高三综合测试(一) 数学文

合集下载

广东省韶关市2023届高三上学期综合测试(一)数学试题含答案

广东省韶关市2023届高三上学期综合测试(一)数学试题含答案

韶关市2023届高三综合测试(一)数学注意事项:1.考生务必将自己的姓名、准考证号、学校和班级用黑色字迹的钢笔或签字笔写在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}2,1,0,1,2U =--,集合{}2,1A =-,{}2320B x x x =-+=∣,则()UA B =( ) A.{}0,2B.{}1,0-C.{}1,2D.{}1,02.若11z i =+,21(2)z z i =+,1z 是1z 的共轭复数,则2z =( )B.2D103.下列区间中,函数()3sin 6f x x π⎛⎫=+ ⎪⎝⎭的单调递减区间是( ) A.0,2π⎛⎫⎪⎝⎭B.,2ππ⎛⎫⎪⎝⎭C.3,2ππ⎛⎫ ⎪⎝⎭D.3,22ππ⎛⎫⎪⎝⎭4.函数433()1x xf x x --=+的部分图象大致为( )A. B. C. D.5.已知(3,4)a =,(1,0)b =,c a tb =+,若b c ⊥,则向量c 在向量a 上的投影向量为( ) A.1625a -B.1625a C.45a -D.45a 6.某污水处理厂采用技术手段清除水中的污染物,同时生产出有用的肥料和清洁用水.已知在处理过程中,每小时可以清理池中残留污染物10%,若要使池中污染物不超过原来的12,至少需要的时间为(结果保留整数,参考数据:lg 20.30≈,lg30.48≈)( ) A .6小时B .7小时C .8小时D .9小时7.已知点O 为坐标原点,点F 是双曲线2222:1x y C a b-=(0a >,0b >)的右焦点,以OF为直径的圆与双曲线C 的一条渐近线交于点P ,线段PF 交双曲线C 于点Q .若Q 为PF 的中点,则双曲线的离心率为( )C.2D.38.已知函数()2lne xf x x e ex-=-+,若2202120222023202320232023e e e e f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1011()a b =-+,其中0b >,则1||2||a a b+的最小值为( )A.34C.54D.2二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.某电视传媒机构为了解某地区电视观众对某类体育节目的收视情况,随机抽取了200名观众进行调查,其中女性占40%.根据调查结果分别绘制出男、女观众两周时间收看该类体育节目时长的频率分布直方图,则A.0.08m =B .女观众收看节目时长的中位数为6.5小时 C.女观众收看节目的平均时长小于男观众的平均时长D .收看节目不少于9小时观众中的女观众人数是男观众人数的1310.已知正方体1111ABCD A B C D -,设E 是棱BC 的中点,则 A .1BD ∥平面1C DE B.1BC AC ⊥C .平面11A BC 与平面ABCD D .三棱锥1D ACD -与三棱锥1B ACD -体积相等11.设A 是抛物线2:4C x y =上一点,F 是C 的焦点,A 在C 的准线l 上的射影为M ,M 关于点A 的对称点为N ,曲线C 在A 处的切线与准线l 交于点P ,直线NF 交直线l 于点Q ,则A .F 到l 距离等于4 B.FM FN ⊥C .FPQ △是等腰三角形D .||MQ 的最小值为412.以下四个不等关系,正确的是 A.ln1.5ln 41⋅<B.ln1.10.1>C.19202019<D.22ln 24ln 4e >- 三、填空题:本题共4小题,每小题5分,共20分.13.6212x x ⎛⎫- ⎪⎝⎭的展开式的中间一项的系数为________(具体数字作答).14.已知(0,)απ∈,且1cos 22sin 2αα-=-,则cos()πα-=________.15.我们知道距离是衡量两点之间的远近程度的一个概念.数学中根据不同定义有好多种距离.平面上,欧几里得距离是()11,A x y 与()22,B x y 两点间的直线距离,即AB d =切比雪夫距离是()11,A x y 与()22,B x y 两点中横坐标差的绝对值和纵坐标差的绝对值中的最大值,即{}1212max ,AB d x x y y '=--.已知P 是直线:2150l x y +-=上的动点,当P 与o (o 为坐标原点)两点之间的欧几里得距离最小时,其切比雪夫距离为________.16.已知三棱锥P ABC -中,PBC △为等边三角形,AC AB ⊥,PA BC ⊥,PA =BC =________;若M 、N 分别为该三棱锥的内切球和外接球上的动点,则线段MN 的长度的最大值为________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题10分)在ABC △中,D 为AC 的中点,且sin 2sin BDC BAC ∠=∠.(1)证明:2BA BD =;(2)若22AC BC ==,求ABC △的面积. 18.(本小题12分) 已知数列{}n a 的首项145a =,且满足143n n n a a a +=+,设11n n b a =-. (1)求证:数列{}n b 为等比数列; (2)若1231111140na a a a ++++>,求满足条件的最小正整数n . 19.(本小题12分)北京冬奥会的举办使得人们对冰雪运动的关注度和参与度持续提高.某地很多中小学开展了模拟冬奥会赛事的活动,为了深入了解学生在“自由式滑雪”和“单板滑雪”两项活动的参与情况,在该地随机选取了10所学校进行研究,得到如下数据:(1)从这10所学校中随机抽取2所,在抽取的2所学校参与“单板滑雪”的人数超过30人的条件下,求这2所学校参与“自由式滑雪”的人数超过30人的概率;(2)“自由式滑雪”参与人数超过40人的学校可以作为“基地学校”,现在从这10所学校中随机抽取3所,记X 为选出“基地学校”的个数,求X 的分布列和数学期望; (3)现在有一个“单板滑雪”集训营,对“滑行、转弯、停止”这3个动作技巧进行集训,且在集训中进行了多轮测试.规定:在一轮测试中,这3个动作至少有2个动作达到“优秀”,则该轮测试记为“优秀”.已知在一轮集训测试的3个动作中,甲同学每个动作达到“优秀”的概率均为23,每个动作互不影响且每轮测试互不影响.如果甲同学在集训测试中获得“优秀”次数的平均值不低于8次,那么至少要进行多少轮测试? 20.(本小题12分)已知矩形ABCD 中,4AB =,2BC =,E 是CD 的中点,如图所示,沿BE 将BCE △翻折至BFE △,使得平面BFE ⊥平面ABCD .(1)证明:BF AE ⊥;(2)若(01)DP DB λλ=<<是否存在λ,使得PF 与平面DEF 若存在,求出λ的值;若不存在,请说明理由.21.(本小题12分)已知椭圆22:142x y C +=的左、右顶点分别为A ,B ,点D (不在x 轴上)为直线6x =上一点,直线AD 交曲线C 于另一点P . (1)证明:PB BC ⊥;(2)设直线BD 交曲线C 于另一点Q ,若圆O (O 是坐标原点)与直线PQ 相切,求该圆半径的最大值. 22.(本小题12分)已知函数2()1f x x =-,()ln(1)g x m x =-,m R ∈.(1)若直线:20l x y -=与()y g x =在(0,(0))g 处的切线垂直,求m 的值;(2)若函数()()()h x g x f x =-存在两个极值点1x ,2x ,且12x x <,求证:()()1122x h x x h x >.2023届高三综合测试(一) 数学参考答案及评分标准1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、单项选择题(每小题5分)1.【解析】由题意,23201,2B x x x =-+==,所以2,1,2AB =-,所以(){} 1,0UA B =-,故选B.2.【解析】21(2)(1)(2)3z z i i i i =+=-+=-,所以,2z ==,故选C.3.【解析】函数()3sin 6f x x π⎛⎫=+ ⎪⎝⎭,由题意,322()262k x k k Z πππππ+<+<+∈,解得422()33k x k k Z ππππ+<<+∈,取0k =,可得函数()f x 的一个单调递减区间为4,33ππ⎛⎫⎪⎝⎭,故选B. 4.【解析】()f x 是奇函数且(1)0f <,所以选D.5.【解析】因为b c ⊥,所以3t =-,()0,4c =,所以向量c 在向量a 上的投影向量为1625a c a a a a ⋅⋅=,所以选B. 6.【解析】设原来池中污染物的质量为m ,依题意,经过n 小时污染物的质量0.9nm ⋅,所以,10.92nm m ⋅≤,lg 2lg 27.51lg912lg3n ≥=≈--,故选C. 7.【解析】∵以OF 为直径的圆与双曲线C 的一条渐近线交于点P ,∴OP PF ⊥,∵直线OP 的方程为b y x a =,(),0F c ,∴直线PF 的方程为()ay x c b=--,由()b y x a a y xc b ⎧=⎪⎪⎨⎪=--⎪⎩,解得2P a x c =,P ab y c =,∵12PQ PF =,∴Q 是PF 的中点,故222Q a c x c +=,2Q ab y c =,代入双曲线方程,得222222221a c ab c c a b ⎛⎫+⎛⎫ ⎪ ⎪⎝⎭⎝⎭-=,整理,得()2222222144aca a c c+-=,222c a =,e =故选A. 法2:∵以OF 为直径的圆与双曲线C 的一条渐近线交于点P ,∴OP PF ⊥,∴PF b =,从而1122PQ PF b ==,设双曲线左焦点为1F ,连结1QF ,则由定义知11222QF a QF a b =+=+,在Rt FPO △中,cos PF bPFO OF c∠==, 在1FQF △中,由余弦定理得:2221112cos QF QF QF QF QF QFO =+-⋅⋅∠,即2221112(2)22222b a b b c b c c ⎛⎫⎛⎫+=+-⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭,化简得a b =,所以e =8.【解析】因为()()()2ln 2()ln 2()e x e e xf x f e x x e e x e ex e e x ---+-=-++--+=-- 由上面结论可得22021202220222023202320232023e e e e f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++=-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以2a b +=,其中0b >,则2a b =-. 当0a >时,1||121212()1525111222222224a b a b b a a b a b a b a b a b -+⎛⎫⎛⎫+=+=+-=+⋅-=++-≥ ⎪ ⎪⎝⎭⎝⎭ 当且仅当,23a =,43b =时等号成立; 当0a <时,1||112152()11222222ab a a b a b a b a b --⎛⎫⎛⎫+==+⋅++=-+++ ⎪ ⎪--⎝⎭⎝⎭1531224⎛≥-++= ⎝,当且仅当2a =-,4b =时等号成立;因为3544<,所以12a a b+的最小值为34.故选:A.二、多项选择题(全部选对的得5分,选对但不全的得2分,有选错的得0分).误;对于B ,由频率分布直方图可知,女观众收看时间的352 6.54+⨯=,故B 正确; 对于C,男性观众收看节目的平均时长为40.160.150.480.210120.158.3⨯+⨯+⨯+⨯+⨯=小时,女性观众收看节目的平均时长为40.260.40.380.110 6.6⨯+⨯+⨯+⨯=小时,故C 正确; 对于D ,由频率直方图可知,男性观众收看到达9小时人数为20060%(0.20.15)42⨯⨯+=人,女性观众收看达到9小时人数为20040%0.18⨯⨯=人,故D 错误.故选:BC. 10.【解析】对于A ,设1CD 交1C D 于F ,可得1EF BD ∥,从而得到1BD ∥平面1C DE ;所以A 正确;对于B ,可以求得1BC ,AC 所成角为3π,所以B 不正确. 对于C ,转化为求平面11A BC 与平面1111A B C D C 不正确; 对于D ,设正方体棱长为1,1116D ACD B ACD V V --==,D 正确.所以选AD. 11.【解析】对于A ,焦点到准线距离2p =,A 不正确.对于B ,因为C :24x y =的准线为l :1y =-,焦点为()0,1F ,设()00,A x y ,则()0,1M x -,()00,21N x y +,所以()()200000,2,240FM FN x x y y x ⋅=-⋅=-+=,所以90MFN ∠=︒,(或由抛物线定义知AM AN AF ==,所以90MFN ∠=︒,)故选项B 正确;对于C ,因为A 处的切线斜率,02AP x k =,而20000012242NF x y x k x x ⋅===,所以AP NF k k =, 从而AP NF ∥,又A 是线段MN 中点,所以,P 是线段MQ 的中点,又90MFN ∠=︒, 所以,PQ PF =,所以C 正确. 对于D ,因为02NFx k =,所以直线FN 的方程为012x y x -=,令1y =-,得04,1Q x ⎛⎫-- ⎪⎝⎭,所以0000444MQ x x x x -=-=+≥=,当且仅当02x =时,最小值为4,故选项D 正确;综上可知选BCD.12.【解析】对于A ,因为,2222ln1.5ln 4ln 6ln ln1.5ln 41244e+⎛⎫⋅<=<= ⎪⎝⎭,所以,A 正确;对于B ,由切线不等式()ln 11x x x <-≠,得ln1.1 1.110.1<-=,B 不正确 对于C ,由19202019<得19ln 2020ln19<,1920ln19ln 20<,设()ln x f x x=,0x >且1x ≠,()()2ln 10ln x f x x -'==,得x e =,当01x <<和1x e <<时,()0f x '<,函数()f x 单调递减,当x e >时,()0f x '>,函数()f x 单调递增,所以1920ln19ln 20<,C 正确. 对于D ,因为24ln 2ln 4=,22242222ln ln ln 422e e e e e e ==⎛⎫ ⎪⎝⎭,且()()24f f =,且2242e e <<<, 所以()222e f f ⎛⎫> ⎪⎝⎭,即224ln 4ln 2e <-,D 正确.故选ACD.二、填空题(第13、14、15题每小题5分,第16题第一空2分,第二空3分).13.【解析】依题意,展开式的中间一项是第4项,334621(2)T C x x ⎛⎫=- ⎪⎝⎭,其系数为33362(1)160C ⋅⋅-=-.14.【解析】∵21cos 22sin tan sin 22sin cos αααααα-==,∴tan 2α=-, ∵()0,απ∈,sin 5α=,cos 5α=-,∴cos()cos 5παα-=-=. 15.【解析】因为点P 是直线l :2150x y +-=上的动点,要使OP 最小,则OP l ⊥,此时2l k =-,所以12POk =,由方程组215012x y y x +-=⎧⎪⎨=⎪⎩,解得,6x =,3y = 所以,P ,Q 两点之间的比雪夫距离为6.16.【解析】由已知可证明PA ,AB ,AC 两两垂直且长度均为成正方体,如图所示三棱锥的外接球就是正方体的外接球,设外接球的半径为R ,则11322R AG ===. 设三棱锥外接球球心为1O ,内切球球心为2O ,内切球与平面PBC 的切点为K ,易知:1O ,2O ,K 三点均在AG 上,且AK ⊥平面PBC ,设内切球的半径为r ,由等体积法:()1133ACP ABP ABC BCP ABCS S S Sr S AP +++=⋅,得1r =,将几何体沿截面PAEG切开,得到如下截面图:两圆分别为外接球与内切球的大圆,注意到12AK GK =,6AG =,∴4GK =,∴M ,N 两点间距离的最大值为241)2GK r +=+=.四、解答题(第17题10分,第18-22题每题12分). 17.(本小题满分10分)(1)证明:在ABD △中,由正弦定理得:sin sin BA BDBDA BAD∠∠=即,sin sin BA BDABD BAD∠∠=2分因为()sin sin sin BDA BDC BDC ∠π∠∠=-=,所以,sin sin BA BDCBD BAD∠∠=又由已知sin 2sin BDC BAD ∠∠=所以,2BABD= 2BA BD = 4分设BD x =,则2BA x =,在BCD △中,由余弦定理得:2222cos BD BC CD BC CD BCD ∠=+-⋅即222cos x BCD ∠=-在ABC △中,由余弦定理得:2222cos AB BC AC BC AC BCA ∠=+-⋅即2454cos x BCD ∠=- 7分 解得:3cos 4BCA ∠=,sin BCA ∠∴=所以11sin 1222ABCSBC AC BCA =⋅⋅∠=⨯⨯=. 10分 18.(本小题满分12分)解:(1)11311141111n n n nnn na b a a b a a +++--==-- 2分()()313414n n a a -==- 111114b a =-=数列{}n b 为首项为114b =,公比为34等比数列 5分 (2)由(1)可得12311111111n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭13144314n⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭=-314n⎛⎫=- ⎪⎝⎭8分即1231111314nn n a a a a ⎛⎫++++-=- ⎪⎝⎭∴1231111314nn n a a a a ⎛⎫++++=+- ⎪⎝⎭10分 而314nn ⎛⎫+- ⎪⎝⎭随着n 的增大而增大要使1231111140n a a a a ++++>,即311404nn ⎛⎫+-> ⎪⎝⎭,则140n ≥ ∴n 的最小值为140. 12分 19.(本小题满分12分)解:记“这10所学校中随机选取2所学校参与“单板滑雪”的人数超过30人”为事件A ,“这10所学校中随机选取2所学校参与“自由式滑雪”的人数超过30人”为事件B则()26210C P A C =,()24210C P AB C =所以,()()()25P AB P B A P A ==∣. 4分 (2)X 的所有可能取值为0,1,2,3,参与“自由式滑雪”人数在40人以上的学校共4所,所以()034631020101206C C P X C ⋅====,()124631060111202C C P X C ⋅====, ()2146310363212010C C P X C ⋅====,()304631041312030C C P X C ⋅====, 所以X 的分布列如下表:所以()23210305E X =+⨯+⨯= 8分(3)记“小小明同学在一轮测试中要想获得“优秀””为事件C , 则()2332122033327P C C b ===+=, 由题意,小明同学在集训测试中获得“优秀”的次数服从二项分布20,27B n ⎛⎫ ⎪⎝⎭, 由题意列式20827n ≥,得545n ≥,因为*n N ∈,所以n 的最小值为11,故至少要进行11轮测试 12分 20.(本小题满分12分) (1)证明:依题意ABCD 矩形,4AB =,2BC =,E 是CD 中点分别在等腰直角三角形ADE 和BCE 求得AE BE ==,又4AB =,所以, 222AE BE AB +=AE BE ⊥ 2分因为,平面BEF ⊥平面ABCD 平面BEF 平面ABCD BE = 所以,AE ⊥平面BEF ,又BF ⊂平面BEF ,所以AE BF ⊥ 5分(2)以C 为原点,CD 所在直线为x 轴,CB 所在直线为y 轴,建立如图所示空间直角坐标系.则()0,0,0C ,()4,0,0D ,()0,2,0B ,()2,0,0E , 设N 是BE 的中点,FE FB =有FN BE ⊥, 又平面BEF ⊥平面ABCD .平面BEF平面ABCD BE =FN ∴⊥平面ABCD ,()1,1,2F 8分假设存在满足题意的λ,则由(01)DP DB λλ=<<. 可得,(43,12PF DB DF λλλ=-+=--. 设平面DEF 的一个法向量为(),,x y z =n ,则00DE DF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即2030x xy -=⎧⎪⎨-+=⎪⎩,令y =0x =,1z =-,即()1=-n 10分∴PF 与平面DEF 所成的角的正弦值sin cos ,||||PF PF PF θ⋅===nn n=解得34λ=(1λ=舍去) .综上,存在34λ=,使得PF 与平面ADE12分21.(本小题满分12分) 解(1)设()00,P x y ∴002AP y k x =+,直线AD 的方程为()0022y y x x =++, 令6x =,得0086,2y D x ⎛⎫⎪+⎝⎭,∴0000822622BDy x y k x +==-+, 2分 又∵002BPy k x =-,且2200142x y += ∴20002000221224BD BPy y y k k x x x ⋅=⋅==-+--, ∴PB BD ⊥, 4分(2)当直线PQ 不垂直x 轴时,设直线PQ 方程为y kx m =+,()11,P x y ,()22,Q x y 由方程组2224x y y kx m ⎧+=⎨=+⎩得()222124240k xkmx m +++-=()()222Δ(4)412240mk k m =-+⋅->,2242k m +>21212224241212km m x x x x k k --+=⋅=++ 6分由(1)可知,1BD BP k k ⋅=-1212122y yx x ⋅=--- ()121212240x x x x y y ⋅-++⋅+= 又()()()2212121212y y kx m kx m k x x km x x m ⋅=++=⋅+++,代入上式得:()()()2212121240k x x km x x m +⋅+-+++= 8分即:()()()2222222124401212m k km km m k k -+-⋅-++=++得到223840mmk k ++=23m k =-或2m k =-(舍去),10分 所以直线PQ 方程为23y k x ⎛⎫=- ⎪⎝⎭恒过2,03S ⎛⎫⎪⎝⎭,当PQ 垂直x 轴时,同样成立。

2024-2025学年四川省成都市高三上学期数学综合测试试题(含解析)

2024-2025学年四川省成都市高三上学期数学综合测试试题(含解析)

