铸造工艺参数
压铸件铸造工艺参数计算表
280t
V2快冲头速度≥ 速度
MAX 630t 4.2
400t
≥
140.5
22
、
V内of快 =
内浇口速度 =V冲头*S冲头/S内浇口
= 1873.73
35 3/1产品重量= 231 14 3/1产品体积= 92.4
cm cm cm cm s mm s cm/s
cm/s cm/s
小产品偏下限 >9cm??
=
、 26 、
27
内浇口宽(全部)=
选用压铸机= V内MAX =
F锁=KSp 160 t
S投 影 0
280 t
60
cm2 0
1模 X4件00 t
2 0
、28 铝合金保温温度=
ห้องสมุดไป่ตู้
如果20模后,产品有冷隔,请+10℃
=
= 630 t
=
2.1 1.7 2.1 0.90 2.4 161 5600 620
cm2 cm2 cm2 cm cm
压铸件铸造工艺参数计算表
产品图号/ 版本
01.01(Z)
产品名称
上盖
NO.
参数
计算公式or参数表
计算值
单位
备注
1、
1模X件
2、
ρAl液 =
=
1
=
2.5
件 g/cm3
手工输入 常数
3、 料缸直径(预设)=
料缸孔直径
40 45 50 55 60 65 =
6
cm
4、 冲料头缸放面料积缸(预口设长)度= (红色规格优先) 70 80 90 100 110 120 =
产品总重量毛坯件重量浇道重量渣包溢流重量31产品重量10产品总体积毛坯件体积浇道体积溢流体积31产品体积11出品率12充满度充满度4075为宜液态总体积料缸总体积13充满度100处q18xq9x1q1814s快启动点1xs1v浇q5v慢1500515s快启动点2防止慢速溢料浇道体积取0616s增压启动点冲头行走17慢压射时间18产品平均壁厚t填增加30保险系数理论t填充时间取015ms不易紊流卷气21v2快冲头速度设备速度max22验证t填是否ok
铸造工艺评定报告
铸造工艺评定报告1. 引言铸造工艺评定是指通过对铸件质量、工艺参数以及生产工艺进行评估,确定合适的铸造工艺,以保证最终产品的质量和性能。
本报告旨在对某一特定铸造工艺进行评定,并提出改进建议。
2. 工艺参数分析在铸造过程中,工艺参数是影响铸件质量的关键因素之一。
我们将分析以下几个常用的工艺参数:2.1 浇注温度浇注温度对铸件的凝固过程和终态组织有着重要影响。
通过对浇注温度进行试验和分析,我们可以确定最适合的温度范围。
2.2 浇注速度浇注速度直接影响到铸件的充型过程和热传导情况。
通过控制浇注速度,我们可以避免缩孔、夹杂等缺陷的产生。
2.3 浇注时间浇注时间是指从开始浇注到浇注结束的时间间隔。
恰当的浇注时间可以保证铸件内部的气体逸出,减少气孔的形成。
2.4 保持压力保持压力是指在浇注结束后,持续施加压力以保证铸件形状的稳定性。
合适的保持压力可以避免铸件变形和收缩。
3. 铸件质量评估铸件质量是铸造工艺评定的重要指标之一。
我们将对铸件的几个关键质量指标进行评估:3.1 表面质量表面质量直接影响到铸件的外观和表面处理效果。
我们将进行目测和触感的评估,以确定铸件表面的光滑度和质感。
3.2 尺寸精度尺寸精度是指铸件与设计要求尺寸之间的偏差程度。
我们将使用测量工具对铸件的尺寸进行量测,并与设计要求进行对比。
3.3 内部缺陷内部缺陷是指铸件内部可能存在的气孔、夹杂等缺陷。
我们将使用X射线或超声波等无损检测方法对铸件进行检测,以确定内部缺陷情况。
4. 工艺改进建议在对铸造工艺进行评定的基础上,我们提出以下几点工艺改进建议:4.1 调整浇注温度与速度根据实验结果,我们建议适当降低浇注温度,并增加浇注速度,以减少铸件的凝固时间,并避免缩孔和夹杂的产生。
4.2 优化浇注时间根据浇注时间的评估结果,我们建议适当延长浇注时间,以保证铸件内部气体的逸出,减少气孔的形成。
4.3 加强保持压力控制根据铸件质量评估的结果,我们建议增加保持压力的施加时间,并加强对保持压力的控制,以减少铸件变形和收缩。
铸造工艺方案
铸造工艺方案1. 简介铸造是一种重要的制造工艺,主要通过将熔化后的金属或合金倒入模具中,经凝固、凝固和冷却过程,制造出所需的零件或产品。
