(完整版)初三数学中考复习专题2_方程与不等式知识点总结材料与练习,推荐文档

合集下载

九年级中考总复习之2方程与不等式

九年级中考总复习之2方程与不等式

九年级中考总复习(2)方程与不等式内容概要2.1 方程的定义与解方程2.2 方程的解的问题2.3 不等式及其解的问题2.4 方程、不等式应用题复习笔记1、方程:含有未知数的等式叫做方程.(1)一元一次方程:只含一个未知数,且未知数的最高次数是1,这样的整式方程叫做一元一次方程.(2)二元一次方程:如果一个方程含有两个未知数,并且所含未知项的次数都为1次,那么这个整式方程就叫做二元一次方程.由两个一次方程组成且含有两个未知数的方程组叫做二元一次方程组.(3)分式方程:只含分式,或分式和整式,并且分母里含有未知数的方程叫做分式方程.(4)一元二次方程:只含一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.2、方程的解:使方程等号两边相等的未知数的值叫做方程的解.3、解方程:方程的类型从少元到多元,从低次到高次,由整式到分式等复杂的方程.解决方程的思想为复杂方程变为简单方程,解决方程的方法正好是消元和降次,化为整式方程.4、解方程的方法:(1)一元一次方程:①去分母;②去括号;③移项;④合并同类项;⑤系数化1.(2)二元一次方程(组):①加减消元法;②代入消元法.(3)分式方程:化为整式方程,注意“增根”问题.(4)一元二次方程:①直接开平方法;②配方法:()200ax bx c a++=≠⇒2224c+=24b b axa a-⎛⎫⎪⎝⎭;③公式法:求根公式x=(240b ac-≥);④因式分解法.课堂例题1、方程22(1)(3)0a a a x a x a +++-+=.当a =__________时,它为一元一次方程;当它为一元二次方程时,a 为__________.2、解方程:3、小明同学解关于x 的一元一次方程21152x x a ++-=时,方程左边的1忘记乘以10了,解得方程为x =4,求a 的值和原方程正确的解.4、已知a ,b 为定值,关于x 的方程2136kx a x bk ++=-,无论k 为何值,它的解总是1,则a +b =__________.5、已知方程组135x y a x y a +=-⎧⎨-=+⎩的解x 为正数,y 为非负数,给出下列结论:①-3<a ≤1;②当a =53-时,x =y ;③当a =-2时,方程组的解也是方程x +y =5+a 的解;④若x ≤1,则y ≥2.其中正确的是__________.(填写正确结论的序号)6、关于x 的两个方程22x x --=.7、(1)关于x 的分式方程3111m x x+=--的解为正数,则m 的取值范围是__________; (2)已知方程3144a a a a --=--,且关于x 的不等式组x a x b>⎧⎨≤⎩只有4个整数解,那么b 的取值范围是__________.9、已知x 1,x 2是关于x 的一元二次方程224490x mx m -+-=的两实数根. (1)若这个方程有一个根为−1,求m 的值;(2)若这个方程的一个根大于−1,另一个根小于-1,求m 的取值范围;(3)已知直角∆ABC 的一边长为7,x 1、x 2恰好是此三角形的另外两边的边长,求m 的值.课堂练习1、已知方程20x bx a ++=有一个根是(0)a a -≠,则下列代数式的值恒为常数的是( )A .abB .a bC .a +bD .a −b2、解方程: 213011x x -=-- (3)7(3)x x x +=+ 2840x x --=22430x x +-= 2121111x x x x +-=--+4、(1)已知关于x 的分式方程111k x k x x ++=+-的解为负数,则k 的取值范围是__________; (2)使得关于x 的分式方程111x k k x x +-=+-的解为负整数,且使得关于x 的不等式组322144x x x k +≥-⎧⎨-≤⎩有5个整数解的所有k 的和为__________.5、若x 0是方程ax 2+2x +c =0(a ≠0)的一个根,设M =1−ac ,N =(ax 0+1)2,则M 与N 的大小关系正确的为( )A .M >NB .M =NC .M <ND .不确定6、当a ,b 都是实数,且满足2a -b =6,就称点P (a -1,2b +1)为完美点. (1)判断点A (2,3)是否为完美点; (2)已知关于x ,y 的方程组62x y x y m +=⎧⎨-=⎩,当m 为何值时,以方程组的解为坐标的点B (x ,y )是完美点,请说明理由.7、已知关于x ,y 的二元一次方程3x y a -=和34x y a +=-.(1)如果51x y =⎧⎨=-⎩是方程3x y a -=的一个解,求a 的值;(2)当a =1时,求两方程的公共解;(3)若00x x y y =⎧⎨=⎩是已知方程的公共解,当x 0≤1时,求y 0的取值范围.8、已知关于x 、y 的二元一次方程组23221x y k x y k -=-⎧⎨+=-⎩(k 为常数). (1)求这个二元一次方程组的解(用含k 的代数式表示);(2)若方程组的解x 、y 满足x +y >5,求k 的取值范围;(3)若(4x +2)2y =1,直接写出k 的值;(4)若k ≤1,设m =2x -3y ,且m 为正整数,求m 的值.复习笔记1、方程的解的个数问题:①ax =b .(1)0a ≠,方程有唯一解;(2)0a b ==,方程有无数解;(3)0,0a b =≠,方程无解.②ax by c dx ey f +=⎧⎨+=⎩(0)def ≠. (1)a b d e≠,方程组有唯一解; (2)a b c d e f==,方程组有无数解; (3)a b c d e f =≠,方程组无解.③()200ax bx c a ++=≠,判断方程与根的个数的即为判别式:∆=24b ac -. (1)∆>0,方程有两个不等实根;(2)∆=0,方程有两个相等实根;(3)∆<0,方程无实根.2、我们学会了解方程的方法,也往往要学会通过“不解方程”来进行求值.通常不解方程求值的方法是通过恒等变形,再使用(1)整体代换;(2)降次求解;(3)一元二次方程的韦达定理(12b x x a +=-,12c x x a =,注意用韦达定理的前提是一元二次方程∆≥0)等方法.课堂例题1、已知关于x 的方程351x a bx -+=+有唯一的一个解,则a 与b 必须满足的条件为__________;若该方程没有解,则a 与b 必须满足的条件为__________.2、已知关于x 的方程||540x a -+=无解,||430x b -+=有两个解,||320x c -+=只有一个解,则化简||||a c c b a b ---+-的结果是__________.3、当a ,c 为何值时,方程+2124ax y x y c =⎧⎨+=⎩有一个解?有无数解?无解?4、(1)若关于x 的分式方程21111x k x x +-=--有增根,则增根可能是__________; (2)若关于x 的分式方程61(1)(1)1m x x x -=+--有增根,则它的增根是__________; (3)若关于x 的分式方程22024mx x x +=--有增根,则m 的值为__________; (4)若关于x 的分式方程2134416m m x x x ++=-+-无解,则m 的值为__________; (5)已知,关于x 的分式方程2222x x a x x x x x--+=--恰有一个实数根,则满足条件的实数a 的值为__________.5、对于一元二次方程20(0)ax bx c a ++=≠,下列四种条件:①240b ac -≥;②240b ac +>;③a 、c 异号;④0a b c ++=.满足其中条件之一的方程一定有实数根的有( )A .1种B .2种C .3种D .4种__________.7、已知关于x 的一元二次方程2()20a c x bx a c +++-=,其中a 、b 、c 分别为∆ABC 三边的长.下列关于这个方程的解和∆ABC 形状判断的结论错误的是( )A .如果x =−1是方程的根,则∆ABC 是等腰三角形B .如果方程有两个相等的实数根,则∆ABC 是直角三角形C .如果∆ABC 是等边三角形,方程的解是x =0或x =−1D .如果方程无实数解,则∆ABC 是锐角三角形8、对于一元二次方程()200ax bx c a ++=≠,下列说法中:①若0a c +=,方程20ax bx c ++=有两个不等的实数根;②若方程20a x b x c ++=有两个不等的实数根,则方程20cx b x a ++=一定有两个不等的实数根;③若c 是方程20a x b x c ++=的一个根,则一定有10ac b ++=成立;④若m 是方程20a x b x c ++=的一个根,则一定有()2242b ac am b -=+成立.正确的有__________.(填写正确结论的序号)9、已知关于x 的方程()()22200mx m x m -++=≠.(1)求证方程有两个实数根;(2)若方程的两根都是整数,求正整数m 的值.10、关于x 的方程2()0a x m b ++=的解是122,1x x =-=,(a ,m ,b 均为常数,a ≠0),则方程220a x m b +++=()的解是__________.11、三个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是__________.12、阅读材料:善于思考的小军在解方程组2534115x y x y +=⎧⎨+=⎩①②时,采用了一种“整体代换”的解法. 解:将方程②变形:4x +10y +y =5即2(2x +5y )+y =5③,把方程①代入③得:2×3+y =5,y =-1,把y =-1代入①得x =4,所以,方程组的解为41x y =⎧⎨=-⎩. 请你解决以下问题:(1)模仿小军的“整体代换”法解方程组2356119x y x y -=⎧⎨-=⎩. (2)已知x ,y 满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩,求x 2+4y 2-xy 的值.13、若a 是方程2201810x x -+=的根,则22201820171a a a -++的值为__________.14、(1)一元二次方程x 2−3x −2=0的两根为x 1,x 2,则下列结论正确的是( )A .x 1=−1,x 2=2B .x 1=1,x 2=−2C .x 1+x 2=3D .x 1x 2=2(2)一元二次方程x 2-3x -1=0与x 2-x +3=0的所有实数根的和为__________;(3)设12,x x 是方程22330x x --=的两个实数根,则1221x x x x +=__________; (4)设a 、b 是方程220180x x +-=的两个不相等的实数根,则22a a b ++=__________;(5)设关于x 的方程x 2-2x -m +1=0的两个实数根分别为α,β,若|α|+|β|=6,那么实数m 的取值是__________.15、(1)如果m ,n 是两个不相等实数,且23m m -=,23n n -=,则2222018n mn m +-+=__________;(2)若∆ABC 三边a ,b ,c 满足2420a a -+=,2420b b -+=,c =∆ABC 的面积为S ,则S 2=__________.16、定义运算:a ⋆b =a (1−b ).若a ,b 是方程x 2−x +14m =0(m <0)的两根,则b ⋆b −a ⋆a 的值为__________.17、若t 为实数,关于x 的方程x 2−4x +t −2=0的两个非负实数根为a 、b ,则代数式(a 2−1)(b 2−1)的最小值是__________.18、已知,关于x 的一元二次方程2220x mx n ++=有两个整数根且乘积为正,关于y 的一元二次方程2220y ny m ++=同样也有两个整数根且乘积为正.给出四个结论:①这两个方程的根都是负根;②22(1)(1)2m n -+-≥;③1221m n -≤-≤.其中正确的结论是__________.(填写正确结论的序号)19、关于x 的一元二次方程()222110x k x k ++++=有两个不等实根1x 、2x . (1)求实数k 的取值范围;(2)若方程两实根1x 、2x 满足1212·x x x x +=,求k 的值.课堂练习1、(1)方程111082x x +=-的根是10,则另一个根是__________; (2)如果方程211x bx m ax c m --=-+有等值异号的根,那么m =__________; (3)如果关于x 的方程2221511k k x x x x x --+=-+-,有增根x =1,则k =__________; (4)方程1110113x x x x +-+=-+的根是__________.2、关于x 的方程()2220ax a x ++=-只有一解(相同解算一解),则a 的值为__________.3、已知∆ABC 的一边为5,另外两边分别是方程260x x m -+=的两个根,则m 的取值范围是__________.4、关于x 的方程2210x kx k ++-=的根的情况描述正确的是( ) A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D .根据k 的取值不同,方程根的情况分为无实数根、有两个相等的实数根和两个不等的实数根三种5、关于x 的方程210mx x m +-+=,有以下三个结论:①当m =0时,方程只有一个实数解;②当0m ≠时,方程有两个不等的实数解;③无论m 取何值,方程都有一个负数解.其中正确的是__________.(填写正确结论的序号)6、有两个一元二次方程M :20ax bx c ++=,N :20cx bx a ++=,其中0a c +=,以下列四个结论中,错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根B .如果方程M 有两根符号相同,那么方程N 的两根符号也相同C .如果5是方程M 的一个根,那么15是方程N 的一个根 D .如果方程M 和方程N 有一个相同的根,那么这个根必是1x =7、已知关于x ,y 的二元一次方程组3511x ay x by -=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,那么关于x ,y 的二元一次方程组3(+)()5()11x y a x y x y b x y --=⎧⎨++-=⎩的解为__________.8、将关于x 的一元二次方程20x px q ++=变形为2x px q =--,就可将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”.已知210x x --=,可用“降次法”求得432018x x -+的值是__________.9、(1)若x 1,x 2是一元二次方程x 2−2x −1=0的两个实数根,则x 12−x 1+x 2=__________; (2)若x 1,x 2为一元二次方程2310x x ++=的两个实数根,则31282018x x ++=__________.10、若关于x 的一元二次方程x 2+2x -m 2-m =0(m >0),当m =1、2、3、…、2018时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2018、β2018,则112220182018111111αβαβαβ+++++的值为__________.11、关于x 的一元二次方程x 2-(2k -3)x +k 2+1=0有两个不相等的实数根x 1、x 2. (1)求k 的取值范围; (2)求证:x 1<0,x 2<0;(3)若x 1x 2-|x 1|-|x 2|=6,求k 的值.12、已知方程x 2+px +q =0的两个根是x 1,x 2,那么x 1+x 2=-p ,x 1x 2=q ,反过来,如果x 1+x 2=-p ,x 1x 2=q ,那么以x 1,x 2为两根的一元二次方程是x 2+px +q =0.