有限差分,有限元,有限体积等离散方法的区别介绍
cfd控制方程的离散方法
cfd控制方程的离散方法
CFD(Computational Fluid Dynamics,计算流体力学)是一种利用数值方法解决流体力学问题的技术。
在CFD中,控制方程是描述流体运动的基本方程,包括质量守恒方程、动量守恒方程和能量守恒方程。
离散方法是将连续的物理方程转化为离散的代数方程,以便通过计算机进行求解。
离散方法常用的有有限差分法(Finite Difference Method)、有限体积法(Finite Volume Method)和有限元法(Finite Element Method)。
对于CFD中的控制方程,离散方法的选择取决于问题的性质和所需的精度。
以下是几种常用的离散方法:
1. 有限差分法:将微分算子近似为差分形式,通过在网格上进行逐点近似来离散化方程。
有限差分法简单易用,适用于规则网格和简单几何形状的问题。
2. 有限体积法:将控制方程应用到一个控制体积(Control Volume)上,使用积分形式得到离散化的方程。
有限体积法适用于复杂几何形状和非结构网格,能够保持物理量的守恒性。
3. 有限元法:将求解域划分为离散的有限元,使用基函数对方程进行近似。
有限元法适用于复杂几何形状和非结构网格,能够处理不规则网格以及局部自适应网格细化。
这些离散方法各有优缺点,需要根据具体问题的性质和要求选择合适的方法。
同时,为了保证数值解的准确性和稳定性,还
需要考虑网格的划分方式、边界条件的处理以及迭代求解算法等因素。
有限元素法有限体积法有限差分法有限容积法的区别
1.1 概念有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
1.2 差分格式(1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
(2)从差分的空间形式来考虑,可分为中心格式和逆风格式。
(3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
1.3 构造差分的方法构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2. FEM2.1 概述有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
2.2 原理有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
有限差分,有限元,有限体积等离散方法的区别介绍
有限差分,有限元,有限体积等等离散方法的区别介绍一、区域离散化所谓区域离散化,实质上就是用一组有限个离散的点来代替原来连续的空间。
实施过程是;把所计算的区域划分成许多互不重迭的子区域,确定每个子区域的节点位置及该节点所代表的控制容积。
节点:需要求解的未知物理量的几何位置;控制容积:应用控制方程或守恒定律的最小几何单位。
一般把节点看成是控制容积的代表。
控制容积和子区域并不总是重合的。
在区域离散化过程开始时,由一系列与坐标轴相应的直线或曲线簇所划分出来的小区域称为子区域。
网格是离散的基础,网格节点是离散化物理量的存储位置。
大家都知道,常用的离散化方法有:有限差分法,有限元法,有限体积法。
1. 有限差分法是数值解法中最经典的方法。
它是将求解区域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程(控制方程)的导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。
这种方法发展比较早,比较成熟,较多用于求解双曲线和抛物线型问题。
用它求解边界条件复杂、尤其是椭圆型问题不如有限元法或有限体积法方便。
2. 有限元法是将一个连续的求解域任意分成适当形状的许多微小单元,并于各小单元分片构造插值函数,然后根据极值原理(变分或加权余量法),将问题的控制方程转化为所有单元上的有限元方程,把总体的极值作为各单元极值之和,即将局部单元总体合成,形成嵌入了指定边界条件的代数方程组,求解该方程组就得到各节点上待求的函数值。
对椭圆型问题有更好的适应性。
有限元法求解的速度较有限差分法和有限体积法慢,在商用CFD软件中应用并不广泛。
目前的商用CFD软件中,FIDAP采用的是有限元法。
3. 有限体积法又称为控制体积法,是将计算区域划分为网格,并使每个网格点周围有一个互不重复的控制体积,将待解的微分方程对每个控制体积积分,从而得到一组离散方程。
其中的未知数十网格节点上的因变量。
子域法加离散,就是有限体积法的基本方法。
就离散方法而言,有限体积法可视作有限元法和有限差分法的中间产物。
有限元法,有限差分法,有限体积法
有限元法,有限差分法,有限体积法
有限元法、有限差分法和有限体积法是三种常用的数值计算方法,它们在工程、物理、数学等领域中都有广泛的应用。
有限元法是一种用离散化的方法来求解偏微分方程的方法。
在这种方法中,被求解的区域被分成小元素,偏微分方程被转化为一个代数方程组,通过求解方程组来得到数值解。
该方法的优点是能够适应复杂的区域和复杂的边界条件,但是需要对离散化的元素进行合适的选取和处理。
有限差分法是一种离散化的数值方法,它将求解区域划分成网格点,将偏微分方程中的导数用网格点上的函数值来代替,然后通过代数方法求解方程组。
该方法的优点是简单易学、计算速度快,但是对于复杂的区域和边界条件的处理较为困难。