铸造工艺方案是指针对特定产品和材料,制定的一套铸造工艺流程和参数,旨在保证零件质量和生产效率。
2. 工艺流程通常,铸造工艺包括以下几个主要步骤:2.1 模具制备模具是铸造过程中用于容纳熔化金属的形状工具。
根据产品的设计和要求,选择合适的模具,并确保其具有足够的强度和耐磨性。
常用的模具材料包括铸铁、钢等。
2.2 材料准备根据产品的要求,选择适合的金属或合金作为铸造材料。
根据材料的成分和比例,进行合金配料和坩埚熔炼,确保熔化金属的化学成分符合要求。
2.3 熔化和浇注将准备好的铸造材料放入熔炉中进行熔化。
根据不同的金属,选择适当的熔炉和熔炼工艺。
熔化后的金属通过浇注系统,倒入模具中。
2.4 凝固和冷却在模具中倒入的熔化金属逐渐凝固。
根据不同的工艺和产品要求,控制凝固过程中的温度和时间,以保证零件的结构和机械性能。
2.5 脱模和后处理经过一定的凝固和冷却时间后,零件可以从模具中取出。
根据需要,进行去毛刺、修整、退火等后处理工艺,以提高零件的表面质量和性能。
3. 工艺参数铸造工艺方案中的参数设置对于零件的品质和生产效率具有重要影响。
以下是一些常见的工艺参数:•浇注温度:熔化金属的温度,根据金属的熔点和浇注系统的特点确定;•浇注速度:控制熔化金属流动的速度,避免产生气孔和缺陷;•浇注压力:在一些特殊情况下,通过施加压力,改善金属的凝固结构;•凝固时间:根据零件的尺寸和凝固速率,确定零件在模具中的冷却时间;•冷却介质:通过选择适当的冷却介质,加速零件的冷却过程;•后处理工艺:根据产品的要求,选择合适的去毛刺、退火等工艺,提高零件的性能。
4. 质量控制在铸造过程中,质量控制是至关重要的,以确保生产出符合要求的零件。
以下是一些常用的质量控制措施:•材料检验:对铸造材料进行化学成分和物理性能的检验,确保其符合标准;•模具检查:检查模具的磨损和变形情况,及时进行维修和更换;•熔炼质量控制:对熔炼过程中的温度、时间和熔化金属的化学成分进行监控;•壳材质量检验:对制作壳材的材料和工艺进行检验,确保壳材的质量和性能;•零件外观检查:对铸造零件的表面和尺寸进行检查,确保不存在缺陷和变形;•机械性能测试:通过拉伸试验、硬度测试等手段,评估铸件的机械性能。
铸造生产工艺参数包括
铸造生产工艺参数是指在进行铸造过程中需要控制和调整的一系列参数,以确保产品质量和生产效率。
以下是一些常见的铸造生产工艺参数:
1.浇注温度:指熔融金属或合金从炉中倒入铸型的温度。
合适的浇注温度能够保证流动性、
充填性和凝固性。
2.浇注速度:指铸液从浇口进入铸型的速度。
过高的浇注速度可能引起气孔、缩松等缺陷,
而过低的浇注速度可能导致充填不完全。
3.砂型湿度:指用于制备砂型的砂料中所含水分的含量。
适当的砂型湿度可以提高模型的
强度和表面光滑度。
4.压实压力:指用于压实砂型的压力大小。
正确的压实压力能够增加砂型的密实度和强度,
以提高铸件的表面质量和尺寸精度。
5.凝固时间:指从浇注到铸件完全凝固所需的时间。
准确控制凝固时间可以避免铸件缺陷,
如热裂纹和收缩缺陷。
6.浇注系统设计:包括浇口、冒口、喷杆等组成的铸造系统。
合理的浇注系统设计可以确
保铸液均匀充填铸型,并有助于减少气孔和杂质的产生。
7.砂芯制备参数:对于需要内部空腔的铸件,砂芯的制备是必要的。
砂芯制备参数包括砂
芯的湿度、压实力度和固化时间等。
8.热处理参数:针对某些合金铸件,热处理过程是必要的,如退火、淬火等。
热处理参数
包括温度、保温时间和冷却速率等。
这些参数在铸造生产中相互关联,需要根据具体铸件的形状、材料和工艺要求进行调整和控制,以保证最终产品的质量和性能。
铸造工艺参数及在工艺图中的表示方法
工艺补正量在工艺图中的表示方法:
6、分型负数
因起模后的修型和烘干引起砂型变形,致使分型 面凹凸不平,使合型不严密。为防止浇注时从分型 面跑火,合型时需在分型面上放耐火泥条或石棉绳, 这就增高了型腔的高度。为了保证铸件尺寸合图样 尺寸要求,模样上必须减去相应的高度,减去的数 值称为分型负数。