请根据以上结论,解决下列问题:(1)已知关于x 的方程x 2+mx +n =0(n ≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数;(2)已知a 、b 满足a 2-15a -5=0,b 2-15b -5=0,求a bb a+的值; (3)已知a 、b 、c 均为实数,且a +b +c =0,abc =16,求正数c 的最小值.13、已知关于x 的方程x 2+2kx +k 2+k +3=0的两根分别是x 1、x 2,则(x 1-1)2+(x 2-1)2的最小值是__________.复习笔记(1)一元一次不等式:含有一个未知数,且未知数的次数是1的不等式. 常见不等号有:>、<、≥、≤、≠.(2)不等式的基本性质:①a b a c b c >⇒+>+,a b a c b c <⇒+<+; ②()()00ac bc c a b ac bc c ⎧>>⎪>⇒⎨<<⎪⎩; ③()()00a bc c ca b a b c c c⎧>>⎪⎪>⇒⎨⎪<<⎪⎩.(3)解不等式:解一次不等式的方法类似于解一次方程.步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化1.要特别注意的是不等式区别于方程在于变号(两边同乘以或者同除以一个负数不等号要变号).(4)不等式组的解:若a b >,分别在数轴上画出表示下列不等式组的解的情况:x ax b x b <⎧⇒<⎨<⎩(小小取小) x ax a x b >⎧⇒>⎨>⎩(大大取大)x ab x a x b <⎧⇒<<⎨>⎩(大小小大取中间) x ax b >⎧⇒⎨<⎩无解 (大大小小取不了)(5)含参(字母)的不等式问题:特别注意:①变号问题;②会利用数轴解决问题.课堂例题1、若a b >,0c <,则ac _____bc ,a b a -_____b b a-,2ac _____2bc ,||a c _____||b c .2、下列命题中,真命题是( )A .若a b >,则2a ab > B1m =-,则1m ≤ C .若a b >,则11a b < D .已知a ,b 为实数,若1a b +=,则14ab ≤3、解不等式(组):4、若不等式(2)2a x a ->-的解集是1x <-,则a 的取值范围是__________.5、若不等式组112123x ax x +<⎧⎪++⎨≤-⎪⎩的解是x < a −1,则实数a 的取值范围是__________.6、已知m ,n 为常数,若mx +n >0的解集为12x <,则nx +m <0的解集是__________.7、(1)若关于x 的一元一次不等式组100x x a -<⎧⎨->⎩无解,则a 的取值范围是__________.(2)若关于x 的不等式组2011a x x ->⎧⎨-≤<⎩有解,则a 的取值范围是__________;(3)已知不等式组253(2)23x a x x a x+≤+⎧⎪-⎨<⎪⎩有解,且每一个解x 均不在-1≤x ≤4范围内,则a 的取值范围是__________.8、对x 、y 定义一种新运算▲,规定:x y ax by =+#(其中a 、b 均为非零常数),例如:10a =#.已知113=#,111-=-#.(1)求a 、b 的值;(2)若关于m 的不等式组3(12)42m m m m p -≤⎧⎨>⎩##恰有3个整数解,求实数p 的取值范围.9、已知关于x 的方程2m x =的解满足325x y n x y n-=-⎧⎨+=⎩(0<n <3),若y >1,则m 的取值范围是__________.10、(1)从−3,−1,12,1,3这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组1(27)33x x a ⎧+≥⎪⎨⎪-<⎩无解,且使关于x 的分式方程2133x a x x--=---有整数解,那么这5个数中所有满足条件的a 的值之和是__________;(2)若关于x 的不等式组2223x x x m +⎧≥-⎪⎨⎪<⎩的所有整数解的和是-9,则m 的取值范围是__________.11、阅读理解:我们把对非负实数x “四舍五入”到各位的值记为《x 》,即当n 为非负整数时,若1122n x n -≤<+,则《x 》=n .例如:《0.67》=1,《2.49》=2,…….给出下列关于《x》=2;②《2x 》=2《x 》;③当m 为非负整数时,《m +2x 》=m +《2x 》;④若《2x -1》=5,则实数x 的取值范围是111344x ≤<;⑤满足《x 》=32x 的非负实数x 有三个.其中正确的结论是__________.(填写正确结论的序号)a b 有最大值2 D 89=3a +2b .则c .13、若不等式27125ax x x +->+对11a -≤≤恒成立,则x 的取值范围是__________.课堂练习1、已知a ,b ,c ,d 都是正实数,且a cb d <,给出下列四个不等式中,正确的有__________. ①a bcd b d ++<;②c d a b d b --<;③2ac c b d <;④b d a b c d<++.2、解不等式(组):13(21)(12)32x x --> 26321054x x x x -<⎧⎪+-⎨-≥⎪⎩ 2231x x -≤-≤+3、已知a ,b 为实数,则解可以表示为22x -<<的不等式组的是( )A .11ax bx >⎧⎨>⎩B .11ax bx >⎧⎨<⎩C .11ax bx <⎧⎨>⎩D .11ax bx <⎧⎨<⎩4、若不等式组x ax b>-⎧⎨≥-⎩ 的解为x b ≥-,则下列各式正确的是( )A .a >bB .a <bC .b ≤aD .ab >05、若关于x 的不等式组9080x a x b -≥⎧⎨-<⎩的整数解仅为1,2,3,则适合这个不等式组的整数a ,b 的有序数对(a ,b )的个数是__________个.6、若3a -22和2a -3是实数m 的平方根,且t则不等式2353212x t x t ---≥的解集为__________.7、如果关于x 的分式方程1311a xx x --=++有负分数解,且关于x 的不等式组2()43412a x x x x -≥--⎧⎪⎨+<+⎪⎩的解集为x <−2,那么符合条件的所有整数a 的积是__________.8、如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程. (1)在方程①x -(3x +1)=-5;②23x+1=0;③3x -1=0中,不等式组25312x x x x -+>-⎧⎨->-+⎩的关联方程是__________(填序号);(2)若不等式组2112x x x -<⎧⎨+>-+⎩的某个关联方程的根是整数,则这个关联方程可以是__________(写出一个即可); (3)若方程111222x x -=,3+x =2(x +12)都是关于x 的不等式组22x x m x m <-⎧⎨-≤⎩的关联方程,直接写出m 的取值范围.复习笔记运用方程解决应用题的基本步骤:①审题,搞清已知量和待求量,分析数量关系;(审题,寻找等量关系)②考虑如何根据等量关系设元,列出方程;(设未知数,列方程)③列出方程后求解,得到答案;(解方程)④检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)课堂例题1、《算法统宗》是我国明代的一部数学名著,记载了很多有趣的问题.其中有一道“李白饮酒”的数学诗谜,原诗如下:“今携一壶酒,游春郊外走,逢朋加一倍,入店饮斗九.相逢三处店,饮尽壶中酒.”诗文大意为:李白去郊外春游,带了一壶酒,每次遇见朋友,就先到酒馆里将壶里的酒增加一倍,然后喝掉其中的19升酒,这天他共三次遇到了朋友,恰好把壶中的酒喝光.根据诗中的叙述,若我们设壶中原有x 升酒,可以列出的方程为__________.2、某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“……”,设实际每天铺设管道x 米,则可得方程300030001510x x-=-,根据此情景,题中用“……”表示的缺失的条件应补为( ) A .每天比原计划多铺设10米,结果延期15天才完成 B .每天比原计划少铺设10米,结果延期15天才完成 C .每天比原计划多铺设10米,结果提前15天才完成 D .每天比原计划少铺设10米,结果提前15天才完成3、书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠; ②一次性购书超过100元但不超过200元一律打九折; ③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是__________元.4时采用了下面的方法:由=)2-)2=(24-x )-(8-x )=16...=5.=5两边平方可解得x =-1. 经检验x =-1是原方程的解. 请你学习小明的方法,解下面的方程:(1的解是__________;(2x .5、阅读材料:小明在学习了二元一次方程组后遇到了这样一道题目:现有8个大小相同的长方形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,求每个小长方形的面积.小明设小长方形的长为x,宽为y,观察图形得出关于x、y的二元一次方程组,解出x、y的值,再根据长方形的面积公式得出每个小长方形的面积.解决问题:(1)请按照小明的思路完成上述问题:求每个小长方形的面积;(2)某周末上午,小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图3所示.若小明把13个纸杯整齐叠放在一起时,它的高度约是__________cm;(3)小明进行自主拓展学习时遇到了以下这道题目:如图,长方形ABCD中放置8个形状、大小都相同的小长方形(尺寸如图4),求图中阴影部分的面积,请给出解答过程.6、(1)如图1.∆ABC中,∠C为直角,AC=6,BC=8,D,E两点分别从B,A开始同时出发,分别沿线段BC,AC向C点匀速运动,到C点后停止,他们的速度都为每秒1个单位,请问D点出发2秒后,∆CDE 的面积为多少?(2)如图2,将(1)中的条件“∠C为直角”改为∠C为钝角,其他条件不变,请问是否仍然存在某一时刻,使得∆CDE的面积为∆ABC面积的一半?若存在,请求出这一时刻,若不存在,请说明理由.7、某厂制作甲、乙两种环保包装盒.已知同样用6m的材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制作一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少材料?(2)如果制作甲、乙两种包装盒3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需材料总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?9、近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40,两种猪肉元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的34销售的总金额比5月20日提高了1a%,求a的值.10课堂练习1、古代名著《算学启蒙》中有一题:良马日行二百四十里.驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意,可列方程为__________.2、某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48m,则这三间长方形种牛饲养室的总占地面积的最大值为__________m2.3、为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为__________辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.4、凉山州政府在邛海“空列”项目考察座谈会上与多方达成初步合作意向,决定共同出资60.8亿元,建设40千米的邛海空中列车.据测算,将有24千米的“空列”轨道架设在水上,其余架设在陆地上,并且每千米水上建设费用比陆地建设费用多0.2亿元.(1)求每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元?(2)预计在某段“空列”轨道的建设中,每天至少需要运送沙石1600m 3,施工方准备租用大、小两种运输车共10辆,已知每辆大车每天运送沙石200m 3,每辆小车每天运送沙石120m 3,大、小车每天每辆租车费用分别为1000元、700元,且要求每天租车的总费用不超过9300元,问施工方有几种租车方案?哪种租车方案费用最低,最低费用是多少?5、对于三个数a ,b ,c ,用M {a ,b ,c }表示这三个数的中位数,用max {a ,b ,c }表示这三个数中最大数,例如:M {-2,-1,0}=-1,max {-2,-1,0}=0,max {-2,-1,a }=(1)1(1)a a a ≥-⎧⎨-<-⎩.解决问题:(1)填空:M {sin45°,cos60°,tan60°}=__________,如果max {3,5-3x ,2x -6}=3,则x 的取值范围为__________;(2)如果2•M {2,x +2,x +4}=max {2,x +2,x +4},求x 的值;(3)如果M {9,x 2,3x -2}=max {9,x 2,3x -2},求x 的值.6、实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm 高度处连通(即管子底端离容器底5cm ),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升56cm ,则开始注入__________分钟的水量后,甲与乙的水位高度之差是0.5cm .7、上网流量、语音通话是手机通信消费的两大主体,目前,某通信公司推出消费优惠新招−−“定制套餐”,消费者可根据实际情况自由定制每月上网流量与语音通话时间,并按照二者的阶梯资费标准缴纳通信费.下表是流量与语音的阶梯定价标准:【小提示:阶梯定价收费计算方法,如600分钟语音通话费=0.15×500+0.12×(600−500)=87元】(1)甲定制了600MB的月流量,花费48元;乙定制了2GB的月流量,花费120.4元,求a,b的值.(注:1GB=1024MB)(2)甲的套餐费用为199元,其中含600MB的月流量;丙的套餐费用为244.2元,其中包含1GB的月流量,二人均定制了超过1000分钟的每月通话时间,并且丙的语音通话时间比甲多300分钟,求m的值.8、随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.(1)该市的养老床位数从2016年底的2万个增长到2018年底的2.88万个,求该市这两年(从2016年度到2018年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?。