有限体积法是一种将求解区域划分成小体积的方法,通过对每个小体积的平均值来代表该体积中的函数值,然后通过代数方法求解方程组。
该方法的优点是能够处理非结构化网格和复杂的边界条件,但是需要选择合适的体积大小和形状,并且计算速度较慢。
这三种方法各有优缺点,需要根据具体问题的性质和要求来选择合适的方法。
在实际应用中,还可以将它们进行组合和改进,以提高计算效率和精度。
- 1 -。
数值模拟偏微分方程的三种方法:FDM、FEM及FVM
数值模拟偏微分方程的三种方法:FDM、FEM及FVM偏微分方程数值模拟常用的方法主要有三种:有限差分方法(FDM)、有限元方法(FEM)、有限体积方法(FVM),本文将对这三种方法进行简单的介绍和比较。
有限差分方法有限差分方法(Finite Difference Methods)是数值模拟偏微分方程最早采用的方法,至今仍被广泛运用。
该方法包括区域剖分和差商代替导数两个过程。
具体地,首先将求解区域划分为差分网格,用有限个网格节点代替连续的求解区域。
其次,利用Taylor级数展开等方法将偏微分方程中的导数项在网格节点上用函数值的差商代替来进行离散,从而建立以网格节点上的值为未知量的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
差商代替导数后的格式称为有限差分格式,从格式的精度来考虑,有一阶格式、二阶格式和高阶格式。
从差分的空间离散形式来考虑,有中心格式和迎风格式。
对于瞬态方程,考虑时间方向的离散,有显格式、隐格式、交替显隐格式等。
目前常见的差分格式,主要是以上几种格式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于结构网格,网格的步长一般根据问题模型和Courant稳定条件来决定。
请输入标题有限元方法(Finite Element Methods)的基础是变分原理和分片多项式插值。
该方法的构造过程包括以下三个步骤。
首先,利用变分原理得到偏微分方程的弱形式(利用泛函分析的知识将求解空间扩大)。
其次,将计算区域划分为有限个互不重叠的单元(三角形、四边形、四面体、六面体等)。
再次,在每个单元内选择合适的节点作为求解函数的插值点,将偏微分方程中的变量改写成由各变量或其导数的节点值与所选用的分片插值基函数组成的线性表达式,得到微分方程的离散形式。
利用插值函数的局部支集性质及数值积分可以得到未知量的代数方程组。
有限元方法有较完善的理论基础,具有求解区域灵活(复杂区域)、单元类型灵活(适于结构网格和非结构网格)、程序代码通用(数值模拟软件多数基于有限元方法)等特点。
有限差分法、有限单元和有限体积法简介
有限差分法、有限单元法和有限体积法的简介1.有限差分方法有限差分方法(Finite Difference Method,FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2.有限元方法有限元方法(Finite Element Method,FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
流体耦合问题中高精度数值方法
流体耦合问题中高精度数值方法流体耦合问题在许多工程和科学领域中都具有重要意义,如流体力学、气候模拟、流体机械等。
为了准确模拟和预测这类问题,高精度数值方法的发展变得至关重要。
本文将介绍一些常用的高精度数值方法,包括有限差分法、有限元法、有限体积法、谱方法、伪谱法、格子Boltzmann法、广义差分法、广义有限元法和边界元法。
1.有限差分法有限差分法是一种直接将微分方程离散化的方法。
通过将连续的空间离散成有限个点,并将时间也离散化,有限差分法能用差分方程组来近似代替微分方程。
这种方法在流体耦合问题的求解中非常常见,因为它能处理复杂的边界条件和不规则的空间区域。
2.有限元法有限元法是一种将连续的求解域离散化为有限个相互连接的小区域(单元)的方法。
在每个单元内,未知函数被近似为插值函数,然后通过变分原理将微分方程转化为线性方程组。
这种方法在处理复杂边界条件和几何形状时具有很大的灵活性。
3.有限体积法有限体积法是一种将微分方程在控制体积上进行离散化的方法。
该方法的关键是将微分方程转化为积分方程,然后在控制体积上进行积分。
有限体积法在处理流体耦合问题时具有较高的精度和稳定性。
4.谱方法谱方法是一种利用傅里叶级数或其他正交函数系来离散化和逼近微分方程的方法。
谱方法具有很高的精度和收敛速度,但需要大量的计算资源和内存。
在处理流体耦合问题时,谱方法通常被用于处理具有周期边界条件或对称性的问题。
5.伪谱法伪谱法是一种利用傅里叶级数的逼近性质,结合数值积分和插值方法来离散化微分方程的方法。
与谱方法相比,伪谱法需要的计算资源和内存较少,且具有更高的数值稳定性。
6.格子Boltzmann法格子Boltzmann法是一种基于分子动力学的数值方法,用于模拟流体流动和传热等问题。
该方法将流体看作是一组在格子空间中运动的粒子,通过这些粒子的分布函数的变化来模拟流体的运动和传热过程。
格子Boltzmann法具有较高的并行性和数值稳定性,适用于处理复杂的流体耦合问题。
计算流体力学中有限差分法、有限体积法和有限元法的区别
有限元法,有限差分法和有限体积法的区别1. FDM1.1 概念有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
1.2 差分格式(1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