一、单选题:本题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的2024-2025学年四川省成都市高三上学期数学综合测试试题.1. 已知复数112i z =+,则z 的虚部是( )A. 2B. 2iC. 2i 5-D. 25-【答案】D 【解析】【分析】应用复数的除法计算化简,再结合复数的虚部的定义判断即可.【详解】因为()()2112i 12i 12i 12i 12i 12i 14i 55z --====-++--,所以z 的虚部为25-.故选:D.2. 一个盒子中装有5个大小相同的小球,其中3个红球,2个白球.若从中任取两个球,则恰有一个红球的概率为( )A.35B.23C.25D.13【答案】A 【解析】【分析】根据古典概型概率公式求解.【详解】根据题意,任取两球恰有一个红球的概率为112325C C 63C 105P ===.故选:A.3. 对任意的()20,,210x x mx ∞∈+-+>恒成立,则m 的取值范围为( )A. ()1,1-B. (),1-∞C. ()1,+∞D. ()(),11,-∞-⋃+∞【答案】B 【解析】【分析】分离参数,可得()110,,2x m x x ∞⎛⎫∈+<+ ⎪⎝⎭恒成立,结合基本不等式即可求得答案.【详解】对任意的()20,,210x x mx ∞∈+-+>恒成立,即对任意的()110,,2x m x x ∞⎛⎫∈+<+ ⎪⎝⎭恒成立,因为12x x +≥=,当且仅当1x x =,即1x =时取等号,故1m <,故m 的取值范围为(),1∞-.故选:B4. 已知tan 2α=,则1cos2sin2αα+=( )A. 3B.13C. 2D.12【答案】D 【解析】【分析】应用二倍角余弦公式及二倍角正弦公式计算再结合同角三角函数关系求解.【详解】21cos22cos 11sin22sin cos tan 2αααααα+===.故选:D.5. 设,a b ∈R ,则使a b >成立的一个充分不必要条件是( )A. 33a b > B. ()lg 0a b ->C. 22a b > D. a b>【答案】B 【解析】【分析】根据充分条件及必要条件定义结合不等式的性质判定各个选项即可.【详解】对于A ,33a b a b >⇔>,故33a b >是a b >的充要条件;对于B ,由()lg 0a b ->得1a b >+,能推出a b >,反之不成立,所以()lg 0a b ->是a b >的充分不必要条件;对于C ,由22a b >无法得到,a b 之间的大小关系,反之也是,所以22a b >是a b >的既不充分也不必要条件;对于D ,由a b >不能推出a b >,反之则成立,所以a b >是a b >的必要不充分条件.故选:B .6. 定义在(0,)+∞上函数()f x 的导函数为()f x ',若()()0xf x f x '-<,且(3)0f =,则不等式(2)()0x f x -<的解集为( )A. (0,2)(2,3)⋃B. (0,2)(3,)+∞C. (0,2)(2,)⋃+∞D. (0,3)(3,)+∞ 【答案】B 【解析】【分析】根据给定条件构造函数()()f x g x x=,利用导数确定单调性,结合(3)0f =求解不等式即得.【详解】依题意,令()()f x g x x =,求导得2()()()0'-'=<xf x f x g x x,则()g x 在(0,)+∞上单调递减,由(3)0f =,得(3)0g =,不等式(2)0(2)0(2)0()()()f x f x x g x x xx -<⇔-⋅<⇔-<,则20()0x g x -<⎧⎨>⎩或20()0x g x ->⎧⎨<⎩,即203x x <⎧⎨<<⎩或23x x >⎧⎨>⎩,解得02x <<或3x >,所以不等式(2)()0x f x -<解集为(0,2)(3,)+∞ .故选:B7. 已知双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为1F ,O 为坐标原点,若在C 的右支上存在关于x轴对称的两点,P Q ,使得1PF Q △为正三角形,且1OQ F P ⊥,则C 的离心率为( )A.B. 1C.D. 1+【答案】D 【解析】【分析】根据条件,利用几何关系得到12π2F PF ∠=,又21π6F F P ∠=,得到21,PF c PF ==,再结2c a -=,即可求解.【详解】设双曲线的焦距为2(0)c c >,右焦点为2F ,直线OQ 交1F P 于点M ,连接2PF ,因为1PF Q △为正三角形,1OQ F P ⊥,所以M 为1F P 的中点,所以2//OM F P ,的的故12π2F PF ∠=,易知21π6F F P ∠=,所以21,PF c PF ==,由双曲线的定义知122PF PF a -=,2c a -=,得1c e a ===+故选:D .8. 如图,在直三棱柱111ABC A B C -中,ABC V 是等边三角形,1AA =,2AB =,则点C 到直线1AB 的距离为( )A.B.C.D.【答案】C 【解析】【分析】取AC 的中点O ,以OB 所在直线为x 轴,OC 所在直线为y 轴,O 与11A C 中点连线所在直线为z 轴,建立空间坐标系,利用空间向量求解即可.【详解】解:取AC 的中点O ,则,BO AC BO ⊥=,以OB 所在直线为x 轴,OC 所在直线为y 轴,O 与11A C 中点连线所在直线为z 轴,建立如图所示的空间直角坐标系O xyz -,所以()()10,1,0,,0,1,0A B C -,所以()1,0,2,0AB CA ==-,所以CA 在1AB上的投影的长度为11||||CA AB AB ⋅==,故点C 到直线1AB的距离为d ===故选:C.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对得部分分,有选错的得0分.9. 对于函数()ln 1f x x =-,则下列判断正确的是( )A. 直线22exy =是()f x 过原点一条切线B. ()f x 关于y x =对称的函数是1e x y +=C. 过一点(),a b 可以有3条直线与()f x 相切D. ()2f x x ≤-【答案】ABD 【解析】【分析】由导数的几何意义可判定A ,由反函数的概念可判定B ,利用对数函数的图像可判定C ,利用常用的切线放缩可判定D.【详解】对于A ,设切点(),ln 1m m -,则()1ln 100m k f m m m --=='=-,∴1ln 1m m m-=⋅,∴ln 2m =,∴2e m =,切点()2e ,1所以过原点的切线方程为222e 1e ex xy y --=⇒=,∴A正确;的对于B ,由反函数的概念可得111ln ee y x y x x y +++=⇒=⇒=,故与()f x 关于y x =对称的函数为1e x y +=,∴B 正确;对于C ,当点(),a b 在()f x 上方,如下图所示,结合图象可知,最多有两条切线,如果在()f x 下方,没有切线,在曲线上,只有一条切线C 正错误;对于D ,由于x +∀∈R ,设()()1ln 1x g x x x g x x'-=--⇒=,令()01g x x >'⇒>,令()001g x x <⇒<<',∴()g x 在(1,+∞)上单调递增,在()01,上单调递减;∴()()()10ln 12g x g x x f x x ≥=⇒≤-⇒≤-,∴D 正确.故选:ABD10. 等差数列{}n a 中,10a >,则下列命题正确的是( )A. 若374a a +=,则918S =B. 若125a a +=,349a a +=,则7817a a +=C. 若150S >,250S <,则2219a a <D. 若910S S =,则110S >【答案】ABD 【解析】【分析】利用等差数列的性质,对于A ,()()193799922a a a a S ++==,计算即可;对于B ,由已知计算数列公差,再求值即可;对于C ,结合数列单调性比大小;对于D ,由10a >,100a =,得()111116111102a a S a +==>.【详解】等差数列{}n a 中,10a >,设公差为d ,若374a a +=,则()()19379991822a a a a S ++===,A 正确;若125a a +=,349a a +=,则()()3412954a a a a d +-+=-=,得1d =,27811251217a a a d a ++===++,B 正确;若()115158151502a a S a +==>,()1252513252502a a S a +==<,所以公差0d <,当90a >时,有190a a >>,则有2219a a >,当90a <时,有79820a a a +=>,得790a a >->,所以1790a a a >->>,则有2219a a >,C 错误;若910S S =,则100a =,因为10a >,所以()111116111102a a S a +==>,D 正确.故选:ABD .11. 设定义在R 上的函数()f x 与()g x 的导函数分别为()f x '和()g x '.若()()42f x g x --=,()()2g x f x ''=-,且()2f x +为奇函数,则下列说法中一定正确的是( )A. 函数()f x 的图象关于点()2,0对称B. ()()352g g +=-C.20241()2024k g k ==-∑D.20241()0k f k ==∑【答案】AD 【解析】【分析】根据给定条件,结合奇函数性质,借助赋值法探讨对称性、周期性,再逐项分析判断即得.【详解】对于A ,由(2)f x +为奇函数,得(2)(2)f x f x -+=-+,即(2)(2)0f x f x -++=,因此函数()f x 的图象关于点(2,0)对称,A 正确;由()(2)g x f x ''=-,得()(2)g x f x a =-+,则(4)(2)g x f x a -=-+,又()(4)2f x g x --=,于是()(2)2f x f x a =-++,令1x =,得2a =-,即()(2)f x f x =-,则(2)()f x f x +=-,(4)(2)()f x f x f x +=-+=,因此函数()f x 是周期函数,周期为4,对于B ,由()(2)2g x f x =--,得(3)(5)(1)2(3)24g g f f +=-+-=-,B 错误;对于C ,显然函数()g x 是周期为4的周期函数,(1)(3)(3)(5)4g g g g +=+=-,(2)(4)(0)2(2)24g g f f +=-+-=-,则2024411()506()506(8)4048k k g k g k ====⨯-=-∑∑,C 错误;对于D ,(1)(3)0f f +=,(2)(4)0f f +=,则2024411()506()0k k f k f k ====∑∑,D 正确.故选:AD【点睛】结论点睛:函数()y f x =的定义域为D ,x D ∀∈,①存在常数a ,b 使得()(2)2()()2f x f a x b f a x f a x b +-=⇔++-=,则函数()y f x =图象关于点(,)a b 对称.②存在常数a 使得()(2)()()f x f a x f a x f a x =-⇔+=-,则函数()y f x =图象关于直线x a =对称.三、填空题:本题共3个小题,每小题5分,共15分.12. 在5ax ⎛ ⎝展开式中2x 的系数为270-,则a 的值为__________.【答案】3-【解析】【分析】根据二项式定理可得展开式的通项为()35255C 1r rrrxa--⋅-,令3522r -=,求得r 代入运算即可.【详解】因为展开式的通项为()()3552555C C ,0,1,2,3,,145rr r r rrrax x r a ---⎛⋅= ⎝=-,令3522r -=,解得2r =,因为2x 的系数为()5323211C 2700a a -=-=,解得3a =-.故答案为:3-.13. 函数2()ln 2f x x ax =+-在[1,2]内存在单调递增区间,则a 的取值范围是______.【答案】1(,)2-+∞【解析】【分析】根据给定条件,求出函数()f x 的导数()f x ',再利用()0f x '>在(1,2)内有解即可.【详解】函数2()ln 2f x x ax =+-,求导得1()2f x ax x'=+,由函数()f x 在[1,2]内存在单调递增区间,得不等式()0f x '>在(1,2)内有解,不等式21()02f x a x'>->⇔,而函数212y x =-在(1,2)上单调递增,当(1,2)x ∈时,21122x ->-,因此12a >-,所以a 的取值范围是1(,)2-+∞.故答案为:1(,)2-+∞14. 双曲线的离心率可以与其渐近线有关,比如函数1y x=的图象是双曲线,它的实轴在直线y x =上,虚轴在直线y x =-上,实轴顶点是()()1,1,1,1--,焦点坐标是,(,已知函数y x =+e .则其在一象限内的焦点横坐标是__________,其离心率2e =__________.【答案】 ①.②.43【解析】【分析】根据材料得到双曲线的轴和顶点的定义,根据双曲线的离心率和其渐近线的斜率之间的关系求双曲线的离心率,利用双曲线的离心率的定义求双曲线的焦点坐标.【详解】直线y x =和y 轴是双曲线的两条渐近线,由阅读材料可知,双曲线的焦点所在的对称轴是直线y =,由顶点的定义知,对称轴与双曲线的交点即顶点,联立得2y x x y ⎧⎫=+⎪⎪⎭⎨⎪=⎩,解得:1x y =⎧⎪⎨=⎪⎩1x y =-⎧⎪⎨=⎪⎩(,若将双曲线绕其中心适当旋转可使其渐近线变为直线y x =,则双曲线的离心率e ==243e =,设双曲线的位于第一象限的焦点的坐标为()00,x y ,则01x =,所以0x =,所以002y ==,所以双曲线的位于第一象限的焦点的坐标为2⎫⎪⎪⎭,.43.【点睛】思路点睛:关于新定义题的思路有:(1)找出新定义有几个要素,找出要素分别代表什么意思;(2)由已知条件,看所求的是什么问题,进行分析,转换成数学语言;(3)将已知条件代入新定义的要素中;(4)结合数学知识进行解答.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤15. 根据统计, 某蔬菜基地西红柿亩产量的增加量 y (百千克)与某种液体肥料每亩的使用量x (千克)之间 的对应数据的散点图如图所示.(1)从散点图可以看出, 可用线性回归方程拟合 y 与x 的关系, 请计算样本相关系数r 并判断它们的相关程度;(2)求 y 关于x 的线性回归方程ˆˆˆybx a =+, 并预测液体肥料每亩的使用量为 12 千克时西红柿亩产量的增加量.附:()()()121ˆˆˆnn i i i n i i x x y y x x y y r b ay bx x x ==----===--∑∑,.【答案】(1)r = ; y 与x 程正线性相关, 且相关程度很强. (2) 1.50.7y x =+; 9.9 百千克.【解析】【分析】(1)由图形中的数据结合相关系数公式求得相关系数r ,再由0.75r >即可求解;(2)求出线性回归方程,再取12x =代入,即可求解.【小问1详解】由题知: 24568345675555x y ++++++++====,所以()()()()55522111142010i i i i i i i x x y y x x y y ===--=-=-=∑∑∑,,所以50.75x x y y r --===>所以 y 与x 程正线性相关, 且相关程度很强.小问2详解】因为 ()()()51521140.70ˆ2i ii i i x x y y b x x ==--===-∑∑,ˆˆ50.75 1.5a y bx =-=-⨯=,所以 y 关于x 的线性回归方程为 1.507ˆ.yx =+,当 12x =时, 1.50.712ˆ9.9y=+⨯=.所以预测液体肥料每亩的使用量为 12 千克时西红柿亩产量的增加量为 9.9 百千克.16. 已知数列{a n }的前n 项和为n S ,且223n S n n =+,数列{b n }满足24log 1n n a b =+.(1)求,n n a b ;(2)设n n n c a b =⋅,数列{}n c 的前n 项和为n T ,求n T .【【答案】(1)41,2n n n a n b =+=(2)()16432n n T n +=+-⋅【解析】【分析】(1)由n a 与n S 的关系,再结合24log 1n n a b =+即可求解;(2)由错位相减法即可求解.【小问1详解】由223n S n n =+,当2n ≥时,()221232(1)3141n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦.当1n =时,115a S ==,也适合41n a n =+.综上可得,41n a n =+.由24log 141n n a b n =+=+,所以2n n b =.【小问2详解】由(1)知()412nn n a b n =+⋅()125292412nn T n =⨯+⨯+++ ()()23125292432412n n n T n n +=⨯+⨯++-⋅++⋅ ①①-②得()21104242412n n n T n +-=+⨯++⨯-+⋅ ②()()()111412104412643212n n n n T n n -++--=+⨯-+⋅=---⋅-,所以()16432n n T n +=+-⋅.17. 在三棱柱111ABC A B C -中,平面11AA C C ⊥平面ABC ,11AA A C =,2AC =,AC BC ⊥,11AA AC ⊥.(1)证明:1BB ⊥平面1A BC ;(2)若异面直线11,AB CA 所成角的余弦值为13,求BC .【答案】(1)证明过程见解析(2)【解析】【分析】(1)由面面垂直得到线面垂直,进而得到BC ⊥1AA ,结合11AA A C ⊥得到1AA ⊥平面1A BC ,再由平行关系得到证明;(2)作出辅助线,证明出1A P ⊥平面ABC ,建立空间直角坐标系,设BC m =,写出各点坐标,利用异面直角夹角的余弦值列出方程,求出m =,得到答案.【小问1详解】因为平面11AA C C ⊥平面ABC ,交线为AC ,AC BC ⊥,⊂BC 平面ABC ,所以BC ⊥平面11AAC C ,因为1AA ⊂平面11AAC C ,所以BC ⊥1AA ,因为11AA A C ⊥,1A C BC C = ,1,AC BC ⊂平面1ABC ,所以1AA ⊥平面1A BC ,又1//BB 1AA ,所以1BB ⊥平面1A BC ;【小问2详解】取AC 的中点P ,连接1PA ,因为11AA A C =,所以1A P ⊥AC ,因为平面11AA C C ⊥平面ABC ,交线为AC ,1A P ⊂平面11AAC C ,所以1A P ⊥平面ABC ,取AB 的中点H ,连接PH ,则//PH BC ,因为AC BC ⊥,所以PH ⊥AC ,故以P 为坐标原点,1,,PH PC PA 所在直线分别为,,x y z 轴,建立空间直角坐标系,因为2AC =,所以1112A P AC ==,故()()()101,0,0,1,0,0,0,1A C A -,设BC m =,则(),1,0B m ,设()1,,B s t h ,由11AA BB = 得()()0,1,1,1,s m t h =--,解得,2,1s m t h ===,故()1,2,1B m ,()()11,3,1,0,1,1AB m CA ==- ,因为异面直线11,AB CA 所成角的余弦值为13,所以11cos ,3AB =,解得m =,故BC =18. 已知抛物线Γ:24y x =,在Γ上有一点A 位于第一象限,设A 的纵坐标为(0)a a >.(1)若A 到抛物线Γ准线的距离为3,求a 的值;(2)当4a =时,若x 轴上存在一点B ,使AB 的中点在抛物线Γ上,求O 到直线AB 的距离;(3)直线l :3x =-,抛物线上有一异于点A 的动点P ,P 在直线l 上的投影为点H ,直线AP 与直线l 的交点为.Q 若在P的位置变化过程中,4HQ >恒成立,求a 的取值范围.【答案】(1)a =(2(3)(]0,2【解析】【分析】(1)先求出点A 的横坐标,代入抛物线方程即可求解;(2)先通过中点在抛物线上求出点B 的坐标,进一步求出直线AB 方程,利用点到直线距离公式求解即可;(3)设22(,),(,),(3,)(0)44t a P t Aa H t t a -≠>,联立方程求出点Q 的坐标,根据4HQ >恒成立,结合基本不等式即可求解.【小问1详解】抛物线Γ:24y x =的准线为1x =-,由于A 到抛物线Γ准线的距离为3,则点A 的横坐标为2,则2428(0)a a =⨯=>,解得a =【小问2详解】当4a =时,点A 的横坐标为2444=,则()4,4A ,设(),0B b ,则AB 的中点为4,22b +⎛⎫⎪⎝⎭,由题意可得24242b +=⨯,解得2b =-,所以B (−2,0),则402423AB k -==+,由点斜式可得,直线AB 的方程为()223y x =+,即2340x y -+=,所以原点O 到直线AB =;【小问3详解】如图,设()22,,,,3,(0)44t a P t A a H t t a ⎛⎫⎛⎫-≠> ⎪ ⎪⎝⎭⎝⎭,则22444AP t a k t a t a -==+-,故直线AP 的方程为244a y a x t a ⎛⎫-=- ⎪+⎝⎭,令3x =-,可得2434a y a t a ⎛⎫=-+⋅ ⎪+⎝⎭,即243,34a Q a t a ⎛⎫⎛⎫--+⋅ ⎪ ⎪ ⎪+⎝⎭⎝⎭,则2434a HQ t a t a ⎛⎫=-++⋅ ⎪+⎝⎭,依题意,24344a t a t a⎛⎫-++⋅> ⎪+⎝⎭恒成立,又2432204a t a a a t a⎛⎫+++⋅-≥-> ⎪+⎝⎭,则最小值为24a ->,即2a >+2a >+,则221244a a a +>++,解得02a <<,又当2a =时,1624442t t ++-≥-=+,当且仅当2t =时等号成立,而a t ≠,即当2a =时,也符合题意.故实数a 的取值范围为(]0,2.19. 已知函数22()ln(1),(1,)2x f x x x x ax=+-∈-+∞++.(1)当1a =时,求曲线()y f x =在1x =处切线的方程;(2)当0a =时,试判断()f x 零点的个数,并说明理由;(3)是否存在实数a ,使(0)f 是()f x 的极大值,若存在,求出a 的取值集合;若不存在,请说明理由.【答案】(1)388ln270x y -+-=;(2)1个,理由见解析;(3)存在,1{}6a ∈-.【解析】【分析】(1)把1a =代入,求出函数的导数,利用导数的几何意义求出切线方程.(2)把0a =代入,利用导数探讨函数的单调性即可得解.(3)利用连续函数极大值意义求出a 值,再验证即可得解.【小问1详解】当1a =时,22()ln(1)2x f x x x x =+-++,求导得222142()1(2)x f x x x x -=-+++',则3(1)8f '=,而1(1)ln22f =-,于是切线方程是13ln2)(1)(28x y -=--,所以曲线()y f x =在1x =处切线的方程388ln270x y -+-=.【小问2详解】当0a =时,24()ln(1)ln(1)222x f x x x x x=+-=++-++,的求导得22214()01(2)(1)(2)x f x x x x x '=-=≥++++,函数()f x 在(1,)-+∞上单调递增,又(0)0f =,所以函数()f x 有且仅有一个零点,是0.【小问3详解】由(0)f 是()f x 的极大值,得0,0m n ∃<>,使得当(,)x m n ∈时,220x ax ++>且()(0)f x f ≤恒成立,求导得22222(461)()(1)(2)x a x ax a f x x ax x '+++=+++,因此0x =是22()461h x a x ax a =+++的变号零点,即(0)0h =,解得16a =-,经检验,当16a =-时,322(24)()(1)(612)x x f x x x x -=+--',则当(1,0)x ∈-时()0f x '>,当(0,24)x ∈时()0f x '<,于是(0)f 是()f x 的极大值,符合条件,所以a 的取值集合为1{}6-.【点睛】结论点睛:函数()y f x =是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。

_数学丨广东省茂名市2023届高三第一次综合测试(一模)数学试卷及答案

_数学丨广东省茂名市2023届高三第一次综合测试(一模)数学试卷及答案

2023年茂名市高三级第一次综合测试数学参考答案一、单选题:4.【解析】将2个8插空放入不相邻的5个空位(4个6之间有5个空位)中,2510C =5.【解析】如图所示为该圆锥轴截面,设顶角为α,因为其轴截面(过圆锥旋转轴的截面)是腰长为,面积为2的等腰三角形,所以2211sin sin 22l αα=⨯⨯=sin α=π3α=或2π3α=.由2π3α=得,πcos cos 23h l α==,πsin sin 323r l α===,则上半部分的体积为22311ππ333r h =⨯=,下半部分体积为218r h ππ=蒙古包的体积为3(18+6.【解析】1cos 211()sin 2sin(222242x πA f x x x T π-=+=-+∴=对于选项,,选项B:221(1-2)20且0()=22sin x sin x sin x cos x ,f x tan x T πsin x cos x sin x cos x-≠≠==∴=11()cos cos 222C f x x x x x x T π=-++=∴=对于选项,cos ,11()sin 2()sin(2)2623ππD f x x x T π=+=+∴=对于选项,,7.【解析】,685ln ,13ln ,564ln -=-=-=c b a 故可构造函数()(),112ln +--=x x x x f ()()(),01122'>+-=x x x x f 所以()()()543f f f <<12345678D A A D C C B D8.【解析】当PC CD ⊥时,三棱锥P ACD -的表面积取最大值,PD =三棱锥P ACD -的外接球的半径为R =.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9101112ACD ACD ABD BC10.【解析】由题意得,()()中心对称,,的图像关于01 x f 故A 正确;由()()()()x f x f x f x f +-=-=-2,且得()()()()x f x f x f x f ⇒+-=-=2的周期为4,故B 错误;()()01 01=-∴=f f ,故C 正确;()412121274 =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛∴f f f x f ,的周期为 ,故D 正确11.【解析】A 选项:由抛物线C 的定义知A 是正确的;B 选项:由12y x '=,切线方抛物线C 在点(21-,)处的切线斜率为1-,切线方程为10x y ++=;C 选项:顶点在原点O 的正三角形与抛物线相交与A 、B 两点,这个正三角形的边长为,OAB ∆的周长为C 错;D 选项:F 为抛物线的焦点,过H 作HD 垂直抛物线C 的准线y=1-于点D ,如图由抛物线的定义知,1sin HG HG t HF HD HGD===∠当t 取最大值时,HGD ∠取最小值,(正弦函数的单调性的应用)即直线GH 与抛物线C 相切.设直线HG 的方程为1y kx =-,由214y kx x y=-⎧⎨=⎩得2404x x k +=-,所以216160k ∆=-=,解得1k =±,此时2404x x k +=-,即2440x x ±+=,所以2x =±,故()2,1H ±,所以1122222H S GF x =⋅=⨯⨯=△GFH ,故D 正确.12.【解析】原式变形为n n n m me m ln ln ->-,构造函数()x xe x f x -=,()()11'-+=x e x f x ,()()()x f x f x e x x ,0,110'>∴>+>时, 单调递增,()()()x f x f x e x x ,0,110'<∴<+<时, 单调递减对于A ,取1==n m 满足原式,所以A 错对于B ,当n e m n n m≥>∴>≤≤1,010ln 时,,即,当()()时,在时,∞+>00ln x f n 单调递增,原式()()n f m f ln >⇔,n e n m m>>∴,即ln ,所以B 对。

2022-2023学年北京市东城区高三下学期综合练习(一)数学试卷(PDF版)

2022-2023学年北京市东城区高三下学期综合练习(一)数学试卷(PDF版)

北京市东城区2022-2023学年度第二学期高三综合练习(一)数 学 2023.3本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合22{|}0A x x -=<,且a A ∈,则a 可以为(A )2- (B )1-(C )32(D (2)在复平面内,复数iz对应的点的坐标是(3,1)-,则z = (A )13i + (B )3i + (C )3i -+ (D )13i -- (3)抛物线24x y =的准线方程为(A )1x = (B )1x =- (C )1y = (D )1y =- (4)已知0x >,则44x x-+的最小值为 (A )2- (B )0(C )1 (D )(5)在△ABC 中,a =2b c =,1cos 4A =-,则ABC S =△(A )(B )4(C ) (D )(6)设,m n 是两条不同的直线,αβ,是两个不同的平面,且m α⊂,αβ ,则“m n ⊥”是“n β⊥”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件 (7)过坐标原点作曲线2e1x y -=+的切线,则切线方程为(A )y x = (B )2y x = (C )21e y x = (D )e y x =(8)已知正方形ABCD 的边长为 2,P 为正方形ABCD 内部(不含边界)的动点,且满足0PA PB ⋅=,则CP D P ⋅的取值范围是(A )(0,8] (B )[0,8) (C )(0,4] (D )[0,4)(9)已知1a ,2a ,3a ,4a ,5a 成等比数列,且1和4为其中的两项,则5a 的最小值为(A )64- (B )8- (C )164 (D )18(10)恩格斯曾经把对数的发明、解析几何的创始和微积分的建立称为十七世纪数学的三大成就.其中对数的发明,曾被十八世纪法国大数学家拉普拉斯评价为“用缩短计算时间延长了天文学家的寿命”.已知正整数N 的70次方是一个83位数,由下面表格中部分对数的近似值(精确到0.001),可得N 的值为(A )13 (B )14 (C )15 (D )16第二部分(非选择题 共110分)二、填空题 共5小题,每小题5分,共25分。

2024—2025学年广东省广州市天河中学高三上学期综合模拟测试(一)数学试卷

2024—2025学年广东省广州市天河中学高三上学期综合模拟测试(一)数学试卷

2024—2025学年广东省广州市天河中学高三上学期综合模拟测试(一)数学试卷一、单选题(★) 1. 已知集合,,则()A.B.C.D.(★★) 2. 已知复数满足,则复数对应的点在第()象限A.一B.二C.三D.四(★★) 3. 已知的展开式中所有项的二项式系数之和为32,则的展开式中的系数为()A.B.C.10D.20(★★) 4. 若角的终边过点,则()A.B.C.D.(★★) 5. 已知:不等式的解集为,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(★★) 6. 双曲线x2-=1的渐近线与圆x2+( y-4) 2=r2( r>0)相切,则r=()A.B.C.D.(★★★) 7. 下列说法中,正确的命题是()A.已知随机变量X服从正态分布,则B.线性相关系数r越大,两个变量的线性相关性越强,反之,线性相关性越弱C.已知两个变量具有线性相关关系,其回归方程为,若,则D.若样本数据的方差为8,则数据的方差为2(★★★) 8. 已知函数,若方程有3个不同的实根,则实数m取值范围值是()A.B.C.D.二、多选题(★★★) 9. 已知一组数据,,…,是公差不为0的等差数列,若去掉数据,则()A.中位数不变B.平均数变小C.方差变大D.方差变小(★★★) 10. 在正方体中,点分别是和的中点,则()A.B.与所成角为C.平面D.与平面所成角为(★★★★) 11. 设,,且,则下列关系式可能成立的是()A.B.C.D.三、填空题(★) 12. 如图,矩形中,,E是的中点,则_________ .(★★★) 13. 若直线l既和曲线相切,又和曲线相切,则称l为曲线和的公切线.已知曲线和曲线,请写出曲线和的一条公切线方程: ______ .(★★★★) 14. 已知椭圆的左、右焦点分别为,,以线段为直径的圆与C在第一、第三象限分别交于点A,B,若,则C的离心率的最大值是 ______ .四、解答题(★★) 15. 记的内角的对边分别为,,,已知为锐角,且.(1)求角的大小;(2)若,,求的面积.(★★★) 16. 已知函数.(1)当时,求的极值;(2)当时,不等式恒成立,求a的取值范围.(★★★) 17. 如图,三棱柱的底面是等腰直角三角形,,侧面是菱形,,平面平面.(1)证明:;(2)求点到平面的距离.(★★★★★) 18. 已知在曲线,直线交曲线C于A,B两点.(点A在第一象限)(1)求曲线C的方程;(2)若过且与l垂直的直线与曲线C交于C,D两点;(点C在第一象限)(ⅰ)求四边形ACBD面积的最小值.(ⅱ)设AB,CD的中点分别为P,Q,求证:直线PQ过定点.(★★★★) 19. 在三维空间中,立方体的坐标可用三维坐标表示,其中,而在维空间中,以单位长度为边长的“立方体”的顶点坐标可表示为维坐标,其中.现有如下定义:在维空间中两点间的曼哈顿距离为两点与坐标差的绝对值之和,即为.回答下列问题:(1)求出维“立方体”的顶点数;(2)在维“立方体”中任取两个不同顶点,记随机变量为所取两点间的曼哈顿距离.①求的分布列与期望;②求的方差.。

