几何图形初步单元测试卷(含答案解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学几何模型部分解答题压轴题精选(难)
1.如图,已知:点不在同一条直线, .
(1)求证: .
(2)如图②,分别为的平分线所在直线,试探究与的数量关系;
(3)如图③,在(2)的前提下,且有,直线交于点,,请直接写出 ________.
【答案】(1)证明:过点C作,则,
∵
∴
∴
(2)解:过点Q作,则,
∵,
∴
∵分别为的平分线所在直线∴
∴
∵
∴
(3):1:2:2
【解析】【解答】解:(3)∵
∴
∴
∵
∴
∵
∴
∴
∴
∴ .故答案为: .
【分析】(1)过点C作,则,再利用平行线的性质求解即可;(2)过点Q作,则,再利用平行线的性质以及角平分线的性质得出
,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出,又因为,因此,联立即可求出两角的度数,再结合(1)的结论可得出的度数,再求答案即可.
2.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.
(1)当时,的值为________.
(2)如何理解表示的含义?
(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.
【答案】(1)5或-3
(2)解:∵ = ,
∴表示到-2的距离
(3)解:∵点、在0到3(含0和3)之间运动,
∴0≤a≤3, 0≤b≤3,
当时, =0+2=2,此时值最小,
故最小值为2;
当时, =2+5=7,此时值最大,
故最大值为7
【解析】【解答】(1)∵,
∴a=5或-3;
故答案为:5或-3;
【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;
(2)此题就是求表示数b的点与表示数-2的点之间的距离;
(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.
3.如图,点C在∠AOB的边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.
(1)若∠O=40°,求∠ECF的度数;
(2)试说明CG平分∠OCD;
(3)当∠O为多少度时,CD平分∠OCF?并说明理由.
【答案】(1)解:∵DE//OB ,∴∠O=∠ACE,(两直线平行,同位角相等)
∵∠O =40°,
∴∠ACE =40°,∵∠ACD+∠ACE= (平角定义)∴∠ACD=
又∵CF平分∠ACD ,
∴ (角平分线定义)
∴∠ECF=
(2)证明:∵CG⊥CF,
∴ .
∴
又∵)
∴
∵
∴ (等角的余角相等)
即CG平分∠OCD
(3)解:结论:当∠O=60°时,CD平分∠OCF .
当∠O=60°时
∵DE//OB,
∴∠DCO=∠O=60°.
∴∠ACD=120°.
又∵CF平分∠ACD
∴∠DCF=60°,
∴
即CD平分∠OCF
【解析】【分析】(1)根据平行线“两直线平行,同位角相等”,求得∠ACE=40°,根据平角的定义以及CF平分∠ACD ,可得到∠ACF=70°,然后求出∠ECF的度数;
(2)根据∠DCG+∠DCF=90°,∠GCO+∠FCA=90°,以及∠ACF=∠DCF,可得到∠GCO =∠GCD,即可证明CG平分∠OCD;
(3)根据两直线平行,内错角相等得出∠DCO=∠O=60°,根据角平分线可得到∠DCF=60°,以此可得∠DCO=∠DCF,即CD平分∠OCF.
4.综合题
(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的长度.
(2)对于(1)问,如果我们这样叙述:“已知点C在直线AB上,且AC=6cm,BC=4cm,点M、N分别是AC,BC的中点,求线段MN的长度.”结果会有变化吗?如果有,求出结果;如果没有,说明理由.
【答案】(1)解:∵AC=6cm,且M是AC的中点,
∴MC= AC= 6=3cm,
同理:CN=2cm,
∴MN=MC+CN=3cm+2cm=5cm,
∴线段MN的长度是5m
(2)解:分两种情况:
当点C在线段AB上,由(1)得MN=5cm,
当C在线段AB的延长线上时,
∵AC=6cm,且M是AC的中点
∴MC= AC= ×6=3cm,
同理:CN=2cm,
∴MN=MC﹣CN=3cm﹣2cm=1cm,
∴当C在直线AB上时,线段MN的长度是5cm或1cm.
【解析】【分析】(1)根据线段的中点定义,由M是AC的中点,求出MC、CN的值,得到MN=MC+CN的值;(2)当点C在线段AB上,由(1)得MN的值;当C在线段AB 的延长线上时,再由M是AC的中点,求出MC、CN的值,得到MN=MC﹣CN的值.
5.已知,AB//CD,(1)如图,若E 为DC 延长线上一点,AF、CG 分别为∠BAC、∠ACE 的平分线.
(1)求证:AF//CG.
(2)若 E 为线段 DC 上一点(E 不与 C 重合),AF、CG 分别为∠BAC、∠ACE的平分线,画出图形,试判断 AF,CG 的位置关系,并证明你的结论.
【答案】(1)证明:∵AB//CD
∴∠BAC=∠ACE,
∵AF、CG 分别为∠BAC、∠ACE的平分线,
∴∠CAF= ∠BAC, ∠ACG= ∠ACE,
∴∠CAF=∠ACG
∴AF//CG.
(2)解:AF⊥CG,理由如下:
如图,AF、CG 分别为∠BAC、∠ACE的平分线,
∴∠1= ∠BAC,∠2= ∠ACD,
∵AB//CD,
∴∠BAC+∠ACD=180°,