脉宽调制控制电路
PWM整流电路及其控制方法
PWM整流电路及其控制方法引言PWM〔脉宽调制〕技术是一种常用的电磁能源转换技术,广泛应用于各种电力电子设备中。
在电力转换中,如何实现高效率、低功率损失的能源转换一直是研究的热点之一。
PWM整流电路是一种典型的能源转换电路,它通过控制开关器件的导通时间来实现电源直流化的同时降低功率损耗。
本文将介绍PWM整流电路的根本原理、关键元件以及控制方法。
PWM整流电路的根本原理PWM整流电路主要由开关器件、滤波电容、感性元件和控制电路组成。
其根本原理是将输入交流电通过开关器件进行脉宽调制,从而获得平均值等于输出直流电压的脉冲电流。
通过滤波电容以及感性元件对脉冲电流进行平滑处理,得到稳定的直流输出电压。
开关器件的选择在PWM整流电路中,开关器件是实现脉宽调制的关键部件。
常见的开关器件有MOSFET〔金属氧化物半导体场效应晶体管〕和IGBT〔绝缘栅双极型晶体管〕两种。
MOSFET具有开关速度快、损耗小的特点,适用于低功率应用;而IGBT那么适用于高功率应用,具有较高的承受电压和电流能力。
滤波电容和感性元件滤波电容和感性元件是PWM整流电路中的关键元件,它们的作用是对脉冲电流进行平滑处理。
滤波电容可以存储电荷并平滑输出电流,而感性元件那么可以平滑输出电压。
合理选择滤波电容和感性元件的值可以在保证输出电压稳定的同时减小纹波电流和纹波电压。
控制方法PWM整流电路的控制方法主要有两种:固定频率控制和变频控制。
固定频率控制是指在整个转换过程中,开关器件的频率保持不变。
这种控制方法简单可靠,但效率较低。
变频控制是根据输出电压的需求,自适应地改变开关器件的频率,以提高整流效率。
变频控制方法相对复杂,但具有较高的效率和稳定性。
控制电路设计PWM整流电路的控制电路设计是实现控制方法的关键。
控制电路主要包括PWM生成电路和反响控制电路。
PWM生成电路负责生成脉宽信号,控制开关器件的导通时间;反响控制电路用于检测输出电压,并根据检测结果调整PWM信号以实现稳定的输出电压控制。
pwm电路工作原理
pwm电路工作原理
PWM(脉宽调制)是一种电子调制技术,通过改变信号的脉
冲宽度来调节输出信号的平均功率。
PWM电路通过控制信号
周期中高电平和低电平的时间比例来实现电压或电流的精确调节。
PWM电路的主要工作原理是通过快速地在高电平和低电平之
间进行切换来模拟出所需的输出信号。
信号周期中,高电平时间被称为占空比,表示信号高电平时间与一个完整周期的比例。
占空比越高,平均功率输出越大;占空比越低,平均功率输出越小。
PWM电路的核心元件是比较器和计时器。
计时器产生一个固
定周期的方波信号,与输入信号进行比较。
如果输入信号的幅值低于比较器输出的方波信号,则输出为低电平;如果输入信号的幅值高于比较器输出的方波信号,则输出为高电平。
通过调整比较器的阈值电压,可以控制输出信号的占空比。
PWM电路的输出信号能够精确地模拟出所需的电压或电流。
由于开关频率很高,输出信号中的高频成分可以通过滤波器去除,从而得到平滑的输出电压或电流。
因此,PWM电路广泛
应用于调节电机速度、灯光亮度调节、电源管理等领域。
总结起来,PWM电路的工作原理是通过调整信号周期中高电
平和低电平的时间比例来实现精确调节输出信号的平均功率。
这种调制技术在电机控制、电源管理等领域具有重要的应用。
pwm逆变电路的控制方法
pwm逆变电路的控制方法
PWM(脉宽调制)逆变电路是将直流电转换为交流电的一种常用电路,其控制方法主要分为以下几种:
1. 三相全桥PWM逆变控制方法:该方法采用三相全桥电路进行控制,通过改变脉冲的宽度和频率来控制输出电压的大小和波形,从而实现对直流电的转换。
2. 三相半桥PWM逆变控制方法:该方法利用三相半桥电路进行控制,具有体积小、效率高等优点,但需要较高的开关功率器件,应用范围较窄。