(2)从差分的空间形式来考虑,可分为中心格式和逆风格式。
(3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
1.3 构造差分的方法构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2. FEM2.1 概述有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
2.2 原理有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
有限差分 有限元 有限体积
有限差分有限元有限体积有限差分、有限元和有限体积是数值计算方法中常用的三种离散化方法。
它们的核心思想是将微分方程式转化为一系列有限的点上的代数方程式,将连续问题转化为离散问题。
一、有限差分法有限差分法是将微分方程的导数用差商来逼近的方法,用差商来代替微分运算。
用区间的两个端点上的函数值之差来代替区间内函数导数的平均值。
在连续的区间上进行近似,大大减小了计算量。
有限差分法是一种较为简单的数值解法,适用于规则网格的微分方程求解,被广泛应用在流体力学、结构力学、电场问题等领域中。
二、有限元法有限元法是将求解域分成若干个划分元,然后在每个单元内用多项式函数逼近问题的解,最终利用点、线、面元件的连接关系来求解整体问题的一种方法。
该方法可以处理复杂的几何形状和物理变化,适用于非常规的边界条件和材料特性,解决超过几百万自由度的三维大规模问题。
三、有限体积法有限体积法是将求解域分成若干个控制体,对质量、能量、动量等守恒量在各个控制体上进行积分,从而推导出控制体内分布的方程。
该方法以区域的体积分为基础,在各个控制体内求解守恒方程。
该方法适用于复杂的多组分、多相流动的领域以及非稳态或非线性问题。
无论是有限差分、有限元还是有限体积法,其核心思想都是通过把连续的微分方程式离散求解,从而转化为一系列有限的点上的代数方程式,解决了连续问题转化为离散问题的过程,从而通过离散求解代数方程式来得到问题的解。
这三种数值计算方法的应用使科学计算得以更加高效、精确地进行,对现代计算、科学技术的推进起到了巨大的贡献。
数值计算三种算法比较
有限元法,有限差分法和有限体积法的区别作者:闫霞1. FDM 1.1概念有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
1.2差分格式(1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
(2)从差分的空间形式来考虑,可分为中心格式和逆风格式。
(3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
1.3构造差分的方法构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2. FEM 2.1概述有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
2.2原理有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
有限元法 有限差分法 有限体积法的区别
三者各有所长:有限差分法:直观,理论成熟,精度可选。
但是不规则区域处理繁琐,虽然网格生成可以使FDM应用于不规则区域,但是对区域的连续性等要求较严。
使用FDM的好处在于易于编程,易于并行。
有限元方法:适合处理复杂区域,精度可选。
缺憾在于内存和计算量巨大。
并行不如FDM和FVM直观。
不过FEM的并行是当前和将来应用的一个不错的方向。
有限容积法:适于流体计算,可以应用于不规则网格,适于并行。
但是精度基本上只能是二阶了。
FVM的优势正逐渐显现出来,FVM在应力应变,高频电磁场方面的特殊的优点正在被人重视。
比较一下:有限容积法和有限差分法:一个区别就是有限容积法的截差是不定的(跟取的相邻点有关,积分方法离散方程),而有限差分就可以直接知道截差(微分方法离散方程)。
有限容积法和有限差分法最本质的区别是,前者是根据积分方程推导出来的(即对每个控制体积分),后者直接根据微分方程推导出来,所以前者的精度不但取决于积分时的精度,还取决与对导数处理的精度,一般有限容积法总体的精度为二阶,因为积分的精度限制,当然有限容积法对于守恒型方程导出的离散方程可以保持守恒型;而后者直接由微分方程导出,不涉及积分过程,各种导数的微分借助Taylor展开,直接写出离散方程,当然不一定有守恒性,精度也和有限容积法不一样,一般有限差分法可以使精度更高一些。
当然二者有联系,有时导出的形式一样,但是概念上是不一样的。
至于有限容积法和有限元相比,有限元在复杂区域的适应性对有限容积是毫无优势可言的,至于有限容积的守恒性,物理概念明显的这些特点,有限元是没有的。
目前有限容积在精度方面与有限元法有些差距。
有限元方法比有限差分优越的方面主要在能适应不规则区域,但是这只是指的是传统意义上的有限差分,现在发展的一些有限差分已经能适应不规则区域。
对于椭圆型方程,如果区域规则,传统有限差分和有限元都能解,在求解效率,这里主要指编程负责度和收敛快慢、内存需要,肯定有限差分有优势。
有限容积有限元有限差分区别
有限容积法简介有限容积法(Finite Volume Method)又称为控制体积法。
基本思路其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。