1)、若模样分为两半,且上、下两半是对称的, 则分型负数在上、下模样上各取一半,否则,分型 负数应在截面大的一侧模样上取。
起模斜度的设置方法:常采用增加壁厚法,对于加
工面一般采用增加壁厚的方法获得起模斜度,起模斜度 在加工余量后做出;加减厚度法,一般用各种铸筋,也 用于壁厚较小的模样侧面的起模斜度;减小壁厚法,一 般用于铸件壁厚较大的模样的起模斜度。
4、最小铸出孔
机械零件上往往有很多孔、槽和台阶,一般应尽 可能在铸造时铸出。这样既可以节约金属,减少机 械加工的工作量、降低成本,又可使铸件壁厚比较 均匀,减少形成缩孔、缩松等铸造缺陷的倾向。但 是,当铸件上的孔、槽尺寸太小,而铸件的壁厚又 较厚和金属压力较高时,反而会使铸件产生粘砂, 造成清理和机械加工困难。有的孔、槽必须采用复 杂而且难度较大的工艺措施才能铸出,而实现这些 措施还不如用机械加工方法制出更为方便和经济。 有时由于孔距要求很精确,铸出的孔如有偏心,就 很难保证加工精度。因此在确定零件上的孔和槽是 否铸出时,必须既考虑到铸出这些孔或槽的可能性, 又要考虑到铸出这些孔或槽的必要性和经济性。
一、铸造工艺参数及在工 艺图中பைடு நூலகம்表示方法
铸造工艺参数通常包括加工余量、铸件线收 缩率、起模斜度、最小铸出孔的尺寸、工艺补正 量、分型负数、反变形量、分芯负数,这些参数 的选择是否恰当,对铸件质量、生产率和原材料 消耗都有很大的影响。
铸造工艺参数及在工艺图中的表示方法
一般中小铸件壁厚差别不大且结构上刚度 较大时,不必留反变形。大的床身类、平台 类等多使用反变形量。
8、分芯负数
对于分段制造的长砂芯或分开制作的大砂 芯,在接缝处应留出分芯间隙量,即在砂芯 的分开处,将砂芯尺寸减去间隙尺寸,被减 去的尺寸称为分芯负数。分芯负数是为了砂 芯拼合及下芯方便而采用的。分芯负数可以 留在相邻的两个砂芯上,每个砂芯各留一半; 也可留在指定的一侧的砂芯上。分芯负数根 据砂芯接合面的大小一般留1-3mm。分芯负 数多用于手工制芯的大砂芯。
在工艺图中,加工量的表示方法
2、铸件线收缩率
铸件从线收缩起始温度冷却至室温时,线尺 寸的相对收缩量称为铸件线收缩率。以模样与铸 件的长度差占模样长度的百分率表示:铸造收缩 率 K=(L模-L件)/L件X100% 式中 :L模 为模样的尺寸; L件 为铸件的尺寸。 铸件线收缩率受许多因素的影响,例如,合 金的种类及成分、铸件冷却、收缩时受到阻力的 大小、冷却条件的差异等,因些,要十分准确的 给出 铸件的线收缩率是非常困难的。当铸件处于 自由收缩状态时线收缩率较大,当铸件不能自由 收缩时线收缩率较小。
二、工艺图中的铸造工艺符号表示 方法及含义
1、分型、分模线
2、吊胎
3、拉筋、收缩筋
为防止铸件产生裂纹或变形,常在铸件易 产生裂纹的地方设置拉筋或收缩筋。为防止 铸件产生裂纹的叫收缩筋;为防止铸件产生 变形的叫拉筋。
4、模型上活块
5、砂芯编号及其芯头边界
砂芯编号:一律用蓝色线表示,在阿拉伯数字 右上角标有“#”符号,在其完整编号下面划一横线 (不可见芯子下面画虚线),即表示一个芯的编号, 如 1#、2#…… 编号顺序:芯子编号顺序通常为下芯顺序,如 在其大芯上组装有另外小芯,其小芯的编号是在其 大芯基础上,在阿拉伯数字右下角标小写的汉语拼 音,即表示芯子的编号,如1a#芯、2a#……,如其 芯为覆膜砂芯、钢管芯、耐火管芯、铁芯,则需在 工艺章中注明 芯头边界:砂芯全部用蓝色线表示,其外型芯头 部分用红色线表示;如果是两个互相装配的砂芯边 界应全部用蓝色线表示。
压铸工艺参数公式
