人教版中职数学(基础模块)知识点汇总

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版中职数学(基础模块)知识点汇总

第一章 集合

1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。

2. 集合的三种表示方法:列举法、描述法、图像法(文氏图)。

注:∆描述法 },|

取值范围

元素性质元素

{⋯∈⋯=x x x ;另重点类型如:}{]3,1(,13|y 2-∈+-=x x x y 3. 常用数集:N (自然数集)、Z (整数集)、Q (有理数集)、R (实数集)、*N (正整数集)、+Z (正整数集)

4. 元素与集合、集合与集合之间的关系: (1) 元素与集合是“∈”与“∉”的关系。

(2) 集合与集合是“⊆” “”“=”“⊆/”的关系。

注:(1)空集是任何集合的子集,任何非空集合的真子集。(做题时多考虑φ是否满足题意) (2)一个集合含有n 个元素,则它的子集有n 2个,真子集有12-n 个,非空真子集有22-n 个。

5. 集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法) (1)}|{B x A x x B A ∈∈=且 :A 与B 的公共元素(相同元素)组成的集合

(2)}|{B x A x x B A ∈∈=或 :A 与B 的所有元素组成的集合(相同元素只写一次)。 (3)A C U :U 中元素去掉A 中元素剩下的元素组成的集合。 注:B C A C B A C U U U =)( B C A C B A C U U U =)( 6. 逻辑联结词: 且(∧)、或(∨)非(⌝)如果……那么……(⇒) 量词:存在(∃) 任意(∀) 真值表:

q p ∧:其中一个为假则为假,全部为真才为真; q p ∨:其中一个为真则为真,全部为假才为假; p ⌝:与p 的真假相反。

(同为真时“且”为真,同为假时“或”为假,真的“非”为假,假的“非”为真;真“推”假为假,假“推”真假均为真。) 7. 充分必要条件

∆p 是q 的……条件 p 是条件,q 是结论

p q ==⇒<=≠=充分不必要

→ 的充分不必要条件是q p (充分条件) p q =≠⇒<===不充分

必要

→ 的必要不充分条件是q p (必要条件) p q ==⇒⇐==充分必要

→ 的充分必要条件是q p (充要条件) p q =≠⇒⇐≠=不充分

不必要

→ 件的既不充分也不必要条是q p 第二章 不等式

1. 不等式的基本性质: 注:(1)比较两个实数的大小一般用比较差的方法

(2)不等式两边同时乘以负数要变号!! (3)同向的不等式可以相加(不能相减),同正的同向不等式可以相乘。 2. 重要的不等式:(∆均值定理)

(1)ab b a 222≥+,当且仅当b a =时,等号成立。

(2)),(2+∈≥+R b a ab b a ,当且仅当b a =时,等号成立。

(3)),,(3+∈≥++R c b a abc c b a ,当且仅当c b a ==时,等号成立。

注:

2

b

a +(算术平均数)≥a

b (几何平均数) 3. 一元一次不等式的解法 4. 一元二次不等式的解法 (1) 保证二次项系数为正

(2) 分解因式(十字相乘法、提取公因式、求根公式法),目的是求根: (3) 定解:(口诀)大于两根之外,大于大的,小于小的; 小于两根之间

注:若00<∆=∆或,用配方的方法确定不等式的解集。 5. 绝对值不等式的解法

若0>a ,则⎩⎨⎧-<>⇔><<-⇔

x a x a x a

x a a x 或||||

6. 分式不等式的解法:与二次不等式的解法相同。注:分母不能为0.

第三章 函数

1. 函数:

(1) 定义:在某一个变化过程中有两个变量x 和y ,设变量x 的取值范围为数集D ,如果

对于D 内的每一个x 值,按照某个对应法则f ,y 都有唯一确定的值与它对应,那么,把x 叫做自变量,把y 叫做x 的函数。

(2) 函数的表示方法:列表法、图像法、解析式法。

注:在解函数题时可以画出图像,运用数形结合的方法可以使大部分题目变得更简单。

2. 函数的三要素:定义域、值域、对应法则

(1) ∆定义域的求法:使函数(的解析式)有意义的x 的取值范围 主要依据:

① 分母不能为0

② 偶次根式的被开方式≥0

③ 特殊函数定义域

0,0≠=x x y

R x a a a y x ∈≠>=),10(,且 0),10(,log >≠>=x a a x y a 且

)(,2

,tan Z k k x x y ∈+

≠=π

π

(2) ∆值域的求法:y 的取值范围

① 正比例函数:kx y = 和 一次函数:b kx y +=的值域为R

② 二次函数:c bx ax y ++=2的值域求法:配方法。如果x 的取值范围不是R 则还需画图像

③ 反比例函数:x

y 1

=

的值域为}0|{≠y y ④ d cx b ax y ++=的值域为}|{c a

y y ≠

⑤ c

bx ax n

mx y +++=2的值域求法:判别式法

⑥ 另求值域的方法:换元法、反函数法、不等式法、数形结合法、函数的单调性等等。 (3) 解析式求法:

在求函数解析式时可用换元法、构造法、待定系数法等。 3. 函数的奇偶性:

(1) 定义域关于原点对称

(2) 若)()(x f x f -=-→奇 若)()(x f x f =-→偶 注:①若奇函数在0=x 处有意义,则0)0(=f ②常值函数a x f =)((0≠a )为偶函数 ③0)(=x f 既是奇函数又是偶函数 4. ∆函数的单调性:

对于],[21b a x x ∈∀、且21x x <,若

⎧><上为减函数在称上为增函数

在称],[)(),()(],[)(),()(2121b a x f x f x f b a x f x f x f

相关文档
最新文档