3. 单相PWM逆变控制方法:该方法适用于小功率电源转换,其控制方法与三相全桥PWM逆变控制方法类似,但只需使用单相电路即可。
控制方法一般采用微处理器等芯片进行控制,通过控制芯片输出PWM信号的占空比和频率来控制输出电压。
在具体控制过程中,需要注意电路参数的选择和设置,以及保护措施的实施,确保电路稳定、安全地工作。
总之,PWM逆变电路的控制方法多种多样,具体选择何种方法取决于具体的应用场景和要求,需要根据实际情况进行选择和优化。
脉冲宽度调制(PWM)技术
脉冲宽度调制(PWM)技术在电力电子变流器控制系统中,对于控制电路的要求往往是除能够控制负载的加电与断电外,还应该能够控制加载到负载上的电压高低及功率大小。
在大功率电力电子电路中,控制加载至负载上电压及功率的实用方法就是脉冲宽度调制(pulse width modulation, PWM)。
1. 面积等效原理在控制理论中,有一个重要的原理,即冲量等效原理:大小、波形不相同的窄脉冲变量(冲量)作用在具有惯性的环节上时,只要这些变量对时间的积分相等,其作用的效果将基本相同。
这里所说的效果基本相同是指惯性环节的输出响应波形基本相同。
例如,下图1示出的三个窄脉冲电压波形分别为矩形波、三角波和正弦波,但这二个窄脉冲电压对时间的积分相等,或者说它们的面积相等。
当这三个窄脉冲分别作用在只有惯性的同一环节上时,其输出响应基本相同。
因此,冲量等效原理也可以称为面积等效原理。
从数学角度进行分析,对上图1所示的三个窄脉冲电压波形进行傅里叶变换,则其低频段的特性非常相近,仅在高频段有所不同,而高频段对于具有惯性负载的电路影响非常小。
由此进一步证明了面积等效原理的正确性。
2. 脉冲宽度调制技术依据面积等效原理,在电路中可以利用低端电源开关或高端电源开关,以一定频率的导通和截止连续切换,使电源电压U i以一系列等幅脉冲(或称为矩形波)的形式加载到负载上,加载在负载上的电源电压Uo波形如图2所示。
图2所示的矩形波的电压平均值:此式表明在一个脉冲周期内,电压的平均值与脉冲的占空比是成正比的,于是,可以通过改变脉冲的占空比来调整加载到负载上的电压大小。
当占空比小时,加载到负载上的平均电压就低,即加载到负载上的功率小;而占空比大时,加载到负载上的平均电压就高,加载到负载上的功率大。
这种通过等幅脉冲调节负载平均电压及功率的方法称为脉冲宽度调制,也称为斩波控制。
采用脉冲宽度调制方式为负载供电,由于供电电压是脉动的,势必会产生出各种谐波。
SG3525A脉宽调制器控制电路
SG3525A 脉宽调制器控制电路一.简介SG3525A 系列脉宽调制器控制电路可以改进为各种类型的开关电源的控制性能和使用较少的外部零件。
在芯片上的5.1V 基准电压调定在±1%,误差放大器有一个输入共模电压范围。
它包括基准电压,这样就不需要外接的分压电阻器了。
一个到振荡器的同步输入可以使多个单元成为从电路或一个单元和外部系统时钟同步。
在CT 和放电脚之间用单个电阻器连接即可对死区时间进行大范围的编程。
在这些器件内部还有软起动电路,它只需要一个外部的定时电容器。
一只断路脚同时控制软起动电路和输出级。
只要用脉冲关断,通过PWM (脉宽调制)锁存器瞬时切断和具有较长关断命令的软起动再循环。
当VCC 低于标称值时欠电压锁定禁止输出和改变软起动电容器。
输出级是推挽式的可以提供超过200mA 的源和漏电流。
S G3525A 系列的N O R (或非)逻辑在断开状态时输出为低。
²工作范围为8.0V 到35V ²5.1V ±1.0%调定的基准电压 ²100Hz 到400K H z 振荡器频率 ²分立的振荡器同步脚二.SG3525A 内部结构和工作特性(1)基准电压调整器基准电压调整器是输出为5.1V ,50mA ,有短路电流保护的电压调整器。
它供电给所有内部电路,同时又可作为外部基准参考电压。
若输入电压低于6V 时,可把15、16脚短接,这时5V 电压调整器不起作用。