中考数学复习第二章方程组与不等式组讲义

中考数学复习第二章方程组与不等式组讲义

第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。

(系数不为0)的整式方程。

形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。

解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。

一般形式: ax+by=c ,有无数组解。

2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。

⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。

【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。

2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。

中考数学专题复习:方程与不等式

中考数学专题复习:方程与不等式

中考数学专题复习:方程与不等式一、方程有关概念1、方程:含有未知数的等式叫做方程。

2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。

3、解方程:求方程的解或方判断方程无解的过程叫做解方程。

4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。

二、一元一次方程1、一元一次方程的标准形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0)2、一元一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0)3、解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。

4、一元一次方程有唯一的一个解。

三、一元二次方程1、一元二次方程的一般形式:02=++c bx ax (其中x 是未知数,a 、b 、c 是已知数,a ≠0)2、一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法3、一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法。

(4)一元二次方程的根的判别式:ac b 42-=∆当Δ>0时⇔方程有两个不相等的实数根; 当Δ=0时⇔方程有两个相等的实数根; 当Δ< 0时⇔方程没有实数根,无解;当Δ≥0时⇔方程有两个实数根 5、一元二次方程根与系数的关系:若21,x x 是一元二次方程02=++c bx ax 的两个根,那么:a b x x -=+21,ac x x =⋅21 6、以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0)(21212=++-x x x x x x 三、分式方程1、定义:分母中含有未知数的方程叫做分式方程。

2、分式方程的解法: 一般解法:去分母法,方程两边都乘以最简公分母。

特殊方法:换元法。

3、检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。

初中数学方程与不等式知识点总结

初中数学方程与不等式知识点总结

初中数学方程与不等式知识点总结方程与不等式是初中数学中重要的内容,是学习数学的基础知识之一。

本文将总结方程与不等式的基本概念、解题方法和常见应用,以帮助初中生更好地掌握这些知识点。

一、方程的基本概念与解法1. 方程的定义:方程是由等号连接的两个代数式构成的等式。

方程中未知量的值称为方程的解。

2. 一元一次方程:形如ax + b = 0的方程,其中a和b是已知数且a ≠ 0。

一元一次方程只有一个未知数。

3. 解一元一次方程的步骤:a) 将方程化简为形式ax = b;b) 通过等式两边的运算,将未知数的系数系数化为1;c) 通过等式两边的运算,求出未知数的值。

4. 一元二次方程:形如ax^2 + bx + c = 0的方程,其中a、b、c是已知数且a ≠ 0。

一元二次方程有一个未知数的平方项。

5. 解一元二次方程的步骤:a) 通过因式分解、配方法或求根公式将方程简化为形式(x - p)(x - q) = 0;b) 令(x - p)(x - q) = 0,解得x = p或x = q;c) 通过解方程求得的解,验证原方程的等式是否成立。

