第五章 有限元法-9-有限元方程组的求解

合集下载

第五章刚塑性有限元法基本理论与模拟方法

第五章刚塑性有限元法基本理论与模拟方法
❖ 由于刚塑性模型假设,对一般的体积不可压缩材料,因为其静 水压力与体积应变率无关,如要计算应力张量,还必须进行应 力计算的处理。
塑性成形过程 计算机数值模拟
第五章 刚塑性有限元法基本理论与模拟方法
❖ 从数学的角度来讲,有限元法是解微分方程的一种数值方法。它的 基本思想是:在整个求解区域内要解某一微分方程很困难(即求出 原函数)时,先用适当的单元将求解区域进行离散化,在单元内假 定一个满足微分方程的简单函数作为解,求出单元内各点的解;然 后,再考虑各单元间的相互影响,最后求出整个区域的场量。
两个或一个事先得到满足,而将其余的一个或两个,通过拉格朗日
乘子引入泛函中,组成新的泛函,真实解使泛函取驻值,这就是不
完全广义变分原理。
❖ 在选择速度场时应变速率与速度的关系(1)式和速度边界条(3)式容 易满足,而体积不可压缩条件(2)式难于满足。因此,可以把体积 不可压缩条件用拉格朗日乘子入引入到泛函中,得到新泛函:
够的工程精度的前提下,可提高计算效率。
塑性成形过程 计算机数值模拟
第五章 刚塑性有限元法基本理论与模拟方法
❖ 由于刚塑性有限元法采用率方程表示,材料变形后的构形可通 过在离散空间对速度的积分而获得,从而避开了应变与位移之 间的几何非线性问题。
❖ 由于忽略了弹性变形,刚塑性有限元法仅适合于塑性变形区的 分析,不能直接分析弹性区的变形和应力状态,也无法处理卸 载和计算残余应力与变形。
在满足: (1) 速度-应变速率关系
ij
1 2
ui, j
u j,i
(2) 体积不可压缩条件 (3) 速度边界条件
V kk 0
ui ui
(在 Su 上)
的一切动可容场
ui*j

第五章杆系结构的有限元法

第五章杆系结构的有限元法

第五章 杆系结构的有限元法 5.1 引言杆系结构是工程中应用较为广泛的结构体系,包括平面或空间形式的梁、桁架、刚架、拱等。

其组成形式虽然复杂多样,但用计算机进行分析时却较为简单。

杆系结构中的每个杆件都是一个明显的单元。

杆件的两个端点自然形成有限元法的节点,杆件与杆件之间则用节点相连接。

显然,只要建立起杆件两端位移与杆端力之间的关系,则整体平衡方程的建立与前几章完全相同。

杆端位移与杆端力之间的关系,可用多种方法建立,包括前面几章一直采用的虚功原理,但是采用材料力学、结构力学的某些结论,不仅物理概念清晰、直观,而且推导过程简单明了。

因此,本章将采用这种方法进行单元分析。

至于整体平衡方程的建立,则和前面几章所讲的方法一样,即借助于单位定位向量,利用单元集成法进行。

5.2 平面桁架的有限元分析平面桁架在计算上有以下几个特点: 1. 杆件的每个节点仅有两个线位移; 2. 杆件之间的连接为理想铰,即在节点处各杆件可相对自由转动,且杆件轴线交于一点。

3. 外载荷均为作用于节点的集中力。

由于以上特点,所以在理论上各杆件只产生轴向拉、压力,截面应力分布均匀,材料可得到充分利用,因此桁架结构往往用于大跨结构。

5.2.1 局部坐标系下的单元刚度矩阵从平面桁架中任取一根杆件作为单元,称作桁架单元,单元长为L ,横截面面积为A ,图5.1。

两端节点分别用i 和j 表示,规定从i 到j 的连线方向为局部坐标x 轴,垂直于x 的方向为y 轴。

图5.1由于桁架中各杆只产生轴向力和轴向变形,所以节点i 和j 只发生沿x 方向的位移,用i u 和j u 表示,相应的杆端轴力分别用xi F 和xj F 表示。