(2)振荡器3525A 的振荡器,除C T 、R T 端外,增加了放电7、同步端3。
RT 阻值决定了内部恒流值对CT 充电,CT 的放电则由5、7端之间外接的电阻值R D 决定。
把充电和放电回路分开,有利于通过R D 来调节死区的时间,因此是重大改进。
脉宽调制(PWM)控制电路
PWM功率转换电路 简单不可逆PWM控制电路
+
ED
VD1
M
ua, ia
E
ua
- ia
+
C
E Ua
ub
V
ED
VD2
ia
PWM功率转换电路 制动不可逆PWM控制电路
+E -
C
V1
ub1
1
4
VD1
ub1
ub2
ub1=-ub2
V1
VD2
V1
O
τ
T
t
A
M
B
ED
ia
V2
ia,u
7
9 15 CP
Uc
&
PWM功率转换电路 简单不可逆PWM控制电路
分析可逆和不可逆PWM系统时首先作如下假定: (1)大功率晶体管时无惯性器件,即忽略其开关过
程所需的时间。 (2) 脉宽调制的开关周期T远小于电动机的时间常
数,即忽略PWM控制的传递延迟对系统响应特性的 影响。在一个开关周期中,电动机转速变化很小, 可把反电动势ED看作常数处理。 (3)电枢回路用电阻R,电感L和反电动势ED等效 表示。忽略电源内阻,认为在不同工作状态下电源 电压E为常数。 (4)当电动机的平均电磁转矩TM=KTIa和负载转 矩TL相平衡时,系统工作在准稳定工作状态,这时 电枢电流Ia呈现周期性脉动变化。
PWM功率转换电路 简单不可逆PWM控制电路
几个概念:
可逆和不可逆:可逆就是电机即可正转也可反转;不可 逆就是电机只能一个方向转动,体现在电路上就是直 流电源与电机连接固定。
反电动势:是电机转动产生的,与转速有关。 自感电动势:流过电枢电感电流变化产生的,其值为 L dia
几种PWM控制方法
几种PWM控制方法PWM(脉宽调制)是一种广泛应用于电子设备中的控制方法,通过控制信号的脉冲宽度来改变电路或设备的输出功率。
以下是几种常见的PWM 控制方法:1.定频PWM控制定频PWM控制是一种简单而常见的PWM控制方法,通过将固定频率的脉冲信号与一个可变的占空比相乘来实现控制。
脉冲的高电平时间代表设备处于工作状态的时间比例,而低电平时间代表设备处于停止状态的时间比例。
定频PWM控制可通过调整脉冲的占空比来改变输出功率,但频率固定不变。
2.双边PWM控制双边PWM控制是一种可调节频率和占空比的PWM控制方法。
与定频PWM不同的是,双边PWM控制可以根据需求调整脉冲的频率和占空比。
通过改变脉冲的频率和占空比,可以获得较高的精度和更灵活的控制效果。
3.单脉冲宽度调制(SPWM)单脉冲宽度调制是一种通过调整脉冲宽度的PWM控制方法。
与常规PWM不同的是,SPWM控制中只有一个脉冲被发送,其宽度和位置可以根据需求进行调整。
SPWM控制常用于逆变器和交流驱动器等高精度要求的应用,可以实现比其他PWM控制方法更精确的波形控制。
4.多级PWM控制多级PWM控制是一种在多个层次上进行PWM调制的控制方法。
通过将一系列的PWM信号级联起来,每个PWM信号的频率和占空比不同,可以实现更高精度和更复杂的波形控制。
多级PWM控制常用于高性能电机驱动器、中央处理器(CPU)和功率放大器等需要高精度信号处理的应用。
5.空间矢量调制(SVPWM)空间矢量调制是一种通过调整电压矢量的方向和大小来实现PWM控制的方法。
SVPWM通过控制电压矢量之间的切换来生成输出波形,可以实现较高的电压和电流控制精度。
空间矢量调制常用于三相逆变器、电子制动器和无刷直流电机等高功率应用中,可以实现高质量的输出波形。
6.滑模PWM控制滑模PWM控制是一种通过添加滑模调节器来实现PWM控制的方法。
滑模调节器可以通过反馈控制来实现系统的快速响应和鲁棒性,从而实现更好的控制效果。
PWM脉宽调制变频电路
PWM脉宽调制变频电路