二、不等式的基本概念与解法1. 不等式的定义:不等号连接的两个代数式构成的式子。

不等式的解是使不等式成立的值或数值范围。

2. 一元一次不等式:形如ax + b > 0或ax + b < 0的不等式,其中a和b是已知数且a ≠ 0。

3. 解一元一次不等式的步骤:a) 将不等式化简为形式ax > b或ax < b;b) 通过对不等式两边的运算,得到未知数的范围。

4. 一元二次不等式:形如ax^2 + bx + c > 0或ax^2 + bx + c < 0的不等式,其中a、b、c是已知数且a ≠ 0。

5. 解一元二次不等式的步骤:a) 通过因式分解、配方法或求根公式将不等式简化为形式(ax - p)(ax - q) > 0或(ax - p)(ax - q) < 0;b) 列出不等式(ax - p)(ax - q) > 0或(ax - p)(ax - q) < 0的解集;c) 通过解不等式求得的解集,验证原不等式是否成立。

初三总复习方程与不等式

初三总复习方程与不等式

初三总复习方程(组)与不等式(组)知识点总结:1、方程:含有()的等式叫做方程2、一元二次方程ax^2+bx+c=0(a≠0)的求根公式()、判别式()当△>O时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.、3、(a+b)^2=4、(a+b)(a-b)=练习题:一.选择题1、若x=-2是关于x的一元二次方程ax^2-5/2ax+a^2=0的一个根,则a的值()A、1或4B、-1或-4C、-1或4D、1或-42、一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A、100(1+x)=121 B、100(1-x)=121C、100(1+x)^2=121D、100(1-x)^2=1212、用配方法解一元二次方程x^2-4x=5时,此方程可变形为()A、(x+2)^2=1B、(x-2)^2=1C、(x+2)^2=9D、(x-2)^2=93、关于x的一元二次方程(k-2)^2 x^2+(2k+1)x+1=0 有两个不想等的实数根,则k 的取值范围是( )A 、k >4/3且k ≠2B 、k ≥4/3且k ≠2C 、k >3/且k ≠2D 、k ≥3/4且k ≠24、 分式方程12x^2-9 -2x-3 =1x+3的解是( ) A 、3 B 、-3 C 、无解 D 、3或-35、壮壮要到距离家1500米的学校上学,一天壮壮出发10分钟后,爸爸去追壮壮,并且子、爱距离学校60米的地方追上了,已知爸爸比壮壮的速度快100米/分,若设壮壮的速度是x 米/分,则根据题意所列方程是 ( )A 、1440x-100 -1440x =10B 、1440x =10+1440x+100C 、1440x =1440x-100 +10D 、1440x+100 -1440x=10 6、若a+b=3,a-b=7则ab=( )A 、-10B 、-40C 、10D 、407、已知方程组 2x+y=4, 则x+y=( )x+2y=5A 、-1B 、0C 、2D 、38、已知a >b,若c 是任意实数,则下列不等式中总是成立的是( )A 、a+b < b+cB 、a-c > b-cC 、ac < bcD 、ac > bc9、不等式组 5x-1> 3(x+1) 的解集是( ) (1/2x-1)≤ 7-3/2xA 、x >2B 、x ≤4C 、x <2或x ≥4D 、2<1≤410、若不等式组 x-b <0 的解集是2<x <3,则a,b 的值分别是( ) X+a >0A 、-2,3B 、2,-3C 、3,-2D 、-3,2二.填空题1、已知m 、n 是方程x^2+2x-5=0的两个实数根,则m^2-mn+3m+n=______2、若a,b 是x^2-2x-3=0的两个实数根,则a^2+b^2=__________3、关于x 的一元二次方程x^2-2x+m=0有两个不相等的实数根,则整数m 的最大值是__________4、某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为_________________5、已知关于x 的分式方程x+k x+1 -k x-1=1的解为负数,则k 的取值范围是_____________6、关于x 的分式方程m x-1 - 31-x=1无解,则m 的值是__________ 7、若关于x 的方程2x-2 + x+m 2-x=2有增根,则m 的值是_________ 8、已知方程组 x+y=7 则3(x+y )-(3x-5y )的值是________ 3x-5y=-39、已知 X=2,y=1 是二元一次方程组 mx+ny=7的解,则m+3n 的 立方根是________________ nx-my=110、若关于x 的不等式组 4+x 3 >x+22的解集为x <2.则a 的取值 范围是_________ x+a 2<0三、解答题1、已知关于x的方程(k-1)x^2-(k-1)x+1/4=0有两个相等的实数根,求k的值2、某公司今年销一种产品,一月份获得利润20万元,由于产品畅销,利润逐渐增加,3月份的利润比二月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率3、4.20雅安地震后,某商家为支援灾区人民,计划捐赠帐篷168000顶,该商家备有2辆大货车、8辆小货车运送帐篷,计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运一次,两天恰好运完 1)求大小货车原计划每辆每次各运帐篷多少顶。

九年级数学中考复习专题——方程与不等式(附答案)

九年级数学中考复习专题——方程与不等式(附答案)

知识点一 一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠.注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 3.一元一次方程0(0)ax b a +=≠的求解步骤知识点二 二元一次方程(组)及解法1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.知识点三分式方程及其解法1.分式方程:分母中含有的方程叫做分式方程;2.分式方程的解法:(1)解分式方程的基本思路是把分式方程转化为整式方程。

(2)解分式方程的一般步骤:第一步:,将分式方程转化为整式方程;第二步:解整式方程;第三步:.(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为的根,称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为的根是增根应舍去。

(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为的因式。

知识点四一元二次方程及其解法1.一元二次方程:只含有个未知数(一元),并且未知数最高次数是2(二次)的方程,叫做一元二次方程。

中考数学必背知识手册方程与不等式

中考数学必背知识手册方程与不等式

考点02 方程与不等式一、等式方程整式方程一元一次方程概念只含有一个未知数,并且未知数的次数是一次的整式方程,叫做一元一次方程。

其一般形式是ax+b=0(a,b为常数,且a≠0).解法解法依据是等式的基本性质.性质①:若a=b,则a±m=b±m;性质①:若a=b,则am=bm;若a=b,则dbda=(d≠0).解法的一般步骤:①去分母;①去括号;①移项;①合并同类项;①未知数的系数化为1.一元二次方程概念(1)只含有一个未知数,未知数的最高次数是二次,且系数不为0的整式方程,叫做一元二次方程.(2)一元二次方程的一般形式:ax2+bx+c=0(a≠0),其中ax2叫做二次项,bx叫做一次项,c叫做常数项,a是二次项的系数,b是一次项的系数,注意a≠0.解法(降次)① 直接开平方法:(x+m)2=n(n≥0)的根是nmx±-=配方法:将ax2+bx+c=0(a≠0)化成222442aacbabx-=⎪⎭⎫⎝⎛+的形式,当b2-4ac≥0时,用直接开平方法求解公式法:ax2+bx+c=0(a≠0)的求根公式为知识归纳1. 解二元一次方程组的步骤 (1)代入消元法① 变:将其一个方程化为y =ax +b 或者为x =ay+b 的形式 ② 代:将y =ax +b 或者为x =ay+b 代入另一个方程 ③ 解:解消元后的一元一次方程④ 求:将求得的未知数值代入y =ax +b 或x =ay+b ,求另一个未知数的值 ⑤ 答:写出答案 (2)加减消元法① 化:将原方程组化成有一个未知数的系数相等(互为相反数)的形式, ② 加减:将变形后的方程组通过加减消去一个未知数 ③ 解:解消元后的一元一次方程④ 求:将求得的知数的值代入方程组中任意一个方程求另一个未知数的值 2. 解二元一次方程组的方法选择(1)当方程组中某一个未知数的系数是1或者-1时,选用代入消元法; (2)当方程组中某一个方程的常数项为0时,选用代入消元法; (3)方程组中同一个知数的数相同或互为相反数时,选用加减消无法 (4)当两个方程中同一个未知数的系数成整数倍关系时,选用加减消元法 3. 分式方程验根的两种方法(1)把求得的未知数的值代入原程进行检验,这种方法可以检验解方程时计算有无错误;(2)把求得的未知数的值代入分式的最公分母,看最简公分式的值是否等于零,这种方法不能检查解力程过程中出现的计算错误,式组的解集⎩⎨⎧≤≤b x ax x ≤a小小取小⎩⎨⎧≤≥b x ax a ≤x ≤b大小小大中间找⎩⎨⎧≥≤bx ax 无解大大小小解不了答题指导4. 分式方程无解两种情形(1)分式方程化为整式方程后所得整式方程无解,则原程无解;(2)整式方程有解,但所求得的解经检验是增根,此时分式无解。

专题2:方程和不等式(组)常见题型和解题方法(终稿)

专题2:方程和不等式(组)常见题型和解题方法(终稿)