北京市丰台区2021-2022学年高三下学期综合练习(一) 数学试题

北京市丰台区2021-2022学年高三下学期综合练习(一) 数学试题

北京市丰台区2021—2022学年度第二学期综合练习(一)高三数学2022.03第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|12}A x x =-<≤,{|21}B x x =-<≤,则A B ⋃=()A.{|11}x x -<<B.{|11}x x -<≤ C.{|22}x x -<< D.{|22}x x -<≤【1题答案】【答案】D 【解析】【分析】利用并集的定义计算即可.【详解】∵集合{|12}A x x =-<≤,{|21}B x x =-<≤,∴{|22}A B x x ⋃=-<≤.故选:D.2.已知命题p :1x ∃>,210x ->,那么p ⌝是()A.1x ∀>,210x ->B.1x ∀>,210x -≤C.1x ∃>,210x -≤D.1x ∃≤,210x -≤【2题答案】【答案】B 【解析】【分析】由特称命题的否定,直接判断得出答案.【详解】解:已知命题p :1x ∃>,210x ->,则p ⌝为:1x ∀>,210x -≤.故选:B.3.若复数i z a b =+(a ,b 为实数)则“0a =”是“复数z 为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【3题答案】【答案】B 【解析】【分析】根据当0a =且0b ≠时,复数i z a b =+z 为纯虚数判断即可.【详解】解:根据复数的概念,当0a =且0b ≠时,复数i z a b =+z 为纯虚数,反之,当复数i z a b =+z 为纯虚数时,0a =且0b ≠所以“0a =”是“复数z 为纯虚数”的必要不充分条件故选:B4.已知圆22:20C x x y -+=,则圆心C 到直线3x =的距离等于()A.4B.3C.2D.1【4题答案】【答案】C 【解析】【分析】求出圆心的坐标,即可求得圆心C 到直线3x =的距离.【详解】圆C 的标准方程为()2211x y -+=,圆心为()1,0C ,故圆心C 到直线3x =的距离为132-=.故选:C.5.若数列{}n a 满足12n n a a +=,且41a =,则数列{}n a 的前4项和等于()A.15 B.14C.158 D.78【5题答案】【答案】C 【解析】【分析】由等比数列定义和通项公式可得1a ,然后由前n 项和公式可得.【详解】因为12n n a a +=,且41a =,所以数列{}n a 是以2为公比的等比数列,又3411a a q ==,得118a =,所以44141(12)(1)1581128a q S q --===--.故选:C6.在△ABC中,cos 23B a b ===,,,则A ∠=()A.6π B.3π C.56π D.6π或56π【6题答案】【答案】A 【解析】【分析】先求出sin B ,再借助正弦定理求解即可.【详解】由7cos 4B =得3sin 4B ==,由正弦定理得sin sin a b A B =,233sin 4A =,解得1sin 2A =,又a c <,故A C ∠<∠,6A π∠=.故选:A.7.在抗击新冠疫情期间,有3男3女共6位志愿者报名参加某社区“人员流调”、“社区值守”这两种岗位的志愿服务,其中3位志愿者参加“人员流调”,另外3位志愿者参加“社区值守”.若该社区“社区值守”岗位至少需要1位男性志愿者.则这6位志愿者不同的分配方式共有()A.19种 B.20种 C.30种D.60种【7题答案】【答案】A 【解析】【分析】利用对立事件,用总的分配方式减去“社区值守”岗位全是女性的情况可得.【详解】6位志愿者3位志愿者参加“人员流调”,另外3位志愿者参加“社区值守”的分配方式共有3620C =种,“社区值守”岗位全是女性的分配方式共1种,故“社区值守”岗位至少需要1位男性志愿者的分配方式共有20119-=种.故选:A8.已知F 是双曲线22:148x y C -=的一个焦点,点M 在双曲线C 的一条渐近线上,O 为坐标原点.若||||OM MF =,则△OMF 的面积为()A.32B.322C. D.6【8题答案】【答案】C 【解析】【分析】由等腰三角形的性质结合渐近线方程得出点00(,)M x y 的坐标,再求面积.【详解】不妨设F 为双曲线C 的左焦点,点00(,)M x y 在渐近线y =上,因为2,a b c ===,||||OM MF =,所以0x =,0y =,即△OMF 的面积12⨯=.故选:C9.已知函数()32,,3,x x a f x x x x a-<⎧=⎨-≥⎩无最小值,则a 的取值范围是()A.(,1]-∞-B.(,1)-∞- C.[1,)+∞ D.(1,)+∞【9题答案】【答案】D 【解析】【分析】利用导数研究函数的性质,作出函数函数33y x x =-与直线2y x =-的图象,利用数形结合即得.【详解】对于函数33y x x =-,可得()()233311y x x x '=-=+-,由0y '>,得1x <-或1x >,由0y '<,得11x -<<,∴函数33y x x =-在(),1-∞-上单调递增,在()1,1-上单调递减,在()1,+∞上单调递增,∴函数33y x x =-在1x =-时有极大值2,在1x =时有极小值2-,作出函数33y x x =-与直线2y x =-的图象,由图可知,当1a ≤时,函数()f x 有最小值()12f =-,当1a >时,函数()f x 没有最小值.故选:D.10.对任意*m ∈N ,若递增数列{}n a 中不大于2m 的项的个数恰为m ,且12100n a a a +++= ,则n 的最小值为()A.8B.9C.10D.11【10题答案】【答案】C 【解析】【分析】先由条件得出2n a n ≤,进而结合等差数列前n 项和列出不等式,解不等式即可.【详解】由递增数列{}n a 中不大于2m 的项的个数恰为m 可知2n a n ≤,又12100n a a a +++= ,故2462100n ++++≥ ,即()221002n n +≥,解得14012n -≤或14012n -≥,又*n ∈N ,故n 的最小值为10.故选:C.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.函数()f x 2lg x x -+的定义域是_________.【11题答案】【答案】{|02}x x <≤【解析】【详解】∵函数()f x lg x∴要使函数有意义,则20{x x -≥>∴02x <≤∴函数()f x lg x 的定义域为{}02x x <≤故答案为{}02x x <≤12.已知向量(2,3)a =- ,(,6)b x =-.若a b∥,则=x ______.【12题答案】【答案】4【解析】【分析】利用两向量共线的条件即求.【详解】∵向量(2,3)a =-,(,6)b x =-,a b∥,∴()()2630x -⨯--=,解得4x =.故答案为:4.13.设函数()f x 的定义域为[]0,1,能说明“若函数()f x 在[]0,1上的最大值为()1f ,则函数()f x 在[]0,1上单调递增“为假命题的一个函数是__________.【13题答案】【答案】213()24f x x ⎛⎫=-+ ⎪⎝⎭,[]0,1x ∈,(答案不唯一)【解析】【分析】根据题意,可以构造在定义域为[]0,1上,先减后增的函数,满足最大值为1,即可得答案.【详解】根据题意,要求函数()f x 的定义域为[]0,1,在[]0,1上的最大值为()1f ,但()f x 在[]0,1上不是增函数,可以考虑定义域为[]0,1上,先减后增的函数的二次函数,函数213()24f x x ⎛⎫=-+ ⎪⎝⎭,[]0,1x ∈符合,故答案为:213()24f x x ⎛⎫=-+ ⎪⎝⎭,[]0,1x ∈,(答案不唯一).14.已知抛物线2:4C y x =的焦点为F ,则F 的坐标为______;设点M 在抛物线C 上,若以线段FM 为直径的圆过点(0,2),则||FM =______.【14题答案】【答案】①.(1,0)②.5【解析】【分析】由题可得()1,0F ,设(),M x y ,结合条件可得240x y -+=,24y x =,进而可得4x =,即得.【详解】∵抛物线2:4C y x =,∴()1,0F ,设(),M x y ,则24y x =,又以线段FM 为直径的圆过点(0,2),∴2201001y x --⋅=---,即240x y -+=,又24y x =,∴22404y y -+=,解得4y =,4x =,∴||415FM =+=.故答案为:(10),;5.15.如图,在棱长为2的正方体1111ABCD A B C D -中,M N ,分别是棱1111A B A D ,的中点,点P 在线段CM 上运动,给出下列四个结论:①平面CMN 截正方体1111ABCD A B C D -所得的截面图形是五边形;②直线11B D 到平面CMN 的距离是22;③存在点P ,使得11=90B PD ∠︒;④△1PDD 面积的最小值是6.其中所有正确结论的序号是______.【15题答案】【答案】①③【解析】【分析】作出截面图形判断①,利用等积法可判断②,利用坐标法可判断③④.【详解】对于①,如图直线MN 与11C B 、11C D 的延长线分别交于11,M N ,连接11,CM CN 分别交11,BB DD 于22,M N ,连接22,MM NN ,则五边形22MM CN N 即为所得的截面图形,故①正确;对于②,由题可知11//MN B D ,MN ⊂平面CMN ,11B D ⊄平面CMN ,∴11//B D 平面CMN ,故点1B 到平面CMN 的距离即为直线11B D 到平面CMN 的距离,设点1B 到平面CMN 的距离为h ,由正方体1111ABCD A B C D -的棱长为2可得,3,CM CN MN ===,11722CMNS = ,∴11117173326B CMN CMN V S h h -=⋅=⨯= ,111111123323C B MN B MN V S CC -=⋅=⨯⨯= ,∴由1B CMN V -=1C B MN V -,可得h =所以直线11B D 到平面CMN 的距离是17,故②错误;对于③,如图建立空间直角坐标系,则()()()()112,0,2,0,2,2,2,2,0,1,0,2B D C M ,设,01PC MC λλ=≤≤,∴()1,2,2PC MC λλ==-,又()2,2,0C ,()()112,0,2,0,2,2,B D ∴()2,22,2P λλλ--,()()11,22,22,2,2,22PB PD λλλλλλ=--=--,假设存在点P ,使得11=90B PD ∠︒,∴()()()2112222220PB PD λλλλλ⋅=-+-+-= ,整理得291440λλ-+=,∴71319λ+=>(舍去)或7139λ=,故存在点P ,使得11=90B PD ∠︒,故③正确;对于④,由上知()2,22,2P λλλ--,所以点()2,22,2P λλλ--在1DD 的射影为()0,2,2λ,∴点()2,22,2P λλλ--到1DD 的距离为:d =,∴当25λ=时,min 455d =,∴故△1PDD 面积的最小值是145452255⨯⨯=,故④错误.故答案为:①③.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.已知函数()sin ()(0||)2f x x ωϕωϕπ=+><,,再从条件①、条件②、条件③这三个条件中选择两个作为一组已知条件,使()f x 的解析式唯一确定.(1)求()f x 的解析式;(2)设函数()()(6g x f x f x π=++,求()g x 在区间4[0]π,上的最大值.条件①:()f x 的最小正周期为π;条件②:()f x 为奇函数;条件③:()f x 图象的一条对称轴为4x π=.注:如果选择多组条件分别解答,按第一个解答计分.【16~17题答案】【答案】(1)()sin 2f x x =(2【解析】【分析】(1)可以选择条件①②或条件①③,先由周期计算ω,再计算ϕ即可;(2)先求出26x π+整体的范围,再结合单调性求最大值即可.【小问1详解】选择条件①②:由条件①及已知得2T ππω==,所以2=ω.由条件②得()()f x f x -=-,所以(0)0f =,即sin 0ϕ=.解得π()k k ϕ=∈Z .因为||2ϕπ<,所以0ϕ=,所以()f x sin2x =.经检验0ϕ=符合题意.选择条件①③:由条件①及已知得2T ππω==,所以2=ω.由条件③得()ππ2π42k k ϕ⨯+=+∈Z ,解得π()k k ϕ=∈Z .因为||2ϕπ<,所以0ϕ=.所以()f x sin2x =.【小问2详解】由题意得()sin2sin 23g x x x π⎛⎫=++ ⎪⎝⎭,化简得3()sin 22)226g x x x x =+=+π.因为04x π≤≤,所以22663x πππ≤+≤,所以当262x ππ+=,即6x π=时,()g x 17.如图,在直角梯形ABCD 中,AB CD ,90DAB ∠=︒,12AD DC AB ==.以直线AB 为轴,将直角梯形ABCD 旋转得到直角梯形ABEF ,且AF AD ⊥.(1)求证:DF 平面BCE ;(2)在线段DF 上是否存在点P ,使得直线AE 和平面BCP 所成角的正弦值为56?若存在,求出DPDF 的值;若不存在,说明理由.【17~18题答案】【答案】(1)证明见解析(2)存在;13DP DF =【解析】【分析】(1)证明出四边形DCEF 为平行四边形,进而证明出线面平行;(2)建立空间直角坐标系,利用空间向量求解.【小问1详解】证明:由题意得EF CD ‖,EF CD =,所以四边形DCEF 为平行四边形.所以DF CE ‖.因为DF ⊄平面BCE ,CE ⊂平面BCE ,所以DF ‖平面BCE .【小问2详解】线段DF 上存在点P ,使得直线AE 和平面BCP 所成角的正弦值为56,理由如下:由题意得AD ,AB ,AF 两两垂直.如图,建立空间直角坐标系A xyz -.设2AB =,则(0,0,0)A ,(0,2,0)B ,(1,1,0)C ,(1,0,0)D ,(0,1,1)E ,(0,0,1)F .所以()0,1,1AE = ,()1,1,0BC =-,()1,2,0BD =- ,()1,0,1DF =- .设()01DP DF λλ=≤≤ ,则()1,2,BP BD DP BD DF λλλ=+=+=--设平面BCP 的一个法向量为(,,)n x y z =,所以00n BC n BP ⎧⋅=⎨⋅=⎩ ,即()0,120.x y x y z λλ-=⎧⎨--+=⎩令x λ=,则y λ=,1z λ=+.于是(),,1n λλλ=+设直线AE 和平面BCP 所成角为θ,由题意得:sin cos ,n AE n AE n AEθ⋅==⋅56=,整理得:232270λλ-+=,解得13λ=或7λ=.因为01λ≤≤,所以13λ=,即13DP DF =.所以线段DF 上存在点P ,当13DP DF =时,直线AE 和平面BCP 所成角的正弦值为56.18.为研究某地区2021届大学毕业生毕业三个月后的毕业去向,某调查公司从该地区2021届大学毕业生中随机选取了1000人作为样本进行调查,结果如下:毕业去向继续学习深造单位就业自主创业自由职业慢就业人数2005601412898假设该地区2021届大学毕业生选择的毕业去向相互独立.(1)若该地区一所高校2021届大学毕业生的人数为2500,试根据样本估计该校2021届大学毕业生选择“单位就业”的人数;(2)从该地区2021届大学毕业生中随机选取3人,记随机变量X 为这3人中选择“继续学习深造”的人数.以样本的频率估计概率,求X 的分布列和数学期望()E X ;(3)该公司在半年后对样本中的毕业生进行再调查,发现仅有选择“慢就业”的毕业生中的a (098)a <<人选择了上表中其他的毕业去向,记此时表中五种毕业去向对应人数的方差为2s .当a 为何值时,2s 最小.(结论不要求证明)【18~20题答案】【答案】(1)1400(2)分布列见解析;期望为35(3)42a=【解析】【分析】(1)用样本中“单位就业”的频率乘以毕业生人数可得;(2)先由样本数据得选择“继续学习深造”的频率,然后由二项分布可得;(3)由方差的意义可得.【小问1详解】由题意得,该校2021届大学毕业生选择“单位就业”的人数为5602500=14001000⨯.【小问2详解】由题意得,样本中1000名毕业生选择“继续学习深造”的频率为200110005=.用频率估计概率,从该地区2021届大学毕业生中随机选取1名学生,估计该生选择“继续学习深造”的概率为15.随机变量X 的所有可能取值为0,1,2,3.所以()030311640155125P X C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭,()21311481155125P X C ⎛⎫⎛⎫==-=⎪⎪⎝⎭⎝⎭,()22311122155125P X C ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭,()3331113155125P X C ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭.所以X 的分布列为X0123P641254812512125112564481213()01231251251251255E x =⨯+⨯+⨯+⨯=.【小问3详解】易知五种毕业去向的人数的平均数为200,要使方差最小,则数据波动性越小,故当自主创业和慢就业人数相等时方差最小,所以42a=.19.已知椭圆2222:1x y C a b +=(0a b >>)的左、右顶点分别为A ,B ,且||4AB =,离心率为2.(1)求椭圆C 的方程;(2)设P 是椭圆C 上不同于A ,B 的一点,直线PA ,PB 与直线4x =分别交于点M N ,.若||4MN ≤,求点P 横坐标的取值范围.【19~20题答案】【答案】(1)2214x y +=(2)8[05,【解析】【分析】(1)直接由条件计算,a b 即可;(2)设出点P 坐标,分别写出直线PA ,PB 的方程,表示出M N ,坐标,由||4MN ≤得到不等式,解不等式即可.【小问1详解】由题意得222243,2,a c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩,解得24a =,21b =.所以椭圆C 的方程是2214x y +=.【小问2详解】设(,)P m n (22m -<<),由已知得(2,0)A -,(2,0)B ,所以直线AP ,BP 的方程分别为(2)2n y x m =++,(2)2ny x m =--.令4x =,得点M 的纵坐标为62M n y m =+,点N 的纵坐标为22N ny m =-,所以62||22n nMN m m =-+-()2444n m m -=-.因为点P 在椭圆C 上,所以2214m n +=,所以2244m n -=-,即4||m MN n-=.因为4MN ||≤,所以44m n-≤,即22(4)16m n -≤.所以22(4)4(4)m m ---≤.整理得2580m m -≤,解得805m ≤≤.所以点P 横坐标的取值范围是8[0]5,.20.已知函数()f x =(1)当1a =时,求曲线()y f x =的斜率为1的切线方程;(2)若函数2()()3ag x f x =-恰有两个不同的零点,求a 的取值范围.【20~21题答案】【答案】(1)y x=(2)(3)+∞,【解析】【分析】(1)直接求导,由()1f x '=求出切点,写出切线方程即可;(2)求导后分类讨论确定函数的单调性,结合零点存在定理确定零点个数即可求出a 的取值范围.【小问1详解】当1a =时,()1)f x x =≤,所以()f x '=令()1f x '=,解得0x =.因为(0)0f =,所以切点坐标为(00),.故切线方程为y x =.【小问2详解】因为2()3ag x =-()x a ≤,所以()g x '=令()0g x '=,解得23a x =.当0a ≤时,由x a ≤,得230a x a --≥≥,所以()0g x '≥,则()g x 在定义域(,]a -∞上是增函数.故()g x 至多有一个零点,不合题意,舍去.当0a >时,随x 变化()g x '和()g x 的变化情况如下表:故()g x 在区间2()3a -∞,上单调递增,在区间2()3aa ,上单调递减,当23a x =时,()g x 取得最大值2(3a g =.若03a <≤时,2()03a g =,此时()g x 至多有一个零点;若3a >时,2(03a g >,又2(0)()03ag g a ==-<,由零点存在性定理可得()g x 在区间2(0)3a ,和区间2()3aa ,上各有一个零点,所以函数()g x 恰有两个不同的零点,符合题意.综上所述,a 的取值范围是(3)+∞,.21.已知集合{12}S n = ,,,(3n ≥且*n N ∈),12{}m A a a a = ,,,,且A S ⊆.若对任意i j a A a A ∈∈,(1i j m ≤≤≤),当i j a a n +≤时,存在k a A ∈(1k m ≤≤),使得i j k a a a +=,则称A 是S 的m 元完美子集.(1)判断下列集合是否是{12345}S =,,,,的3元完美子集,并说明理由;①1{124}A =,,;②2{245}A =,,.(2)若123{}A a a a =,,是{127}S = ,,,的3元完美子集,求123a a a ++的最小值;(3)若12{}m A a a a = ,,,是{12}S n = ,,,(3n ≥且*n N ∈)的m 元完美子集,求证:12(+1)2m m n a a a +++ ≥,并指出等号成立的条件.【21~23题答案】【答案】(1)1A 不是S 的3元完美子集;2A 是S 的3元完美子集;理由见解析(2)12(3)证明见解析;等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n ia i m m +=+≤≤【解析】【分析】(1)根据m 元完美子集的定义判断可得结论;(2)不妨设123a a a <<.由11a =,12a =,13a ≥分别由定义可求得123a a a ++的最小值;(3)不妨设12m a a a <<< ,有121i i i i m i a a a a a a a n +-<+<+<<+ ≤.121i i i m i a a a a a a +-+++ ,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,L ,此时该集合恰有m i -个不同的元素,显然矛盾.因此对任意1i m ≤≤,都有11i m i a a n +-++≥,由此可得证.【小问1详解】解:(1)①因为1235+=≤,又13A ∉,所以1A 不是S 的3元完美子集.②因为2245+=≤,且24A ∈,而55454425245+>+>+>+>+>,所以2A 是S 的3元完美子集.【小问2详解】解:不妨设123a a a <<.若11a =,则112a a A +=∈,123A +=∈,134A +=∈,与3元完美子集矛盾;若12a =,则114a a A +=∈,246A +=∈,而267+>,符合题意,此时12312a a a ++=.若13a ≥,则116a a +≥,于是24a ≥,36a ≥,所以123+13a a a +≥.综上,123a a a ++的最小值是12.【小问3详解】证明:不妨设12m a a a <<< .对任意1i m ≤≤,都有11i m i a a n +-++≥,否则,存在某个(1)i i m ≤≤,使得1i m i a a n +-+≤.由12m a a a <<< ,得121i i i i m i a a a a a a a n +-<+<+<<+ ≤.所以121i i i m i a a a a a a +-+++ ,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,L ,该集合恰有m i -个不同的元素,显然矛盾.所以对任意1i m ≤≤,都有11i m i a a n +-++≥.于是1211211212()()()()()(1)m m m m m m a a a a a a a a a a a a m n ---++++=+++++++++≥L L .即12(1)2m m n a a a ++++≥L .等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n ia i m m +=+≤≤.。

2023届北京市门头沟区高三下学期4月综合练习(一)数学试题(PDF版)

2023届北京市门头沟区高三下学期4月综合练习(一)数学试题(PDF版)