在图4-2b、c两种电路结构中,因采用不可控整流 器,功率因数高。而在图4-2a电路中,由于采用可控 整流,输出电压有换相电压降产生,谐波的无功功率 使得输入端功率因数降低。在图4-2a、b两种电路结构 中,独立的调压调频环节使之容易分开调试,但系统 的动态反应慢。图4-2c所示的电路结构则具有动态响 应快,功率因数高的特点。
PWM脉宽调制变频电路
变频器的分类与交—直—交变频器 的结构框图。图4-1a所示的交—交变频器在结构上没有 明显的中间滤波环节,来自电网的交流电被直接变换为 电压、频率均可调的交流电,所以称为直接变频器。而 图4-1b所示的交—直—交变频器有明显的中间滤波环节, 其工作时首先把来自电网的交流电变换为直流电,经过 中间滤波环节之后,再通过逆变器变换为电压、频率均 可调的交流电,故又称为间接变频器。
图4-10 分段同步调制
PWM脉宽调制变频电路
4.1.2 SPWM波形的开关点算法
在SPWM系统中,通常是利用三角载波与正弦参 考波进行比较以确定逆变器功率器件的开关时刻, 从而控制逆变器输出可调正弦波形。这一功能可由 模拟电子电路、数字电子电路、专用的大规模集成 电路等装置来实现,也可由计算机编程实现。SPWM 系统开关点的算法,主要分为两类:一是采样法, 二是最佳法。
形成不可调的直流电压Ud。而逆变环节则以六只功率开关
器件和辅助元件构成,这些开关器件可以选用功率晶体管 GTR,功率场效应晶体管MOSFET,绝缘门极晶体管IGBT等。 控制逆变器中的功率开关器件按一定规律导通或断开,逆 变器的输出侧即可获得一系列恒幅调宽的输出交流电压, 该电压为可调频、可调压的交流电——VVVF。
PWM脉宽调制变频电路
4.1.1 PWM脉宽调制原理
PWM控制电路的基本构成及工作原理
PWM控制电路的基本构成及工作原理
PWM(脉宽调制)控制电路的基本构成主要包括脉宽调制模块、比较器和滤波器。
脉宽调制模块是产生PWM信号的核心部分,一般由一个可调的控制电压源和一个可变的参考电压源组成。
控制电压源决定了PWM信号的占空比(高电平时间与周期的比值),参考电压源决定了PWM信号的频率。
通过调节控制电压源的大小,可以控制PWM信号的占空比,从而实现对输出电压或电流的控制。
比较器用于比较PWM信号与待控制设备的参考信号。
当PWM信号的电平高于参考信号时,比较器输出高电平;当PWM信号的电平低于参考信号时,比较器输出低电平。
比较器的输出信号可以作为控制信号,用于控制待控制设备的工作状态。
滤波器用于平滑PWM信号,将其转化为连续的模拟控制信号。
滤波器可以采用低通滤波器,通过去除PWM信号中的高频部分,来得到平滑的模拟控制信号。
平滑后的控制信号可以用于控制电机的转速、亮度调节等应用。
PWM控制电路的工作原理是通过快速切换高电平和低电平两个状态来模拟输出信号的变化。
当PWM信号的占空比增大时,高电平时间增加,输出信号的幅值也随之增大;当PWM信号的占空比减小时,高电平时间减少,输出信号的幅值也随之减小。
通过调节PWM信号的占空比,可以实现对输出信号的精确控制。
SG3525A脉宽调制器控制电路
SG3525A 脉宽调制器控制电路一.简介SG3525A 系列脉宽调制器控制电路可以改进为各种类型的开关电源的控制性能和使用较少的外部零件。
在芯片上的5.1V 基准电压调定在±1%,误差放大器有一个输入共模电压范围。
它包括基准电压,这样就不需要外接的分压电阻器了。
一个到振荡器的同步输入可以使多个单元成为从电路或一个单元和外部系统时钟同步。
在C T 和放电脚之间用单个电阻器连接即可对死区时间进行大范围的编程。
在这些器件内部还有软起动电路,它只需要一个外部的定时电容器。
一只断路脚同时控制软起动电路和输出级。
只要用脉冲关断,通过PWM (脉宽调制)锁存器瞬时切断和具有较长关断命令的软起动再循环。
当V CC 低于标称值时欠电压锁定禁止输出和改变软起动电容器。