2017—2018学年度第二学期初三数学中考复习专题2:方程和不等式(组)常见题型和解题方法一、热点再练:1. 方程36x =的解为 .2. 关于x 的方程ax 2+bx +c =0(a ≠0)有一个根为1,则a +b +c = . 3.方程0532=++px x 的一个根为5,另一个根为______、p =_______.4.如果关于x 的方程(m –2)x 2–2x +1=0有解,则m 的取值范围是_______.5.已知关于x 的方程a (1–x 2)+2bx +c (1+x 2)=0有两个相等的实数根且a 、b 、c 均为正数,以a 、b 、c 为边围成一个三角形,则该三角形是________三角形.6.方程)2()2(2-=-x x 的根是________.方程组⎩⎨⎧=+=-1435y x y x 的解为________. 7.若关于x 的一元一次不等式组0122x a x x ->⎧⎨->-⎩有解,则a 的取值范围是________. 8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是【 】A .203210x y x y +-=⎧⎨--=⎩, B .2103210x y x y --=⎧⎨--=⎩, C .2103250x y x y --=⎧⎨+-=⎩, D .20210x y x y +-=⎧⎨--=⎩, 9.下列方程中,两实数根之和是2的是【 】A .x 2–2x +5=0B .x 2+2x –5=0C .x 2+2x +5=0D .x 2–2x –5=010.设1x 、2x 是关于x 的一元二次方程22x x n mx ++-=的两个实数根,且10x <,2130x x -<,则 【 】A .1,2m n >⎧⎨>⎩B .1,2m n >⎧⎨<⎩C .1,2m n <⎧⎨>⎩D .1,2m n <⎧⎨<⎩11.已知直线y =2x -b 经过点(-2,0),则关于x 的不等式2x -b ≥0的解集为__________.12.设一元二次方程(x -1)(x -2)=m (m >0)的两根分别为α、β,且a <β,则a ,β满足 【 】A .1<a <β<2B .1<a <2<βC .a <1<β<2D .a <1且β>2(第9题)13.关于x 、y 的二元一次方程组5323x y x y p +=⎧⎨+=⎩的解是正整数,则整数p 的值为__________. 14.解分式方程225103x x x x-=+-.二、规律剖析例1. 解不等式组:331213(1)8x x x x-⎧+>+⎪⎨⎪---⎩,≤并在数轴上把解集表示出来.例2.已知关于x 的分式方程111x k k x x +-=+-的解为负数,求k 的取值范围.例3. 已知关于x 的一元二次方程mx 2-(3m +1)x +2m +2=0的两实根为x 1,x 2.(1)请用含m 的代数式表示x 1,x 2;(2)且n =x 2-x 1-1,求在直角坐标系xOy 中动点P (m ,n )所形成的曲线解析式.三、变式训练1. 若关于x 的不等式组10,233544(1)3x x x a x a+⎧+>⎪⎨⎪++>++⎩恰有三个整数解,求实数a 的取值范围.2. 若关于x 的分式方程121m x -=-的解为正数,则m 的取值范围是 .3.已知关于x 的一元二次方程2(41)330mx m x m -+++=的两个实数根分别为1x ,2x ,212n x x =--,设点A (1,a ),B (b ,2)两点在动点P (m ,n )所形成的曲线上,求直线AB 的解析式.四、分层作业1.一元二次方程(2x -1)2=(3-x )2的解是 .2. 关于x 的方程12mx x -=的解为正实数,则m 的取值范围是【 】A .m ≥2B .m ≤2C .m >2D .m <23. 甲种电影票每张20元,乙种电影票每张15元.若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了 张.4. 设α,β是一元二次方程x 2+3x -7=0的两个根,则α2+4α+β= . 5. 下列关于x 的方程有实数根的是【 】A .x 2-x +1=0B .x 2+x +1=0C .(x -1)(x +2)=0D .(x -1)2+1=06.若关于x 的一元二次方程x 2+x +m =0有两个相等的实数根,则m = .7.下列一元二次方程两实数根和为-4的是【 】A .x 2+2x -4=0B .x 2-4x +4=0C .x 2+4x +10=0D .x 2+4x -5=08.已知关于x 的一元二次方程x 2+x +m =0的一个实数根为1,那么它的另一个实数根是【 】A .-2B .0C .1D .29.若关于x 的一元一次不等式组10,0x x a -<⎧⎨->⎩无解,则a 的取值范围是( ) A .a ≥1 B .a >1C .a ≤-1D .a <-1 10.关于x 的不等式x -b >0恰有两个负整数解,则b 的取值范围是( )A .―3<b <―2B .―3<b ≤―2C .―3≤b ≤―2D .―3≤b <―211.求不等式组364,213(1)x x x x --⎧⎨+>-⎩≥的解集,并写出它的整数解.12.已知2a-3x+1=0,3b-2x-16=0,且a≤4<b,求x的取值范围.13. 某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.(1)求A市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A市三年共投资“改水工程”多少万元?14. 关于x的一元二次方程ax2-3x+1=0的两个不相等的实数根都在0和1之间(不包括0和1),求a的取值范围.★15.已知a-b=2,ab+2b-c2+2c=0,当b≥0,-2≤c<1时,求整数a的值.★16.已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;(3)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.。

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。

九年级数学中考专题二-方程与不等式

九年级数学中考专题二-方程与不等式

中考数学核心题 精典专题二 方程、不等式一、兴趣导入 规划成功:叩问内心,寻找向上的力量!二、 名师导航 解题指导函数、不等式与函数是初中代数的核心内容:主要包括三方面内容,一是各自知识的灵活运用,二是三者之间的联系,三是会用方程(组)、不等式(组)与函数知识来解决数学问题和实际问题。

函数核心问题包括函数的概念、一次函数(正比例函数)、反比例函数及二次函数知识的灵活应用。

三、精准预测 精讲精练1. 二元一次方程组的解法例1(黄冈)解方程组⎪⎩⎪⎨⎧=--+-=+--3)2(2)(312143)(2y x y x y x y x例2.已知关于x 、y 的方程组⎩⎨⎧=+=+73ay bx by ax 的解是⎩⎨⎧==12y x ,则a+b 的值是【练习一组】1.(义乌)已知⎩⎨⎧=-=+⎩⎨⎧==18mx 12my nx ny y x 是二元一次方程组的解,则2m-n 的算术平方根是 2.若方程组⎩⎨⎧==+3-222x y k y x 的解满足x<1,且y>1,求整数k 的个数。

2.分式方程的解法例3319632-=-++x x x x例4.(1)(攀枝花)若分式方程xx kx -=--+21212无解,则k= (2)(舟山)已知关于x 的方程322=-+x m x 的解是正数,则m 的取值范围是【练习一组】1.(龙东)已知关于x 的分式方程1131=-+-x x m 的解是非负数,则m 的取值范围是2.(2018南充)已知yxy x y xy x y ---+=-232,31x 1则代数式的值是( )A 27-B 211-C 29D 43 3.(2013绵阳)解方程23112-++=-x x x x 3.(2015绵阳)解方程111223+-=+x x4.(2018绵阳)解分式方程xx x -=+--23221 4.一元二次方程例5. (1)方程(x-3)2-3x(x-3)=0的解是(2)(2018资阳)关于x 的一元二次方程mx 2+5x+m 2-2m=0有一个根为0,则m=(3)(呼和浩特)已知βα,是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的有两个不相等的实数根,且满足111-=+βα,则m 的值是( ) A 3或者-1 B 3 C 1 D -3或1(4)(2017成都)已知x 1,x 2是方程x 2-5x+a=0的两个实根,且102221=-x x ,则a=(5)已知一元二次方程02-2=+m x x 有两个实数根1x 、2x 。

2024中考备考热点02 方程(组)与不等式(组)(12大题型+满分技巧+限时分层检测)(原卷版)

2024中考备考热点02  方程(组)与不等式(组)(12大题型+满分技巧+限时分层检测)(原卷版)

热点02 方程(组)与不等式(组)中考数学中《方程(组)与不等式(组)》部分主要考向分为四类:一、一元一次方程与二元一次方程(组)(每年2~4道,8~14分)二、一元二次方程(每年1~2道,3~8分)三、分式方程(每年1~3题,3~12分)四、不等式(组)(每年2~4题,8~18分)方程(组)与不等式(组)在数学中考中的难度中等,题型比较多,选择题、填空题、解答题都可以考察。

其中,一元一次方程与二元一次方程(组)是比较接近的两个考点,出题一般都只有1题,一元一次方程多考察其在实际问题中的应用,多为选择题;二元一次方程组则以计算和应用题为主占分较多。

一元二次方程单独出题时多考察其根的判别式、根与系数的关系以及在实际问题中提炼出一元二次方程;一元二次方程的计算则主要出现在几何大题中,辅助解压轴题。

分式方程的考察内容不多,但基本属于必考考点,可以是一道小题考察其解法,也可以是应用题。

不等式组是这四个考点中占分最多的一个,考察难度也是可大可小,其解法、含参数的不等式组问题、和方程结合的应用题都经常考到。

虽然该热点难度中等,一般不会失分,但是组合出题时,难度也可以变大,复习时需要特别注意。

考向一:一元一次方程与二元一次方程组【题型1 实际问题抽象出一元一次方程】行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得()A.12240150x x+=B.12240150x x=-C.240(12)150x x-=D.240150(12)x x=+2.(2023•丽水)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝为斤.3.(2023•陕西)小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,共用了62元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,求该文具店中这种大笔记本的单价.【题型2 二元一次方程组的解法相关】满分技巧解二元一次方程组有2种方法——带入消元法和加减消元法不管是带入法还是加减法,目的都在于利用等式的基本性质将二元一次方程组转化为一元一次方程,所以做题中也必须注意一元一次方程解法的易错点。