门头沟区2023年高三年级综合练习(一)高 三 数学答案 2023.4第一部分(选择题 共40分)一、选择题(本大题共10个小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)(1)已知集合{4,3,2,1,0,1,2,3,4}A =----,{||2}B x x =>,则AB =(A ){4,3,3,4}-- (B)(,2)(2,)-∞-+∞U(C ){2,1,0,1,2}--(D )[2,2]-(2)复数(1i)(2+i)z =-+,则||z =(A ) (B)(C )2(D)3(3)双曲线22221(0,0)y x ab a b-=>>的离心率为2,则其渐近线方程为(A ) y = (B )y =(C ) y x = (D )2y x =± (4)中国古代数学著作《九章算术》是人类科学史上应用数学的最早巅峰.书里记载了这样一个问题“今有女子善织,日自倍,五日织五尺.问日织几何?”译文是“今有一女子很会织布,每日加倍增长,5天共织5尺,问每日各织布多少尺?”,则该女子第二天织布(A )531尺 (B )1031尺 (C )1516尺 (D )516尺(5)若点M 是圆22:40C x y x +-=上的任一点,直线:20l x y ++=与x 轴、y 轴分别相交于A 、B 两点,则MAB ∠的最小值为(A )π12 (B )π4(C )π3(D )π6(6)在平面直角坐标系中,角α与β的顶点在原点,始边与x 轴正半轴重合,终边构成一条直线,且sin α=cos()αβ+= (A )1 (B )13(C )13-(D )1-(7)在声学中,音量被定义为:020lgp pL p =,其中p L 是音量(单位为dB ),0p 是基准声压为 a p ,p 是实际声音压强.人耳能听到的最小音量称为听觉下限阈值.经过研究表明,人耳对于不同频率的声音有不同的听觉下限阈值,如下图所示,其中240Hz 对应的听觉下限阈值为20dB ,1000Hz 对应的听觉下限阈值为0dB ,则下列结论正确的是(A )音量同为20dB 的声音,30100Hz 的低频比100010000Hz 的高频更容易被人们听到. (B )听觉下限阈值随声音频率的增大而减小. (C ) 240Hz 的听觉下限阈值的实际声压为0.002Pa .(D ) 240Hz 的听觉下限阈值的实际声压为1000Hz 的听觉下限阈值实际声压的10倍. (8) 已知非零向量,a b ,则“a 与b 共线”是“||||||||a b a b --≤”的(A ) 充分不必要条件 (B )必要不充分条件 (C ) 充要条件(D )即不充分也不必要条件(9)已知函数()e x f x =,若存在0[1,2]x ∈-使得00()()f t x f x t =+-恒成立,则0()b f x t =-的取值范围(A ) 1[0,1]e +(B )21[1,e 2]e +-(C ) 1[1,1]e+(D )2[1,e 2]-(10)已知数列{}n a 满足11a =,2112n n n a a a +=-.① 数列{}n a 每一项n a 都满足01()n a n *<∈N ≤ ② 数列{}n a 的前n 项和2n S <; ③ 数列{}n a 每一项n a 都满足21n a n +≤成立; ④ 数列{}n a 每一项n a 都满足11()()2n n a n -*∈N ≥.其中,所有正确结论的序号是(A )①③ (B ) ② ④(C )①③④ (D ) ①②④第二部分(非选择题 共110分)二、填空题(本大题共5小题,每小题5分,满分25分.) (11)在26(21)x -的展开式中,2x 的系数为 .(用数字作答)(12)在边长为4的正ABC △中,点P 是边BC 上的中点,则AB AP ⋅= .(13)同一种产品由甲、乙、丙三个厂商供应.由长期的经验知,三家产品的正品率分别为 、 、 ,甲、乙、丙三家产品数占比例为 ,将三家产品混合在一起.从中任取一件,求此产品为正品的概率 .(14)设函数π()sin()(0)3f x x ωω=+>.①给出一个ω的值,使得()f x 的图像向右平移π6后得到的函数()g x 的图像关于原点对称,ω= ;②若()f x 在区间(0,π)上有且仅有两个零点,则ω的取值范围是 .(15)在正方体1111ABCD A B C D -中,棱长为1,已知点P ,Q 分别是线段1AD ,1AC 上的动点(不含端点).其中所有正确结论的序号是 . ①PQ 与1B C 垂直 ;②直线PQ 与直线CD 不可能平行; ③二面角P AC Q --不可能为定值; ④则PQ QC +的最小值是43.其中所有正确结论的序号是 .三、解答题(本大题共6小题,满分85分.解答应写出文字说明、演算步骤或证明.) (16)(本小题满分12分)已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c cos sin 0A a B -=.D 是AB 的中点,2AC =,CD =. (Ⅰ)求A ∠的大小; (Ⅱ)求a 的值 .(17)(本小题满分13分)周末李梦提出和父亲、母亲、弟弟进行羽毛球比赛,李梦与他们三人各进行一场比赛,共进行三场比赛,而且三场比赛相互独立.根据李梦最近分别与父亲、母亲、弟弟比赛的情况,得到如下统计表:以上表中的频率作为概率,求解下列问题.(Ⅰ)如果按照第一场与与父亲比赛、第二场与母亲比赛、第三场与弟弟比赛的顺序进行比赛.(i)求李梦连胜三场的概率;(ii)如果李梦胜一场得1分,负一场得0分,设李梦的得分为X,求X的分布列与期望;(Ⅱ)记“与父亲、母亲、弟弟三场比赛中李梦连胜二场”的概率为p,此概率p与父亲、母亲、弟弟出场的顺序是否有关?如果有关,什么样的出场顺序此概率p最大(不必计算)? 如果无关,请给出简要说明 .(18)(本小题满分15分)如图,在三棱锥P ABC -中,2AB BC ==,2PA PB PC ===,O 为AC 的中点.(Ⅰ)证明:PB AC ⊥(Ⅱ)再从条件①、条件②这两个条件中选择一个作为已知,求二面角B PC A --的余弦值及点A 到平面BPC 的距离.①AC =② PO BC ⊥AC(19)(本小题满分15分)已知21()ln(1)(R)2f x x x ax a =-++∈. (Ⅰ)当2a =时,求函数()f x 在(0,0)处的切线方程; (Ⅱ)求证:21ln(1)2x x x ++≥; (Ⅲ)若()0f x ≥在[0,)x ∈+∞恒成立, 求a 的取值范围.21.(本题满分15分)已知集合{1,2,3,,}(3)M n n =±±±±≥.若对于集合M 的任意k 元子集A ,A 中必有4个元素的和为1-,则称这样的正整数k 为“好数”,所有好数的最小值记作()g M . (Ⅰ)当3n =,即集合{3,2,1,1,2,3}M =---.(i )写出M 的一个子集B ,且B 中存在4个元素的和为1-; (ii) 写出M 的一个5元子集C ,使得C 中任意4个元素的和大于1-; (Ⅱ)证明:()2g M n >+; (Ⅲ)证明:()3g M n =+.门头沟区2023年高三年级综合练习(一)高 三 数学答案 2023.4第一部分(选择题 共40分)一、选择题(本大题共10个小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)(1)已知集合{4,3,2,1,0,1,2,3,4}A =----,{||2}B x x =>,则AB =(A ){4,3,3,4}-- (B )(,2)(2,)-∞-+∞U(C ){2,1,0,1,2}--(D )[2,2]-(2)复数(1i)(2+i)z =-+,则||z =(A ) (B)(C )2(D)3(3)双曲线22221(0,0)y xa b a b-=>>的离心率为2,则其渐近线方程为(A ) y = (B )y =(C ) y x = (D )2y x =± (4)中国古代数学著作《九章算术》是人类科学史上应用数学的最早巅峰.书里记载了这样一个问题“今有女子善织,日自倍,五日织五尺.问日织几何?”译文是“今有一女子很会织布,每日加倍增长,5天共织5尺,问每日各织布多少尺?”,则该女子第二天织布(A )531尺 (B )1031尺 (C )1516尺 (D )516尺(5)若点M 是圆22:40C x y x +-=上的任一点,直线:20l x y ++=与x 轴、y 轴分别相交于A 、B 两点,则MAB ∠的最小值为(A )π12 (B )π4(C )π3(D )π6(6)在平面直角坐标系中,角α与β的顶点在原点,始边与x 轴正半轴重合,终边构成一条直线,且sin α=cos()αβ+= (A )1 (B )13(C )13-(D )1-(7)在声学中,音量被定义为:020lgp pL p =,其中p L 是音量(单位为dB ),0p 是基准声压为 a p ,p 是实际声音压强.人耳能听到的最小音量称为听觉下限阈值.经过研究表明,人耳对于不同频率的声音有不同的听觉下限阈值,如下图所示,其中240Hz 对应的听觉下限阈值为20dB ,1000Hz 对应的听觉下限阈值为0dB ,则下列结论正确的是(A )音量同为20dB 的声音,30100Hz 的低频比100010000Hz 的高频更容易被人们听到. (B )听觉下限阈值随声音频率的增大而减小. (C ) 240Hz 的听觉下限阈值的实际声压为0.002Pa .(D ) 240Hz 的听觉下限阈值的实际声压为1000Hz 的听觉下限阈值实际声压的10倍. (8) 已知非零向量,a b ,则“a 与b 共线”是“||||||||a b a b --≤”的(A ) 充分不必要条件 (B )必要不充分条件 (C ) 充要条件(D )即不充分也不必要条件(9)已知函数()e x f x =,若存在0[1,2]x ∈-使得00()()f t x f x t =+-恒成立,则0()b f x t =-的取值范围(A ) 1[0,1]e +(B )21[1,e 2]e +-(C ) 1[1,1]e+(D )2[1,e 2]-(10)已知数列{}n a 满足11a =,2112n n n a a a +=-.① 数列{}n a 每一项n a 都满足01()n a n *<∈N ≤ ② 数列{}n a 的前n 项和2n S <; ③ 数列{}n a 每一项n a 都满足21n a n +≤成立; ④ 数列{}n a 每一项n a 都满足11()()2n n a n -*∈N ≥.其中,所有正确结论的序号是(A )①③ (B ) ② ④(C )①③④ (D ) ①②④第二部分(非选择题 共110分)二、填空题(本大题共5小题,每小题5分,满分25分.) (11)在26(21)x -的展开式中,2x 的系数为 .(用数字作答)答案:12-;(12)在边长为4的正ABC △中,点P 是边BC 上的中点,则AB AP ⋅= . 答案:3412AB AP ⋅=⨯=(13)同一种产品由甲、乙、丙三个厂商供应.由长期的经验知,三家产品的正品率分别为 、 、 ,甲、乙、丙三家产品数占比例为 ,将三家产品混合在一起.从中任取一件,求此产品为正品的概率 .答案:0.9520.930.85()0.8610n n nP A n ⨯+⨯+⨯==(15)设函数π()sin()(0)3f x x ωω=+>.①给出一个ω的值,使得()f x 的图像向右平移π6后得到的函数()g x 的图像关于原点对称,ω= ;②若()f x 在区间(0,π)上有且仅有两个零点,则ω的取值范围是 . 注:第一空为2分,第二空为3分答案:2ω=;πππ263k k ωω-+=⇒=-;58]33(,;58582333333ππωππω<+≤⇒<≤⇒(,](15)在正方体1111ABCD A B C D -中,棱长为1,已知点P ,Q 分别是线段1AD ,1AC 上的动点(不含端点).其中所有正确结论的序号是 . ①PQ 与1B C 垂直 ;②直线PQ 与直线CD 不可能平行; ③二面角P AC Q --不可能为定值; ④则PQ QC +的最小值是43.其中所有正确结论的序号是 .答案:①④三、解答题(本大题共6小题,满分85分.解答应写出文字说明、演算步骤或证明.)(16)(本小题满分12分)已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,ccos sin 0A a B -=.D 是AB 的中点,2AC =,CD =. (Ⅰ)求A ∠的大小; (Ⅱ)求a 的值 .解:(Ⅰ)由cos sin 0A a B -=得:cos sin sin 0sin 0B A A B A A +=-=πtan 3A A =⇒=(Ⅱ)由余弦定理得: 2212422cos2803AD AD AD AD π=+-⨯⇒--=解得:4AD =,则8AB =,由余弦定理得:2464228cos 523BC BC π=+-⨯⨯=⇒=(17)(本小题满分13分)周末李梦提出和父亲、母亲、弟弟进行羽毛球比赛,李梦与他们三人各进行一场比赛,共进行三场比赛,而且三场比赛相互独立.根据李梦最近分别与父亲、母亲、弟弟比赛的情况,得到如下统计表:以上表中的频率作为概率,求解下列问题.(Ⅰ)如果按照第一场与与父亲比赛、第二场与母亲比赛、第三场与弟弟比赛的顺序进行比赛.(i )求李梦连胜三场的概率;(ii )如果李梦胜一场得1分,负一场得0分,设李梦的得分为X ,求X 的分布列与期望; (Ⅱ)记“与父亲、母亲、弟弟三场比赛中李梦连胜二场”的概率为p ,此概率p 与父亲、母亲、弟弟出场的顺序是否有关?如果有关,什么样的出场顺序此概率p 最大(不必计算)?AB如果无关,请给出简要说明 .解:(Ⅰ)设李梦连胜三场这一事件为A ,则()0.20.50.80.08P A =⨯⨯= (Ⅱ)X 可取0,1,2,3,则:(0)0.80.50.20.08P X ==⨯⨯=(1)(10.2)(10.5)0.8(10.2)0.5(10.8)0.2(10.5)(10.8)0.42P X ==-⨯-⨯+-⨯⨯-+⨯-⨯-= (2)(10.2)0.50.80.2(10.5)0.80.20.5(10.8)0.42P X ==-⨯⨯+⨯-⨯+⨯⨯-= (3)0.20.50.80.08P X ==⨯⨯=期望:00.0810.4220.4230.08 1.5EX =⨯+⨯+⨯+⨯=(Ⅲ)有关;李梦第二场与弟弟比赛的概率p 最大 。

高三数学一模试卷 文(含解析)-人教版高三全册数学试题

高三数学一模试卷 文(含解析)-人教版高三全册数学试题

2016年某某某某市平罗中学高考数学一模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|1≤x≤2},B={x|x2﹣1≤0},则A∩B=()A.{x|﹣1<x<1}B.{x|﹣1<x<2}C.{1}D.∅2.复数(i是虚数单位)的虚部为()A.﹣2B.﹣1C.1D.23.在下列函数中既是奇函数,又是在区间(0,+∞)上单调递减的函数为()A. B.y=x﹣1C. D.y=x3+x4.如图所示的程序框图,其作用是输入x的值,输出相应的y值,若输入,则输出的y值为()A.2B. C.2﹣2πD.85.设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.116.在△ABC,a=,b=,B=,则A等于()A. B. C. D.或7.“x<1”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b),若f(x)的图象如图所示,则函数g (x)=a x+b的图象大致为()A. B. C. D.9.已知实数x,y满足,则目标函数z=x﹣y的最小值为()A.﹣2B.5C.6D.710.已知某棱锥的三视图如图所示,俯视图为正方形,根据图中所给的数据,那么该棱锥外接球的体积是()A. B. C. D.11.已知函数的图象上相邻两个最高点的距离为π,若将函数f(x)的图象向左平移个单位长度后,所得图象关于y轴对称.则f(x)的解析式为()A.f(x)=2sin(x+)B.f(x)=2sin(x+)C.f(x)=2sin(2x+)D.f(x)=2sin(2x+)12.如图,一竖立在水平对面上的圆锥形物体的母线长为4m,一只小虫从圆锥的底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处,则该小虫爬行的最短路程为,则圆锥底面圆的半径等于()A.1mB. C. D.2m二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中对应题号后的横线上.13.已知向量=(1,x),=(x﹣1,2),若,则x=.14.设=2,则tan(α+)=.15.已知函数f(x)=,则f已知双曲线﹣=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为.三、解答题:本大题共5小题,满分60分.解答须写出文字说明,证明过程和演算步骤. 17.已知等差数列{a n}满足a1+a3=8,a2+a4=12.(Ⅰ)求数列{a n}的前n项和为S n;(Ⅱ)若++…+=,求n的值.18.某游戏为了了解某款游戏玩家的年龄情况,现随机调查100位玩家的年龄整理后画出频率分布直方图如图所示.(1)求100名玩家中各年龄组的人数,并利用所给的频率分布直方图估计该款游戏所有玩家的平均年龄;(2)若已从年龄在[35,45),[45,55)的玩家中利用分层抽样选取6人组成一个游戏联盟,现从这6人中选出2人,求这两人在不同年龄组的概率.19.如图,在正三棱柱ABC﹣A1B1C1(侧棱垂直于底面,且底面是正三角形)中,AC=CC1=6,M是棱CC1上一点.(1)若M、N分别是CC1、AB的中点,求证:∥平面AB1M;(2)求证:不论M在何位置,三棱锥A1﹣AMB1的体积都为定值,并求出该定值.20.已知椭圆的左,右焦点分别为F1,F2,离心率为,且经过点.(1)求椭圆C的方程;(2)直线l:y=x+m与椭圆C相切,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l,求四边形F1MNF2的面积.21.已知函数f(x)=(ax﹣2)e x在x=1处取得极值.(Ⅰ)求a的值;(Ⅱ)求函数f(x)在[m,m+1]上的最小值;(Ⅲ)求证:对任意x1,x2∈[0,2],都有|f(x1)﹣f(x2)|≤e.[选修4-1:几何证明选讲]22.如图,A,B,C为⊙O上的三个点,AD是∠BAC的平分线,交⊙O于点D,过B作⊙O的切线交AD的延长线于点E.(Ⅰ)证明:BD平分∠EBC;(Ⅱ)证明:AE•DC=AB•BE.[选修4-4:坐标系与参数方程]23.在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cosθ﹣2sinθ,直线l的极坐标方程为2aρcosθ+2ρsinθ=1(a为常数).(1)求直线l与圆C的普通方程;(2)若直线l分圆C所得两弧长度之比为1:2,某某数a的值.[选修4-5:不等式选讲]24.已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).(1)当m=7时,求函数f(x)的定义域;(2)若关于x的不等式f(x)≥2的解集是R,求m的取值X围.2016年某某某某市平罗中学高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|1≤x≤2},B={x|x2﹣1≤0},则A∩B=()A.{x|﹣1<x<1}B.{x|﹣1<x<2}C.{1}D.∅【考点】交集及其运算.【分析】根据集合的基本运算进行求解.【解答】解:B={x|x2﹣1≤0}={x|﹣1≤x≤1}则A∩B={1},故选:C2.复数(i是虚数单位)的虚部为()A.﹣2B.﹣1C.1D.2【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、虚部的定义即可得出.【解答】解:复数==1﹣2i的虚部为﹣2.故选:A.3.在下列函数中既是奇函数,又是在区间(0,+∞)上单调递减的函数为()A. B.y=x﹣1C. D.y=x3+x【考点】函数奇偶性的判断;函数单调性的判断与证明.【分析】根据奇函数、偶函数的定义,和奇函数图象的对称性,以及函数y=x3和y=x的单调性即可判断每个选项的正误,从而找出正确选项.【解答】解:A.函数为偶函数,不是奇函数,∴该选项错误;B.反比例函数y=x﹣1是奇函数,且在(0,+∞)上单调递减,∴该选项正确;C.指数函数的图象不关于原点对称,不是奇函数,∴该选项错误;D.y=x3和y=x在区间(0,+∞)上都单调递增,∴y=x3+x在(0,+∞)上单调递增,∴该选项错误.故选B.4.如图所示的程序框图,其作用是输入x的值,输出相应的y值,若输入,则输出的y值为()A.2B. C.2﹣2πD.8【考点】程序框图.【分析】模拟执行程序,可得程序框图的功能是计算并输出y=的值,由函数解析式进行求解即可.【解答】解:模拟执行程序,可得程序框图的功能是计算并输出y=的值,因为,所以.故选:C.5.设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.11【考点】等差数列的前n项和.【分析】由等差数列{a n}的性质,及a1+a3+a5=3,可得3a3=3,再利用等差数列的前n项和公式即可得出.【解答】解:由等差数列{a n}的性质,及a1+a3+a5=3,∴3a3=3,∴a3=1,∴S5==5a3=5.故选:A.6.在△ABC,a=,b=,B=,则A等于()A. B. C. D.或【考点】正弦定理.【分析】由a,b及sinB的值,利用正弦定理即可求出sinA的值,根据A的X围,利用特殊角的三角函数值即可求出A的度数.【解答】解:由正弦定理可得:sinA===∵a=<b=∴∴∠A=,故选:B.7.“x<1”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据对数函数的性质和充要条件的定义,分析判断“x<1”⇒“”和“”⇒“x<1”的真假,可得答案.【解答】解:当“x<1”时,x可能小于等于0,此时“”无意义,当“”时,0<x<1,此时“x<1”成立,故“x<1”是“”的必要而不充分条件,故选:B.8.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b),若f(x)的图象如图所示,则函数g (x)=a x+b的图象大致为()A. B. C. D.【考点】指数函数的图象变换;函数的零点与方程根的关系.【分析】根据题意,易得(x﹣a)(x﹣b)=0的两根为a、b,又由函数零点与方程的根的关系,可得f(x)=(x﹣a)(x﹣b)的零点就是a、b,观察f(x)=(x﹣a)(x﹣b)的图象,可得其与x轴的两个交点分别在区间(﹣∞,﹣1)与(0,1)上,又由a>b,可得b<﹣1,0<a<1;根据函数图象变化的规律可得g(x)=a X+b的单调性即与y轴交点的位置,分析选项可得答案.【解答】解:由二次方程的解法易得(x﹣a)(x﹣b)=0的两根为a、b;根据函数零点与方程的根的关系,可得f(x)=(x﹣a)(x﹣b)的零点就是a、b,即函数图象与x轴交点的横坐标;观察f(x)=(x﹣a)(x﹣b)的图象,可得其与x轴的两个交点分别在区间(﹣∞,﹣1)与(0,1)上,又由a>b,可得b<﹣1,0<a<1;在函数g(x)=a x+b可得,由0<a<1可得其是减函数,又由b<﹣1可得其与y轴交点的坐标在x轴的下方;分析选项可得A符合这两点,BCD均不满足;故选A.9.已知实数x,y满足,则目标函数z=x﹣y的最小值为()A.﹣2B.5C.6D.7【考点】简单线性规划.【分析】先画出约束条件的可行域,再将可行域中各个角点的值依次代入目标函数z=x﹣y,不难求出目标函数z=x﹣y的最小值.【解答】解:如图作出阴影部分即为满足约束条件的可行域,由得A(3,5),当直线z=x﹣y平移到点A时,直线z=x﹣y在y轴上的截距最大,即z取最小值,即当x=3,y=5时,z=x﹣y取最小值为﹣2.故选A.10.已知某棱锥的三视图如图所示,俯视图为正方形,根据图中所给的数据,那么该棱锥外接球的体积是()A. B. C. D.【考点】由三视图求面积、体积.【分析】由该棱锥的三视图判断出该棱锥的几何特征,以及相关几何量的数据,再求出该棱锥外接球的半径和体积.【解答】解:由该棱锥的三视图可知,该棱锥是以边长为的正方形为底面,高为2的四棱锥,做出其直观图所示:则PA=2,AC=2,PC=,PA⊥面ABCD,所以PC即为该棱锥的外接球的直径,则R=,即该棱锥外接球的体积V==,故选:C.11.已知函数的图象上相邻两个最高点的距离为π,若将函数f(x)的图象向左平移个单位长度后,所得图象关于y轴对称.则f(x)的解析式为()A.f(x)=2sin(x+)B.f(x)=2sin(x+)C.f(x)=2sin(2x+)D.f(x)=2sin(2x+)【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由周期求出ω,根据y=Asin(ωx+φ)的图象变换规律、三角函数的奇偶性,求出φ的值,可得函数的解析式.【解答】解:设f(x)=2sin(ωx+φ),∵函数的图象上相邻两个最高点的距离为π,∴=π,ω=2.若将函数f(x)的图象向左平移个单位长度后,可得y=2sin[2(x+)+φ]的图象.根据所得图象关于y轴对称,可得+φ=,求得φ=,故选:C.12.如图,一竖立在水平对面上的圆锥形物体的母线长为4m,一只小虫从圆锥的底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处,则该小虫爬行的最短路程为,则圆锥底面圆的半径等于()A.1mB. C. D.2m【考点】点、线、面间的距离计算.【分析】作出该圆锥的侧面展开图,该小虫爬行的最短路程为PP',由余弦定理求出.设底面圆的半径为r,求解即可得到选项.【解答】解:作出该圆锥的侧面展开图,如图所示:该小虫爬行的最短路程为PP′,由余弦定理可得,∴.设底面圆的半径为r,则有,∴.故C项正确.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中对应题号后的横线上.13.已知向量=(1,x),=(x﹣1,2),若,则x= 2或﹣1 .【考点】平行向量与共线向量.【分析】利用向量平行的坐标关系解答.【解答】解:因为,所以1×2=x(x﹣1),解得x=2或者﹣1;故答案为:2或﹣1.14.设=2,则tan(α+)= ﹣2 .【考点】同角三角函数基本关系的运用;两角和与差的正切函数.【分析】由已知可得tanα=3,用两角和的正切公式化简后代入即可求值.【解答】解:∵=2,∴cosα≠0, =2,解得tanα=3,∴tan(α+)==﹣2,故答案为:﹣2.15.已知函数f(x)=,则f=,∴f=f(0)=()0=1.故答案为:1.16.已知双曲线﹣=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为﹣=1 .【考点】双曲线的简单性质.【分析】求出抛物线的准线方程,可得双曲线的焦点,即有c=6,再由渐近线方程可得a,b 的方程,解出a,b,进而得到双曲线的方程.【解答】解:由题意可得,抛物线y2=24x的准线为x=﹣6,双曲线的一个焦点为(﹣6,0),即有c=6,又=,36=a2+b2=4a2,a2=9,b2=27,则所求双曲线的方程为﹣=1.故答案为:﹣=1.三、解答题:本大题共5小题,满分60分.解答须写出文字说明,证明过程和演算步骤. 17.已知等差数列{a n}满足a1+a3=8,a2+a4=12.(Ⅰ)求数列{a n}的前n项和为S n;(Ⅱ)若++…+=,求n的值.【考点】数列的求和;等差数列的前n项和.【分析】(Ⅰ)通过a1+a3=8,a2+a4=12与等差中项的性质可知a2=4,a3=6,进而可知公差及首项,利用等差数列的求和公式计算即得结论;(Ⅱ)通过(I)裂项可知=﹣,进而并项相加并与已知条件比较即得结论.【解答】解:(Ⅰ)∵a1+a3=8,a2+a4=12,∴a2=4,a3=6,∴等差数列{a n}的公差d=a3﹣a2=6﹣4=2,首项a1=a2﹣d=4﹣2=2,∴数列{a n}是首项、公差均为2的等差数列,于是其前n项和为S n=2•=n(n+1);(Ⅱ)由(I)可知, ==﹣,∴++…+=1﹣+﹣+…+﹣=,又∵++…+=,∴=,即n=999.18.某游戏为了了解某款游戏玩家的年龄情况,现随机调查100位玩家的年龄整理后画出频率分布直方图如图所示.(1)求100名玩家中各年龄组的人数,并利用所给的频率分布直方图估计该款游戏所有玩家的平均年龄;(2)若已从年龄在[35,45),[45,55)的玩家中利用分层抽样选取6人组成一个游戏联盟,现从这6人中选出2人,求这两人在不同年龄组的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(Ⅰ)由直方图可得各组年龄的人数,由直方图计算平均值的方法可得平均年龄;(Ⅱ)在[35,45)的人数为4人,记为a,b,c,d;在[45,55)的人数为2人,记为m,n.列举可得总的情况共有15种,“这两人在不同年龄组”包含8种,由古典概型概率公式可得.【解答】解:(Ⅰ)由直方图可得各组年龄的人数分别为10,30,40,20人;估计所有玩家的平均年龄为0.1×20+0.3×30+0.4×40+0.2×50=37岁;(Ⅱ)在[35,45)的人数为4人,记为a,b,c,d;在[45,55)的人数为2人,记为m,n.∴抽取结果共有15种,列举如下:(ab),(ac),(ad),(am),(an),(bc),(bd),(bm),(bn),(cd),(cm),(),(dm),(dn),(mn)设“这两人在不同年龄组”为事件A,事件A所包含的基本事件有8种,则,∴这两人在不同年龄组的概率为19.如图,在正三棱柱ABC﹣A1B1C1(侧棱垂直于底面,且底面是正三角形)中,AC=CC1=6,M是棱CC1上一点.(1)若M、N分别是CC1、AB的中点,求证:∥平面AB1M;(2)求证:不论M在何位置,三棱锥A1﹣AMB1的体积都为定值,并求出该定值.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(1)取AB1中点P,连结MP,NP,则四边形MP是平行四边形,得出∥MP,从而∥平面AB1M.(2)V=V=S•.只需证明⊥平面AB1BA1即可.【解答】证明:(1)取AB1中点P,连结MP,NP,∵P是AB1的中点,N是AB的中点,∴PN∥BB1,PN=,∵M是CC1的中点,∴CM∥BB1,CM=BB1,∴CM∥PN,CM=PN,∴四边形MP是平行四边形,∴∥MP,∵MP⊂平面AB1M,⊄AB1M,∴∥平面AB1M.(2)∵△ABC是等边三角形,∴⊥AB,∵BB1⊥平面ABC,PN∥BB1,∴PN⊥平面ABC,∵⊂平面ABC,∴PN⊥,又∵AB⊂平面ABB1A1,PN⊂平面ABB1A1,AB∩PN=N,∴⊥平面AB1BA1,∵==3.∴V=V=S•==18.∴不论M在何位置,三棱锥A1﹣AMB1的体积都为定值18.20.已知椭圆的左,右焦点分别为F1,F2,离心率为,且经过点.(1)求椭圆C的方程;(2)直线l:y=x+m与椭圆C相切,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l,求四边形F1MNF2的面积.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率公式和点满足椭圆方程,解方程可得a,b,进而得到椭圆方程;(2)将直线的方程y=x+m,代入椭圆C的方程,消去y,得到x的二次方程,运用直线和椭圆相切的条件:判别式为0,再由点到直线的距离公式,结合直角梯形的面积公式计算即可得到所求值.【解答】解:(1)由题意可得,又a2=b2+c2,所以,又点在该椭圆C上,所以.解得a2=4,b2=3.所以椭圆C的方程为;(2)将直线的方程y=x+m,代入椭圆C的方程3x2+4y2=12中,得7x2+8mx+4m2﹣12=0,由直线与椭圆C仅有一个公共点可知,△=64m2﹣28(4m2﹣12)=0,化简得,m2=7.由F1(﹣1,0),F2(1,0),设,,由直线l的斜率为1,可得|d1﹣d2|=|MN|,所以四边形F1MNF2的面积S=|d1﹣d2|(d1+d2)=|d12﹣d22|=•2|m|=|m|=.故四边形F1MNF2的面积为.21.已知函数f(x)=(ax﹣2)e x在x=1处取得极值.(Ⅰ)求a的值;(Ⅱ)求函数f(x)在[m,m+1]上的最小值;(Ⅲ)求证:对任意x1,x2∈[0,2],都有|f(x1)﹣f(x2)|≤e.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(Ⅰ)求导数f′(x),由题意得f′(1)=0,可得a值,代入检验即可;(Ⅱ)当a=1时可求出f(x)的单调区间及极值点,按极值点在区间[m,m+1]的左侧、内部、右侧三种情况进行即可求得其最小值;(Ⅲ)对任意x1,x2∈[0,2],都有|f(x1)﹣f(x2)|≤e,等价于|f(x1)﹣f(x2)|≤f max (x)﹣f min(x)≤e.问题转化为求函数f(x)的最大值、最小值问题,用导数易求;【解答】解:(Ⅰ)f′(x)=ae x+(ax﹣2)e x=(ax+a﹣2)e x,由已知得f′(1)=0,即(2a﹣2)e=0,解得:a=1,验证知,当a=1时,在x=1处函数f(x)=(x﹣2)e x取得极小值,所以a=1;(Ⅱ)f(x)=(x﹣2)e x,f′(x)=e x+(x﹣2)e x=(x﹣1)e x.x (﹣∞,1) 1 (1,+∞)f′(x)﹣0 +f(x)减增所以函数f(x)在(﹣∞,1)上递减,在(1,+∞)上递增.当m≥1时,f(x)在[m,m+1]上单调递增,f min(x)=f(m)=(m﹣2)e m.当0<m<1时,m<1<m+1,f(x)在[m,1]上单调递减,在[1,m+1]上单调递增,f min(x)=f(1)=﹣e.当m≤0时,m+1≤1,f(x)在[m,m+1]单调递减,.综上,f(x)在[m,m+1]上的最小值(Ⅲ)由(Ⅰ)知f(x)=(x﹣2)e x,f′(x)=e x+(x﹣2)e x=(x﹣1)e x.令f′(x)=0得x=1,因为f(0)=﹣2,f(1)=﹣e,f(2)=0,所以f max(x)=0,f min(x)=﹣e,所以,对任意x1,x2∈[0,2],都有|f(x1)﹣f(x2)|≤f max(x)﹣f min(x)=e,[选修4-1:几何证明选讲]22.如图,A,B,C为⊙O上的三个点,AD是∠BAC的平分线,交⊙O于点D,过B作⊙O的切线交AD的延长线于点E.(Ⅰ)证明:BD平分∠EBC;(Ⅱ)证明:AE•DC=AB•BE.【考点】与圆有关的比例线段.【分析】(1)由BE是⊙O的切线,可得∠EBD=∠BAD,又∠CBD=∠CAD,∠BAD=∠CAD,从而可求∠EBD=∠CBD,即可得解.(2)先证明△BDE∽△ABE,可得,又可求∠BCD=∠DBC,BD=CD,从而可得,即可得解.【解答】解:(1)因为BE是⊙O的切线,所以∠EBD=∠BAD…又因为∠CBD=∠CAD,∠BAD=∠CAD…所以∠EBD=∠CBD,即BD平分∠EBC.…(2)由(1)可知∠EBD=∠BAD,且∠BED=∠BED,有△BDE∽△ABE,所以,…又因为∠BCD=∠BAE=∠DBE=∠DBC,所以∠BCD=∠DBC,BD=CD…所以,…所以AE•DC=AB•BE….[选修4-4:坐标系与参数方程]23.在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cosθ﹣2sinθ,直线l的极坐标方程为2aρcosθ+2ρsinθ=1(a为常数).(1)求直线l与圆C的普通方程;(2)若直线l分圆C所得两弧长度之比为1:2,某某数a的值.【考点】简单曲线的极坐标方程.【分析】(1)由ρ2=x2+y2,ρcosθ=x,ρsinθ=y,能求出直线l的普通方程和圆C的普通方程.(2)由直线l分圆C所得两弧长度之比为1:2,得到圆心C(2,﹣1)到直线2ax+2y﹣1=0的距离为半径一半,由此能求出a.【解答】解:(1)∵直线l的极坐标方程为2aρcosθ+2ρsinθ=1(a为常数),∴直线l的普通方程为2ax+2y﹣1=0.∵圆C的极坐标方程为ρ=4cosθ﹣2sinθ,∴ρ2=4ρcosθ﹣2ρsinθ,∴圆C的普通方程为:x2+y2﹣4x+2y=0.(2)∵圆C:x2+y2﹣4x+2y=0的圆心C(2,﹣1),半径r==,直线l分圆C所得两弧长度之比为1:2,∴直线l截圆C所得的弦|AB|所对圆心角为120°,∴圆心C(2,﹣1)到直线2ax+2y﹣1=0的距离为半径一半,即d==,解得a=或a=2.[选修4-5:不等式选讲]24.已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).(1)当m=7时,求函数f(x)的定义域;(2)若关于x的不等式f(x)≥2的解集是R,求m的取值X围.【考点】其他不等式的解法;函数的定义域及其求法.【分析】(1)由题设知:|x+1|+|x﹣2|>7,解此绝对值不等式求得函数f(x)的定义域.(2)由题意可得,不等式即|x+1|+|x﹣2|≥m+4,由于x∈R时,恒有|x+1|+|x﹣2|≥3,故m+4≤3,由此求得m的取值X围.【解答】解:(1)由题设知:|x+1|+|x﹣2|>7,不等式的解集是以下不等式组解集的并集:,或,或,解得函数f(x)的定义域为(﹣∞,﹣3)∪(4,+∞).(2)不等式f(x)≥2即|x+1|+|x﹣2|≥m+4,∵x∈R时,恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,不等式|x+1|+|x﹣2|≥m+4解集是R,∴m+4≤3,m的取值X围是(﹣∞,﹣1].。