输出级是推挽式的可以提供超过200mA 的源和漏电流。
SG3525A 系列的NOR (或非)逻辑在断开状态时输出为低。
·工作范围为8.0V 到35V ·5.1V ±1.0%调定的基准电压 ·100Hz 到400KHz 振荡器频率 ·分立的振荡器同步脚二.SG3525A 内部结构和工作特性(1)基准电压调整器基准电压调整器是输出为5.1V ,50mA ,有短路电流保护的电压调整器。
它供电给所有内部电路,同时又可作为外部基准参考电压。
若输入电压低于6V 时,可把15、16脚短接,这时5V 电压调整器不起作用。
(2)振荡器3525A 的振荡器,除C T 、R T 端外,增加了放电7、同步端3。
R T 阻值决定了内部恒流值对C T 充电,C T 的放电则由5、7端之间外接的电阻值R D 决定。
把充电和放电回路分开,有利于通过R D 来调节死区的时间,因此是重大改进。
这时3525A 的振荡频率可表为:)R 3R 7.0(C 1f D T T S +=(3.1)在3525A 中增加了同步端3专为外同步用,为多个3525A 的联用提供了方便。
信号脉宽调制 电路
信号脉宽调制 电路
PWM电路的输出信号可以通过滤波电路进行平滑处理,得到与输入信号Vin幅度相关的 模拟信号。PWM技术在电机控制、音频放大、LED调光等领域广泛应用,可以实现高效的模 拟信号调制和控制。
需要注意的是,上述示意图中的电路仅为基本的PWM电路,实际应用中可能会有更复杂 的电路结构和控制方式,以满足具体的需求和性能要求。
信号脉宽调制 电路
信号脉宽调制(Pulse Wi来自th Modulation,PWM)是一种常用的调制技术,用于在数 字电路中模拟模拟信号。它通过改变信号的脉冲宽度来表示模拟信号的幅度。
下面是一个基本的PWM电路工作原理: 1. 工作原理:
- 输入信号Vin为模拟信号,其幅度决定了输出信号的脉冲宽度。 - 通过R1和R2,将输入信号Vin与电源电压+Vcc分压,得到一个中间电压。 - 中间电压通过C1进行滤波,得到一个平滑的直流电压。 - 输出信号Out为一个方波,其脉冲宽度由输入信号Vin决定。当输入信号Vin为高电平 时,输出信号为高电平,脉冲宽度较宽;当输入信号Vin为低电平时,输出信号为低电平,脉 冲宽度较窄。
直流脉宽调制电路的工作原理
系统框图
8.1 直流脉宽调制电路的工作原理
8.2 脉宽调速系统的控制电路
8.3 PWM直流调速装置的系统分析 8.4 由PWM集成芯片组成的直流 脉宽调速系统实例
8
PWM直流脉宽调速系统
以大功率晶体管为基础组成的晶体管脉宽调制(PWM)直流调速系统, 近年来在直流传动中的应用逐渐成为主流。
8
PWM直流脉宽调速系统
图 8-1 脉冲宽度调制器结构原理图
第八章 PWM直流脉宽调速系统
8
PWM直流脉宽调速系统
与晶闸管相控式整流直流调速系统相比,直流脉宽调制系统有以下优点: 1)需用的功率元件少,线路简单,控制方便; 2)由于晶体管的开关频率高,仅靠电枢电感的滤波作用,就可获得脉动很小 的直流电流,电流连续容易,同时电动机的损耗和发热均较小; 3)系统频带宽,响应速度快,动态抗扰能力强; 4)低速性能好,稳速精度高,因而调速范围宽; 5)直流电源采用三相不可控整流,功率因数较高,对电网影响小; 6)主电路元件工作在开关状态,损耗小,装置效率高。
图8-10 UAA4002原理框图
第八章 PWM直流脉宽调速系统
8.3 PWM直流调速装置的系统分析
8.3.1 总体结构
对直流调速系统而言,一般动、静态性能较好的调速系统都采用双闭环控 制系统,因此,对直流脉宽调速系统,我们也将以双闭环为例予以介绍。直流 脉宽调速系统的原理如图8-11所示。
图8-11 直流脉宽调速系统原理图
第八章 PWM直流脉宽调速系统
8.2 脉宽调速系统的控制电路
8.2.3 基极驱动电路和保护电路