∙压铸工艺参数公式∙铸造计算公式1.铸造重量WC=W件+W溢+W排+W浇+W馀铸造容积4WC/ ρ——熔液密度2.填充率R= ———————— = ————————料筒容积πD2L筒长3.通过浇口重量Wf = W件+W溢4 Wf4.高速区间Sf = —————————(※溶汤比重一般而言为铝 2.64、ρπd料 2 镁 1.75g/cm2)Sf5.高速速度VH` = ————————tf——填充时间tf = 0.01X2铸件平均壁厚6.压铸机的射出力Fs(射出油缸的推进力)Fs=油压压力Ph ×射出油缸截面积Ah(KN)7.铸造压力Pp(传递到制品的压力)射出油缸截面积Ah 射出力FsPp=油压压力Ph × =柱塞截面积Ap 柱塞截面积Ap8.内浇口速度VgVg(V2)= 射出速度Vp(V1) ×柱塞截面积Ap(A1)(m/s)浇口截面积Ag(A2)9.充填时间tt= 制品体积= 制品重量/比重(sec)浇口流量浇口速度Vg×浇口截面积Ag10.浇口凝固时间t =B×α×(浇口厚度)2此时的B 为Al:2.0、Mg:1.5 α为Al:0.01、Mg:0.00511.开模力是指铸造时施加在制品上的压力而使模具打开的力量,开模力可以铸造面积×铸造压力计算出。
11.1.铸造面积的计算铸造面积A1=a1+a2+a3+a4=料饼面积+浇道面积+制品面积+溢流面积11.2.开模力的计算开模力F1=铸造压力Pp×铸造面积A1+中子分力Fc详细计算以各部分承受的压力分类。
制品部=计算铸造压力× 75%溢流部=计算铸造压力× 25%料饼,浇道部=计算铸造压力×100%11.3.如有滑块中子,则计算中子分力。
中子复位力Fr=制品面积Ac×计算铸造压力×75%中子分力Fc=中子复位力Fr×tanθ11.4.开模力F1=(a1+a2)×Pp+a3×Pp×0.75+a4×Pp×0.25+Fc压铸机关模力>开模力F1×1.112.充填完了力量冲突力量E =W(V)2/2gW : 射出油缸活塞杆+活塞杆重量kgV : 射出速度m/sg : 重力加速度9.8 m/sec2。
铸造工艺参数及在工艺图中的表示方法
13、冷铁
用蓝色线表示,在需要放置冷铁处画 并 注明冷铁编号(无编号的注明尺寸大小)、 数量
14、浇注系统
工艺图中绘制浇注系统用红色线表示 示例如下:
15、铸造工艺图章
铸件毛重:包含加工余量的铸件重量(首件为计算的理论重 量)
造型方法:手工、手工木底板、手工铁底板、GFA线、气冲 线等
一般中小铸件壁厚差别不大且结构上刚度 较大时,不必留反变形。大的床身类、平台 类等多使用反变形量。
8、分芯负数
对于分段制造的长砂芯或分开制作的大砂
芯,在接缝处应留出分芯间隙量,即在砂芯 的分开处,将砂芯尺寸减去间隙尺寸,被减 去的尺寸称为分芯负数。分芯负数是为了砂 芯拼合及下芯方便而采用的。分芯负数可以 留在相邻的两个砂芯上,每个砂芯各留一半; 也可留在指定的一侧的砂芯上。分芯负数根 据砂芯接合面的大小一般留1-3mm。分芯负 数多用于手工制芯的大砂芯。
编号顺序:芯子编号顺序通常为下芯顺序,如 在其大芯上组装有另外小芯,其小芯的编号是在其 大芯基础上,在阿拉伯数字右下角标小写的汉语拼 音,即表示芯子的编号,如1a#芯、2a#……,如其 芯为覆膜砂芯、钢管芯、耐火管芯、铁芯,则需在 工艺章中注明
芯头边界:砂芯全部用蓝色线表示,其外型芯头 部分用红色线表示;如果是两个互相装配的砂芯边 界应全部用蓝色线表示。
在工艺图中,加工量的表示方法
2、铸件线收缩率
铸件从线收缩起始温度冷却至室温时,线尺 寸的相对收缩量称为铸件线收缩率。以模样与铸 件的长度差占模样长度的百分率表示:铸造收缩 率 K=(L模-L件)/L件X100%
式中 :L模 为模样的尺寸; L件 为铸件的尺寸。
铸件线收缩率受许多因素的影响,例如,合 金的种类及成分、铸件冷却、收缩时受到阻力的 大小、冷却条件的差异等,因些,要十分准确的 给出 铸件的线收缩率是非常困难的。当铸件处于 自由收缩状态时线收缩率较大,当铸件不能自由 收缩时线收缩率较小。
铸造工艺参数及在工艺图中的表示方法
智能化技术在铸造工艺参数优化中的应用
人工智能
人工智能技术可用于分析大量历史数据,通过机器学习 算法找出最佳的工艺参数组合,提高铸造质量和效率。
实时监控
通过传感器和监控系统,实时监测铸件在生产过程中的 状态,并将数据反馈给控制系统,自动调整工艺参数, 实现智能化控制。
绿色铸造对工艺参数的要求
环保材料
03 铸ቤተ መጻሕፍቲ ባይዱ工艺图中的参数表示 方法
符号与标记
铸造符号
用于表示铸造工艺中的各种特征和要求,如冒口、浇口、分 型面等。
尺寸标注