2021年安徽省滁州市临淮中学高三数学文测试题含解析

2021年安徽省滁州市临淮中学高三数学文测试题含解析

2021年安徽省滁州市临淮中学高三数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 使得的展开式中含有常数项的最小的是()A.4B.5C.6D.7参考答案:B略2. 已知,则时的值为()A. 2B. 2或3C. 1或3D. 1或2参考答案:D3. 已知函数f (x+1)是奇函数,f (x-1)是偶函数,且f (0)=2,则f (4)=()A. B. C. D.参考答案:A略4. 如果函数在区间上是单调减函数,那么实数的取值范围是()。

A . B.C .D .参考答案:D5. 函数,当时,则此函数的单调递增区间是()A.B.C.D.参考答案:B6. 已知函数,若是y=的零点,且0<t<,则( )A. 恒小于0B. 恒大于0C. 等于0D. 不大于0参考答案:B当时,由得,在同一坐标系中分别作出的图象,由图象可知,当时,,所以此时恒大于0,选B.7. 已知数列{a n}为等差数列,其前n项和为,若,则=()A.1 B.0 C. -1 D.参考答案:C8. 一几何体的三视图如图所示,则该几何体的表面积为()A. B.C. D.参考答案:B略9. 定义运算“”为:两个实数的“”运算原理如图所示,若输人,则输出()A.-2 B.0 C、2 D.4参考答案:A10. 已知,则A.B.C.D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 在区间内随机取两个数分别记为a,b,则使得函数有零点的概率为参考答案:12. 正项等比数列中,若,则等于______. 参考答案:16在等比数列中,,所以由,得,即。

13. 在△ABC 中,角A,B,C所对的边分别为a,b,c,且,则_______;若,则_________.参考答案:,14. 如图,AB是圆O的直径,AD=DE,AB=8,BD=6,则__________参考答案:15. 设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M?D),有x+l∈D,且f(x +l)≥f(x),则称f(x)为M上的l高调函数.如果定义域为-1,+∞)的函数f(x)=x2为-1,+∞)上的m高调函数,那么实数m的取值范围是________.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是________.参考答案:2,+∞),-1,116. 函数的部分图像如图所示,则.参考答案:617. 函数f (x )=cosx ,对任意的实数t ,记f (x )在[t ,t+1]上的最大值为M (t ),最小值为m(t ),则函数h (t )=M (t )﹣m (t )的值域为.参考答案:【考点】余弦函数的图象.【分析】求出周期,画出f (x )的图象,讨论(1)当4n ﹣1≤t≤4n,(2)当4n <t<4n+1,(3)当4n+1≤t≤4n+2,(4)当4n+2<t <4n+3,分别求出最大值和最小值,再求h (t )的值域,最后求并集即可得到.【解答】解:解:函数f (x )=cosx 的周期为T==4,(1)当4n ﹣1≤t≤4n,n∈Z,区间[t ,t+1]为增区间,则有m (t )=cos ,M (t )=cos=sin,(2)当4n <t <4n+1,n∈Z,①若4n <t≤4n+, 则M (t )=1,m (t )=sin,②若4n+<t <4n+1,则M (t )=1,m (t )=sin,(3)当4n+1≤t≤4n+2,则区间[t ,t+1]为减区间,则有M (t )=cos ,m (t )=sin;(4)当4n+2<t <4n+3,则m (t )=﹣1,①当4n+2<t≤4n+时,M (t )=cos ,②当4n+<t <4n+3时,M (t )=sin;则有h (t )=M (t )﹣m (t )=当4n ﹣1≤t≤4n,h (t )的值域为[1,], 当4n <t≤4n+,h (t )的值域为[1﹣,1),当4n+<t <4n+1,h (t )的值域为(1﹣,1), 当4n+1≤t≤4n+2,h (t )的值域为[1,],当4n+2<t≤4n+时,h (t )的值域为[1﹣,1), 当4n+<t <4n+3时,h (t )的值域为[1﹣,1). 综上,h (t )=M (t )﹣m (t )的值域为.故答案是:.【点评】本题考查三角函数的性质和运用,考查函数的周期性和单调性及运用,考查运算能力,有一定的难度.三、 解答题:本大题共5小题,共72分。

吉林省长春市2020届高三质量检测(一)文科数学试题 Word版含解析

吉林省长春市2020届高三质量检测(一)文科数学试题 Word版含解析

长春市2020届高三质量监测(一)文科数学本试卷共4页.考试结束后,将答题卡交回. 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀. 一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数2z i +=-,则它的共轭复数z 在复平面内对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】C 【解析】试题分析:复数2z i =-+的共轭复数为2z i =--,在复平面内对应点的坐标为,所以位于第三象限.选C 考点:复数的概念及运算2.已知集合{2A x x =≥或}2x ≤-,{}230B x x x =->,则AB =( )A. ∅B. {3x x >或}2x ≤-C. {3x x >或}0x < D. {3x x >或}1x <【答案】B 【解析】 【分析】可以求出集合B ,然后进行交集的运算即可.【详解】解:{}230B x x x =->{|0B x x ∴=<或3}x >,{2A x x =≥或}2x ≤-,{|2AB x x ∴=-或3}x >.故选:B .【点睛】考查描述法的定义,绝对值不等式和一元二次不等式的解法,以及交集的运算,属于基础题.3.已知等差数列{}n a 的前n 项和为n S , 515S =,45a = ,则9S =( ) A. 45 B. 63C. 54D. 81【答案】B 【解析】 【分析】根据给出条件求出3a ,利用3a ,4a ,5a 成等差数列计算5a ,再根据前n 项和性质计算9S 的值.【详解】由515S =得33a =,45a =,∴57a = ∴95963S a == 故选B.【点睛】等差数列性质:2(2)m n p q c a a a a a m n p q c +=+=+=+=; 等差数列前n 项和性质:12121()(21)(21)2n n n a a n S n a --+-==-.4.已知条件:1p x >,条件:2q x ≥,则p 是q 的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】B 【解析】 【分析】利用集合间的关系推出p q 、之间的关系.【详解】{|1}x x>{|2}x x ≥,则p 是q 的必要不充分条件,故选B.【点睛】p 成立的对象构成的集合为A ,q 成立的对象构成的集合为B :p 是q 的充分不必要条件则有:A B ;p 是q 的必要不充分条件则有:BA .5.2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1到 6 作为自变量进行回归分析),得到回归直线ˆ13.7433095.7yx =+,其相关指数2R 0.9817=,给出下列结论,其中正确的个数是( )①公共图书馆业机构数与年份正相关性较强 ②公共图书馆业机构数平均每年增加13.743个 ③可预测 2019 年公共图书馆业机构数约为3192个 A. 0 B. 1C. 2D. 3【答案】D 【解析】 【分析】根据ˆb和2R 确定是正相关还是负相关以及相关性的强弱;根据ˆb 的值判断平均每年增加量;根据回归直线方程预测2019年公共图书馆业机构数.【详解】由图知点散布在从左下角到右上角的区域内,所以为正相关,又2R 0.9817=趋近于1,所以相关性较强,故①正确;由回归方程知②正确; 由回归方程,当7x =时,得估计值为3191.9≈3192,故③正确. 故选D.【点睛】回归直线方程中的ˆb 的大小和正负分别决定了单位增加量以及相关型的正负;相关系数2R 决定了相关性的强弱,越接近1相关性越强.6.已知直线0x y +=与圆22(1)()2x y b -+-=相切,则b =( )A. 3-B. 1C. 3-或1D.52【答案】C 【解析】 【分析】根据直线与圆相切,则圆心到直线的距离等于半径来求解.=∴|1|2b +=∴13b b ==-或 故选C.【点睛】本题考查直线与圆的位置关系中的相切,难度较易;注意相切时,圆心到直线的距离等于半径.7.已知31()3a =,133b =,13log 3c =,则( )A. a b c <<B. c b a <<C. c a b <<D. b c a <<【答案】C 【解析】 【分析】分析每个数的正负以及与中间值1的大小关系.【详解】因为311()()133a <<=,103331>=,1133log 3log 10<=,所以01,1,0a b c <<><,∴c a b <<,【点睛】指数、对数、幂的式子的大小比较,首先确定数的正负,其次确定数的大小(很多情况下都会和1作比较),在比较的过程中注意各函数单调性的使用. 8.已知,,a b c 为直线,,,αβγ平面,则下列说法正确的是( ) ①,a b αα⊥⊥,则//a b ②,αγβγ⊥⊥,则αβ⊥ ③//,//a b αα,则//a b ④//,//αγβγ,则//αβ A. ①②③ B. ②③④C. ①③D. ①④【答案】D 【解析】 【分析】①可根据线面垂直的性质定理判断;②③④可借助正方体进行判断.【详解】①由线面垂直的性质定理可知垂直同一平面的两条直线互相平行,故正确;②选取正方体的上下底面为αβ、以及一个侧面为γ,则//αβ,故错误;③选取正方体的上底面的对角线为a b 、,下底面为α,则//a b 不成立,故错误;④选取上下底面为αβ、,任意作一个平面平行上底面为γ,则有 //αβ成立,故正确.所以说法正确的有:①④. 故选D.【点睛】对于用符号语言描述的问题,最好能通过一个具体模型或者是能够画出相应的示意图,这样在判断的时候能更加直观. 9.函数2sin()y x ωϕ=+(0,||)2πωϕ><的图象(部分图象如图所示) ,则其解析式为( )A. ()2sin(2)6f x x π=+ B. ()2sin()6f x x π=+C. ()2sin(4)6f x x π=+D. ()2sin()6f x x π=-【答案】A【分析】(1)通过(0,1)以及ϕ的范围先确定ϕ的取值,再根据()f x 过点11(,0)12π计算ω的取值. 【详解】由2sin(0)1,||2πωϕϕϕ⋅+=<π,∴=6, 由111111242sin()0,,,002121261211k k Z T πωπϕωππωπωω⋅+=⋅+=∈>>∴<<=∴即2sin(2)6y x π=+,即为()f x 解析式.【点睛】根据三角函数的图象求解函数解析式时需要注意:(1)根据周期求解ω的值;(2)根据图象所过的特殊点求解ϕ的值;(3)根据图象的最值,确定A 的值.10.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为51-时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A. (35)π-B. 51)πC. 51)πD.(52)π【答案】A 【解析】 【分析】根据扇形与圆面积公式,可知面积比即为圆心角之比,再根据圆心角和的关系,求解出扇形的圆心角.【详解】1S 与2S 所在扇形圆心角的比即为它们的面积比, 设1S 与2S 所在扇形圆心角分别为,αβ,则αβ=,又2αβπ+=,解得(3απ=- 【点睛】本题考查圆与扇形的面积计算,难度较易.扇形的面积公式:21122S r lr α==,其中α是扇形圆心角的弧度数,l 是扇形的弧长.11.已知F 是抛物线24y x =的焦点,则过F 作倾斜角为60︒的直线分别交抛物线于,A B (A 在x 轴上方)两点,则||||AF BF 的值为( )B. 2C. 3D. 4【答案】C 【解析】 【分析】根据抛物线的焦半径的倾斜角和焦准距的表示形式将||||AF BF 表示出来,然后代入相应值计算即可.【详解】||1cos60p AF =-︒,||1cos60pBF =+︒∴||10.53||10.5AF BF +==-. 【点睛】焦点在x 轴上的抛物线,过抛物线的焦点倾斜角为θ的直线与抛物线交于,A B 两点,且||||AF BF >,则有||1cos p AF θ=-,||1cos p BF θ=+,22||sin pAB θ=. 12.已知函数1(0)()(0)xe xf x x -⎧-≤⎪=>,若存在0x R ∈ 使得00()(1)1f x m x --≤成立,则实数m 的取值范围为( ) A. (0,)+∞B. [1,0)(0,)-+∞ C. (,1][1,)-∞-+∞D.(,-∞-∞1](0,+)【答案】D 【解析】 【分析】数形结合去分析,先画出()f x 的图象,然后根据直线过(1,1)-将直线旋转,然后求解满足条件的m 取值范围.【详解】如图, 直线0(1)1y m x =--过定点(1,1)P -,m 为其斜率,0m >满足题意,当0m <时,考虑直线与函数1xy e -=-相切,此时000(1)11x x m x e m e --⎧--=-⎨=-⎩,解得010m x =-⎧⎨=⎩,此时直线与1x y e -=-的切点为(0,0),∴1m ≤-也满足题意.选D【点睛】分段函数中的存在和恒成立问题,利用数形结合的思想去看问题会更加简便,尤其是直线与曲线的位置关系,这里需要注意:(1)直线过定点;(2)临界位置的切线问题. 二、填空题:本题共4小题. 13.已知1sincos225αα-=,则sin α=_____. 【答案】2425【解析】 【分析】将所给式子平方,找到sin α与sin cos22αα-的关系.【详解】1sincos225αα-=平方得242sin cos 2225αα= ∴24sin 25α=.【点睛】sin cos αα±与sin cos αα的关系:2(sin cos )12sin cos αααα±=±;14.设变量x ,y 满足约束条件03420x y x y x -≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =-的最小值等于______.【答案】8- 【解析】 【分析】作出不等式组对应的平面区域,3z x y =-得1133y x z =-,利用数形结合即可的得到结论. 【详解】解:画出可行域如图,3z x y =-变形为1133y x z =-,过点(2,2)A --,z 取得最大值4, 过点(2,2)C -取得最小值8-. 故答案为:8-.【点睛】本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键. 15.三棱锥P ABC -中,PA ⊥平面ABC ,AB AC ⊥,10PA =2,2AB AC ==,则三棱锥P ABC -的外接球的表面积为_____. 【答案】16π 【解析】 【分析】根据题设位置关系,可知以,,AB AC PA 为长、宽、高的长方体的外接球就是三棱锥P ABC -的外接球,根据这一特点进行计算.【详解】设外接球的半径为R ,则2222(2)16R PA AB AC =++= ∴16S π=【点睛】对于求解多条侧棱互相垂直的几何体的外接球,可考虑将该几何体放入正方体或者长方体内,这样更加方便计算出几何体外接球的半径. 16.已知△ABC 的内角,,A B C 的对边分别为,,a b c ,若(,)m b c a b =--,(sin ,sin sin )n C A B =+,且m n ⊥,则A =____;若△ABC 的面积为3ABC 的周长的最小值为_____.【答案】 (1). 3π(2). 6 【解析】【分析】先根据向量垂直得出边角关系,然后利用正、余弦定理求解A的值;根据面积以及在余弦定理,利用基本不等式,从而得到周长的最小值(注意取等号条件).【详解】由m n ⊥得(,)(sin ,sin sin )()sin ()(sin sin )0m n b c a b C A B b c C a b A B ⋅=--⋅+=-+-+=()()()0b c c a b a b -+-+=得222a b c bc =+-,∴2221cos 22b c a A bc +-==∴3A π=;1sin 2S bc A ==4bc =又222224a b c bc b c =+-=+-所以6a b c b c ++=+(当且仅当2b c ==时等号成立) 【点睛】(1)1122(,),(,)a x y bx y ==,若a b ⊥垂直,则有:12120x x y y +=;(2)222(0,0)a b ab a b +≥>>取等号的条件是:a b =.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22-23题为选考题,考生根据要求作答. (一)必考题:17.已知数列{}n a 中,12a =,1122n n n a a ++=+,设2nn na b =. (Ⅰ)求证:数列{}n b 是等差数列; (Ⅱ)求数列11{}n n b b +的前n 项和n S . 【答案】(Ⅰ)见证明;(Ⅱ)111n S n =-+ 【解析】 【分析】(1)证明1n n b b c --=(c 为常数)即可;(2)将11n n b b +采用裂项的方式先拆开,然后利用裂项相消的求和方法求解n S .【详解】(Ⅰ)证明:当2n ≥时,111121222n n n n n n n n n a a a a b b ------=-== 11b =,所以{}n b 是以为1首项,为1公差的等差数列.(Ⅱ)由(Ⅰ)可知,n b n =,所以+11111n n b b n n =-+,所以1111111122311n S n n n =-+-++-=-++. 【点睛】常见的裂项相消形式: (1)111(1)1n n n n =-++;(2=(3)1111()(21)(21)22121n n n n =--+-+; (4)112311(31)(31)3131n n n n n ++=-----. 18.环保部门要对所有的新车模型进行广泛测试,以确定它的行车里程的等级,下表是对100辆新车模型在一个耗油单位内行车里程(单位:公里)的测试结果.(1)做出上述测试结果的频率分布直方图,并指出其中位数落在哪一组;(2)用分层抽样的方法从行车里程在区间[)38,40与[)40,42的新车模型中任取5辆,并从这5辆中随机抽取2辆,求其中恰有一个新车模型行车里程在[)40,42内的概率. 【答案】(1)图见解析;中位数在区间[)36,38 (2)35【解析】 【分析】(1)由频率分布表可画出频率分布直方图,由图可求出中位数所在区间.(2)由题意,设从[38,40)中选取的车辆为A ,B ,C ,从[40,42)中选取的车辆为a ,b ,利用列举法从这5辆车中抽取2辆,其中恰有一个新车模型行车里程在[40,42)内的概率. 【详解】(1)由题意可画出频率分布直方图如图所示:由图可知,中位数在区间[)36,38.(2)由题意,设从[)38,40中选取的车辆为A ,B ,C , 从[)40,42中选取的车辆为a ,b ,则从这5辆车中抽取2辆的所有情况有10种,分别为AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,ab ,其中符合条件的有6种,Aa ,Ab ,Ba ,Bb ,Ca ,Cb ,所以所求事件的概率为35. 【点睛】本题考查概率与统计的相关知识,考查频率分布直方图、古典概型、列举法等基础知识,考查运算求解能力,属于基础题.19.在三棱柱111ABC A B C -中,平面ABC 、平面1ACC A 、平面11BCC B 两两垂直.(Ⅰ)求证:1,,CA CB CC 两两垂直;(Ⅱ)若1CA CB CC a ===,求三棱锥11B A BC -的体积. 【答案】(Ⅰ)见证明;(Ⅱ)316a 【解析】 【分析】(1)通过辅助线以及根据面面垂直的性质定理可证1,,CA CB CC 中任意一条直线垂直于另外两条直线构成的平面,即垂直于另外两条直线;(2)采用替换顶点的方式计算体积,计算出高和底面积即可计算体积. 【详解】(Ⅰ)证明:在ABC ∆内取一点P ,作,PD AC PE BC ⊥⊥,因为平面ABC ⊥平面11ACC A ,其交线为AC ,所以PD ⊥平面11ACC A ,1PD CC ⊥, 同理1PE CC ⊥,所以1CC ⊥平面ABC ,11,CC AC CC BC ⊥⊥, 同理AC BC ⊥,故1,,CC AC BC 两两垂直.(Ⅱ)由(Ⅰ)可知,三棱锥11A BCB -的高为11A C a =,1211122BCB S BC BB a ∆=⋅=,所以三棱锥11B A BC -的体积为316a . 【点睛】(1)面面垂直的性质定理:两个平面垂直,一个平面内垂直于交线的直线与另一个平面垂直;(2)计算棱锥的体积时,有时候可考虑采用替换顶点的方式去简化计算.a 20.已知点(1,0),(1,0)M N -,若点(,)P x y 满足||||4PM PN +=. (Ⅰ)求点P 的轨迹方程;(Ⅱ)过点(Q 的直线l 与(Ⅰ)中曲线相交于,A B 两点,O 为坐标原点, 求△AOB 面积的最大值及此时直线l 的方程.【答案】(Ⅰ)22143x y +=;(Ⅱ)AOB ∆面积的最大值为,此时直线l 的方程为3x y =±. 【解析】 【分析】(1)根据椭圆的定义求解轨迹方程;(2)设出直线方程后,采用1||2AB d ⨯⨯(d 表示原点到直线AB 的距离)表示面积,最后利用基本不等式求解最值.【详解】解:(Ⅰ)由定义法可得,P 点的轨迹为椭圆且24a =,1c =.因此椭圆的方程为22143x y +=.(Ⅱ)设直线l的方程为x ty =-与椭圆22143x y +=交于点11(,)A x y ,22(,)B x y ,联立直线与椭圆的方程消去x可得22(34)30t y +--=,即12234y y t +=+,122334y y t -=+. AOB ∆面积可表示为1211||||22AOB S OQ y y =⋅-=△2216223434t t ===++u =,则1u ≥,上式可化为26633u u u u=++≤当且仅当u=t = 因此AOB ∆l的方程为x y =-【点睛】常见的利用定义法求解曲线的轨迹方程问题:(1)已知点(,0),(,0)M c N c -,若点(,)P x y 满足||||2PM PN a +=且22a c >,则P 的轨迹是椭圆;(2)已知点(,0),(,0)M c N c -,若点(,)P x y 满足||||||2PM PN a -=且22a c <,则P 的轨迹是双曲线. 21.设函数1()ln x f x x x+=+. (Ⅰ)求函数()f x 的极值;(Ⅱ)若(0,1)x ∈时,不等式1ln 2(1)xx a x +<--恒成立,求实数a 的取值范围.【答案】(Ⅰ)()2f x =极小值,无极大值;(Ⅱ)01a <≤ 【解析】 【分析】(1)求导后,求解导函数零点,并用列表法分析极值;(2)对所给不等式进行变形,将ln x 分离出来便于求导,同时构造新函数2(1)()ln (01)1a x g x x x x -=-<<+,分析(0,1)x ∈时,()0>g x 恒成立时a 的范围.【详解】解:(Ⅰ)令21()0x f x x-'==,1x =()= (1)2f x f ∴=极小值,无极大值;(II )由题意可知,0a >,则原不等式等价于2(1)ln 01a x x x -->+,令2(1)()ln (01)1a x g x x x x -=-<<+,22((24)1)()(1)x a x g x x x -+-+'=+,①当01a <≤时,2(24)10x a x +-+≥,()0g x '≤,()g x 在(0,1)上单调递减,()(1)0g x g >=,成立;②当1a >时,2000(0,1),(24)10x x a x ∃∈+-+=,使得当0(0,)x x ∈时,()0g x '<,()g x 单调递减,当0(,1)x x ∈时,()0g x '>,()g x 单调递增,故当0(,1)x x ∈时,()(1)0g x g <=,不成立;综上所述,01a <≤.【点睛】根据不等式恒成立求解参数范围的问题常用的方法:(1)分类讨论法(所给不等式进行适当变形,利用参数的临界值进行分析); (2)参变分离法(构造新的函数,将函数的取值与参数结合在一起).(二)选考题:请考生在22、23题中任选一题作答,如果多做则按所做的第一题计分.22.在平面直角坐标系xOy 中,直线l的参数方程为12x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为24cos 3ρρθ-=. (Ⅰ)求直线l 的普通方程和圆C 的直角坐标方程;(Ⅱ)直线l 与圆C 交于,A B 两点,点(1,2)P ,求||||PA PB ⋅的值.【答案】(Ⅰ)直线l 的普通方程为30x y +-=,圆C 的直角坐标方程为22430x y x +--=.(Ⅱ)2 【解析】 【分析】(1)求直线l 的普通方程,消去参数t 即可;求圆的直角坐标方程利用cos sin x y ρθρθ=⎧⎨=⎩互化即可.(2)根据直线所过定点,利用直线参数方程中t 的几何意义求解||||PA PB ⋅的值. 【详解】解:(Ⅰ)直线l 的普通方程为30x y +-=, 圆C 的直角坐标方程为22430x y x +--=. (Ⅱ)联立直线l 的参数方程与圆C的直角坐标方程可得22(1)(2)4(1)30++---=,化简可得220t +-=. 则12||||||2PA PB t t ⋅==.【点睛】(1)直角坐标和极坐标互化公式:cos sin x y ρθρθ=⎧⎨=⎩;(2)直线过定点P ,与圆锥曲线的交点为A B 、,利用直线参数方程中t 的几何意义求解:||||||AB PA PB 、,则有12||||AB t t =-,12||||||PA PB t t =.23.已知函数()|3||1|f x x x =+-- . (Ⅰ)解关于x 的不等式()1f x x +≥ ;(Ⅱ)若函数()f x 的最大值为M ,设0,0a b >>,且(1)(1)a b M ++=,求+a b 的最小值. 【答案】(Ⅰ)(,5][1,3]-∞--;(Ⅱ)最小值为2 【解析】 【分析】(1)采用零点分段的方法解不等式;(2)计算出()f x 的最大值,再利用基本不等式求解+a b 的最小值.【详解】(Ⅰ)由题意(3)(1),34,3()(3)(1),3122,31(3)(1),14,1x x x x f x x x x x x x x x x ----<--<-⎧⎧⎪⎪=+---≤≤=+-≤≤⎨⎨⎪⎪+-->>⎩⎩当3x <-时,41x -+≥,可得5x ≤-,即5x ≤-.当31x -≤≤时,221x x ++≥,可得1x ≥-,即11x -≤≤. 当1x >时,41x +≥,可得3x ≤,即13x <≤. 综上,不等式()1f x x +≥的解集为(,5][1,3]-∞--.(Ⅱ)由(Ⅰ)可得函数()f x 的最大值4M =,且14ab a b +++=, 即23()()2a b a b ab +-+=≤,当且仅当a b =时“=”成立, 可得2(2)16a b ++≥,即2a b +≥,因此+a b 的最小值为2.【点睛】(1)解绝对值不等式,最常用的方法就是零点分段:考虑每个绝对值等于零时x 的值,再逐段分析;(2)注意利用||||||x a x b a b -+-≥-,||||||x a x b a b ---≤-求解最值.。