由虎克定律可推得)()()(j i i j xj j i xi u u L EA u u L EA F u u LEAF --=-=-=将这两个式子写成矩阵形式,就是e j i exj xi u u L EA LEA L EA L EA F F ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧ (5.1)显然,在局部坐标系下,i 、j 两节点沿y 轴方向的位移0==j i v v ,在y 轴方向的节点力0==yj yi F F 。

偏微分方程的有限元法

偏微分方程的有限元法
第3页/共106页
第五章 偏微分方程的有限元法
有限元法特点有限元法的物理意义直观明确,理论完整可靠。 因为变分原理描述了支配物理现象的物理学中的最小作用原理(如力学中的最小势能原理)。 优异的解题能力。有限元法对边界几何形状复杂以及媒质物理性质变异等复杂物理问题求解上,有突出优点: ① 不受几何形状和媒质分布的复杂程度限制。 ②不必单独处理第二、三类边界条件。 ③ 离散点配置比较随意,通过控制有限单元剖分密度和单元插值函数的选取,可以充分保证所需的数值计算精度。
有限元法于上世纪50年代首先在力学领域-----飞机结构的静、动态特性分析中得到应用,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。有限元法主要用于求解拉普拉斯方程和泊松方程所描述的各类物理场中。
第1页/共106页
第五章 偏微分方程的有限元法
有限元法---变分原理
第4页/共106页
5.1 泛函与变分原理
数学上,通常自变量与因变量间的关系称为函数,而泛函则是函数集合的函数,也就是函数的函数,即自变量为函数,而不是变量。
5.1.1 泛函的定义 泛函通常是指一种定义域为函数,而值域为实数的“函数”。 设C是函数的集合,B是实数集合。如果对C中的任一元素y(x),在B中都有一个元素J与之对应,则称J为y(x)的泛函,记为J[y(x)]。
5.1.3 泛函的变分
定义最简泛函
F(x,y,y’)称为泛函的“核函数”
泛函的变分
最简泛函: 核函数只包含自变量 x、未知函数y(x)以及导数y’(x)
第9页/共106页
5.1 泛函与变分原理
利用二元函数的泰勒展开
第10页/共106页
5.1 泛函与变分原理
其中
分别称为泛函的一阶变分和二阶变分。