中考方程与不等式知识点汇总

中考方程与不等式知识点汇总

中考方程与不等式知识点汇总方程与不等式是中考数学中非常重要的知识点,以下是方程(组)与不等式(组)知识点的汇总及相关解题方法。

方程的基本概念:方程是一个等式,有一个或多个未知数,通过求解方程可以确定未知数的值。

一元一次方程:一元一次方程是指只有一个未知数的一次方程,形如ax+b=0(a≠0)。

求解一元一次方程的基本思路是将方程两边进行运算,将未知数的系数移到一边,常数移到另一边,然后化简得到未知数的值。

一元一次方程的解:1. 如果a≠0,方程ax+b=0有唯一解x=-b/a;2.如果a=0,b≠0,方程0x+b=0无解;3.如果a=0,b=0,方程0x+0=0有无数解。

一元二次方程:一元二次方程是指只有一个未知数的二次方程,形如ax²+bx+c=0(a≠0)。

求解一元二次方程的常用方法有公式法、因式分解法、配方法。

一元二次方程的解:根据一元二次方程的求解公式x=(-b±√(b²-4ac))/(2a),可以求解一元二次方程的解。

1. 当b²-4ac>0时,方程有两个不相等的实数根;2. 当b²-4ac=0时,方程有两个相等的实数根;3. 当b²-4ac<0时,方程没有实数根,有两个共轭复数根。

方程组的基本概念:方程组是由多个方程组成的集合,方程组中的所有方程要同时满足。

二元一次方程组:二元一次方程组是指只有两个未知数的一次方程组。

求解二元一次方程组的基本思路是通过消元法或代入法将方程组化简成一个一元一次方程,然后求解未知数的值。

二元一次方程组的解:1.如果方程组有唯一解,那么方程组中的两个方程的解是一组有序实数组成的;2.如果方程组有无数解,那么方程组中的两个方程是等价的;3.如果方程组无解,那么方程组中的两个方程是矛盾的。

二元二次方程组:二元二次方程组是指只有两个未知数的二次方程组。

求解二元二次方程组的基本思路是将一个未知数用另一个未知数的值代入方程组中,然后化简方程组并求解未知数的值。

初中数学方程与不等式知识点归纳总结

初中数学方程与不等式知识点归纳总结

初中数学方程与不等式知识点归纳总结方程与不等式是初中数学中重要的概念和工具,它们在实际生活和数学应用中具有广泛的应用。

本文将对初中数学方程与不等式的知识点进行归纳总结,帮助读者更好地理解和掌握这一部分内容。

以下是对方程和不等式的定义、解法和应用的详细介绍。

一、方程的概念与解法方程是一个数学等式,表示两个表达式相等关系。

解方程就是找到使方程成立的未知数的值,这些值称为方程的解。

常见的方程形式有一元一次方程、一元二次方程和二元一次方程等。

1. 一元一次方程一元一次方程是指只有一个未知数且最高次数为一的方程。

求解一元一次方程的基本步骤是通过变形将方程化为形如“x = 常数”或“常数 = x”的形式。

2. 一元二次方程一元二次方程是指只有一个未知数且最高次数为二的方程。

求解一元二次方程可以使用配方法、公式法、因式分解法等等。

3. 二元一次方程二元一次方程是指含有两个未知数的一次方程。

求解二元一次方程可以通过几何方法,如画平面图和坐标法,或代入法、消元法等进行求解。

二、不等式的概念与解法不等式是表示两个表达式大小关系的数学式子。

解不等式就是找到使不等式成立的未知数的值,这些值称为不等式的解。

常见的不等式形式有一元一次不等式、一元二次不等式和绝对值不等式等。

1. 一元一次不等式一元一次不等式是指只有一个未知数且最高次数为一的不等式。

求解一元一次不等式的基本方法是通过变形将不等式化为形如“x > 常数”或“x < 常数”的形式。

2. 一元二次不等式一元二次不等式是指只有一个未知数且最高次数为二的不等式。

求解一元二次不等式可以先求出其对应的二次方程,然后利用二次方程的根的性质获得答案。

3. 绝对值不等式绝对值不等式是指含有绝对值符号的不等式。

求解绝对值不等式可以分情况讨论,将绝对值不等式拆分成两个不等式进行求解。

三、方程与不等式的应用方程与不等式在实际生活和数学应用中有广泛的应用。

其中,方程的应用主要体现在各种问题的建立和解决过程中,如物体的运动问题、几何问题以及利润和成本问题等。

(word完整版)中考方程(组)与不等式(组)知识点汇总,推荐文档

(word完整版)中考方程(组)与不等式(组)知识点汇总,推荐文档

1、方程含有未知数的等式叫做方程。

2、等式的性质性质(1)若a=b,则a________=b________。

性质(2)若a=b,则a________=b________;a________=b________。

3、一元一次方程满足一元一次方程的条件①_____________________________②____________________________ ③____________________________。

解一元一次方程的步骤:①_________________②____________________③__________________ ④______________________⑤___________________。

4、二元一次方程组1、二元一次方程满足二元一次方程的条件①_____________________________②____________________________③____________________________。

2、二元一次方程组的解法①_____________________________②____________________________不等式的概念1、不等式用不等号表示不等关系的式子,叫做不等式。