北京市东城区2024届高三下学期综合练习(一)(一模)数学试题(含答案与解析)_4942

北京市东城区2024届高三下学期综合练习(一)(一模)数学试题(含答案与解析)_4942

北京市东城区2023~2024学年度第二学期高三综合练习(一)数学本试卷共6页,150分.考试时长120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 如图所示,U 是全集,,A B 是U 的子集,则阴影部分所表示的集合是( )A. A B ⋂B. A B ⋃C. ()U A B ⋂ðD. ()U A B ⋃ð2. 已知,R,0a b ab ∈≠,且a b <,则( ) A.11a b> B. 2ab b < C. 33a b <D. lg lg a b <3. 已知双曲线221x my -=的离心率为2,则m =( ) A 3B.13C. 3-D. 13-4. 设函数()11ln f x x=+,则( ) A. ()12f x f x ⎛⎫+=⎪⎝⎭ B. ()12f x f x ⎛⎫-=⎪⎝⎭C. ()12f x f x ⎛⎫= ⎪⎝⎭D. ()12f x f x ⎛⎫= ⎪⎝⎭.5. 已知函数()sin cos (0,0)f x t x x t ωωω=+>>的最小正周期为π,则函数()f x 的图象( )A. 关于直线π4x =-对称B. 关于点π,04⎛⎫-⎪⎝⎭对称 C. 关于直线π8x =对称 D. 关于点π,08⎛⎫⎪⎝⎭对称 6. 已知443243210()x m a x a x a x a x a +=++++,若0123481++++=a a a a a ,则m 的取值可以为( ) A. 2B. 1C. 1-D. 2-7. 《天工开物》是我国明代科学家宋应星所著的一部综合性科学技术著作,书中记载了一种制造瓦片的方法.某校高一年级计划实践这种方法,为同学们准备了制瓦用的粘土和圆柱形的木质圆桶,圆桶底面外圆的直径为20cm ,高为20cm .首先,在圆桶的外侧面均匀包上一层厚度为2cm 的粘土,然后,沿圆桶母线方向将粘土层分割成四等份(如图),等粘土干后,即可得到大小相同的四片瓦.每位同学制作四片瓦,全年级共500人,需要准备的粘土量(不计损耗)与下列哪个数字最接近.(参考数据:π 3.14≈)( )A 30.8mB. 31.4mC. 31.8mD. 32.2m8. 设等差数列{}n a 公差为d ,则“10a d <<”是“{}na n为递增数列”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件D. 既不充分也不必要条件9. 如图1,正三角形ABD 与以BD 为直径的半圆拼在一起,C 是弧BD的中点,O 为ABD △的中心.现将ABD △沿BD 翻折为1A BD ,记1A BD 的中心为1O ,如图2.设直线1CO 与平面BCD所成的角为.的θ,则sin θ的最大值为( )A.13B.12C.D.10. 已知()f x 是定义在R 上的函数,其图象是一条连续不断的曲线,设函数()()()()a f x f a g x a x a-=∈-R ,下列说法正确的是()A. 若()f x 在R 上单调递增,则存在实数a ,使得()a g x 在(),a ∞+上单调递增B. 对于任意实数a ,若()a g x 在(),a ∞+上单调递增,则()f x 在R 上单调递增C. 对于任意实数a ,若存在实数10M >,使得()1f x M <,则存在实数20M >,使得()2a g x M <D. 若函数()a g x 满足:当(),x a ∞∈+时,()0a g x ≥,当(),x a ∞∈-时,()0a g x ≤,则()f a 为()f x 的最小值第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11. 若复数1i iz +=,则z =_________.12. 设向量()()1,,3,4a m b ==- ,且a b a b ⋅=,则m =______. 13. 已知角,αβ的终边关于直线y x =对称,且()1sin 2αβ-=,则,αβ的一组取值可以是α=______,β=______.14. 已知抛物线21:4C y x =的焦点为1F ,则1F 的坐标为______;抛物线22:8C y x =的焦点为2F ,若直线()0y m m =≠分别与12,C C 交于,P Q 两点;且121PF QF -=,则PQ =______.15. 已知数列{}n a 的各项均为正数,满足21n n n a ca a +=+,其中常数c ∈R .给出下列四个判断:①若11,0a c =<,则()121n a n n <≥+; ②若1c =-,则()121n a n n <≥+; ③若()1,2n c a n n =>≥,则11a >; ④11a =,存实数c ,使得()2n a n n >≥. 其中所有正确判断的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16. 在ABC中,cos cos cos a C c A B +=. (1)求B ∠;(2)若12,a D =为BC 边的中点,且3AD =,求b 的值.17. 某中学为了解本校高二年级学生阅读水平现状,从该年级学生中随机抽取100人进行一般现代文阅读速度的测试,以每位学生平均每分钟阅读的字数作为该学生的阅读速度,将测试结果整理得到如下频率分布直方图:(1)若该校高二年级有1500人,试估计阅读速度达到620字/分钟及以上的人数;(2)用频率估计概率,从该校高二学生中随机抽取3人,设这3人中阅读速度达到540字/分钟及以上的人数为X ,求X 的分布列与数学期望()E X ;(3)若某班有10名学生参加测试,他们的阅读速度如下:506,516,553,592,617,632,667,693,723,776,从这10名学生中随机抽取3人,设这3人中阅读速度达到540字/分钟及以上的人数为Y ,试在判断数学期望()E Y 与(2)中的()E X 的大小.(结论不要求证明) 18. 如图,在五面体ABCDEF 中,底面ABCD 为正方形,4,1AB EF ==.(1)求证://AB EF ;(2)若H 为CD 的中点,M 为BH的中点,,EM BH EM ⊥=,再从条件①、条件②这两个条件中选择一个作为已知,求直线CF 与平面ADE 所成角的正弦值. 条件①:ED EA =; 条件②:5AE =.注:如果选择条件①和条件②分别解答,按第一个解答计分 19. 已知函数()()ln 1f x x x =-.(1)求曲线()y f x =在2x =处的切线方程; (2)设()()g x f x '=,求函数()g x 的最小值;(3)若()2f x x a>-,求实数a 的值. 20. 已知椭圆2222:1(0)x y C a b a b +=>>短轴长为e =(1)求椭圆C 的方程;(2)设O 为坐标原点,直线l 是圆221x y +=的一条切线,且直线l 与椭圆C 交于,M N 两点,若平行四边形OMPN 的顶点P 恰好在椭圆C 上,求平行四边形OMPN 的面积.21. 有穷数列12,,,(2)n a a a n > 中,令()()*1,1,,p p q S p q a a a p q n p q +=+++≤≤≤∈N ,(1)已知数列3213,,,--,写出所有的有序数对(),p q ,且p q <,使得(),0S p q >;(2)已知整数列12,,,,n a a a n 为偶数,若(),11,2,,2n S i n i i ⎛⎫-+= ⎪⎝⎭,满足:当i 为奇数时,的(),10S i n i -+>;当i 为偶数时,(),10S i n i -+<.求12n a a a +++ 的最小值;(3)已知数列12,,,n a a a 满足()1,0S n >,定义集合(){}1,0,1,2,,1A i S i n i n =+>=- .若{}()*12,,,k A i i i k =∈N 且为非空集合,求证:()121,k i i i S n a a a >+++ .参考答案一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 如图所示,U 是全集,,A B 是U 的子集,则阴影部分所表示的集合是( )A. A B ⋂B. A B ⋃C. ()U A B ⋂ðD. ()U A B ⋃ð【答案】D 【解析】【分析】由给定的韦恩图分析出阴影部分所表示的集合中元素满足的条件,再根据集合运算的定义即可得解.【详解】由韦恩图可知阴影部分所表示的集合是()U A B ð. 故选:D.2. 已知,R,0a b ab ∈≠,且a b <,则( ) A.11a b> B. 2ab b < C. 33a b <D. lg lg a b <【答案】C 【解析】【分析】举出反例即可判断ABD ,利用作差法即可判断C. 【详解】当2,1a b =-=时,11,lg >lg a b a b<,故AD 错误; 当2,1a b =-=-时,221ab b =>=,故B 错误;对于C ,因a b <,所以0a b -<,因为0ab ≠,所以0a ≠且0b ≠,为则()()()3322213024a b a b a ab ba b a b b ⎡⎤⎛⎫-=-++=-++< ⎪⎢⎥⎝⎭⎣⎦, 所以33a b <,故C 正确. 故选:C.3. 已知双曲线221x my -=的离心率为2,则m =( ) A. 3 B.13C. 3-D. 13-【答案】B 【解析】【详解】由双曲线221x my -=可得:2211,a b m==,2c e a ====,所以13m =,故选:B . 4. 设函数()11ln f x x=+,则( ) A. ()12f x f x ⎛⎫+=⎪⎝⎭ B. ()12f x f x ⎛⎫-=⎪⎝⎭ C. ()12f x f x ⎛⎫= ⎪⎝⎭D. ()12f x f x ⎛⎫=⎪⎝⎭【答案】A 【解析】【分析】根据函数解析式,分别计算即可得解.【详解】函数()11ln f x x=+的定义域为()()0,11,+∞ , 对于A ,()1111111221ln ln ln lnf x f x x x x x⎛⎫+=+++=++= ⎪-⎝⎭,故A 正确; 对于B ,()111112111ln ln ln ln lnf x f x x x x x x⎛⎫-=+--=--=⎪-⎝⎭,故B 错误; 对于CD ,当e x =时,()11112,1011f x f x ⎛⎫=+==+= ⎪-⎝⎭,故CD 错误. 故选:A.5. 已知函数()sin cos (0,0)f x t x x t ωωω=+>>的最小正周期为π,则函数()f x 的图象( )A. 关于直线π4x =-对称B. 关于点π,04⎛⎫-⎪⎝⎭对称 C. 关于直线π8x =对称 D. 关于点π,08⎛⎫⎪⎝⎭对称 【答案】C 【解析】【分析】先利用辅助角公式化一,再根据周期性求出ω,根据最值求出t ,再根据正弦函数的对称性逐一判断即可.【详解】()()sin cos f x t x x x ωωωϕ=+=+,其中1tan tϕ=,因为函数的最小正周期为π, 所以2ππω=,解得2ω=,,=1t =(1t =-舍去),所以()πsin 2cos 224x x x f x ⎛⎫=+=+ ⎪⎝⎭,因为ππ144f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭, 所以函数图象不关于直线π4x =-对称,也不关于点π,04⎛⎫- ⎪⎝⎭对称,故AB 错误;因为ππ82f ⎛⎫== ⎪⎝⎭,所以函数图象关于直线π8x =对称,不关于点π,08⎛⎫⎪⎝⎭对称,故C 正确,D 错误.故选:C .6. 已知443243210()x m a x a x a x a x a +=++++,若0123481++++=a a a a a ,则m 取值可以为( ) A. 2 B. 1 C. 1- D. 2-【答案】A 【解析】【分析】借助赋值法计算即可得.【详解】令1x =,有()443210118m a a a a a ++++==+, 即2m =或4m =-. 故选:A.7. 《天工开物》是我国明代科学家宋应星所著的一部综合性科学技术著作,书中记载了一种制造瓦片的方法.某校高一年级计划实践这种方法,为同学们准备了制瓦用的粘土和圆柱形的木质圆桶,圆桶底面外圆的直径为20cm ,高为20cm .首先,在圆桶的外侧面均匀包上一层厚度为2cm 的粘土,然后,沿圆桶母线方向将粘土层分割成四等份(如图),等粘土干后,即可得到大小相同的四片瓦.每位同学制作四片瓦,全年级共500人,需要准备的粘土量(不计损耗)与下列哪个数字最接近.(参考数据:π 3.14≈)( )A. 30.8mB. 31.4mC. 31.8mD. 32.2m【答案】B 【解析】【分析】结合圆柱体积公式求出四片瓦体积,再求需准备的粘土量.【详解】由条件可得四片瓦的体积22π1220π1020880πV =⨯⨯-⨯⨯=(3cm ) 所以500名学生,每人制作4片瓦共需粘土的体积为500880π440000π⨯=(3cm ), 又π 3.14≈,的的所以共需粘土的体积为约为31.3816m , 故选:B.8. 设等差数列{}n a 的公差为d ,则“10a d <<”是“{}na n为递增数列”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】利用等差数列通项公式求出na n,再利用单调数列的定义,结合充分条件、必要条件的意义判断即得.【详解】由等差数列{}n a 的公差为d ,得1n a a d nd =-+,则1n a a d d n n-=+, 当10a d <<时,10a d -<,而111n n >+,则111a d a d n n --<+,因此11n n a a n n +<+,{}n a n为递增数列;当{}n a n为递增数列时,则11n n a a n n +<+,即有111a d a dn n --<+,整理得1a d <,不能推出10a d <<,所以“10a d <<”是“{}n an为递增数列”的充分不必要条件.故选:A9. 如图1,正三角形ABD 与以BD 为直径的半圆拼在一起,C 是弧BD的中点,O 为ABD △的中心.现将ABD △沿BD 翻折为1A BD ,记1A BD 的中心为1O ,如图2.设直线1CO 与平面BCD 所成的角为θ,则sin θ的最大值为( )A.13B.12C.D.【答案】C 【解析】【分析】结合题意,可得1EO EC =1CO 在平面BCD 的投影为直线CE,借助正弦定理计算可得tan θ=tan θ的最大值即可得sin θ的最大值.【详解】取BD 中点E ,连接CE ,1A E ,由三角形ABD 为正三角形,故1O 在线段1A E 上,且1113EO A E BD ===,即1EO EC =, 由题意可得BD EC ⊥,1BD A E ⊥,1A E 、EC ⊂平面1ECO ,1A E EC E = , 故BD ⊥平面1ECO ,又1CO ⊂平面1ECO ,故直线1CO 在平面BCD 的投影为直线CE , 即1ECO θ=∠,则有()111sin sin sin sin πEO EC CO E O EC θθθ===∠--∠,整理可得tan θ=()10,πO EC ∠∈,令()()0,πf x x =∈,()f x ==',故当cos x ⎛∈- ⎝时,()0fx '<,当cos x ⎫∈⎪⎪⎭时,()0f x '>,令()00,πx ∈,且0cos x =,则0sin x ==, 则()f x 在()00,x 上单调递增,在()0,πx 上单调递减,即()f x 有最大值()0f x ===即tan θ,则sin θ=故选:C.【点睛】关键点点睛:本题关键点在于借助正弦定理表示出θ与1O EC ∠的关系,通过导数计算出tan θ的最大值从而得到sin θ的最大值.10. 已知()f x 是定义在R 上的函数,其图象是一条连续不断的曲线,设函数()()()()a f x f a g x a x a-=∈-R ,下列说法正确的是()A. 若()f x 在R 上单调递增,则存在实数a ,使得()a g x 在(),a ∞+上单调递增B. 对于任意实数a ,若()a g x 在(),a ∞+上单调递增,则()f x 在R 上单调递增C. 对于任意实数a ,若存在实数10M >,使得()1f x M <,则存在实数20M >,使得()2a g x M <D. 若函数()a g x 满足:当(),x a ∞∈+时,()0a g x ≥,当(),x a ∞∈-时,()0a g x ≤,则()f a 为()f x 的最小值【答案】D 【解析】【分析】首先理解函数()a g x 表达的是函数()f x 图像上两点割线的斜率,当x a →时,表示的为切线斜率,然后举反例设()f x x =可判断A 错误;设()2f x x =可得B 错误;设()sin f x x =可得C 错误;由函数单调性的定义可以判断D 正确. 【详解】函数()()()()a f x f a g x a x a-=∈-R 表达的是函数()f x 图象上两点割线的斜率,当x a →时,表示的为切线斜率;所以对于A :因为()f x 是定义在R 上的函数,其图象是一条连续不断的曲线,且()f x 在R 上单调递增, 所以设()f x x =,则()f a a =,此时()()()()1a f x f a x ag x a x ax a--===∈--R 为常数,即任意两点的割线的斜率为常数,故A 错误; 对于B :设()2f x x =,由图象可知,当x ∈R 时,随x 增大,点()(),x f x 与点()(),a f a 连线的割线斜率越来越大,即单调递增,但()f x 在R 不是单调函数,故B 错误;对于C :因为对于任意实数a 存在实数10M >,使得()1f x M <,说明()f x 为有界函数,所以设()sin f x x =,但割线的斜率不一定有界,如图当0x +→时,割线的斜率趋于正无穷,故C 错误;对于D :因为函数()a g x 满足:当(),x a ∞∈+时,()0a g x ≥, 即()()()()()()()00,a f x f a g x f x f a x a x a x a-⎡⎤=≥⇒--≥≠⎣⎦-,因为x a >,0x a ->,所以()()f x f a ≥; 同理,当(),x a ∞∈-时,()0a g x ≤, 即()()()()()()()00,a f x f a g x f x f a x a x a x a-⎡⎤=≤⇒--≤≠⎣⎦-,因为x a <,0x a -<,所以()()f x f a ≥; 所以()f a 为()f x 的最小值,故D 正确;故选:D.【点睛】关键点点睛:本题关键在于理解函数()a g x 表达的是函数()f x 图像上两点割线的斜率,当x a →时,表示的为切线斜率,然后通过熟悉的函数可逐项判断.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11. 若复数1i iz +=,则z =_________.【解析】 【分析】利用复数的除法法则将复数表示为一般形式,然后利用复数的模长公式可计算出z 的值.【详解】()()21111i i i z i i i i i++===-+=- ,因此,z ==..【点睛】本题考查复数模的计算,同时也考查了复数的除法运算,考查计算能力,属于基础题.12. 设向量()()1,,3,4a m b ==- ,且a b a b ⋅=,则m =______.【答案】43-##113- 【解析】【分析】根据数量积的定义,向量共线的坐标表示,结合已知条件,求解即可. 【详解】设,a b的夹角为θ,cos a b a b a b θ⋅== ,故cos 1θ=,又[]0,πθ∈,故0θ=,,a b方向相同, 又()()1,,3,4a m b ==- ,则43m -=,解得43m =-,满足题意.故答案为:43-.13. 已知角,αβ的终边关于直线y x =对称,且()1sin 2αβ-=,则,αβ的一组取值可以是α=______,β=______.【答案】 ①.π3(答案不唯一,符合题意即可) ②. π6(答案不唯一,符合题意即可) 【解析】【分析】由角,αβ的终边关于直线y x =对称,可得π2π2k αβ+=+,再由()1sin 2αβ-=可得ππ6k β=+或ππ6k β=-+,即可求出答案. 【详解】因为角,αβ的终边关于直线y x =对称, 则π2π2k αβ+=+,Z k ∈,则π2π2k αβ=-+, 因为()1sin 2αβ-=,所以ππ1sin 2πsin 22πcos 2222k k ββββ⎛⎫⎛⎫-+-=-+== ⎪ ⎪⎝⎭⎝⎭,所有π22π3k β=+或π22π3k β=-+,Z k ∈, 解得:ππ6k β=+或ππ6k β=-+,Z k ∈,取0k =,β的一个值可以为π6,α的一个值可以为π3.故答案为:π3(答案不唯一,符合题意即可);π6(答案不唯一,符合题意即可).14. 已知抛物线21:4C y x =的焦点为1F ,则1F 的坐标为______;抛物线22:8C y x =的焦点为2F ,若直线()0y m m =≠分别与12,C C 交于,P Q 两点;且121PF QF -=,则PQ =______.【答案】 ①. ()1,0 ②. 2【解析】【分析】根据抛物线的方程即可得出焦点坐标,根据抛物线的定义求出12,PF QF ,进而可得出PQ . 【详解】由抛物线21:4C y x =,可得()11,0F ,设()()1122,,,P x y Q x y , 则11221,2PF x QF x =+=+,故121211PF QF x x -=--=,所以122x x -=, 所以122PQ x x =-=.故答案为:()1,0;2.15. 已知数列{}n a 的各项均为正数,满足21n n n a ca a +=+,其中常数c ∈R .给出下列四个判断:①若11,0a c =<,则()121n a n n <≥+; ②若1c =-,则()121n a n n <≥+; ③若()1,2n c a n n =>≥,则11a >; ④11a =,存在实数c ,使得()2n a n n >≥. 其中所有正确判断的序号是______. 【答案】②③④ 【解析】【分析】①直接取13c =-找矛盾;②通过21111111n n nn n n a a a a a a ++⇒=--=>-+,利用累加法求n a 的范围;③假设11a ≤找矛盾;④取2c =,根据函数单调性来确定其成立.【详解】对于①:若11,0a c =<,则21211ca c a a =+=+,当13c =-时,223a =,与213a <矛盾,①错误;对于②:若1c =-,则210n n n a a a +=-+>,所以01n a <<,又2112a a a =-+,若12113a a <-+,该不等式恒成立,即2013a <<, 由()2111111*********n n n n n n n nn n n n a a a a a a a a a a a a ++++⇒=⇒=+⇒-=--=--+由于01n a <<,所以111na >-, 所以1111n n a a +->,所以3n ≥时,11232111111111nn n n a a a a a a ---⎧->⎪⎪⎪->⎪⎨⎪⎪⎪->⎪⎩ ,累加得2112n n a a ->-, 所以2112231n n n n a a >-+>-+=+,所以()131n a n n <≥+, 综合得()121n a n n <≥+,②正确; 对于③:若()1,2n c a n n =>≥,21n n n a a a +=+,假设11a ≤,则21122a a a =+≤,与22a >矛盾,故11a >,③正确;对于④:当11a =时,若2c =,则212n n n a a a +=+,此时2121232a a a =+=>,根据二次函数22y x x =+可得其在()0,∞+上单调递增,并增加得越来越快,但是函数y x =在()0,∞+上单调递增,但增加速度恒定,故在22a >的情况下,n a n >必成立,即存在实数c ,使得()2n a n n >≥,④正确,故答案为:②③④.【点睛】方法点睛:对于数列判断题,我们可以通过赋值,举例的方法对选项进行确认和排除.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16. 在ABC中,cos cos cos a C c A B +=. (1)求B ∠;(2)若12,a D =为BC 边的中点,且3AD =,求b 的值. 【答案】(1)π6; (2)【解析】【分析】(1)由正弦定理可得sin()cos A C B B +=,结合三角和为π及诱导公式可得cos B =,即可得答案;(2)在ABD △中,由正弦定理可求得π2BAD ∠=,从而可得AB =ABC 中,利用余弦定理求解即可. 【小问1详解】解:因为cos cos cos a C c A B +=,由正弦定理可得sin cos sin cos cos A C C A B B +=,即sin()cos A C B B +=,sin(π)sin cos B B B B -==, 又因为sin 0B ≠,所以1B =,解得cos B =,又因为(0,π)B ∈, 所以π6B =; 【小问2详解】解:因为D 为BC 边的中点,12a =, 所以6BD CD ==, 设BAD θ∠=,在ABD △中,由正弦定理可得sin sin BD ADBθ=, 即6361sin 2θ==,解得sin 1θ=, 又因为(0,π)θ∈,所以π2θ=,在Rt △ABD 中,AB ===在ABC 中,π12,6AB BC B ===,由余弦定理可得:2222cos 1442721263AC AB BC AB AC B =+-⋅⋅=+-⨯⨯=,所以AC =即b =17. 某中学为了解本校高二年级学生阅读水平现状,从该年级学生中随机抽取100人进行一般现代文阅读速度的测试,以每位学生平均每分钟阅读的字数作为该学生的阅读速度,将测试结果整理得到如下频率分布直方图:(1)若该校高二年级有1500人,试估计阅读速度达到620字/分钟及以上的人数;(2)用频率估计概率,从该校高二学生中随机抽取3人,设这3人中阅读速度达到540字/分钟及以上的人数为X ,求X 的分布列与数学期望()E X ;(3)若某班有10名学生参加测试,他们的阅读速度如下:506,516,553,592,617,632,667,693,723,776,从这10名学生中随机抽取3人,设这3人中阅读速度达到540字/分钟及以上的人数为Y ,试判断数学期望()E Y 与(2)中的()E X 的大小.(结论不要求证明) 【答案】(1)600(2)分布列见解析,() 2.4E X =(3)()()E X E Y =【解析】【分析】(1)借助频率分布直方图计算即可得;(2)借助频率分布直方图可得阅读速度达到540字/分钟及以上的概率,得到X 的可能取值及其对应概率即可得,再计算期望即可; (3)借助期望计算公式计算即可得. 【小问1详解】()15000.003750.0010.0002580600⨯++⨯=,故可估计阅读速度达到620字/分钟及以上的人数为600人; 【小问2详解】从中任取一人,其阅读速度达到540字/分钟及以上的概率为:()0.0050.003750.0010.00025800.8+++⨯=,X 的可能取值为0、1、2、3,()0330C 0.20.008P X ==⨯=, ()1231C 0.80.20.096P X ==⨯⨯=, ()2232C 0.80.20.384P X ==⨯⨯=, ()0333C 0.80.512P X ==⨯=,则其分布列为:X12 3P0.008 0.0960.384 0.512其期望为:()30.8 2.4E X =⨯=; 【小问3详解】()()E X E Y =,理由如下:这10名学生中,阅读速度达到540字/分钟及以上的人数为8人,Y 的可能取值为1、2、3,()1282310C C 811C 12015P Y ====,()2182310C C 5672C 12015P X ====,()3082310C C 5673C 12015P X ====,则()177123 2.4151515E Y =⨯+⨯+⨯=, 故()()E X E Y =.18. 如图,在五面体ABCDEF 中,底面ABCD 为正方形,4,1AB EF ==.(1)求证://AB EF ;(2)若H 为CD 的中点,M 为BH的中点,,EM BH EM ⊥=,再从条件①、条件②这两个条件中选择一个作为已知,求直线CF 与平面ADE 所成角的正弦值. 条件①:ED EA =; 条件②:5AE =.注:如果选择条件①和条件②分别解答,按第一个解答计分 【答案】(1)证明见解析(2【解析】【分析】(1)先证明//AB 平面EFCD ,再利用线面平行的性质证明//AB EF ;(2)选①②:证明 EM ⊥平面ABCD ,建立以M 为原点的空间坐标系,求出平面ADE 的法向量,利用线面角公式求解 【小问1详解】证明:底面ABCD 为正方形,则//AB CD ,又AB ⊄平面EFCD ,CD ⊂平面EFCD , 则//AB 平面EFCD ,又平面EFCD 平面EFBA EF =,AB ⊂平面EFBA ,故//AB EF . 【小问2详解】选①,取AD 中点G ,连接,EG MG ,因为ED EA =,所以EG AD ⊥, 易知GM 为梯形ABHD 的中位线,则MG AD ⊥,又,,MG EG G MG EG ⋂=⊂平面EGM ,故AD ⊥平面EGM ,EM ⊂平面EGM ,则,,AD EM EM BH ⊥⊥,AD BH ⊂平面ABCD ,且,AD BH 必相交,故EM ⊥平面ABCD , 延长GM 交BC 于P ,则P 为中点,易得//,EF MP EF MP =,故EFPM 为矩形.以M 为原点,EM 所在直线为z 轴,MG 所在直线为x 轴,过M 作CB 平行线为y 轴,建立空间直角坐标系如图:则()()()((3,2,0,3,2,0,1,2,0,0,0,0,1,A D C E F ----,,则()0,4,0AD =-,(3,2,AE =--,(1,1,CF = ,设平面ADE 的法向量为(),,m x y z =,则00m AD m AE ⎧⋅=⎪⎨⋅=⎪⎩,即40320y x y -=⎧⎪⎨--+=⎪⎩,令x =()m = , 设直线CF 与平面ADE所成角为,sin cos ,m CF θθ===选②:取AD 中点G , 连接GM ,易知GM 为梯形ABHD 的中位线,3GM =,则AM =5AE =,EM =,则222AE EM AM =+,故,EM AM ⊥ 又,,,EM BH AM BH M AM BH ⊥⋂=⊂平面ABCD ,故EM ⊥平面ABCD , 延长GM 交BC 于P ,则P 为中点,易得//,EF MP EF MP =,故EFPM 为矩形.以M 为原点,EM 所在直线为z 轴,MG 所在直线为x 轴,过M 作CB 平行线为y 轴,建立空间直角坐标系如图:则()()()((3,2,0,3,2,0,1,2,0,0,0,0,1,A D C E F ----,,则()0,4,0AD =-,(3,2,AE =--,(1,1,CF = ,设平面ADE 的法向量为(),,m x y z =,则00m AD m AE ⎧⋅=⎪⎨⋅=⎪⎩,即40320y x y -=⎧⎪⎨--+=⎪⎩,令x =()m = , 设直线CF 与平面ADE所成角为,sin cos ,m CF θθ===19. 已知函数()()ln 1f x x x =-.(1)求曲线()y f x =在2x =处的切线方程; (2)设()()g x f x '=,求函数()g x 的最小值;(3)若()2f x x a>-,求实数a 的值. 【答案】(1)24y x =-(2)2(3)2a = 【解析】【分析】(1)求导,再根据导数的几何意义即可得解;(2)利用导数求出函数()g x 的单调区间,进而可求出最小值;(3)分1a ≤和1a >两种情况讨论,在1a >时,再分x a >和1x a <<两种情况讨论,分离参数,构造函数并求出其最值,即可得解. 【小问1详解】()()()ln 111xf x x x x '=-+>-, 则()()22,20f f '==,所以曲线()y f x =在2x =处的切线方程为()22y x =-,即24y x =-; 【小问2详解】()()()()ln 111xg x f x x x x '==-+>-, ()()()22112111x x x g x x x x ---'=+=---, 当12x <<时,()0g x '<,当2x >时,()0g x '>,所以函数()g x ()1,2上单调递减,在()2,+∞上单调递增, 所以()()min 22g x g ==; 【小问3详解】函数()f x 的定义域为()1,+∞, 当1a ≤时,0x a ->, 则()2f x x a>-,即()()2f x x a >-, 即()22a f x x -<-, 由(2)得()2f x '≥,令()()2h x f x x =-,则()()()201h x f x x ''=-≥>, 所以()h x 在()1,+∞上单调递增, 又当1x →时,()h x →-∞, 因为1a ≤,所以22a -≥-,此时()22a f x x -<-不恒成立,故1a ≤不符题意; 当1a >时,若x a >,则0x a ->, 则()2f x x a>-,即()()2f x x a >-,即()22a f x x -<-, 由上可知函数()()2h x f x x =-在(),a +∞上单调递增, 所以()()()()ln 12h x h a a a a x a >=-->,在所以()2ln 12a a a a -≤--,解得2a ≥①,若1x a <<,则()2f x x a>-,即()()2f x x a <-,即()22a f x x ->-, 由上可知函数()()2h x f x x =-在()1,a 上单调递增, 所以()()()()ln 1211h x h a a a a a <=--<<, 所以()2ln 12a a a a -≥--,解得2a ≤②, 由①②可得2a =, 综上所述,2a =.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围; (2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.20. 已知椭圆2222:1(0)x y C a b a b +=>>的短轴长为e =(1)求椭圆C 的方程;(2)设O 为坐标原点,直线l 是圆221x y +=的一条切线,且直线l 与椭圆C 交于,M N 两点,若平行四边形OMPN 的顶点P 恰好在椭圆C 上,求平行四边形OMPN 的面积.【答案】(1)22163x y +=(2 【解析】【分析】(1)根据题意求出,a b ,即可得解;(2)分切线斜率是否存在两种情况讨论,当切线的斜率存在时,设切线方程为y kx m =+,先求出,k m 的关系,设()()1122,,,M x y N x y ,联立直线与椭圆的方程,利用韦达定理求出1212,x x x x +,进而可求得线段MN 的中点坐标,从而可求得点P 的坐标,再根据点P 在椭圆上,即可求得,k m ,再利用弦长公式求出MN ,即可得解.【小问1详解】由题意可得2222b ca ab c⎧=⎪⎪=⎨⎪=+⎪⎩,解得222633a b c ⎧=⎪=⎨⎪=⎩,所以椭圆C 的方程为22163x y +=; 【小问2详解】当圆的切线斜率不存在时,切线方程为1x =±, 当切线方程为1x =时,由椭圆的对称性可得()2,0P , 因为4021633+=<,所以点()2,0P 不在椭圆上,不符题意, 当切线方程为=1x -时,由椭圆的对称性可得()2,0P -, 因为4021633+=<,所以点()2,0P -不在椭圆上,不符题意, 所以切线的斜率存在,设切线方程为y kx m =+,1=,所以221m k =+①,联立22163y kx m x y =+⎧⎪⎨+=⎪⎩,整理得()222214260k x kmx m +++-=,则()()()()()22222222Δ16421261614212160k m k m k kk k ⎡⎤=-+-=+-++->⎣⎦,解得R k ∈,设()()1122,,,M x y N x y ,则2121222426,2121km m x x x x k k -+=-=++, 故()()221212222221422212121m k k m m y y k x x m k k k ++=++=-+=+++,所以线段MN 的中点坐标为222,2121km m k k ⎛⎫-⎪++⎝⎭, 因为四边形OMPN 为平行四边形,所以2242,2121km m P k k ⎛⎫- ⎪++⎝⎭, 又因为点P 在椭圆C 上, 所以()()22222221641621321k m m k k +=++②,将①代入②得()()()()222222281411321321k k kk k+++=++,解得k =,所以m =所以MN =====,所以12212OMPN OMN S S ==⨯=. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解.21. 有穷数列12,,,(2)n a a a n > 中,令()()*1,1,,p p q S p q a a a p q n p q +=+++≤≤≤∈N ,(1)已知数列3213,,,--,写出所有的有序数对(),p q ,且p q <,使得(),0S p q >; (2)已知整数列12,,,,n a a a n 为偶数,若(),11,2,,2n S i n i i ⎛⎫-+= ⎪⎝⎭,满足:当i 为奇数时,(),10S i n i -+>;当i 为偶数时,(),10S i n i -+<.求12n a a a +++ 的最小值;(3)已知数列12,,,n a a a 满足()1,0S n >,定义集合(){}1,0,1,2,,1A i S i n i n =+>=- .若{}()*12,,,k A i i i k =∈N 且为非空集合,求证:()121,k i i i S n a a a >+++ .【答案】(1)()1,4、()2,3、()2,4、()3,4(2)n 1-(3)证明见解析 【解析】【分析】(1)结合题意,逐个计算即可得;(2)由题意可得()1,0S n >,()2,10S n -<,可得当2n i ≠时,有12i n i a a -++≥,当2ni =时,1221n na a ++≥,结合11i n i i n i a a a a -+-++≥+,即可得解;(3)将()()121,k i i i S n a a a -+++ 展开,从而得到证明m i a 与1m i a +之间的项之和,1121i a a a -+++ ,112k k i i n a a a -+++++ 都为正数,即可得证.【小问1详解】(),p q ()1,4时,()(),321310S p q =-++-+=>, (),p q 为()2,3时,()(),2110S p q =+-=>, (),p q 为()2,4时,()(),21340S p q =+-+=>, (),p q 为()3,4时,()(),1320S p q =-+=>,故p q <,且使得(),0S p q >的有序数对有()1,4、()2,3、()2,4、()3,4; 【小问2详解】由题意可得()1,0S n >,()2,10S n -<,为又n a 为整数,故()1,1S n ≥,()2,11S n -≤-, 则()()11,2,12n S n S n a a --=+≥,同理可得()()212,13,22n S n S n a a ----=+≤-, 即有212n a a -+≥, 同理可得,当2ni ≠时,有12i n i a a -++≥, 即当2ni ≠时,有112i n i i n i a a a a -+-++≥+≥, 当2n i =时,122,1122n n n n S a a +⎛⎫+=+≥ ⎪⎝⎭,故()()12121122n n n n na a a a a a a a a -+⎛⎫+++=++++++ ⎪ ⎪⎝⎭()()121122n n n na a a a a a -+⎛⎫++++++ ⎪ ⎪⎝⎭≥ 22112n n -⎛⎫=+=- ⎪⎝⎭;【小问3详解】{}()*12,,,k A i i i k =∈N 时,当11i ≠时,()()()()2112111211211,k i i i i i i i S n a a a a a a a a a -++--+++=+++++++()()()22111312112112k k k k k i i i i i i i i n a a a a a a a a a ---++-++-+++++++++++++++ ,令m i A ∈且1m i A -∉,则有()1,0m S i n +>,(),0m S i n ≤, 又()1,0S n >,故()()1211,,0m m i S n S i n a a a --=+++> , 即有11210i a a a -+++> ,1120k k i i n a a a -+++++> ,令1m i A +∈且11m i A +-∉,则有()11,0m S i n ++>,()1,0m S i n +≤, 则()()111211,,0m m m i m m i i S i n S i n a a a ++++-+-=+++> ,即有()()()112212311211211210k k k i i i i i i i i i a a a a a a a a a --++-++-++-++++++++++++> ,故()()121,0k i i i S n a a a -+++> ,即()121,k i i i S n a a a >+++ , 当11i =时,()()()121211211,k i i i i i i S n a a a a a a ++--+++=+++()()()322111*********k k k k k i i i i i i i i n a a a a a a a a a ---++-++-+++++++++++++++> ,即()121,k i i i S n a a a >+++ 亦成立,即得证.【点睛】关键点点睛:本题最后一小问关键点在于将()()121,k i i i S n a a a -+++ 展开,从而得到证明m i a 与1m i a +之间的项之和,1121i a a a -+++ ,112k k i i n a a a -+++++ 都为正数,即可得证.。