有限元方法的求解步骤

有限元方法的求解步骤

有限元方法的求解步骤
1.构建几何模型:首先,需要根据实际问题构建一个几何模型。

这可以通过使用计算机辅助设计(CAD)软件进行建模,或者手动绘制模型。

2.离散化:在几何模型的基础上,需要将其离散化为有限个小元素。

最常用的元素是三角形和四边形,也可以使用更复杂的元素类型。

3.选择数学模型和假设:根据问题的物理特性,需要选择适当的数学模型和假设。

这可能涉及选择适当的方程、边界条件和材料性质等。

4.导出有限元方程:根据选择的数学模型和假设,使用变分原理或其他数学方法,可以导出与离散化模型相对应的有限元方程。

这个方程通常是一个代数方程组。

5.建立刚度矩阵和负载向量:有限元方程可以转化为刚度矩阵和负载向量的形式。

刚度矩阵描述了系统中元素和节点之间的关系,而负载向量描述了外部作用力。

6.施加边界条件:为了解决方程组并确定未知位移,需要施加边界条件。

边界条件可以是位移约束、力约束或其他类型的约束。

7.求解方程:将刚度矩阵和负载向量与边界条件组合起来,可以形成一个线性代数方程组。

可以使用各种数值方法求解线性方程组,例如直接求解、迭代法、预处理方法等。

8.后处理:在求解方程后,可以根据需要进行后处理。

后处理包括计算和输出感兴趣的结果,如应力、位移、应变等。

9.验证和调整:完成有限元求解后,需要验证结果的准确性,并根据需要对模型参数进行调整。

验证可以通过与理论解、实验结果或其他数值方法进行比较来完成。

10.进行优化和设计:利用有限元模拟的结果,可以进行系统的优化和设计改进。

这可以通过改变几何形状、材料属性或边界条件来实现。

电磁场计算中的有限元方法教程

电磁场计算中的有限元方法教程

电磁场计算中的有限元方法教程引言电磁场计算是电磁学领域中重要的研究内容之一,广泛应用于电气工程、通信工程、电子技术等领域。

而有限元方法(Finite Element Method,简称FEM)是一种常用的数值计算技术,可以解决电磁场计算中的复杂问题。

本文将介绍有限元方法在电磁场计算中的基本原理、步骤和应用。

一、有限元方法简介有限元方法是一种通过将待求解区域划分成有限数量的小单元,利用单元上的近似函数构造整个区域上的解的数值计算方法。

有限元方法的基本思想是在每个小单元内近似解以建立一个代数方程组,通过将这些方程组联立得到整个区域上的解。

有限元方法具有处理复杂几何形状、边界条件变化和非线性问题的优势,因此被广泛应用于工程和科学计算中。

二、电磁场方程建立在电磁场计算中,关键是建立合适的电磁场方程。

常见的电磁场方程包括静电场方程、恒定磁场方程、麦克斯韦方程等。

根据具体情况选择适用的方程,并根据材料的性质和边界条件确定相应的方程形式。

三、有限元网格划分有限元方法需要将计算区域划分为有限数量的小单元。

在电磁场计算中,通常采用三角形或四边形单元来进行划分,这取决于计算区域的几何形状和分辨率要求。

划分过程需要考虑电场变化的特点和计算精度的需求,合理划分网格对精确计算电磁场起着重要的作用。

四、有限元方程的建立有限元网格划分完成后,需要建立相应的有限元方程组。

以求解静电场问题为例,我们可以利用能量最小原理、偏微分方程等方法建立有限元方程组。

有限元方程组的建立需要考虑电场的连续性、边界条件和材料特性等。

五、有限元方程求解有限元方程组的求解是求解电磁场分布的核心任务。

根据具体的方程形式和计算区域的几何形状,可以采用直接法、迭代法、近似法等方法来求解方程。

在电磁场计算中,常用的求解算法包括高斯消元法、迭代法、有限元法和有限差分法等。

六、计算结果的后处理在得到有限元方法计算的电磁场分布结果后,需要进行相应的后处理,进行数据分析和可视化。

有限元法及应用总结

有限元法及应用总结

有限元法及应用总结有限元法(Finite Element Method,FEM)是一种数学建模方法,用于求解连续介质的力学问题。

它通过将连续介质分割为有限数量的小单元,通过离散化的方式将连续问题转化为离散问题,然后通过数值计算方法进行求解。

有限元法的基本步骤是:建立初始网格、选择合适的单元类型和数学模型、建立有限元方程、求解有限元方程组、计算和评估结果。

1.建立初始网格:将连续介质分割为离散的小单元。

可以根据问题的特点选择不同形状的单元,如三角形、四边形、六边形等。

初始网格的密度应根据问题的要求进行合理的选择。

2.选择合适的单元类型和数学模型:根据问题的情况,选择合适的数学模型,如线性模型、非线性模型、静力学模型、动力学模型等。

同时,根据问题的要求选择合适的单元类型,如三角形单元、四边形单元等。

3.建立有限元方程:根据选择的数学模型,使用变分原理或其他方法建立有限元方程。