2、不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

求不等式的解集的过程,叫做解不等式。

3、用数轴表示不等式的方法不等式基本性质1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

考试题型:一元一次不等式1、一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

中考数学 热点专题二 方程与不等式

中考数学 热点专题二 方程与不等式

热点专题二方程与不等式【考点聚焦】“方程与不等式”包括方程与方程组、不等式与不等式组两方面内容.“方程与不等式”均存在标准形式,其解法具有程序式化的特点是一种重要的数学基本技能.此外,“方程与不等式”也是刻画现实世界的一个有效的数学模型,在现实生活中存在大量的“方程与不等式”问题.“方程与不等式”是初中数学的核心内容之一.就解法与自身的应用来说,“方程与不等式”是初中数学最重要的基础知识之一,同时也是学习函数等知识的基础;就所蕴含的“方程思想和转化思想”而言,它更是培养同学们分析问题和解决问题思想方面的重要源泉和场所.同时对“方程与不等式”的考查,一方面注重对其解法和与其它知识点联系的考查,另一方面更注重对其与现实生活的联系,加强对解决简单实际问题的数学考查.在学业考试中所有题型均可出现,题量不小,而且难度将随着题型变化而变化.【热点透视】热点1:设计重结果的问题考查方程与不等式的有关概念例1(1)二元一次方程组320x yx y-=-⎧⎨+=⎩的解是()(A)12xy=-⎧⎨=⎩(B)12xy=⎧⎨=-⎩(C)12xy=-⎧⎨=-⎩(D)21xy=-⎧⎨=⎩(2)不等式组24010xx-<⎧⎨+⎩≥的解集在数轴上表示正确的是()分析:(1)小题对二元一次方程组的解法多样,供同学们选择的解题途径较多,即使同学们只从方程组的解的概念出发通过验算也能够解决问题,因而题目的效度较高.(2)小题通过对不等式组解集的选择,考查了同学们解不等式组的基本功.解答:(1)(A );(2)(B ).点评:这样的问题由于只关心对同学们解答问题结果正确性的考查,具有较强的针对性,比较适合对理解方程(组)的解和不等式(组)解集的概念水平的考查.热点2:设置具体的情景考查同学们构建方程(不等式)模型的能力.例2 (2008湘潭)在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同的金色纸边,制成一幅矩形挂图,如图1所示,如果要使整个挂图的面积是54002cm ,设金色纸边的宽为x cm ,那么x 满足的方程是( )(A)213014000x x +-= (B)2653500x x +-=(C)213014000x x --= (D)2653500x x --=分析:观察图形可知,金色纸边的面积与矩形风景画的面积之和为54002cm ,而矩形风景画的面积为40002cm ,设金色纸边的宽为x cm ,则可用含x 的代数式表示出金色纸边的面积为22[42(8050)]cm x x x ++.解:(B ).点评:从同学们所熟知的生活情景入手,考查同学们建立方程模型的能力,使考查的过程具有一定的趣味性,同时,建模的思想作为初中数学的重点和难点是需要师生在学习过程中有针对性突破的,而中考的命题毫无疑问在这方面给出了一种明显的导向,应当引起重视. 例3 (2008长沙)在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数.分析:工作总量÷工作时间=工作效率.解:(1)设乙工程队单独完成这项工程需要x 天,根据题意得:101120140x x ⎛⎫++⨯= ⎪⎝⎭, 解之得:60x =,经检验:60x =是原方程的解.答:乙工程队单独完成这项工程所需的天数为60天.(2)设两队合做完成这项工程所需的天数为y 天,根据题意得:1116040y ⎛⎫+=⎪⎝⎭, 解之得:24y =.答:两队合做完成这项工程所需的天数为24天.点评:本题背景取材于同学们所熟悉的“社会主义新农村建设”,巧妙将分式方程,一元一次方程的应用结合起来考查,符合新课程理念,并且层次分明,难度适中,考查要求达到课程标准所规定的毕业水平.热点3:设置与生活和社会实际相关的问题考查运用方程解决简单实际问题的能力. 例4 (2008湘潭)小刚、小明一起去精品文具店买同种钢笔和同种练习本,根据下面的对话解答问题:小刚:阿姨,我买3支钢笔,2个练习本,共需多少钱?售货员:刚好19元.小明:阿姨,那我买1支钢笔,3个练习本,需多少钱呢?售货员:正好需11元.(1)求出1支钢笔和1个练习本各需多少钱?(2)小明现有20元钱,需买1支钢笔,还想买一些练习本,那么他最多可买练习本多少个?分析:第(1)问利用二元一次方程组求钢笔和练习本的单价,第(2)问通过一元一次不等式求出最多可买多少个练习本.解:(1)设买一支钢笔需x 元,买一个练习本需y 元,依题意:3219311x y x y +=⎧⎨+=⎩解之得52x y =⎧⎨=⎩.(2)设买的练习本为z 个,则15220z ⨯+≤,得7.5z ≤.因为z 为非负整数,所以z 的最大值为7.答:(1)买1支钢笔需5元,1个练习本需2元.(2)小明最多可买7个练习本. 点评:这类问题的解答遵循“问题←→数学问题←→解数学问题←→解决问题”,不仅对于考查“数学化”具有较高的效度,而且考查了同学们在生活中用数学的意识. 热点4:考查同学们综合运用方程(组)与不等式(组)解决数学问题的能力. 例5(2008长沙)某班到毕业时共结余经费1 800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念品.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册.(1)求每件文化衫和每本相册的价格分别为多少元?(2)有几种购买文化衫和相册的方案?哪种方案用于购买老师纪念品的资金更充足? 分析:本例第(1)问通过列二元一次方程组解决,第(2)问利用不等式解题,而后在(1),(2)的基础上作出决策分析,较好地考查了学生综合运用数学知识解决简单问题的能力.解:(1)设文化衫和相册的价格分别为x 元和y 元,则925200x y x y -=⎧⎨+=⎩解得3526x y =⎧⎨=⎩.答:一件文化衫和一本相册的价格分别为35元和26元.(2)设购买文化衫t 件,则购买相册(50)t -本,则15003526(50)1530t t +-≤≤,解得200230 99t≤≤.∵t为正整数,∴t=23,24,25,即有三种方案.第一种方案:购文化衫23件,相册27本,此时余下资金293元;第二种方案:购文化衫24件,相册26本,此时余下资金284元;第三种方案:购文化衫25件,相册25本,此时余下资金275元;所以第一种方案用于购买教师纪念品的资金更充足.点评:决策型问题最大特点是其所对应的问题的答案具有不确定性,尽管其中相当多的一部分可归结为利用“方程与不等式”来解决,也是“方程(不等式)思想”的应用与体现,但是利用“方程与不等式”不能够直接求出问题的最终解答.要最终解决这样的问题,涉及到解决问题的策略,以及需要其他的数学知识.好的决策型问题在考查同学们运用知识解决实际问题能力方面具有较好的效度,因而,决策型问题成为近年来较为常见的考查同学们运用“方程与不等式”思想和知识解决实际问题能力的题目.热点5:考查同学们综合运用方程(组)、不等式(组)与其它数学知识结合解决数学问题的能力.例6(2008长沙)如图2,已知直线12y x=-与抛物线2164y x=-+交于A B,两点.(1)求A B,两点的坐标;(2)求线段AB的垂直平分线的解析式;(3)如图3,取与线段AB等长的一根橡皮筋,端点分别固定在A B,两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A B,构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.分析:(1)联立两个函数解析式得方程组,可求出A B,两点的坐标.(2)先作出AB 的垂直平分线,利用解直角三角形或者是三角形相似的知识,可求出AB的垂直平分线与坐标轴的交点坐标,从而求得直线的解析式.(3)由于线段AB的长度确定,要使PAB△的面积最大,只要点P到AB的距离最大即可,故点P既要在抛物线上,又必须在与AB平行的直线上.解:(1)依题意得216412y xy x⎧=-+⎪⎪⎨⎪=-⎪⎩解之得116 3x y =⎧⎨=-⎩,2242xy=-⎧⎨=⎩.∴(63)A-,,(42)B-,.(2)作AB的垂直平分线交x轴,y轴于C D,两点,交AB于M(如图4),由(1)可知:OA=,OB=,∴AB =,∴12OM AB OB =-= 过B 作BE x ⊥轴,E 为垂足,由BEO CMO △∽△,得:OC OM OB OE =,∴54OC =, 同理:52OD =,∴550042C D ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,,, 设CD 的解析式为y kx b =+(0k ≠),∴50452k b b ⎧=+⎪⎪⎨⎪-=⎪⎩ ∴252k b =⎧⎪⎨=-⎪⎩. ∴AB 的垂直平分线的解析式为:522y x =-. (3)若存在点P 使APB △的面积最大,则点P 在与直线AB 平行且和抛物线只有一个交点的直线12y x m =-+上,并设该直线与x 轴,y 轴交于G 、H 两点. ∴212164y x m y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩ ∴2116042x x m -+-=, ∵抛物线与直线只有一个交点, ∴2114(6)024m ⎛⎫--⨯-= ⎪⎝⎭, ∴254m =,∴2314P ⎛⎫ ⎪⎝⎭,. 在直线125:24GH y x =-+中, ∴25250024G H ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,. 设O 到GH 的距离为d ,∴1122GH d OG OH = ,∴1125252224=⨯⨯,∴d = ∵AB GH ∥,∴P 到AB 的距离等于O 到GH 的距离d .∴111252224S AB d ==⨯= 最大面积. 点评:本题的背景对同学们既现实又亲切,考查同学们经历建立函数关系和解方程组的过程意图明显,有较好的效度、可推广性和教育价值.【考题预测】1.方程组3520x y x y +=⎧⎨-=⎩的解是____________. 2.分式方程532x x=-的解为x =____________. 3.不等式组2450x x >-⎧⎨-⎩≤的解集是( ) (A)2x >- (B)25x -<≤(C)5x ≤ (D)无解4.中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐).设到期后银行应向储户支付现金x 元,则所列方程正确的是( )(A )50005000 3.06x -=⨯%(B )5000205000(1 3.06)x +⨯=⨯+%%(C )5000 3.06205000(1 3.06)x +⨯⨯=⨯+%%%(D )5000 3.06205000 3.06x +⨯⨯=⨯%%%5. 已知1x =是一元二次方程2400ax bx +-=的一个解,且a b ≠,求2222a b a b --的值. 6.为净化空气,美化环境,市冷水滩区在许多街道和居民小区都种上了玉兰和樟树,冷水滩区新建的某住宅区内,计划投资1.8万元种玉兰树和樟树共80棵,已知某苗圃负责种活以上两种树苗的价格分别为:玉兰树300元/棵,樟树200元/棵,问可种玉兰树和樟树各多少棵?7.某商场用36万元购进A B ,两种商品,销售完后共获利6万元,其进价和售价如下表:(注:获利=售价-进价)(1)该商场购进A B ,两种商品各多少件;(2)商场第二次以原进价购进A B ,两种商品.购进B 种商品的件数不变,而购进A种商品的件数是第一次的2倍,A 种商品按原售价出售,而B 种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81 600元,B 种商品最低售价为每件多少元?8.市政公司为绿化一段沿江风光带,计划购买甲、乙两种树苗共500株,甲种树苗每株50元,乙种树苗每株80元.有关统计表明:甲、乙两种树苗的成活率分别为90%和95%.(1)若购买树苗共用了28 000元,求甲、乙两种树苗各多少株?(2)若购买树苗的钱不超过34 000元,应如何选购树苗?(3)若希望这批树苗的成活率不低于92%,且购买树苗的费用最低,应如何选购树苗.9.已知抛物线2y x kx b =++经过点(23)P -,,(10)Q -,.(1)求抛物线的解析式.(2)设抛物线顶点为N (如图5),与y 轴交点为A .求sin AON ∠的值.(3)设抛物线与x 轴的另一个交点为M ,求四边形OANM 的面积.。

中考数学专题复习——方程与不等式

中考数学专题复习——方程与不等式

中考数学专题复习——方程与不等式本专题主要讲解方程和不等式两部分,其内容包括一元一次方程、一元二次方程、可化为一元一次方程(一元二次方程)的分式方程、二元一次方程组、一元一次不等式和一元一次不等式组的概念、解法及其应用。

在概念方面,一元一次方程中一次项系数不为零;一元二次方程中二次项系数也不为零。

方程的解法上,一元一次方程按其一般步骤求解;二元一次方程组中,解题的基本思想是“消元”,即代入消元法和加减消元法;一元二次方程的求解,直接开平方法、配方法、公式法、因式分解法是解一元二次方程的基本方法。

而因式分解法它体现方程“降次求解”的基本思想,公式法更具有一般性。

同学们在求解方程时应灵活选用,值得注意的是分式方程求解,要验根。

对于一元一次不等式(组)的求解,要熟练地掌握不等式的基本性质,它是不等式求解的基础,在解不等式(组)时,若不等式两边同时乘以或除以同一个负数时不等号方向要改变。

而不等式组的解是每个不等式解的公共部分,它常通过数轴这一步骤来得到不等式解的。

本专题的内容在初中知识结构上占较重要的位置,是各地市中考题中重要的考查内容。

一、典型例题导析例1、若关于x 的一元一次方程23132x k x k---=的解是x =-1,则k 的值是( )A 、27B 、1C 、1311- D 、0例2、方程242x x +=的正根为( )A.2B.2 C.2- D.2-+例3、解不等式组:302(1)33x x x+>⎧⎨-+≥⎩,并判断x =例4、若关于x 的不等式组3,3 1.x m x m >+⎧⎨<-⎩无解,试判断方程21(3)04m x x --+= 的根的情况。