四川省达州市2023届高三联合测试 一模试题-文科数学试卷(后附参考答案)

四川省达州市2023届高三联合测试 一模试题-文科数学试卷(后附参考答案)

一诊数学(文)试卷第1页(共4页)达州市普通高中2023届第一次诊断性测试数学试题(文科)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|}A x =≤1,{|1}B x x =<,则A B =A .[0 1),B .(0 1),C .( 1)-∞,D .( 1]-∞,2.复数z 满足1=2i z,则z =A .12-B .12C .1i2-D .1i23.已知向量a ,b ,满足⊥a b ,(12),a = ,则()-⋅=a b a A .0B .2CD .54.四川省将从2022年秋季入学的高一年级学生开始实行高考综合改革,高考采用“3+1+2”模式,其中“1”为首选科目,即物理与历史二选一.某校为了解学生的首选意愿,对部分高一学生进行了抽样调查,制作出如下两个等高条形图,根据条形图信息,下列结论正确的是A .样本中选择物理意愿的男生人数少于选择历史意愿的女生人数B .样本中女生选择历史意愿的人数多于男生选择历史意愿的人数C .样本中选择物理学科的人数较多D .样本中男生人数少于女生人数5.“0a b >>”是“e 1a b->”的A .充分不必要条件B .必要不充分条件C .充分必要条件D.既不充分也不必要条件一诊数学(文)试卷第2页(共4页)6.《将夜》中宁缺参加书院的数科考试,碰到了这样一道题目:那年春,夫子游桃山,一路摘花饮酒而行,始切一斤桃花,饮一壶酒,复切一斤桃花,又饮一壶酒,后夫子惜酒,故再切一斤桃花,只饮半壶酒,再切一斤桃花,饮半半壶酒,如是而行,终夫子切六斤桃花而醉卧桃山.问:夫子切了五斤桃花一共饮了几壶酒?A .18B .4716C .238D .31167.三棱锥P ABC -的底面ABC 为直角三角形,ABC △的外接圆为圆O ,PQ ⊥底面ABC ,Q 在圆O 上或内部,现将三棱锥的底面ABC 放置在水平面上,则三棱锥P ABC -的俯视图不可能是A.B .C .D .8.将函数1π()sin()23f x x ω=+(0)ω>图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,得到函数()g x 的图象,直线l 与曲线()y g x =仅交于11()A x y ,,22()B x y ,,ππ(())66P g ,三点,π6为1x ,2x 的等差中项,则ω的最小值为A .8B .6C .4D .29.曲线()()e xf x x m =+()m ∈R 在点(0(0))f ,处的切线平分圆22(2)(2)5x y -+-=,则函数()y f x =的增区间为A .(,1)-∞-B .(0 )+∞,C .(1 )-+∞,D .(0e),10.点F 为双曲线22221x y a b-=(0 0)a b >>,的一个焦点,过F 作双曲线的一条渐近线的平行线交双曲线于点A ,O 为原点,||OA b =,则双曲线的离心率为A B .C .D 11.在棱长为2的正方体1111ABCD C D 中,E ,分别为AB ,BC 的中点,则A .平面1D EF ∥平面11BA C B .点P 为正方形1111A B C D 内一点,当DP ∥平面1B EF 时,DP 的最小值为2C .过点1D ,E ,F 的平面截正方体1111ABCD A B C D -所得的截面周长为+D .当三棱锥1B BEF -的所有顶点都在球O 的表面上时,球O 的表面积为12π12.已知!(1)(2)321n n n n =⨯-⨯-⨯⨯⨯⨯ ,规定0!1=,如3!3216=⨯⨯=.定义在R上的函数()y f x =图象关于原点对称,对任意的0x <,都有(()1xf xf x x =-.若12()10099!f =,则(1)f =A .0B .1C .2D .199!一诊数学(文)试卷第3页(共4页)二、填空题:本题共4小题,每小题5分,共20分.13.抛物线22(0)y px p =>上的点(4)M a ,到焦点的距离为5,则焦点坐标为.14.从集合{1 2 3 4 5},,,,中随机取两个不同的数a ,b ,则满足||2a b -=的概率为.15.已知正项数列{}n a 前n 项和n S 满足(1)2n n n a a S m +=+,m ∈R ,且3510a a +=,则m =.16.已知正方形ABCD 边长为2,M ,N 两点分别为边BC ,CD 上动点,45=∠MAN ,则CMN △的周长为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)党的十九大提出实施乡村振兴战略以来,农民收入大幅提升,2022年9月23日某市举办中国农民丰收节庆祝活动,粮食总产量有望连续十年全省第一.据统计该市2017年至2021年农村居民人均可支配收入的数据如下表:年份20172018201920202021年份代码x12345人均可支配收入y (单位:万元)1.301.401.621.681.80(1)根据上表统计数据,计算y 与x 的相关系数r ,并判断y 与x 是否具有较高的线性相关程度(若0.30||0.75r <≤,则线性相关程度一般,若||0.75r ≥则线性相关程度较高,r 精确到0.01);(2)市五届人大二次会议政府工作报告提出,2022年农村居民人均可支配收入力争不低于1.98万元,求该市2022年农村居民人均可支配收入相对2021年增长率最小值(用百分比表示).参考公式和数据:相关系数()()niix x y y r --=∑,51()() 1.28iii x x y y =--=∑,521()0.17ii y y =-≈∑ 1.3≈.18.(12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,ABC △的面积tan S A =,BC (1)求a ;(2)求ABC △外接圆面积的最小值.一诊数学(文)试卷第4页(共4页)19.(12分)如图,四棱锥P ABCD -的底面ABCD 是梯形,AD BC ∥,AB BC ⊥.E 为AD 延长线上一点,PE ⊥平面ABCD ,2PE AD =,tan 2PDA ∠=-.F 是PB 中点.(1)证明:EF PA ⊥;(2)若22BC AD ==,三棱锥E PDC -的体积为13,求点C 到平面DEF 的距离.20.(12分)已知F 是椭圆C :22221(0)x y a b a b+=>>的一个焦点,过点( )P t b ,的直线l 交C 于不同两点A ,B .当t a =,且l经过原点时,||AB =,||||AF BF +=.(1)求C 的方程;(2)D 为C 的上顶点,当4t =,且直线AD ,BD 的斜率分别为1k ,2k 时,求1211k k +的值.21.(12分)已知函数()ln ()f x x x a a =+∈R .(1)若()f x 最小值为0,求a 的值;(2)231()1(0)8x g x x x x =--+>,若7ea ≥,()0gb <,证明()f x b >.(二)选考题:共 10分.请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10 分) 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为 ρ2−2 ρcos − θ2 ρsin − θ2 =0 ,直线l 的参数方程为2cos ()2sin x t t y t θθ=+⎧⎨=+⎩,为参数.(1)写出曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,定点(2 2)P ,,求PA PB +的最小值.23.[选修4-5:不等式选讲](10分)设函数12)(-=x x f .(1)若()()f x f x m >+的解集为{|0}x x <,求实数m 的值;(2)若0a b <<,且()()f a f b =,求411a b +-的最小值.A BC DEFP达州市普通高中2023届第一次诊断性测试文科数学参考答案一、选择题:1.A 2.C3.D4.C5.A6.C7.D 8.C9.C10.D11.B12.C二、填空题:本题共4小题,每小题5分,共20分.13.(1,0)14.31015.1-16.4三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.解:(1)由表知x 的平均数为1234535x ++++==.522221()(13)(23)(53)10i i x x =∴-=-+-++-=∑.5()()0.98iix x y y r --=∑.75.098.0> ,∴y 与x 具有较高的线性相关程度.(2)设增长率为p ,则1.8(1)p +≥1.98,解得p ≥0.1.∴min 0.110%p ==.该市2022年农村居民人均可支配收入相对2021年增长率最小值为10%.18.解:(1)由A S tan =得AAA bc cos sin sin 21=,∵0πA <<,0sin >A ,∴2cos =A bc .取BC 中点D ,连接AD ,则1()2AD AB AC =+ ,∴22242AD AB AB AC AC =+⋅+ ,即A bc c b cos 21222++=,∴822=+c b .∵448cos 2222=-=-+=A bc c b a ,∴2=a .(2)设ABC △外接圆半径为R ,由正弦定理R A a 2sin =,得AR sin 1=.由(1)知bc A 2cos =22412b c =+≥,当且仅当2==c b 时取“=”.∵0πA <<,∴A <0≤π3,∴0sin 2A <≤,∴A R sin 1=23332=,当sin 2A =,即π3A =时取“=”.∴ABC △外接圆面积最小值为2234π(π33⨯=.19又E AD PE = ,∴AB ⊥平面PAD .∵PA ⊂平面PAD ,∴PA AB ⊥.取P A 的中点M ,连接EM ,FM ,∵F 为PB的中点,∴FM PA ⊥.∵tan 2PDA ∠=-,∴tan 2PDE ∠=,∴2=DEPE ,∴AD DE PE 22==,∴D 为AE 的中点,∴PE AE =,∴EM PA ⊥.又M FM EM = ,∴PA ⊥平面EFM .∵EF ⊂平面EFM ,∴EF PA ⊥.(2)解:∵222BC AD DE ===,∴2PE =.∴ BC AE ∥,且 BC AE =,∵AB BC ⊥,∴四边形ABCE 为矩形,∴CE ⊥平面PAE .1111123323E PDC P DEC DEC V V S PE CE --==⋅=⨯⨯⨯⨯=△,∴1=CE .连接M D ,Rt BCE △中51222=+=BE ,Rt PEB △中35222=+=PB .∵F 为PB 中点,∴点F 到平面ABCD 的距离1211==PE h ,Rt PEB △中,2321==PB EF ,111122ECD S =⨯⨯=△.由(1)知FM PAE ⊥面,11=22FM AB =,在Rt FME △中,52DF ==,∴DEF △中,22235()1)222cos 33212DEF +-∠==⨯⨯,3sin DEF ∠=,124DEF S DE EF sin DEF =⨯⨯⨯∠=△.设点C 到平面DEF 的距离为2h ,则121133F EDC C DFE DEC DFE V V S h S h --==⋅=⋅△△,解得5522=h .所以点C 到平面DEF 的距离为552.20.解:(1)由题意,当t a =,且l 经过原点时,l 的方程为by x a=,且点A ,B 关于原点对称.设00( )A x y ,,将b y x a=代入22221x y a b +=,并化简得222a x =,即2202a x =,∴2202b y =.∵||AB =2222004()2()6x y a b +=+=.设C 的另一个焦点为0F ,根据对称性,0||||||||AF BF AF AF +=+=,根据椭圆定义得2a =,∴22a =.∴21b =.所以C 的方程为2212x y +=.(2)由(1)知,点D 坐标为(0 1),.A B C M E F PD由题意可设l :(1)4x k y =-+,即4x ky k =+-,将该式代入2212x y +=,并化简得222(2)2(4)8140k y k k y k k ++-+-+=,∴16(47)0k ∆=->.设11()A x y ,,22()B x y ,,则1222(4)2k k y y k -+=-+,21228142k k y y k -+=+.∴12122164()822kx x k y y k k -+=++-=+.∴1212211212121212()1111()1x x x y x y x x k k y y y y y y +-++=+==---++2222212121221212222(814)2(4)1642(4)()()2228142(4)()1122k k k k k kky y k y y x x k k k k k k k y y y y k k -+----+-+-++++=-+--++++++1=-.即12111k k +=-.21.解:(1)由()ln f x x x a =+得0x >,且()ln 1f x x '=+当10e x <<时,()0f x '<,()f x 单调递减,当1ex >时,()0f x '>,()f x 单调递增.所以min 11()()()0e ef x f x f a ===-+=极小,∴1e a =.(2)证明:由231()18x g x x x =--+得322231344()144x x g x x x x -+'=-+=(0>x ).设32()344h x x x =-+,则28()989()9h x x x x x '=-=-,当809x <<时,()0h x '<,()h x 单调递减,当89x >时,()0h x '>,()h x 单调递增.∴当0x >时,()min 8()()09h x h x h =>≥,即()0g x '>,()g x 在区间(0 )+∞,单调递增.∵(2)0g =,∴若0x >,则当且仅当02x <<时,()0g x <,∵()0g b <,∴2b <.由(1)知,min 11()()e e f x f a ==-.∵7ea ≥,∴min 16()()e e f x f x a =-≥≥.∴6()2ef x b >>≥,即()f x b >.22.解:(1)将222x y ρ=+,cos x ρθ=,sin y ρθ=代入C 的极坐标方程22cos ρρθ-2sin 20ρθ--=得曲线C 为222220x y x y +---=,即4)1()1(22=-+-y x .(2)易知点P 在直线l 上,将直线l 的参数方程2cos ()2sin x t t y t θθ=+⎧⎨=+⎩,为参数代入曲线C 方程得4)sin 1()cos 1(22=+++θθt t ,整理得02)cos (sin 22=-++t t θθ.设点A ,B 对应该的参数分别为1t ,2t ,则)cos (sin 221θθ+-=+t t ,0221<-=t t ,由参数t 的几何意义不妨令||||1P A t =,||||2PB t =.∴||||||||||2121t t t t PB P A -=+=+122sin 44)(21221+=-+=θt t t t .当12sin -=θ,即ππ()4k k θ=-∈Z 时,22|)||(|=+PB P A .23.(1)解:不等式可化为|1|||22-+>m x x ,∴|1||1|-+>-m x x ,两边同时平方可得222m m mx -<.原不等式解集为{|0}x x <,∴0>m ,即21mx -<.∴021=-m,2=m .(2)解: )()(b f a f =,∴|1||1|22--=b a ,|1||1|-=-b a .)1(2)1(||x f x f x -==+,∴)(x f y =关于直线1=x 对称,∴b a <<<10,∴11-=-b a ,即2=+b a .所以1)1(45)1114(-+-+=-+-+b a a b b a b a ≥9425=+,当且仅当1)1(4-=-b aa b ,即34,32==b a 时取“=”,∴114-+b a 的最小值为9.。