有限元方程通常是一个矩阵方程,包含未知变量和已知条件,通过求解该方程可以得到问题的解。

4.求解有限元方程组:将有限元方程组转换为代数方程组,使用数值计算方法求解。

常用的求解方法有直接解法和迭代解法,如高斯消元法、LU分解法、共轭梯度法等。

根据问题的特点选择合适的求解方法。

5.计算和评估结果:得到问题的解后,可以通过计算和评估结果来验证数值解的准确性和可靠性。

常见的评估方法有误差分析、收敛性分析、模型验证等。

有限元法的应用非常广泛,涉及机械、土木、航空航天、电子、生物医学等多个领域。

通过有限元法可以模拟和分析各类结构的力学行为和变形特性,以及流体、热传导等物理问题。

在机械工程中,有限元法可以用于模拟零件的变形、应力和疲劳行为,优化结构设计,确定最佳工艺参数等。

在土木工程中,可以用于模拟建筑物、桥梁、隧道等结构的稳定性和强度,评估结构的安全性。

在航空航天工程中,可以用于模拟飞机、航天器的疲劳和破坏行为,优化材料和结构设计。

在电子工程中,有限元法可以用于模拟芯片、电路板的热分布和应力分布,优化散热和布线设计。

有限元法理论格式与求解方法pdf

有限元法理论格式与求解方法pdf

有限元法理论格式与求解方法pdf有限元法(Finite Element Method,FEM)是一种数值计算方法,广泛应用于力学、流体力学、电磁学等领域的工程问题中。

本文将介绍有限元法的理论格式和求解方法。

有限元法的理论格式:有限元法通过将实际问题离散化为有限个小区域,再在每个小区域内建立数学模型,最后通过求解这些局部模型得到全局解。

下面是有限元法的一般理论格式:(1)建立刚度矩阵:根据问题的边界条件和材料特性,将每个小区域的数学模型转化为线性方程组。

这一步骤的关键是确定每个小区域内的自由度。

(2)装配刚度矩阵:将每个小区域内的线性方程组组装成整体的线性方程组。

这一步骤涉及到各个小区域之间的约束条件和连接方式。

(3)施加边界条件:根据问题的边界条件,在整体线性方程组中施加相应的边界条件。

这一步骤将限制整体线性方程组的自由度。

(4)求解线性方程组:通过求解整体线性方程组,得到有限元法的解。

有限元法的求解方法:有限元法的求解方法通常分为以下几种:(1)直接法:直接法是指直接求解整体线性方程组的方法,例如高斯消元法、LU分解法等。

直接法的优点是精度高、收敛速度快,但对大规模问题求解的时间和内存开销较大。

(2)迭代法:迭代法是指通过迭代计算逼近解的方法,例如雅可比迭代法、Gauss-Seidel迭代法、共轭梯度法等。

迭代法的优点是求解速度快、内存开销小,但收敛性和稳定性有时较低。

(3)稳健法:稳健法是指针对病态问题设计的求解方法,例如预处理共轭梯度法、牛顿迭代法等。

稳健法的优点是能够处理病态问题,但相对于直接法和迭代法,稳健法的复杂性较高。

(4)并行算法:为了加快大规模问题的求解速度,通常采用并行算法。

并行算法可以将问题划分为多个子问题,然后分别求解,最后通过通信和同步操作将各个子问题的解组合起来。

并行算法的优点是能够充分利用多核处理器和分布式计算资源。

总结:有限元法作为一种广泛应用的数值计算方法,其理论格式和求解方法具有一定的一般性。

第五章偏微分方程的有限元法

第五章偏微分方程的有限元法

有限元空间与基函数
针对椭圆型方程的特点,构造适当的有限元空间及 基函数,使得近似解能够较好地逼近真实解。
刚度矩阵与载荷向量
利用有限元基函数对椭圆型方程进行离散化 ,得到以刚度矩阵和载荷向量为未知量的线 性方程组。
抛物型偏微分方程的有限元法
时间离散与空间离散
抛物型偏微分方程涉及时间变量,需要采用合适的时间离散方案, 并结合空间有限元离散进行求解。
刚度矩阵反映了单元内部节点间的相 互作用力,需要根据形函数和单元刚 度矩阵进行组装得到整体刚度矩阵。
载荷向量组装
载荷向量反映了作用在节点上的外力 ,需要根据形函数和节点载荷进行组 装得到整体载荷向量。
边界条件处理与方程求解
边界条件处理
对于给定的边界条件,需要在整体刚度矩阵 和载荷向量中进行相应的处理,以保证求解 的正确性。常见的边界条件有Dirichlet边界 条件和Neumann边界条件。
分片插值
在每个单元内,选择基函数,用 单元基函数的线形组合来逼近单 元中的真解。
求解线性方程组
将问题的控制方程转化为等效的 线性方程组进行求解,得到每个 节点的待求量。
有限元法的发展历程
起源
有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其 方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。
素。
有限元法的实现过
04