标注铸造零件的尺寸和公差,以确保铸造出的零件满足设计 要求。
工艺流程图
铸造工艺流程图
详细描述了从原材料到成品零件的整 个铸造工艺过程,包括熔炼、浇注、 冷却、清理等步骤。
铸造工艺流程图的作用
帮助铸造工程师和操作人员了解和掌 握整个铸造工艺过程,确保铸造出的 零件满足质量要求。
铸造工艺简图
铸造工艺简图
用简化的图形表示铸造工艺中的关键 部分和要求,如浇注系统、冒口、分 型面等。
铸造工艺简图的作用
帮助工程师快速了解和评估铸造工艺 的可行性和合理性,为优化铸造工艺 提供参考。
铸造工艺参数表格
采用环保材料,如生物可降解塑料等,以减少铸造过 程中的环境污染。
节能减排
优化工艺参数,降低能耗和减少废弃物排放,如采用 低能耗的熔炼技术、回收再利用废弃物等措施,实现 绿色铸造。
THANKS FOR WATCHING
感谢您的观看
持续改进
通过不断调整和优化,实现铸造工艺的持续改进和提升。
参数调整的注意事项
参数相关性
01
注意铸造工艺参数之间的相关性,避免因单一参数调整导致其
影响压铸件质量的主要工艺参数
影响压铸件质量的主要工艺参数影响压铸件质量的主要工艺参数包括:1. 压铸工艺温度:压铸件在铸造过程中需要加热熔化金属材料,温度是影响铸件质量的重要因素。
如果温度过高,会导致熔融金属过热,容易产生气孔、缩松等缺陷;如果温度过低,会使铸件成型不完全,表面质量差,容易出现可见缺陷。
2. 压铸压力:压铸压力直接影响到铸件的密度和凝固过程。
过高的压力会使得铸件的细小部分压缩不够,导致铸件中出现气孔、缩松等缺陷;过低的压力则会造成铸件形状不完美,容易产生气孔、翘曲等问题。
3. 注射速度:注射速度是指金属材料进入模具中的速度。
过快的注射速度会导致金属材料冲击力大,易引起气门过冲、表面润色不均等问题;过慢的注射速度则会导致凝固时间过长,容易产生热裂、夹杂等缺陷。
4. 冷却时间:冷却时间是指铸件在模具中冷却至一定温度的时间。
冷却时间过短会导致铸件内部温度分布不均,容易产生热裂、夹杂等缺陷;冷却时间过长则会使生产率降低,成本增加。
5. 模具温度:模具温度直接影响到铸件的凝固速度和整体质量。
模具温度过高会导致金属熔化过快,铸件表面质量较差;模具温度过低则会导致凝固时间延长,生产效率低下。
6. 浇注系统设计:浇注系统包括喷嘴、导槽、浇注口等部分,直接影响到金属材料进入模具的流动性和冷却性能。
如果浇注系统设计不合理,易产生气孔、错流、夹杂等缺陷。
总之,以上主要工艺参数都会对压铸件的质量产生重要影响。
为了获得高质量的压铸件,需要在生产过程中合理控制这些参数,并确保每个参数都处于最佳范围内。
影响压铸件质量的主要工艺参数是压铸生产中非常重要的一环。
通过合理控制这些参数,可以有效地提高压铸件的质量,确保其达到设计要求。
首先,压铸工艺温度是影响压铸件质量的关键参数之一。
合适的温度可以保证金属材料完全熔化,使金属液体顺利流入模具中,并在合适的速度冷却凝固,从而获得高密度、无缺陷的铸件。
如果温度过高,会使金属液体过热,容易产生气孔、缩松等缺陷;相反,如果温度过低,会导致铸件成型不完全,表面质量差,容易出现可见缺陷。
铸造工艺设计参数
如何判断铸件的变形方向? 铸件冷却缓慢的一侧必定受拉应力而产生内凹变形 冷却较快的一侧必定受压应力而发生外凸变型
例如 各种床身导轨处都较厚大,因此轨面总是产生下凹变形
再如下图所示箱体,壁厚虽均匀,但内部冷却慢,外部冷却 快,因此壁发生向外凸出变形,模样反变形量应向内侧凸起
>1~4
- 3 4 5 6 8 10 12 14 16 18 20 24 - - -
>4~10
- 2 3 4 5 6 8 10 12 14 16 18 20 24 - -
>10~40
- - 2 3 4 5 6 8 10 12 14 16 18 20 24 -
>40~100
- - - 2 3 4 5 6 8 10 12 14 16 18 20 24
加工余量和尺寸公差的关系 最小加工量等于加工余量减去铸件尺寸的下偏差
影响加工余量的主要因素有:
铸造合金种类 铸造工艺方法 生产批量 设备及工装的水平