广东省韶关市2024届高三上学期第一次模拟考试 数学试题(含解析)

广东省韶关市2024届高三上学期第一次模拟考试 数学试题(含解析)

A .π3
2f ⎛⎫
=- ⎪⎝⎭
B .将()y f x =的图象向右平移
C .12,R x x ∀∈,都有(f ()2f x m =⎡
⊥;
(1)证明:A B B C
【详解】
P 在第一象限,由题意将x c =(其中222a b c =+)代入椭圆方程
12.AB
【分析】利用周期函数的定义判断A ;求出导数,利用轴对称的意义判断点判断C ;利用导数探讨单调性并确定极值点判断【详解】依题意,cos(2π)sin((2π)e e x f x ++=-确;
π
由M 在以12F F 为直径的圆上可得:故2
2
2
1212MF MF F F +=,且四边形由双曲线2
2:13
x C y -=可知:2a 即2216m n +=,
则()()()(110,0,3,0,3,0,0,3,3,3,0,0A B B C 所以()()110,3,3,3,3,3A B B C =-=-- ,
所以110A B B C ⋅=

所以11A B B C ⊥.
(2)因为点P 在棱1CC 上,1:C P PC 又()()()(110,0,0,0,0,3,0,3,0,3,0,3A A B C
2

【点睛】方法点睛:求最值或范围问题的基本解法
(1)几何法:根据已知的几何量之间的相互关系、平面几何和解析几何知识加以解决物线上的点到某个定点和焦点的距离之和、光线反射问题等
(2)代数法:建立求解目标关于某个
基本不等式方法、导数方法等。

2022届广东省茂名市高三第一次综合测试(一模)(1月)数学试题 及答案

2022届广东省茂名市高三第一次综合测试(一模)(1月)数学试题 及答案

绝密★启用前 试卷类型:A2022年茂名市高三级第一次综合测试数学试卷一、单选题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|-1<x ≤3},B={-1,0,2,3},则A ∩B=()A .{}1023-,,, B. {}0,3 C. {}0,2 D. {}0,23,2.已知,a b 为实数,且2++1bia i i=+(i 为虚数单位),则a bi +=() A .3+4i B.1+2i C.32i --D .32i + 3.下面四个命题中,其中正确的命题是()1p :如果两个平行平面同时和第三个平面相交,那么它们的交线平行2p :两个平面垂直,如果有一条直线垂直于这两个平面的交线,那么这条直线与其中一个平面垂直3p :一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行 4p :一条直线与一个平面内的一条直线平行,则这条直线就与这个平面平行A.1p 与2p B .2p 与3p C .3p 与4p D .1p 与3p4.已知角α的顶点在原点,始边与x 轴非负半轴重合,终边与直线230++=x y 平行,则sin cos sin cos -+αααα的值为() A.-2B. 1-4C. 2D.3 5.已知等比数列{}n a 的前n 项和为n S ,公比为q ,则下列选项正确的是()A.若364,12S S ==,则929S =B.若131,4a q ==,则43n n S a =- C.若4756+2,8a a a a ==-,则1106a a +=- D.若1531,4a a a ==,则12n n a -= 6.已知,,x y z 均为大于0的实数,且523log x yz ==,则,,x y z 大小关系正确的是()A.x y z >>B.x z y >>C.z x y >>D.z y x >>7.过三点A (0,0),B (0,2),C (2,0)的圆M 与直线:220-+-=l kx y k 的位置关BCAB 1C 1A 1D D 1 •• O 1 O• E系是()A.相交B.相切C.相交或相切D.相切或相离8.已知()sin f x x =,2g()||()=+x ln x ex ,则()()0f x g x ⋅>的解集是()A.11|02(21),,0x x x n x n n Z n e e πππ⎧⎫-<<<<<<+∈≠⎨⎬⎩⎭或或且 B.11|2(21),,0x x x n x n n Z n ee ππππ⎧⎫-<<-<<<<+∈≠⎨⎬⎩⎭或或且 C.11|02(21),,0x x x n x n n Z n e e ππ⎧⎫-<<<<<<+∈≠⎨⎬⎩⎭或0或且 D.11|0212,,0x x x n x n n Z n e e πππ⎧⎫-<<<<-<<∈≠⎨⎬⎩⎭或或()且 二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.下列说法正确的是()A .为了更好地开展创文创卫工作,需要对在校中小学生参加社会实践活动的意向进行调查,拟采用分层抽样的方法从该地区A 、B 、C 、D 四个学校中抽取一个容量为400的样本进行调查,已知A 、B 、C 、D 四校人数之比为7∶4∶3∶6,则应从B 校中抽取的样本数量为80 B .6件产品中有4件正品,2件次品,从中任取2件,则至少取到1件次品的概率为0.6 C .已知变量x 、y 线性相关,由样本数据算得线性回归方程是0.4y x a =+,且由样本数据算得7.3,4==y x ,则 2.1a =D .箱子中有4个红球、2个白球共6个小球,依次不放回地抽取2个小球,记事件M={第一次取到红球},N={第二次取到白球},则M 、N 为相互独立事件10.如图所示,圆柱OO 1内有一个棱长为2的正方体ABCD-A 1B 1C 1D 1,正方体的顶点都在圆柱上下底面的圆周上,E 为BD 上的动点,则下面选项正确的是()A .11A C E ∆面积的最小值为22B .圆柱OO 1的侧面积为π28C .异面直线AD 1与C 1D 所成的角为60D .四面体A 1BC 1D 的外接球的表面积为π1211.已知抛物线C:y x 42=的焦点为F ,准线为l ,P 是抛物线C 上第一象限的点,5PF =,直线PF 与抛物线C 的另一个交点为Q ,则下列选项正确的是() A .点P 的坐标为(4,4) B .45=QFC .310=∆OPQ S D .过点)1,(0-x M 作抛物线C 的两条切线MB MA ,,其中,A B 为切点,则直线AB 的方程为:220=+-y x x12.已知点A 是圆C:()2211x y ++=上的动点,O 为坐标原点,OA AB ⊥,且||||OA AB =O ,A ,B 三点顺时针排列,下列选项正确的是( )A.点B 的轨迹方程为()()22112x y -+-=B.|CB|的最大距离为1C.CA CB ⋅1D.CA CB ⋅的最大值为2 三、填空题:本大题共4小题,每小题5分,共20分.13.已知双曲线的方程是2214x y -=,则该双曲线的离心率为 14.函数()22=+2cos f x x x 在区间66⎡⎤-⎢⎥⎣⎦ππ,上的最大值为15.已知函数2|log |,02()3,2x x f x x x <<⎧=⎨-+≥⎩,若123,,x x x 均不相等,且123()()()==f x f x f x ,则123x x x ⋅⋅的取值范围是16.如图所示阴影部分是一个美丽的螺旋线型的图案,它的画法是这样的:正三角形ABC的边长为4,取正三角形ABC 各边的四等分点D ,E ,F ,作第2个正三角形DEF , 然后再取正三角形DEF 各边的四等分点G ,H ,I ,作第3个正三角形GHI ,依此方法一直继续下去,就可以得到阴影部分的图案.如图阴影部分,设三角形ADF 面积为1S ,后续各阴影三角形面积依次为2S ,3S ,…,n S ,….则1S =,数列{}n S 的前n 项和n T =第10题第18题图四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本题满分10分)如图所示,遥感卫星发现海面上有三个小岛,小岛 B 位于小岛A 北偏东75距离60 海里处 ,小岛B 北偏东15距离30330海里处有一个小岛 C.(1)求小岛A 到小岛 C 的距离;(2)如果有游客想直接从小岛A 出发到小岛 C ,求游船 航行的方向.18.(本题满分12分)如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,底面ABCD 为平行四边形,E 为CD 的中点,CD AE 21=.(1)证明:PC AD ⊥;(2)若三角形AED 为等边三角形,PA=AD=6,F 为PB 上一 点,且PB PF 31=,求直线EF 与平面PAE 所成角的正弦值.19.(本题满分12分)为了增强学生体质,茂名某中学的体育部计划开展乒乓球比赛,为了解学生对乒乓球运动的兴趣,从该校一年级学生中随机抽取了200人进行调查,男女人数相同,其中女生对乒乓球运动有兴趣的占80%,而男生有15人表示对乒乓球运动没有兴趣.第17题图(1)完成2×2列联表,并回答能否有90%的把握认为“对乒乓球运动是否有兴趣与性别有关”?(2)为了提高同学们对比赛的参与度,比赛分两个阶段进行。

广东省茂名市2023届高三一模数学试题

广东省茂名市2023届高三一模数学试题

2023年茂名市高三级第一次综合测试数学试卷一、单选题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}13A x x =-<<,{}2,1,0,3B =--,则A B ⋂=()A .{}1,3-B .{}13x x -<<C .{}0,1D .{}02.复平面内表示复数()i 23i z =-的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.在ABC △中,AB c =uuu r ,AC b =uuu r ,若点M 满足2MC BM =uuu r uuur,则AM =uuur ()A .1233b c +B .2133b c -C .5233c b-D .2133b c+4.将4个6和2个8随机排成一行,则2个8不相邻的情况有()A .480种B .240种C .15种D .10种5.蒙古包是蒙古族牧民居住的一种房子,建造和搬迁都很方便,适于牧业生产和游牧生活,蒙古包下半部分近似一个圆柱,高为2m ;上半部分近似一个与下半部分同底的圆锥,其母线长为,轴截面(过圆锥旋转轴的截面)是面积为2的等腰钝角三角形,则该蒙古包的体积约为()A .321mπB .318mπC .(318mπ+D .(320mπ+6.下列四个函数中,最小正周期与其余三个函数不同的是()A .()2cos sin cos f x x x x=+B .()1cos 22sin cos xf x x x-=C .()cos cos 33f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭D .()sin cos 66f x x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭7.设32ln 25a ⎛⎫=-⎪⎝⎭,23ln 1b e =+,252ln 3c e =+则()A .a b c <<B .b a c <<C .c a b<<D .b c a<<8.已知菱形ABCD 的各边长为2,60B ∠=︒.将ABC △沿AC 折起,折起后记点B 为P ,连接PD ,得到三棱锥P ACD -,如图所示,当三棱锥P ACD -的表面积最大时,三棱锥P ACD -的外接球体积为()A .3B .3C .D .3二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.已知空间中三条不同的直线a 、b 、c ,三个不同的平面αβγ、、,则下列说法中正确的是()A .若a b ∥,a α⊥,则b α⊥B .若a αβ⋂=,b βγ⋂=,c γ⋂=,则a b c ∥∥C .若αβ⊥,a α⊄,a β⊥,则a α∥D .若c β⊥,c γ⊥,则βγ∥10.已知函数()f x 对x R ∀∈,都有()()f x f x =-,()1f x +为奇函数,且[)0,1x ∈时,()2f x x =,下列结论正确的是()A .函数()f x 的图像关于点()1,0中心对称B .()f x 是周期为2的函数C .()10f -=D .7124f ⎛⎫=⎪⎝⎭11.已知抛物线2:4C x y =,F 为抛物线C 的焦点,下列说法正确的是()A .若抛物线C 上一点P 到焦点F 的距离是4,则P 的坐标为()-、()B .抛物线C 在点()2,1-处的切线方程为10x y ++=C .一个顶点在原点O 的正三角形与抛物线相交于A 、B 两点,OAB △的周长为D .点H 为抛物线C 的上任意一点,点()0,1G -,HG t HF =,当t 取最大值时,GFH △的面积为212.e 是自然对数的底数,,m n R ∈,已知ln ln mme n n n m +>+,则下列结论一定正确的是()A .若0m >,则0m n ->B .若0m >,则0me n ->C .若0m <,则ln 0m n +<.若0m <,则2m e n +>三、填空题:本大题共4小题,每小题5分,共20分.13.81x x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数为______(用数字作答).14.过四点()1,1-、()1,1-、()2,2、()3,1中的三点的一个圆的方程为__________________(写出一个即可).15.e 是自然对数的底数,()()cos 2212x x f x ee ex eπ=+--的零点为______.16.已知直线2x m =与双曲线()2222:10,0x y C m n m n-=>>交于A ,B 两点(A 在B 的上方),A 为BD 的中点,过点A 作直线与y 轴垂直且交于点E ,若BDE △的内心到y 轴的距离不小于32m ,则双曲线C 的离心率取值范围是____________.四、解答题:共70分解答应写出文字说明,证明过程或演算步骤。

吉林省桦甸市第四中学2021届高三上学期第一次调研考试数学(文)试卷 Word版含答案

吉林省桦甸市第四中学2021届高三上学期第一次调研考试数学(文)试卷 Word版含答案

文科数学本试卷共22小题,共150分,共6页,考试时间120分钟,考试结束后,将答题卡和试题卷一并交回。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条 形码、姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案 的标号;非选择题答案必须字迹的签字笔书写,字体工整、 笔迹清楚。

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案 无效。

4. 作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮 纸刀。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求。

1. 已知集合}06|{2≤--=x x x A ,}|{N x x B ∈=,则=⋂B AA. }2,1{B. }2,1,0{C. }3,2,1{D. }3,2,1,0{2. 下列函数中最小正周期为π的函数的个数是①|sin |x y =; ②)32cos(π+=x y ; ③x y 2tan =A. 0B. 1C. 2D. 33. 下列向量中不是单位向量的是A. )0,1(B.)1,1(C. )sin ,(cos ααD.)0|(|||≠a a a4. 为了得到函数)421cos(π+=x y 的图象,可将函数x y 21cos=的图象 A. 向左平移4π个单位 B. 向右平移4π个单位 C. 向左平移2π个单位 D. 向右平移2π个单位5. 设角α的始边为x 轴非负半轴,则“角α的终边在第二、三象限”是“0cos <α”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 6. 等差数列{}n a 中,5101530a a a ++=,则22162a a -的值为A .10-B .20-C .10D .207. 已知定义在实数集R 上的偶函数)(x f 在区间),0[+∞是单调增函数,若)2()1(f a f <-,则实数a 的取值范围是A. 31<<-aB. 1-<a 或3>aC. 13<<-aD. 3-<a 或1>a8. 已知21,e e 是两个夹角为︒60的单位向量,若212132,e e b e e a -=+=λ,且b a ⊥,则=λA. 23-B.32 C.41D.87 9. 已知某函数的图象如右图所示,则该函数的解析式可能是B. 222||--=x y xC. 2||2||+-=x y xD. x x y cos )1(2-=10. 某兴趣小组对函数)(x f 的性质进行研究,发现函数)(x f 是偶函数,在定义域R 上满足)1()1()1(f x f x f +-=+,且在区间]0,1[-为减函数.则)3(-f 与)25(-f 的关系为A .)25()3(-≥-f fB .)25()3(->-f fC .)25()3(-≤-f fD .)25()3(-<-f f11. 《周髀算经》中给出了弦图,所谓弦图(如图)是由四个全等的直角三角形和中间一个小正方形拼成一个大的正方形,若图中直角三角形两锐角分别为α,β,且小正方形与大正方形面积之比为25:1,则)cos(βα-的值为A.2524 B .1 C .257D .012. 已知函数)2()(,1,1,ln )(f kx x g x xe x x x f x '+=⎩⎨⎧<≥=,对]3,3[,21-∈∃∈∀x R x ,使得)()(21x g x f ≥成立,则k 的取值范围是A. ]6131,(---∞eB. )6131[∞++,e C. ]6131,6131[+--e eD. ]6131,(---∞e ⋃)6131[∞++,e 二、填空题:本大题共4个小题,每小题5分,共20分。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华南师大附中 —高三综合测试(一)数学试题(文科)注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号填写在答题卡上用2B 铅笔将答题卡试卷类型(A )填涂在答题卡上在答题卡右上角的“试室号”和“座位号”栏填写试室号、座位号,并用2B 铅笔将相应的试室号、座位号信息点涂黑2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液不按以上要求作答的答案无效4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集U ={1,2,3,4,5},集合A ={1,2,3},B ={2,5},则A ∩()=( ) A .{2} B .{2,3} C .{3} D .{1,3}2.已知曲线y =的一条切线的斜率为,则切点的横坐标为( )A .4B .3C .2D .3.已知 ( )A .B .C .D .4.已知函数,则的值为( )A .2B .8C .D .B C U 281x 2121的大小关系是,,则R Q P R QP ,)21(,)52(,23323===-R Q P <<P R Q <<R P Q <<P Q R <<(2),2()1,22x f x x f x x +<⎧⎪=⎨⎛⎫>⎪⎪⎝⎭⎩(3)f -18125.已知x 、y 满足约束条件的取值范围为 ( )A .B .C .D . 6.以下有关命题的说法错误的是( )A .命题“若,则x=1”的逆否命题为“若”B .“”是“”的充分不必要条件C .若为假命题,则p 、q 均为假命题D .对于命题 7.下列函数中,最小正周期为,且图象关于直线对称的是 ( )A .B .C .D .8.若函数的导函数图象如图所示,则下列判断正确的是 ( )A .函数在区间上单调递增B .函数在区间上单调递减C .函数在区间上单调递增D .当时,有极小值9.为了得到函数的图象,可以将函数的图象( )A .向右平移个单位长度 B .向右平移个单位长度 C .向左平移个单位长度 D .向左平移个单位长度10.函数的反函数是( )A .B .C .D .y x z y x y x -=⎪⎩⎪⎨⎧≥-+≤-≤-则,02201020232=+-x x 023,12≠+-≠x x x 则1=x 0232=+-x x q p ∧01,:,01:22≥++∈∀⌝<++∈∃x x R x p x x R x p 均有则使得π3x π=sin(2)6y x π=+sin(2)6y x π=-sin()23x y π=-sin()26x y π=+()y f x =()f x 1(3,)2--()f x 1(,3)2-()f x (4,5)3=x ()f x )62sin(π-=x y x y 2cos =6π3π6π3π1ln(1)(1)2x y x +-=>)0(112>-=-x e y x )0(112>+=-x ey x )(112R x ey x ∈-=-)(112R x ey x ∈+=-第Ⅱ卷(非选择题 共100分)二、填空题:本大题共4小题,每小题5分,满分20分。

11.已知,,则=*******. 12.已知函数,则该函数的值域是 ***** .13.函数的定义域为,则的取值范围是*******.14.函数(,)的图象恒过定点,若点在直线上,其中,则的最小值为 ***** . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分12分)已知集合(1)若的取值范围; (2)若的值.16.(本题满分12分)已知函数(1)求实数a ,b 的值;(2)求函数f (x )的最小正周期及其最大值.1(1)232f x x -=+()6f m =m xxy cos 3sin 1++=y R k log (3)1a y x =+-0a >1a ≠A A 10mx ny ++=0mn >12m n+2{|680},{|()(3)0}.A x x x B x x a x a =-+<=--<,A B a ⊆求{|34},A B x x a ⋂=<<求.12)6(,8)0(,cos 2cos sin 2)(2==+=πf f x b x x a x f 且17.(本小题满分14分)已知函数f (x )为R 上的奇函数,且在上为增函数, (1)求证:函数f (x )在(-∞,0)上也是增函数;(2)如果f (12 )=1,解不等式-1<f (2x +1)≤0.18.(本小题满分14分)某厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为 当 年产量不足80千件时,(万元);当年产量不小于80千件时,(万元).通过市场分析,若每件..售价为500元时,该厂当年生产该产品能全部销售完.(1)写出年利润(万元)关于年产量x (千件)的函数解析式;(2)年产量为多少千件时,该厂在这一产品的生产中所获利润最大,最大利润是多少?19.(本小题满分14分)已知二次函数f (x )=ax 2+bx (a ,b 为常数,且a ≠ 0),满足条件f (1+x )=f (1-x ),且方程f (x )=x 有等根。

),(x C x x x C 1031)(2+=14501000051)(-+=xx x C )(x L(1)求f (x )的解析式; (2)是否存在实数m 、n (m <n ),使f (x )的定义域和值域分别为和,如果存在,求出m 、n 的值,如果不存在,说明理由。

20.(本小题满分14分)已知函数(),其中. (1)当时,讨论函数的单调性; (2)若函数仅在处有极值,求的取值范围;(3)若对于任意的,不等式在上恒成立,求的取值范围.432()2f x x ax x b =+++x R ∈,a b R ∈103a =-()f x ()f x 0x =a [2,2]a ∈-()1f x ≤[1,1]-b参考答案一、选择题:D 、C 、B 、C 、C 、C 、B 、C 、B 、D 二、填空题 11. 12. 13. 14.8 三、解答题 15.解:(1)当时,B 为空集,不合题意当时,,应满足当时,,应满足时,(2)要满足,显然且时成立, 此时而,故所求的值为3。

16.解:(1)由,可得所以 .41-⎥⎦⎤⎢⎣⎡43,0[]1,02{|680},{|24}A x x x A x x =-+<∴=<<0a =0a >{|3}B x a x a =<<242.343a a a ≤⎧⇒≤≤⎨≥⎩0a <{|3}B x a x a =<<324a a a φ≤⎧⇒∈⎨≥⎩A B ∴⊆42.3a ≤≤{|3,4}A B x x ⋂=<0a >3a ={|39}B x x =<<{|34}A B x x ⋂=<<a 12)6(,8)0(==πf f 122323)6(,82)0(=+===b a f b f π34,4==a b(2),,所以,最小正周期为,当,即时等号成立。

17.解:(1)令,则函数f (x )上为增函数又函数f (x )为奇函数(2)18.解(Ⅰ))(Ⅱ)当∴当 当时4)62sin(842cos 42sin 34)(++=++=πx x x x f ππωπ===22||2T π12)(max =x f 2262πππ+=+k x z k k x ∈+=,6ππ021<<x x 021>->-x x ()()21x f x f ->-∴ )上单调递增,在(∞+∴<∴->-∴0)()()()()(2121x f x f x f x f x f )0()0(f f =- 0)0(=∴f 1)21()21(-=-=-f f )0()12()21(f x f f ≤+<-∴上单调递增在R )(x f 2143-≤<-∴x ⎪⎪⎩⎪⎪⎨⎧∈≥+-∈<<-+-=∴),80(),10000(1200),800(2504031)(**2N x x x x N x x x x x L 950)60(31)(,,8002*+--=∈<<x x L N x x 时950)60()(,60==L x L x 取得最大值时*,80N x x ∈≥100020012001000021200)10000(120)(=-=⋅-≤+-=xx x x x L∴当且仅当 综上所述,当最大值1000,即年产量为100千件时,该厂在这一商品的生产中所获利润最大 19.解:(1)∵f (x )满足f (1+x )=f (1-x ),∴f (x )的图象关于直线x =1对称。

而二次函数f (x )的对称轴为x =-b 2a ,∴-b2a =1. ①又f (x )=x 有等根,即ax 2+(b -1)x =0有等根,∴△=(b -1)2=0. ② 由①,②得 b =1,a =-12 .∴f (x )=-12 x 2+x . (2)∵f (x )=-12 x 2+x =-12 (x -1)2+12 ≤12 .如果存在满足要求的m ,n ,则必需3n ≤12 ,∴n ≤16 . 从而m <n ≤16 <1,而x ≤1,f (x )单调递增,∴,可解得m =-4,n =0满足要求。

∴存在m =-4,n =0满足要求。

A. 解:(I ).当时,. 令,解得,,.当变化时,,的变化情况如下表:所以在,内是增函数,在,内是减函数.(II ),显然不是方程的根..9501000)100()(,100,10000>===L x L x xx 取得最大值时即取得时)(100x L x =⎪⎪⎩⎪⎪⎨⎧=+-==+-=nn n n f m m m m f 321)(321)(22322()434(434)f x x ax x x x ax '=++=++103a =-2()(4104)2(21)(2)f x x x x x x x '=-+=--()0f x '=10x =212x =32x =x ()f x '()f x ()f x (0,)2(2,)+∞(,0)-∞(,2)22()(434)f x x x ax '=++0x =24340x ax ++=为使仅在处有极值,必须恒成立,即有.解此不等式,得.这时,是唯一极值. 因此满足条件的的取值范围是.(III )由条件及(II )可知,.从而恒成立.当时,;当时,.因此函数在上的最大值是与两者中的较大者.为使对任意的,不等式在上恒成立,当且仅当,即,在上恒成立.所以.因此满足条件的的取值范围是.()f x 0x =24403x ax +≥+29640a ∆=-≤3838a -≤≤(0)f b =a 88[,]33-[2,2]a ∈-29640a ∆=-<24340x ax ++>0x <()0f x '<0x >()0f x '>()f x [1,1]-(1)f (1)f -[2,2]a ∈-()1f x ≤[1,1]-111))1((f f ≤-≤⎧⎨⎩22b a b a≤--≤-+⎧⎨⎩[2,2]a ∈-4b ≤-b (,4]-∞-。

相关文档
最新文档