网格划分与单元构造
网格划分
将求解区域划分为有限个互不重叠的子 区域,即单元。常见的网格划分方法有 结构化网格和非结构化网格。
VS
单元构造
对于每个单元,需要确定其形状、大小、 节点数及节点坐标等信息。常见的单元类 型有三角形、四边形、四面体等。

有限元方法-第五章--平面三角形单元

有限元方法-第五章--平面三角形单元

D
E
1 2
1
0
对 1 0

1
(i)
2
所以,[S]的子矩阵可记为
Si DBi
E
2 1 2
bi
1
bi
2
ci
ci
1
ci
2
bi
( i
,
j
,
m轮换) (5-19)
对于平面应变问题,只要将 (i) 式中的E换成E/1-2 , 换成 /1-,即得到其弹性矩阵
D
1
E1 1 2
1
1
起来,便可近似地表示整个区域的真实位移函数。这种 化繁为简、联合局部逼近整体的思想,正是有限单元法 的绝妙之处。
基于上述思想,我们可以选择一个单元位移模式,
单元内各点的位移可按此位移模式由单元节点位移通过
插值而获得。线性函数是一种最简单的单元位移模式,
故设
u 1 2x 3y
v 4 5x 6y
(b)
0
(b)
Ni xm
,
ym
1 2
ai
bi xm
ci ym
0
(c)
类似地有
N j xi , yi 0 , N j x j , y j 1 , N j xm , ym 0 (d) Nm xi , yi 0 , Nm x j , y j 0 , Nm xm , ym 1
式中 1、2、…6是待定常数。因三角形单元共有六个
自由度,且位移函数u、v在三个节点处的数值应该等于 这些点处的位移分量的数值。假设节点i、j、m的坐标分 别为(xi , yi )、(xj , yj )、(xm , ym ),代入 (b) 式, 得:
ui 1 2 xi 3 yi

弹塑性力学及有限元法_

弹塑性力学及有限元法_

写成矩阵形式
R11 cos 2 θ x 1 Ry1 EA cos θ sin θ 1 = Rx 2 l1 − cos 2 θ R1 2 − cos θ sin θ y cos θ sin θ sin 2 θ − cos θ sin θ − sin 2 θ − cos 2 θ − cos θ sin θ cos 2 θ cos θ sin θ
单元刚度矩阵的子矩阵 K ij 表示:当单元 e 中节点 j 取单 位位移,且其它节点位移为零时,对应于 i 节点的节点力。
第五章 有限元法简介
单元1的节点力和节点位移的关系可写成
R1 K11 = R2 K 21
1
K12 K 22
1
δ1 δ 2
1 θFx1(u1) 3 Fx3 (u3) Fy1(v1 ) Fy3 (v3) y 2 o x
1
Fy2 (v2) Fx2(u2)
2
图5-1 简例结构图
第五章
分析步骤:
有限元法简介
2
1
1 1 Ry2(v2) 1 1 Rx2(u2)
1. 离散结构物为有限个单元 分为2个单元,第一个单元的节点编号 为1和2,第二个单元的节点编号为2和3。 对于第一单元,在第1、2节点处的节点力 为 R 11 , R 11 , R 1 2 , R 1 2 ,表示节点施加在单元1上 x y x y
1 − cos θ sin θ u1 1 2 − sin θ v1 cos θ sin θ u1 2 1 si成
R11 k x 1 11 Ry1 k21 1 = Rx 2 k31 R1 k41 y2 k12 k22 k32 k42 k13 k23 k33 k43

