件恰好发生k 次的概率()(1).k kn k n nP k C P P -=- 81.离散型随机变量的分布列的两个性质:(1)0(1,2,)i P i ≥=;(2)121P P ++=.82.数学期望1122n n E x P x P x P ξ=++++83.数学期望的性质:(1)()()E a b aE b ξξ+=+;(2)若ξ~(,)B n p ,则E np ξ=. 84.方差()()()2221122n n D x E p x E p x E p ξξξξ=-⋅+-⋅++-⋅+85.标准差σξ=ξD .86.方差的性质(1)()22()D E E ξξξ=-;(2)()2D a b a D ξξ+=;(3)若ξ~(,)B n p ,则(1)D np p ξ=-.87.正态分布密度函数()()()222,,x f x x μσ--=∈-∞+∞式中的实数μ,σ(σ>0)是参数,分别表示个体的平均数与标准差.88.标准正态分布密度函数()()22,,x f x x -=∈-∞+∞.89.对于2(,)N μσ,取值小于x 的概率()x F x μσ-⎛⎫=Φ ⎪⎝⎭.()()()12201x x P x x P x x x P <-<=<<()()21F x F x =- 21x x μμσσ--⎛⎫⎛⎫=Φ-Φ ⎪ ⎪⎝⎭⎝⎭.90.回归直线方程 y a bx =+,其中()()()1122211n ni i i i i i nn i i i i x x y y x y nx y b x x x nx a y bx====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑. 91.相关系数 ()()niix x y y r --=∑ ()()niix x y y --=∑|r|≤1,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.92.特殊数列的极限 (1)0||1lim 11||11n n q q q q q →∞<⎧⎪==⎨⎪<=-⎩不存在或.(2)1101100()lim ()()k k k k tt t n t t kk t a n a n a a k t b n b n b b k t ---→∞-⎧<⎪+++⎪==⎨+++⎪⎪>⎩不存在 .(3)()111lim11nn a q a S q q→∞-==--(S 无穷等比数列}{11n a q - (||1q <)的和).93.0lim ()x x f x a →=⇔00lim ()lim ()x x x x f x f x a -+→→==.这是函数极限存在的一个充要条件.94.函数的夹逼性定理 如果函数f(x),g(x),h(x)在点x 0的附近满足:(1)()()()g x f x h x ≤≤;(2)0lim (),lim ()x x x x g x a h x a →→==(常数),则0lim ()x x f x a →=.本定理对于单侧极限和∞→x 的情况仍然成立.95.两个重要的极限 (1)0sin lim 1x x x →=;(2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭(e=2.718281845…). 96.)(x f 在0x 处的导数(或变化率或微商)00000()()()limlim x x x x f x x f x yf x y x x=∆→∆→+∆-∆''===∆∆. 97.瞬时速度00()()()lim limt t s s t t s t s t t tυ∆→∆→∆+∆-'===∆∆. 98.瞬时加速度00()()()lim limt t v v t t v t a v t t t∆→∆→∆+∆-'===∆∆. 99.)(x f 在),(b a 的导数()dy df f x y dx dx ''===00()()lim limx x y f x x f x x x∆→∆→∆+∆-==∆∆. 100.函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.101.几种常见函数的导数 (1) 0='C (C 为常数). (2) '1()()n n x nx n Q -=∈. (3) x x cos )(sin ='. (4) x x sin )(cos -='.(5) x x 1)(ln =';ea x xa log 1)(log ='. (6) x x e e =')(; a a a x x ln )(='.102.复合函数的求导法则 设函数()u x ϕ=在点x 处有导数''()x u x ϕ=,函数)(u f y =在点x 处的对应点U 处有导数''()u y f u =,则复合函数(())y f x ϕ=在点x处有导数,且'''x u x y y u =⋅,或写作'''(())()()x f x f u x ϕϕ=.103.可导函数)(x f y =的微分dx x f dy )('=. 104.,a bi c di a c b d +=+⇔==.(,,,a b c d R ∈)105.复数z a bi =+的模(或绝对值)||z =||a bi +106.复数的四则运算法则(1)()()()()a bi c di a c b d i +++=+++; (2)()()()()a bi c di a c b d i +-+=-+-;(3)()()()()a bi c di ac bd bc ad i ++=-++;(4)2222()()(0)ac bd bc ada bi c di i c di c d c d +-+÷+=++≠++.107.复平面上的两点间的距离公式12||d z z =-=(111z x y i =+,222z x y i =+).108.向量的垂直 非零复数1z a bi =+,2z c di =+对应的向量分别是1OZ ,2OZ ,则12OZ OZ ⊥⇔12z z ⋅的实部为零⇔21z z 为纯虚数⇔2221212||||||z z z z +=+ ⇔2221212||||||z z z z -=+⇔1212||||z z z z +=-⇔0ac bd +=⇔12z iz λ= (λ为非零实数).109.实系数一元二次方程的解 实系数一元二次方程20ax bx c ++=,①若240b ac ∆=->,则1,22b x a -±=;②若240b ac ∆=-=,则122bx x a==-;③若240b ac ∆=-<,它在实数集R 内没有实数根;在复数集C 内有且仅有两个共轭复数根240)x b ac =-<.。