其中的未知数是网格点上的因变量的数值。
为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。
从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。
简言之,子区域法属于有限体积发的基本方法。
有限体积法的基本思路易于理解,并能得出直接的物理解释。
离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。
限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。
这是有限体积法吸引人的优点。
有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。
就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。
有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。
有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。
有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。
在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程中不同的项采取不同的插值函数。
五部分有限容积法(FVM)是计算流体力学(CFD)和计算传热学(NHT)中应用最广泛的数值离散方法。
它通常包括如下五个部分:1. 网格生成2. 对流项的离散化3. 边界条件的离散化4. 压力速度耦合5. 离散方程的求解对以上五个部分的处理将直接影响到最准结果的有限差分法微分方程和积分微分方程数值解的方法。
有限容积、有限元、有限差分区别
有限容积法
简介
有限容积法(Finite Volume Method)又称为控制体积法。
基本思路
其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积发的基本方法。有限体积法的基本思路易于理解,并能得出直接的物理解释。离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。这是有限体积法吸引人的优点。有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程中不同的项采取不同的插值函数。
五部分
有限容积法(FVM)是计算流体力学(CFD)和计算传热学(NHT)中应用最广泛的数值离散方法。它通 对流项的离散化
管道系统中流体流动的数值模拟方法
管道系统中流体流动的数值模拟方法管道系统中流体流动是工程领域中一个重要的研究课题。
为了准确预测流体在管道中的流动行为,科学家们开发了各种数值模拟方法。
本文将介绍几种常用的数值模拟方法,并探讨它们的优缺点。
1. 有限差分法(Finite Difference Method)有限差分法是最早应用于管道流动模拟的方法之一。
它将管道系统划分为离散的网格,然后利用差分近似来计算流体在不同网格上的流动特性。
这种方法简单易懂,计算速度较快,适用于一些简单的流动问题。
然而,有限差分法的精度较低,对复杂的非线性问题处理能力有限。
2. 有限体积法(Finite Volume Method)有限体积法是一种广泛应用于管道流动模拟的方法。
它将管道系统划分为离散的控制体积,然后通过求解质量守恒方程和动量守恒方程来计算流体的流动行为。
有限体积法能够较好地处理复杂的非线性问题,并且具有较高的数值精度。
然而,该方法需要较复杂的计算过程和大量的计算资源。
3. 有限元法(Finite Element Method)有限元法是一种常用于结构力学领域的数值模拟方法,但也可以应用于管道流动的模拟。
该方法将管道系统划分为离散的有限元,然后通过求解弱形式的守恒方程来计算流体的流动行为。
有限元法具有较高的数值精度和灵活性,可以处理各种复杂的边界条件。
然而,该方法的计算过程相对复杂,需要较高的计算资源。
4. 计算流体力学(Computational Fluid Dynamics,简称CFD)计算流体力学是一种综合了有限差分法、有限体积法和有限元法等数值模拟方法的综合性方法。
它通过求解流体的守恒方程和运动方程来模拟流体在管道中的流动行为。
CFD方法可以处理各种复杂的流动问题,并且具有较高的数值精度。
然而,该方法的计算量较大,需要较高的计算资源和较长的计算时间。
总的来说,管道系统中流体流动的数值模拟方法有限差分法、有限体积法、有限元法和计算流体力学等。
03_控制方程的离散化方法
03_控制方程的离散化方法控制方程的离散化方法是将连续的控制方程转化为离散形式,以便进行数值求解。
离散化方法的选择对于求解的精度和计算成本都有重要影响。
下面将介绍几种常见的离散化方法。
1. 有限差分法(Finite Difference Method):有限差分法是最为常用的一种离散化方法。
它将连续的导数转化为差分形式,使用有限差分逼近连续控制方程中的导数项。
有限差分法的核心思想是将求解区域划分为一系列离散的点,然后使用函数在这些点上的值来近似函数的导数。
通过将导数项从连续形式转化为离散形式,可以将控制方程转化为一个代数方程组,从而进行数值求解。
有限差分法简单易懂,计算效率高,但精度一般较低。