弹性力学-第5章 有限元法

弹性力学-第5章 有限元法
生成实体模型的两种方法: –(上-下)或(下-上)
(a)从上到下建模 从生成体(或面)开始,并结合其它方
法生成最终的形状。

用于产生最终形状的合并称为布尔运算
提示: 当生成二维体素时,ANSYS定义一个面及其它所包含 的线和关键点。当生成三维体素时,ANSYS定义一个 体及其所包含的面、线及关键点。 如果低阶的图元连在高阶图元上,则低阶图元不能删除.
§5-2 建模
一. 有限元模型的建立
a.建模的方法 b.坐标系统与工作平面 c.实体建模
1.建模方法
有限元模型的建立方法可分为: (1)直接法
直接根据机械结构的几何外型建立节点和单元,因此直接 法只适应于简单的机械结构系统。
(2)间接法(Solid Modeling)
适用于节点及单元数目较多的复杂几何外型机械结构系 统。该方法通过点、线、面、体积,先建立实体模型, 再进行网格划分,以完成有限元模型的建立。
第五章 有限元法解平面问题
§5-1有限元法简介 一. 有限元法的基本思想
1.将连续的问题域离散为有限数目的单元; 2.单元之间通过节点相连; 3.每一个单元都有精确的方程来描述它如何对一定载 荷去响应; 4.单元内部的待求量可由单元节点量通过选定的函数 关系插值得到; 5.模型中所有单元的响应之和给出设计的总响应。
由于单元形状简单,易于建立节点量的平衡关系和能量关 系方程式,然后将各单元方程集组成总体代数方程组,计 入边界条件后可对方程求解。
二. 有限元法的位移解法 1.有限元法的单元和节点
1.有限元法的单元和节点 2.有限元的基本未知量(DOFs) 3.单元形函数
节点自由度是随 单元类型 变化的。
J 三维杆单元 (铰接) UX, UY, UZ

有限元ppt课件

有限元ppt课件
h h
y(xi )2 y(xi1) h
a x b x
y(xi1) 2 y(xi ) y(xi1)
h hi 2 i1
yi1 2 yi yi1 h2
(1 5)
x
13
将(1-4)(1-5)代入(1-3),得
yi1 2 yi h2

yi1

yi1 yi h
39
厚度为1的微分体,在水平方向拉
力F的作用下发生了位移 xdx
拉力表达式:
F xdy 1
x
x dy
拉力做的功:
dx
xdx
dW

1 2
F xdx
将F代入:
dW

1 2

x
x
dxdy
40
储存在微分体内的应变能:
x
x dy
dU

dW

1 2

x
x
dxdy
单位体积内的应变能:
17
因此有 y(x) (x)
试探函数中所取的项数越多,逼近的精度越高。
将试探函数代入式(1-9),可以得到关于n个待定系数
的泛函表达式,简记为 I y(x) I(1,2,3, ,n)
根据多元函数有极值的必要条件,有

1
I (1,2 ,3,

2
I (1,2 ,3,
机械工程有限元法基础
1
有限元法是根据变分原理求解数学物理问题的一 种数值方法.
它从最初的固体力学领域 拓展到了
发展到了
从简单的静力分析
电磁学,流体力学,传热学, 声学等领域
动态分析,非线性分析, 多物理场耦合分析等复 杂问题的计算