加工表面所处的浇注位置(顶、 底、侧面)
铸件基本尺寸的大小 和结构
选取加工余量图例
四、铸造收缩率
铸造收缩率K的定义是
K = L M - L J ×100 %
严格工艺过程的管理 提高操作水平
铸件基本尺寸即铸件图上给定的尺寸,应包括机械加工余量。
公差带应对称分布,有特殊要求时,也可非对称分布, 并应在图样上注明或技术文件中规定。
壁厚尺寸公差一般可降低一级
例如:图样上一般尺寸公差为CT10级,则壁厚尺寸公差为CT11级。在图样 上采用公差等级代号标注,如GB6414-86CT10
2、铸件的基本尺寸小于或等于16mm时,CT13至CT16的公差值需单独标注,可提高2~3级
铸造工艺经常用参数
水玻璃硅砂型铸钢件收缩率
铸件长度(m)δ—铸件壁厚(mm)
铸件涨箱增重率(%)(适用于硅砂砂型)
一般规定上型的泥芯头斜度为1:5(或10),下型的泥芯头斜度为1:10(或5);上下对称的泥芯,上下芯头斜度均为1:5(或10o)。
钢包包孔流速参数
浇注系统各部分直径和数量的确定(单位:mm)
冒口根部圆角及冒口座高
钢水在铸型中的上升速度(单位mm/s)
注:(1)表中数值适用于一般情况下的铸件。
浇注位置较高的铸件,浇注速度应按表适当增加,浇注位置较低的板形件,上升速度可按表适当降低。
(2)立浇砧座的浇注钢水上升速度可按表中复杂件数值选取。
(3)齿轮类铸件的浇注钢水上升速度可按表中简单件数值选取。
(4)平板、平台类铸件的浇注钢水上升速度可按表中简单件数值降低20-30%选取。
(5)大型合金钢铸件或试压件的浇注钢水上升速度可按表中相应数值增加30-50%选取。
半齿圈拉筋:拉筋的厚度为设拉筋处铸件厚度的40%-60%,宽度为拉筋厚度的1.5-2倍。
洛矿5米以下用150x150;5-7米用180x180;7米以上用200x200。
去压铁载荷时间
分型负数的选择
备注1.盖芯造型,上面全加工的,不给分型负数。
2.水玻璃砂、“70”砂进炉干燥的不给。
3.分型负数只在主型上作出,而处于分型面的泥芯间隙量不能小于分型负数。
4.根据铸件具体形状,具体决定分型负数用与不用或减少。
拔模斜度的选择
芯盒内筋板的拔模斜度。
铸造工艺说明书
铸造工艺说明书第一章:引言铸造工艺是一项广泛应用于工程领域的制造技术,通过将熔融金属或合金注入到模具中,使其冷却凝固,并最终制成所需产品。
本说明书将详细介绍铸造工艺的操作步骤、工艺参数以及注意事项,以便操作人员能够正确、安全地进行铸造生产。
第二章:工艺流程2.1 模具准备在进行铸造之前,需要准备好适合产品尺寸和形状的模具。
模具可以由金属、木材、陶瓷等材料制成,必须具备足够的强度和耐磨性。
2.2 熔炼金属选择合适的金属或合金材料,并将它们放入熔炉中进行熔炼。
在熔炉中,要控制好熔炼温度和保持合金的均匀性。
2.3 模具喷涂与预热在将熔融金属注入模具之前,需要对模具进行喷涂以防止粘连,并对其进行适当的预热,以减少温度应力和提高铸件的质量。
2.4 熔融金属注入将熔融金属以适当的速度和流量注入模具中,注意保持注入的均匀性,避免气泡和杂质的产生。
2.5 冷却与凝固注入模具后,需要将其冷却至合适的温度使其凝固。
根据产品要求和金属性质,确定合适的冷却时间和冷却方法。
2.6 去除模具与后续处理待铸件完全凝固后,需将其取出模具,可以采用敲击、挤压或使用专用工具进行取模。
之后,可以进行热处理、喷砂、机加工等后续处理以得到符合要求的最终产品。
第三章:工艺参数3.1 熔炼温度不同材料对应不同的熔点,根据金属或合金的材质,设定适当的熔炼温度以保证材料完全熔化并维持其液态状态。
3.2 注入速度注入速度的控制对于铸件质量至关重要。
过快的注入速度可能引起气泡、渣滓的产生,而过慢则可能导致填充不充分。
根据铸件的形状和尺寸,确定合适的注入速度。
3.3 冷却时间冷却时间影响铸件的组织结构和力学性能。
过长的冷却时间可能导致产生内部应力和缺陷,而过短则可能导致铸件质量下降。
根据金属的特性和产品要求,设定合适的冷却时间。
3.4 预热温度预热温度能够减少模具表面的粘附和热应力,提高铸件表面的光洁度和质量。
