七年级几何图形初步单元测试卷(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学几何模型部分解答题压轴题精选(难)

1.综合题

(1)ⅰ问题引入

如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=________(用α表示);

ⅱ拓展研究

如图②,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,试求∠BOC的度数________(用α表示).

ⅲ归纳猜想

若BO、CO分别是△ABC的∠ABC、∠ACB的n等分线,它们交于点O,∠CBO=

∠ABC,∠BCO=∠ACB,∠A=α,则∠BOC=________(用α表示).

(2)类比探索

ⅰ特例思考

如图③,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,求∠BOC的度数________(用α表示).

ⅱ一般猜想

若BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,请猜想∠BOC=________(用α表示).

【答案】(1)90°+∠α;120°+∠α;

(2)120°-∠α; .

【解析】【解答】(1)ⅰ90°+∠α;

ⅱ如图②,∵∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,∴∠BOC=180°-(∠ABC+∠ACB)=180°-(180°-∠A)=180°-(180°-∠α)=180°-60°+∠α

=120°+∠α;

ⅲ;

( 2 )ⅰ如图③,∵∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,∴∠BOC=180°-(∠DBC+∠ECB)=180°- [360°-(∠ABC+∠ACB)]=180°- [360°-(180°-

∠A)]=180°-(180°+∠α)=180°-60°-∠α=120°-∠α.;

ⅱ .

【分析】(1)ⅰ根据角平分线的定义,可得出∠CBO=∠ABC,∠OCB=∠ACB,可得出∠CBO+∠OCB=(180°-∠A),再在△COB中,利用三角形内角和定理得出∠BOC=180°-(∠CBO+∠OCB),即可得出结果;ⅱ根据∠CBO=∠ABC,∠OCB=∠ACB,可得出∠CBO+∠OCB=(180°-∠A),再在△COB中,利用三角形内角和定理得出∠BOC=180°-(∠CBO+∠OCB),即可得出结果;ⅲ根据∠CBO=∠ABC,∠OCB=∠ACB,可得出∠CBO+∠OCB=(180°-∠A),再在△COB中,利用三角形内角和定理得出∠BOC=180°-

(∠CBO+∠OCB),即可得出结果。

(2)ⅰ根据∠CBO= ∠DBC,∠OCB= ∠ECB,可得出∠CBO+∠OCB=180°- (∠DBC+∠ECB),再根据平角的定义∠BOC=180°-[360°-(∠ABC+∠ACB)】,化简即可得出结果;根据∠CBO= ∠DBC,∠OCB= ∠ECB,可得出∠CBO+∠OCB=180°-

(∠DBC+∠ECB),再根据平角的定义∠BOC=180°-[360°-(∠ABC+∠ACB)】,化简即可得出结果。

2.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

(1)将图1中的三角板绕点O按每秒10°的速度沿逆时针方向旋转一周.在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求此时t的值为多少?

(2)将图1中的三角板绕点O顺时针旋转图2,使ON在∠AOC的内部,请探究:∠AOM 与∠NOC之间的数量关系,并说明理由.

【答案】(1)解:∵三角板绕点O按每秒10°的速度沿逆时针方向旋转,

∴第t秒时,三角板转过的角度为10°t,

当三角板转到如图①所示时,∠AON=∠CON

∵∠AON=90°+10°t,∠CON=∠BOC+∠BON=120°+90°﹣10°t=210°﹣10°t

∴90°+10°t=210°﹣10°t

即t=6;

当三角板转到如图②所示时,∠AOC=∠CON=180°﹣120°=60°

∵∠CON=∠BOC﹣∠BON=120°﹣(10°t﹣90°)=210°﹣10°t

∴210°﹣10°t=60°

即t=15;

当三角板转到如图③所示时,∠AON=∠CON= ,

∵∠CON=∠BON﹣∠BOC=(10°t﹣90°)﹣120°=10°t﹣210°

∴10°t﹣210°=30°

即t=24;

当三角板转到如图④所示时,∠AON=∠AOC=60°

∵∠AON=10°t﹣180°﹣90°=10°t﹣270°

∴10°t﹣270°=60°

即t=33.

故t的值为6、15、24、33.

(2)解:∵∠MON=90°,∠AOC=60°,

∴∠AOM=90°﹣∠AON,∠NOC=60°﹣∠AON,

∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°

【解析】【分析】(1)根据已知条件可知,在第t秒时,三角板转过的角度为10°t,然后按照OA、OC、ON三条射线构成相等的角分四种情况讨论,即可求出t的值;

(2)根据三角板∠MON=90°可求出∠AOM、∠NOC和∠AON的关系,然后两角相加即可求出二者之间的数量关系.

3.如图1, .如图2,点分别是上的点,且, .

(1)求证: F;

(2)若的角平分线与的角平分线交于点,请补全图形并直接写出与之间的关系为________.

【答案】(1)证明:如图,延长EH,交CD的延长线与M,

(2)∠BFE=2∠P.

【解析】【解答】解:(2)结论:∠BFE=2∠P,理由如下:

如图,设∠B=∠HEF=y.∠BFE=x

=

故答案为:∠BFE=2∠P.

【分析】(1)延长EH,交CD的延长线与M,根据平行线的性质及等量代换即可证明;

(2)设∠B=∠HEF=y,∠BFE=x,根据平行的性质结合三角形的内角和定理得出∠BFE=2∠P.

4.在△ABC中,∠A=60°,BD,CE是△ABC的两条角平分线,且BD,CE交于点F,如图所示,用等式表示BE,BC,CD这三条线段之间的数量关系,并证明你的结论;

晓东通过观察,实验,提出猜想:BE+CD=BC,他发现先在BC上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD即可.

(1)下面是小东证明该猜想的部分思路,请补充完整;

①在BC上截取BM,使BM=BE,连接FM,则可以证明△BEF与________全等,判定它们全等的依据是________;

②由∠A=60°,BD,CE是△ABC的两条角平分线,可以得出∠EFB=________°;

(2)请直接利用①,②已得到的结论,完成证明猜想BE+CD=BC的过程.

相关文档
最新文档