有限元法的基本步骤

有限元法的基本步骤

有限元法的基本步骤有限元法是一种数值计算方法,用于求解一般的物理问题。

它将求解区域划分为许多小的有限元,然后在每个有限元中近似地求解物理方程。

下面是有限元法的基本步骤。

1.问题建模和离散化:首先,将待求解的物理问题建模为一个数学模型。

确定问题的几何形状、材料特性、边界条件以及所关心的物理量等。

然后,将求解区域离散化为有限个子域,即有限元。

这些子域通常被称为有限元。

这可以通过网格划分、三角剖分等方法完成。

2.选择适当的有限元类型:根据问题的性质和求解的准确性要求,选择适当的有限元类型。

有限元可以是线性元、二次元、高次元等。

线性元是最简单的元素类型,但精度较低;高次元则可以提供更高的精度,但可能需要更多的计算资源。

3.构造刚度矩阵和载荷向量:对每个有限元,需要确定与之相关的刚度矩阵和载荷向量。

刚度矩阵描述了有限元中节点之间的刚度关系,载荷向量描述了有限元中的外部载荷。

这些可以通过对有限元进行分析和积分得到。

4.组装:将所有有限元的刚度矩阵和载荷向量组装成整体的刚度矩阵和载荷向量。

这可以通过将每个有限元的局部坐标映射到全局坐标系中,然后使用节点编号等方法实现。

5.应用边界条件:为了得到唯一的解,必须对一些节点施加边界条件。

边界条件可以是位移约束、力约束或应力约束等。

这些边界条件可以通过直接施加到刚度矩阵和载荷向量上,或通过修改刚度矩阵和载荷向量来实现。

6.求解:利用数值方法求解稀疏矩阵方程组。

通常使用迭代方法,如共轭梯度法、Jacobi迭代法或Gauss-Seidel法等,来求解这个方程组。

7.后处理:在得到解后,可以通过一些后处理操作进行结果的分析和可视化。

后处理可以包括计算附加的物理量,如应力、应变、位移等,并将结果可视化。

有限元法是一种广泛使用的数值计算方法,可以用于求解各种工程和科学领域的问题。

它具有高精度、适用范围广等优点,并且可以随着计算资源的增加而提高计算精度。

在实际应用中,根据具体问题的特点,有限元方法的步骤和细节可能会有所调整和改变,但上述基本步骤仍然适用于大多数情况。

有限元法的基本思想及计算步骤

有限元法的基本思想及计算步骤

用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见 的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单 元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单 元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约 束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三 角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个 结点有两个位移分量u,v和两个结点力分量Fx,Fy。三个结点共六个结点位移分量可用列阵(δ)e 表示: ,δ-e=*ui vi uj vj um vm+T 同样,可把作用于结点处的六个结点力用列阵{F}e表示: {F}e=[Fix Fiy Fjx Fjy Fmx Fmy]T 应用弹性力学理论和虚功原理可得出结点位移与结点力之间的关系 ,F-e=*k+e,δ-e (1)式中 [k]e——单元刚度矩阵。
有限元语言及编译器finiteelementlanguagecompiler以下简称felac是中国科学院数学与系统科是具有国际独创性的有限元计算软件是pfepg系列软件三十年成果1983年2013年的总结与提升有限元语言语法比pfepg更加简练更加灵活功能更加强大
有限元法的基本思想及计算步骤
有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散 化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性 体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种 联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能 通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结 点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各 个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作 为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单 元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之 间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分 量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性 要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改 进,近似解最终将收敛于精确解。

有限元求解方法

有限元求解方法

第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边 界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。 第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合 理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩 阵(结构力学中称刚度阵或柔度阵)。 为保证问题求解的收敛性,单元推导有许多原则要遵循。对工程应用而言,重要的是应注意每 一种单元的解题性能与约束。例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危 险,将导致无法求解。 第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离 散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量Байду номын сангаас及其导数(可能的话)连续性建立在结点处。
元计算产品适用范围广泛,目前有国内外专业客户300余家,涉及美、加、日、韩、澳、德、 新等国,遍布石油化工、土木建筑、电磁电子、国防军工、装备制造、航空航天……等多个领域。
有限元语言及编译器(Finite Element Language And it’s Compiler,以下简称FELAC) 是中国科学院数学与系统科学研究院梁国平研究院于1983年开始研发的通用有限元软件平 台,是具有国际独创性的有限元计算软件,是PFEPG系列软件三十年成果(1983年—2013 年)的总结与提升,有限元语言语法比PFEPG更加简练,更加灵活,功能更加强大。目前 已发展到2.0版本。其核心采用元件化思想来实现有限元计算的基本工序,采用有限元语 言来书写程序的代码,为各领域,各类型的有限元问题求解提供了一个极其有力的工具。 FELAC可以在数天甚至数小时内完成通常需要一个月甚至数月才能完成的编程劳动。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元方程组的求解

利用变分原理和离散化方法建立有限元矩阵方程后, 须求解以结点值为未知数的矩阵方程。 其方程写为: Ax b


(2.42)
式中系数矩阵A是一个n×n方阵,x是待求解的未知量,b表 示已知向量。

为精确描述实际问题,系数矩阵的维数(对应离散剖 分的结点值未知量个数)往往非常大,有庞大的计算 机内存需求和过长的计算时间。

除存储量降低外,有限元矩阵的特殊性质也能减少计算时间。大 量的零矩阵元素不需产生,加上适当设计算法,它们在解过程中 的运算也可避免。 正是这一为矩量法等积分方程方法所不具备的特殊性质,使得有 限元方法对分析电大尺寸问题时更有吸引力。