例5、为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民月份用水8m3,则应收水费:2×6+4×(8-6)=20元.(1)若该户居民月份用水12.5m3,则应收水费______元;(2)若该户居民3、4月份共用水15m3(4月份用水量超过3月份),共交水费44元,则该户居民,3、4月份各用水多少立方米?二、选讲题,两地分别库存挖掘机16台和12台,现在运往甲、乙两地支援※例6、某公司在A B建设,其中甲地需要15台,乙地需要13台.从A地运一台到甲、乙两地的费用分别是500元和400元;从B地运一台到甲、乙两地的费用分别是300元和600元.设从A地运往甲地x台挖掘机,运这批挖掘机的总费用为y元.(1)请填写下表,并写出y与x之间的函数关系式;(2)公司应设计怎样的方案,能使运这批挖掘机的总费用最省?※例7、青青商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价 进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;(3)在“五·一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(通过计算求出所有符合要求的结果)。

中考总复习:方程与不等式综合复习知识讲解

中考总复习:方程与不等式综合复习知识讲解

中考总复习:方程与不等式综合复习知识讲解方程与不等式综合复考纲要求:1.判断方程(组)类型,解方程(组),研究分式方程的增根情况。

2.掌握解方程(组)的方法,实质是“消元降次”,“化分式方程为整式方程”,“化无理式为有理式”。

3.理解不等式的性质,掌握一元一次不等式(组)的解法,在数轴上表示解集,求特殊解集。

4.列方程(组),列不等式(组)解决社会关注的热点问题。

5.解方程或不等式是中考的必考点,运用方程思想与不等式(组)解决实际问题是中考的难点和热点。

知识网络:考点一、一元一次方程1.方程是含有未知数的等式。

2.方程的解是能使方程两边相等的未知数的值。

3.等式有两个重要性质:两边加上(或减去)同一个数或同一个整式,仍是等式;两边乘以(或除以)同一个数(除数不能是零),仍是等式。

4.一元一次方程是只含有一个未知数,未知数的最高次数是1的整式方程,标准形式为ax + b = 0(a ≠ 0),其中a是未知数x的系数,b是常数项。

5.一元一次方程解法的一般步骤为整理方程,去分母,去括号,移项,合并同类项,系数化为1,检验方程的解。

6.列一元一次方程解应用题有两种方法:读题分析法和画图分析法。

其中,读题分析法多用于“和,差,倍,分问题”,画图分析法多用于“行程问题”。

要点诠释:列方程解应用题的常用公式:1.行程问题:距离 = 速度 ×时间,速度 = 距离 ÷时间。

2.工程问题:工作量 = 工效 ×工时,工效 = 工作量 ÷工时。

3.比率问题:部分 = 全体 ×比率,比率 = 部分 ÷全体。

任何一个有实数根的一元二次方程,其两根之和等于方程的一次项系数除以二次项系数的相反数,两根之积等于常数项除以二次项系数。

虽然直接开平方法和因式分解法是解一元二次方程的特殊方法,但并不是所有的一元二次方程都能用这两种方法解决。

普通方法包括配方法和公式法,适用于所有的一元二次方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)8 与 y 的 2 倍的和是正数; (3)x 与 5 的和不小于 0;
(二)不等式与不等式组
1 几个概念 2 不等式 3 不等式(组)
1、几个概念:不等式(组)、不等式(组)的解集、解不等式(组)
2、不等式:
(1)怎样列不等式:
文档
1. 掌握表示不等关系的记号
实用标准文案
2. 掌握有关概念的含义,并能翻译成式子. 1 和、差、积、商、幂、倍、分等运算.
2 “至少”、“最多”、“不超过”、“不少于”等词语. 例题 :用不等式表示: ①a 为非负数,a 为正数,a 不是正 数解: ②
例题:
①、解下列方程: (1)x2-2x=0; (3)(1-3x)2=1; (5)(t-2)(t+1)=0; (7 )2x2-6x-3=0;
2=2(5-x) 解:
(2)45-x2=0; (4)(2x+3)2-25=0.
(6)x2+8x-2=0 (8)3(x-5)
文档
实用标准文案
② 填空: (1)x2+6x+( )=(x+ )2;
(2)x2-8x+( )=(x- )2;
(3)x2+ 3 x+( )=(x+ )2 2
(3) 判别式△=b²-4ac 的三种情况与根的关系
当 0 时 当 0 时 当 0 时
当△≥0 时
有两个不相等的实数根 , 有两个相等的实数根 没有实数根.
有两个实数根
例题.①.(无锡市)若关于 x 的方程 x2+2x+k=0 有两个相等的实数根,则
④已知等式 (2A-7B) x+(3A-8B)=8x+10 对一切实数 x 都成立,求 A、B 的值
文档
实用标准文案

⑤某校初三(2)班 40 名同学为“希望工程”捐款,共捐款 100 元.捐款情况如下表:
捐款(元)
1234
人数
6
7
表格中捐款 2 元和 3 元的人数不小心被墨水污染已看不清楚. 若设捐款 2 元的有 x 名同学,捐款 3 元的有 y 名同学,根据题意,可得方程组
x2 3x
()
(A) y 3 4 0 y
(B)y 3 4 0 y
(C) y 1 4 0 3y
(D) y 1 4 0 3y
6、应用: 1 分式方程(行程、工作问题、顺逆流问题) 2 一元二次方程(增长率、面积问题) 3 方程组实际中的运用 例题:①轮船在顺水中航行 80 千米所需的时间和逆水航行 60 千米所需的时间 相同.已知水流的速度是 3 千米/时,求轮船在静水中的速度.(提示:顺水速度 =静水速度+水流速度,逆水速度=静水速度-水流速度) 解:
则 p 、 q 满足的关系式是(

A、 p 2 4q

B、 p2 q 0
C、 p2 4q 0
D、
p 2 q 0
(4)根与系数的关系:x1+x2= b ,x1x2= c
a
a
例题:已知方程3x 2 2x 11 0 的两根分别为 x 、 x ,则 1 1
1
2
x1 x2

文档
的值是(
A、 2
11
实用标准文案
B、11
2
C、 2
11
D、 11
2
4、 方程组: 三元一次方程组二加减元代消入元一消加元减次消代元入方消程元 组一元一次方程 二元(三元)一次方程组的解法:代入消元、加减消元
例题:解方程组 x y 7,
2 x y 8.

x 2 y 0 解方程组3x 2 y 8

解方程组:
例题:.解方程:
(1) x 1 x 1 33
解:
x 2 x 1
(2)
2 x
32
(3) 关于 x 的方程 mx+4=3x+5 的解是 x=1,则 m=

解:
3、一元二次方程:
1
一般形式: ax2 bx c 0a 0
2
解法:
直接开平方法、因式分解法、配方法、公式法
求根公式 ax2 bx c 0a 0 x b b2 4ac b2 4ac 0 2a
x 2
y
1 3
1
3x 2y 10

x y 1 解方程组: 2x y 8

{ ) x+y=9
解方程组: 3(x+y)+2x=33 解
5、分式方程:
分式方程的解法步骤:
1
一般方法:选择最简公分母、去分母、解整式方程,检验
2
换元法
4
1
例题:①、解方程:
1
的解为
x 2 4
x 2
x 2 4 0 根为 x2 5x 6
②乙两辆汽车同时分别从 A、B 两城沿同一条高速公路驶向 C 城.已知 A、C 两 城的距离为 450 千米,B、C 两城的距离为 400 千米,甲车比乙车的速度快 10 千米/时,结果两辆车同时到达 C 城.求两车的速 度解
③某药品经两次降价,零售价降为原来的一半.已知两次降价的百分率一样,求 每次降价的百分率.(精确到 0.1%) 解
k 满足 A.k>1
( B.k≥1
) C.k=1
D.k<1
②(常州市)关于 x 的一元二次方程 x2 (2k 1)x k 1 0 根的情况是( )
(A)有两个不相等实数根
(B)有两个相等实数根
(C)没有实数根 (D)根的情况无法判定
③.(浙江富阳市)已知方程x2 2 px q 0 有两个不相等的实数根,
实用标准文案
方程与不等式
一、方程与方程组 二、不等式与不等式组
知识结构及内容:
1 几个概念
2 一元一次方程
(一)方程与方程组
3 一元二次方程 4 方程组
5 分式方程
6 应用
1、 概念:方程、方程的解、解方程、方程组、方程组的解
2、 一元一次方程:
解方程的步骤:去分母、去括号、移项、合并同类项、系数化一(未知项系数不能为零)
文档
实用标准文案
②、当使用换元法解方程( x ) 2 2( x ) 3 0 时,若设 y
x 1
x 1
x x 1 ,则原
方程可变形为( )
A.y2+2y+3=0 C.y2+2y-3=0
B.y2-2y+3=0 D.y2-2y-3=0
(3) 、用换元法解方程 x2 3x 3 4 时,设 y x2 3x ,则原方程可化为
A、x2x
y
27 3y
66
B、x2xy
27 3y
100
x y 27
x y 27
C、
D 、
3x 2y 66 3x 2 y 100

⑥已知三个连续奇数的平方和是 371,求这三个奇数. 解
⑦一块长和宽分别为 60 厘米和 40 厘米的长方形铁皮,要在它的四角截去四个 相等的小正方形,折成一个无盖的长方体水槽,使它的 底面积为 800 平方米.求截去正方形的边长. 解:
相关文档
最新文档