根据模具材料和产品要求,确定合适的预热温度。
铸造工艺参数及在工艺图中的表示方法
工艺补正量在工艺图中的表示方法 :
6、分型负数
因起模后的修型和烘干引起砂型变形,致使分 型面凹凸不平,使合型不严密。为防止浇注时从分 型面跑火,合型时需在分型面上放耐火泥条或石棉 绳,这就增高了型腔的高度。为了保证铸件尺寸合 图样尺寸要求,模样上必须减去相应的高度,减去 的数值称为分型负数。
1)、若模样分为两半,且上、下两半是对称的 ,则分型负数在上、下模样上各取一半,否则,分 型负数应在截面大的一侧模样上取。
注:(1)、同一铸件,由于结构上的原因,其局部 与整体、纵向与径向或长、宽、高三个方向的铸造 收缩率可能不一致。对于重要铸件长、宽、高应分 别给以不同的铸造收缩率。对于收缩大的方向和部 位取上限值,反之取下限值。
(2)、对于手工造型的灰铸铁件和球墨铸铁小件可 以不留缩尺。
3、起模斜度
为使模样容易从铸型中取出或型芯自芯盒脱出, 平行于起模方向在模样或芯盒壁上的斜度称为起模 斜度。
在工艺图中,加工量的表示方法
2、铸件线收缩率
铸件从线收缩起始温度冷却至室温时,线尺 寸的相对收缩量称为铸件线收缩率。以模样与铸 件的长度差占模样长度的百分率表示:铸造收缩 率 K=(L模-L件)/L件X100%
式中 :L模 为模样的尺寸; L件 为铸件的尺寸。
铸件线收缩率受许多因素的影响,例如,合 金的种类及成分、铸件冷却、收缩时受到阻力的 大小、冷却条件的差异等,因些,要十分准确的 给出 铸件的线收缩率是非常困难的。当铸件处于 自由收缩状态时线收缩率较大,当铸件不能自由 收缩时线收缩率较小。
一般中小铸件壁厚差别不大且结构上刚度较大时
,不必留反变形。大的床身类、平台类等多使用反 变形量。
8、分芯负数
对于分段制造的长砂芯或分开制作的大砂芯, 在接缝处应留出分芯间隙量,即在砂芯的分开处, 将砂芯尺寸减去间隙尺寸,被减去的尺寸称为分芯 负数。分芯负数是为了砂芯拼合及下芯方便而采用 的。分芯负数可以留在相邻的两个砂芯上,每个砂 芯各留一半;也可留在指定的一侧的砂芯上。分芯 负数根据砂芯接合面的大小一般留1-3mm。分芯负 数多用于手工制芯的大砂芯。
铝合金铸造过程工艺参数
铝合金铸造是金属铸造领域的重要分支,广泛应用于航空、汽车、电子、建筑等各个行业。
一、浇注系统浇注系统是铝合金铸造过程中的重要组成部分,它包括浇口杯、直浇道、横浇道、内浇口等部分。
浇注系统的设计合理与否直接影响到金属液体的充型能力和充型速度。
在选择浇注系统时,需要根据铸件的结构和要求来选择合适的浇口杯形状、尺寸和位置,以及合理的直浇道和横浇道结构。
同时,还需要根据浇注速度和充型时间等因素来调整内浇口的尺寸和位置。
二、铝合金铸造的参数铝合金铸造的参数主要包括压铸压力、注射速度、模具温度和填充时间。
1. 压铸压力压铸压力也是影响铸件质量和性能的重要参数。
压铸过程中的压力由压力泵产生,作用在金属液体上的压力是获得结构致密、轮廓清晰的铸件的主要因素。
压铸压力的大小直接影响到金属液体的充型能力和压实程度。
过高的压铸压力可能导致金属液体过度流动,形成飞边等缺陷;而过低的压铸压力则可能导致金属液体无法充分填充型腔,形成缩孔等缺陷。
因此,选择合适的压铸压力可以保证金属液体的充型能力和压实程度,提高铸件的质量和性能。
2. 速度(1)压铸速度铝合金铸造的注射速度是指压铸过程中注射头的速度。
注射速度的设置应该根据具体的情况来决定。
注射速度分为慢速注射和快速注射,一般慢速为0.1~0.5M/S,快速一般为0.1~1.1M/S。
铸件壁厚越薄,注射速度越快,铸件形状越复杂,注射速度越快。
铸件的突出面越大,注射速度越快,铸球路径越长,注射速度越快。
(2)浇注速度浇注速度是影响铸件质量和性能的重要因素之一。
过快的浇注速度可能导致金属液体在充型过程中产生涡流和卷气等缺陷;而过慢的浇注速度则可能导致金属液体无法充分填充型腔,形成缩孔等缺陷。
因此,在铝合金铸造过程中,需要根据铸件的结构和要求来选择合适的浇注速度。