下面先介绍矩阵方程的解法,在此基础上然后 介绍Ansoft HFSS为在一定精度的要求上最大 限度的提高效率而设计的自适应迭代算法。
Lanczos法是有效的求解带状稀疏矩阵的本征值问题 的方法,Ansoft HFSS可以在solver中找到。
4 Ansoft HFSS的自适应迭代算法

矩阵方程的求解复杂度与有限元的剖分密度即未知数数目有很大 的关系,未知数数目越多,求解所需的时间越长。 然而,另一方面,有限元方法求解的精度与也随着未知数数目的 增加而更加准确。 因此,有限元方法的求解时间与准确度是一对矛盾。 为了在短的时间内取得越大的精度,Ansoft HFSS采取了自适应 迭代算法,如图2.5所示。 该算法一开始先选用较粗的剖分,采用前述的方法求解,然后看 其进度是否满足要求。 如不满足,进一步细化剖分,再次进行求解,直至达到给定的精 度。


如果矩阵可以分解为 A=LU

(2.43)
其中,L是一个下三角矩阵,U是一个上三角矩阵。
那么,先求解
Ly=b

(2.44)
然后求解
Ux=y

(2.45)
即可得到(2.42)式的解。

因为L是一个下三角矩阵,y可通过前向替代 过程而高效地获得
b1 y1 l11
i 1 1 yi bi lik yk k 1 lii

总的来

有限元方法得到的一般是广义形式的本征值问题: Ax=λBx (2.52) 很明显,如果把B分解为B LL ,其中L是一个下三角 阵,那么广义本征值问题可以改为标准形式
T

L1ALT y y

y LT x

然后,x可通过后向替代过程而获得
yn xn u nn
n 1 xi yi uik xk k i 1 uii

N为 这种分解算法其计算的复杂度正比于ON ( 矩阵的维数,也即未知数的数目),也并没有 利用有限元带状稀疏阵的性质。
3

进一步利用带状稀疏阵的分解算法能够有效地 提高运算效率,降低计算复杂度。 Ansoft HFSS的快速算法计算复杂度就在 ON 以下。



图2.5 Ansoft HFSS的自适应迭代算法
2
3 本征值问题的解

当式(2.42)右端的已知激励向量b为零时,为对应腔体谐振和波 导分析的本征值方程求解。 一个标准的本征值问题由下式定义: Ax=λx (2.50) 其中,A是一个n×n方阵,x是本征向量,λ表示对应的本征值。 显然,仅当下式成立时


detA I 0
(2.50)式才可能有非零解。上式中,I表示单位矩阵。
1 确定性问题矩阵方程求解的直接法

当式(2.42)右端的已知激励向量b不为零时, 确定性方程的求解,也就是利用各种等效方法 的对矩阵A求逆,其中最适用于有限元方法矩 阵的是分解法,Ansoft HFSS就是采用的分解 法。 其中,LU分解是最基础的一种方法,很多的 快速分解方法都是在其基础上发展而来,所以 这里将介绍LU分解方法。

幸好,有限元离散得到的矩阵总是稀疏的、对称的和带状的。如 充分利用这些性质,可大大地节省存储量。

比如说,一般的有限元矩阵每行的非零元素少于15个,如果只存储非 零元素,由于对称性,只需要存储8个元素,因此,对于一个10000个 未知量的方程,只有大约8×10000个非零矩阵元素需要存储。加上用 于记号所需的两个整型数组,总存储量不到相应满秩矩阵存储空间的 六百分之一。
3

2 确定性问题矩阵方程求解的迭代法

矩阵方程的迭代方法又可以分为直接迭代方法 和共轭梯度法。
特别是共轭梯度法现在被认为是求解矩阵方程 的有效方法。



共轭梯度法首先给出未知量的一个初始猜测,然后 在一定的泛函空间中按照搜索向量进行迭代,直到 达到设定的精度。 共轭梯度法的计算复杂度正比于ON 。 但Ansoft HFSS使用的是分解法。
相关文档
最新文档