2. 有限体积法(Finite Volume Method):有限体积法是一种广泛应用的离散化方法。
它将求解区域划分为一系列离散的控制体(control volume),然后通过对控制体应用质量守恒和动量守恒等原理,将控制方程表达为离散形式。
有限体积法以控制体为基本单元进行离散,因此它更适合处理复杂几何结构的问题,如不规则网格等。
3. 有限元法(Finite Element Method):有限元法是一种基于变分原理的离散化方法。
它将求解区域划分为一系列离散的网格单元(element),然后在每个网格单元内使用试函数(trial function)来近似原方程。
通过将方程在整个求解区域内积分,然后使用试函数的线性组合来逼近积分方程,将控制方程转化为离散形式。
有限元法适用于求解具有复杂边界条件和几何结构的问题,如弹性力学、热传导等。
4. 边界元法(Boundary Element Method):边界元法是一种将控制方程转化为边界上的积分方程进行求解的离散化方法。
它把求解区域划分为内域和边界两部分,控制方程在区域内域精确成立,但在边界上仅在积分形式成立。
边界元法通过将控制方程在边界上积分,然后使用试函数来逼近积分方程,将控制方程转化为离散形式。
有限差分,有限元,有限体积等离散方法的区别介绍
有限差分,有限元,有限体积等离散方法的区别介绍1 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
有限差分法、有限单元和有限体积法简介
有限差分法、有限单元和有限体积法简介(总4页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除有限差分法、有限单元法和有限体积法的简介1.有限差分方法有限差分方法(Finite Difference Method,FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2.有限元方法有限元方法(Finite Element Method,FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
/s/blog_501a61220100f9rs.html有限差分,有限元,有限体积等离散方法的区别介绍(2009-10-25 22:07:18)转载以下介绍是本人从网络上搜集的,供计算数学虫子参考。
也许小木虫论坛有,我没搜索到。
欢迎大家补充内容。
转自/bbs/viewthread.php?tid=1618917&pid=16196206&page=1#pid161962061 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。
从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。
不同的组合同样构成不同的有限元计算格式。
对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。
令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。
插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。
有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。
单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。
常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。
在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。
对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。
对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。
(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。
区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。
(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。
有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。
(4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。
(5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。
(6)边界条件的处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件)、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件)。
对于自然边界条件,一般在积分表达式中可自动得到满足。
对于本质边界条件和混合边界条件,需按一定法则对总体有限元方程进行修正满足。
(7)解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭方程组,采用适当的数值计算方法求解,可求得各节点的函数值3 有限体积法(Finite Volume Method)又称为控制体积法。