同时,还需要根据金属液体的流动性和充型能力等因素来调整内浇口的尺寸和位置。
3. 模具温度铝合金铸造的模具温度是影响铸件质量和性能的重要参数之一。
试论铸造工艺参数的确定
2.铸出孔和槽的大小
铸件上的加工孔是否铸出,从可能性、必要性、经济性方面考虑: 较大的孔、槽应当铸出,以减少切削量和热节,提高铸件力学性能。 较小的孔和槽不必铸出,留待以后加工更为经济。 当孔深与孔径比L/D >4时,也为不铸孔。 正方孔、矩形孔或气路孔深且直径小一般不铸出。 弯曲孔,当不能机械加工时原则上必须铸出。 正方孔、矩形孔的最短加工边必须大于30 mm才能铸出。
➢ 机械加工余量的具体数值取决于铸件的材料性质、造型方 法、加工要求、生产批量、铸件的结构的复杂程度和尺寸 及加工面在铸型中的位置等。
➢ 加工余量大 浪费金属 切去了晶粒细致性能较好的铸件 表层。
➢ 余量过小 制品会因残留黑皮而报废, 或者, 因铸件表层过 硬而加速刀具磨损 影响甚至达不到加工要求。
➢ 起模斜度的大小取决于: ➢立壁的高度、造型方法、模样材料等 ➢因素,通常为15’~3°。 ➢立壁愈高,斜度愈小; ➢ 机器造型应比手工造型小, ➢木模应比金属模斜度大。 ➢为使型砂便于从模样内腔中脱出、以形成自带型芯,内壁的 起模斜度应比外壁大,通常为3°~10°。
起模斜度形成方式: 增加厚度法、加减厚度法和减小厚度法。
增加铸件厚度
加减铸件厚度
图4-10 起模斜度的形式
减少铸件厚度
当侧面不加工时: 壁厚<8mm时,可采用增加壁厚法; 壁厚为8~16mm时,可采用加减壁厚法 壁厚>16mm时,可采用减小壁厚法
当铸件侧面需要加工时: 必须采用增加壁厚法; 加工表面上的起模斜度,应在加工余量的
基础上再给出斜度数值。
通常灰铸铁为0.7~1.0%, 铸造碳钢为0.3~2.0%, 铝硅合金为0.8~1.2%, 锡青铜为1.2~1.4%。
五、芯头及芯座
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属模制造
在大批生产中,广泛应用金属来制造模型, 制造金属模型的材料有铸铁,铜合金及 铝合金等。铝合金具有质轻,易加工和 不易锈蚀等特点。 金属模型采用钳工或机械加工方法 制造,用来制造金属模型的铸造毛坯, 需要有相应的木模(母模),母模应有 金属铸型和铸件的双重加工余量和收缩 率。
上
下
ห้องสมุดไป่ตู้
铸造工艺参数的确定
3、铸造圆角
R=( 1/3 ~1/5 ) ( a + b )/2
b
a
铸造工艺参数的确定 4、收缩率 灰口铸铁:0.7% ~ 1.0% 铸造碳钢:1.3 %~2.0% 铝硅合金:0.8 %~1.2% 有色合金:1.0% ~1.5%
型芯设计
垂直
水平
型芯头
下图
下图 下图 垂直型芯、水平型芯、悬臂型芯
铸造工艺图的绘制
7、冷铁:用绿线或蓝线画出,并表明“冷铁”及 其主要尺寸和编号 8、拔模斜度:用红线或文字表示。 9、铸造圆角:用文字表示。 10、冒口、补贴/出气口:用红线表示并表明主要 尺寸及编号。 11、其它参阅《铸造手册》
模型的制造
1、木模和芯盒的制造过程
1)画铸造工艺图 2)绘制木模图 3)准备坯料 4)坯料加工及装配 5)木模标记和涂漆
铸造工艺参数的确定
1、机械加工余量和最小铸出孔
铸件上为切削加工而加大的尺寸叫机械加工余量
δ1
δ2
余量大小查表选取 最小铸出孔:可能性/必要性(经济性,热节) **零件图上,不要求加工的孔、槽,均应铸出。
铸造工艺参数的确定
铸造工艺参数的确定 2、起模斜度 外壁-0.25º ~3º ,外壁-3º ~10º
型芯设计
型芯设计
铸造工艺图的绘制
1、分型面/浇注位置:用蓝线(或红线)和箭
头表示,加以汉字表示方向。 2、机械加工余量:用红线画出轮廓,剖面处用 红剖面线或全涂以红色表示。(数值用红字标
在加工符号上,若加工余量带有斜度,可用分数表 示。)
3、非铸出孔/槽:用红“ ”表示。剖面处用 红剖面线或全涂红色。 4、芯头和型芯:用蓝线画出芯头,并用 表示 5、浇注系统:用红线画出,并标注尺寸。 6、活块:用红笔注明“活块”及其形式和编号。