其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。
其中的未知数是网格点上的因变量的数值。
为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。
从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。
简言之,子区域法属于有限体积发的基本方法。
有限体积法的基本思路易于理解,并能得出直接的物理解释。
离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。
限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。
这是有限体积法吸引人的优点。
有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。
就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。
有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。
有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。
有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。
在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程中不同的项采取不同的插值函数。
4 多重网格方法通过在疏密不同的网格层上进行迭代,以平滑不同频率的误差分量.具有收敛速度快,精度高等优点.多重网格法基本原理微分方程的误差分量可以分为两大类,一类是频率变化较缓慢的低频分量;另一类是频率高,摆动快的高频分量。
一般的迭代方法可以迅速地将摆动误差衰减,但对那些低频分量,迭代法的效果不是很显著。
高频分量和低频分量是相对的,与网格尺度有关,在细网格上被视为低频的分量,在粗网格上可能为高频分量。
多重网格方法作为一种快速计算方法,迭代求解由偏微分方程组离散以后组成的代数方程组,其基本原理在于一定的网格最容易消除波长与网格步长相对应的误差分量。
该方法采用不同尺度的网格,不同疏密的网格消除不同波长的误差分量,首先在细网格上采用迭代法,当收敛速度变缓慢时暗示误差已经光滑,则转移到较粗的网格上消除与该层网格上相对应的较易消除的那些误差分量,这样逐层进行下去直到消除各种误差分量,再逐层返回到细网格上。
目前两层网格方法从理论上已证明是收敛的,并且其收敛速度与网格尺度无关[哈克?#####迹?988]。
多重网格法是迭代法与粗网格修正的组合,经过证明迭代法可迅速地将那些高频分量去掉,粗网格修正则可以帮助消除那些光滑了的低频分量,而对那些高频分量基本不起作用。
科研中国 在多重网格计算中,需要一些媒介把细网格上的信息传递到粗网格上去,同时还需要一些媒介把粗网格上的信息传递到细网格上去。
限制算子Iih(i-1)h是把细网格i-1层上的残余限制到粗网格i层上的算子,最简单的算子是平凡单射,另外还有特殊加权限制;插值算子Iih(i-1)h是把粗网格i层上的结果插值到细网格i-1层上的算子,一般采用线性插值或完全加权限制算子。
5 近似求解的误差估计办法共有三大类:单元余量法,通量投射法及外推法.单元余量法广泛地用于以FEM离散的误差估计之中,它主要是估计精确算子的余量,而不是整套控制方程的全局误差.这样就必须假定周围的单元误差并不相互耦合,误差计算采用逐节点算法进行.单元余量法的各种不同做法主要来自对单元误差方程的边界条件的不同处理办法.基于此,该方法能够有效处理局部的残余量,并能成功地用于网格优化程序.通量投射法的基本原理来自一个很简单的事实:精确求解偏微分方程不可能有不连续的微分,而近似求解却可以存在微分的不连续,这样产生的误差即来自微分本身,即误差为系统的光滑求解与不光滑求解之差.该方法与单元余量法一样,对节点误差采用能量范数,故也能成功地用于网格优化程序.单元余量法及通量投射法都局限于局部的误差计算(采用能量范数),误差方程的全局特性没有考虑.另外计算的可行性(指误差估计方程的计算时间应小于近似求解计算时间)不能在这两种方法中体现,因为获得的误差方程数量,阶数与流场控制方程相同.外推法是指采用后向数值误差估计思想由精确解推出近似解的误差值.各类文献中较多地采用Richardson外推方法来估计截断误差.无论是低阶还是高阶格式,随着网格的加密数值计算结果都会趋近于准确解.但由于计算机内存与计算时间的限制,实际上不能采用这种网格无限加密的办法.由Richardson所发展起来的外推方法,可以利用在不同疏密网格上得出的结果估计相应的收敛解,可以估计所用离散方法截断误差的阶数,可以估计所得数值计算的截断误差.该方法有很大的局限性,不能简单地用于复杂湍流流动;并且在数值计算中数值解必须单调地趋近于其收敛值.而文献提出的单网格后向误差估计思想,在采用有限元法FEM,有限容积法FVM时均有应用,并且还用于网格优化程序,但该方法也不能用于复杂湍流流动的数值分析.6 近年来发展的多尺度计算方法包括均匀化方法[9-11]、非均匀化多尺度方法[12-15]、以及小波数值均匀化方法[16]、多尺度有限体积法[17]、多尺度有限元法[1]等。