脉宽调制器输出的脉冲信号一般功率较小,不能用来直接驱动主电路的晶 体管,必须经过基极驱动电路的功率放大,以确保晶体管在开通时能迅速达 到饱和导通,关断时能迅速截止。
脉宽调制(PWM)控制电路
-----WORD格式--可编辑--专业资料-------完整版学习资料分享----脉宽调制(PWM)控制电路在一些变频控制系统中,要求在调频的同时调节电压,如在变频调速系统中要求逆变器输出电压随频率的改变而改变,以防止电动机出现过励磁或欠励磁现象;在中频感应加热炉的频率控制时也要求相应改变电压。
控制输出电压变化最理想的方法是脉宽调制。
脉宽调制控制电路(PWM)是通过调节控制电压脉冲的宽度和脉冲列的周期来控制输出电压和频率。
通过利用PWM信号触发可关断晶闸管(GT())或功率晶体管等开关器件的导通和关断,把直流电压变为电压脉冲列。
在逆变器中采用PWM控制,可以同时完成调频和调压的任务。
PWM广泛应用于开关电源、不间断电源、直流电机调速、交流电机变频调速和中频炉电源控制等领域。
4.5.1 脉宽调制控制电路的基本原理脉宽调制控制电路的基本构成和工作原理等叙述如下一、PWM 的基本电路基本的脉宽调制控制电路由电压—脉宽转换器和开关功率放大器组成.其组成原理如图4-5-1所示。
电压一脉宽转换器的核心是运算放大器(比较器)。
运算放大器A输入信号有调制信号Tu(其频率为主电路所需的开关调制频率)、负偏置电压Pu、控制电压信号Cu。
由于运算放大器为开环,因此,该比较器的输出仅取决于输入方向的两个极限位(取决于)(PTcuuu+-的正负),此输出经开关功率放大器输出到触发脉冲列逆变器。
如图4-5-1所示,调制电压Tu为锯齿波,当控制电压Cu>PCuu+时,运算放大器的输出为低电平,如图(b)所示;反之,当Cu<PCuu+时,运算放大器的输出为高电平,(如图(c)所示)。
图4-5-1 脉宽调制控制电路组成原理图图4-5-4 脉冲调制波形图。
脉宽调制控制电路
脉宽调制控制电路学生姓名:胡真 学号:20085042054工业现场控制当中,经常要用到一些可变的直流电压,而一般的直流电源其值是固定不变的,为了得到可变的直流电压,我们一般采用脉宽调制控制电路,也就是我们通常所说的PWM 控制电路。
该电路是利用半导体功率晶体管或晶闸管等开关器件的导通和关断,把直流电压变成电压脉冲列,控制电压脉冲的宽度或周期达到变压目的,或者控制电压脉冲宽度和脉冲列的周期以达到变压变频的目的的一种变换电路,多用在开关稳压电源、不间断电源(UPS)以及交直流电机调速等控制电路中。
1. 脉宽调制控制电路的工作原理图1 PWM 控制电路原理基本的脉宽调制控制电路包括电压-脉宽变换器和开关式功率放大器两部分,如图1所示。
运算放大器N 工作在开环状态,实现把连续电压信号变成脉冲电压信号。
二极管VD 在V1关断时为感性负载RL 提供释放电感储能形成续流回路。
N 的反相端输入三个信号:一个是锯齿波或三角波调制信号up ,其频率是主电路所需的开关调制频率,一般为1~4kHz ;另一个是控制电压uk ,其极性与大U u 0 u cD小随时可变; 再一个是负偏置电压u0,其作用是在Uc =0时通过Rp 的调节使比较器的输出电压Ub 为宽度相等的正负方波。
当Uc>0时,锯齿波过零的时间提前,结果在输出端得到正半波比负半波窄的调制方波。
当Uc<0时,锯齿波过零的时间后移,结果在输出端得到正半波比负半波宽的调制方波。
图2 PWM 控制负载的波形图PWM 信号加到主控电路的开关管V 的基极时,负载RL 两端电压uL 的波形如图2所示。
显然,通过PWM 控制改变开关管在一个开关周期T 内的导通时间τ的长短,就可实现对RL 两端平均电压UL 大小的控制。
2. 典型脉宽调制电路2.1. 对脉宽调制器的基本要求(1)死区要小,调宽脉冲的前后沿的斜率要大,也就是比较器的灵敏度要足够高。
(2)在设计实际电路时,应使其简单、可靠,且不受外界干扰。
单极性正弦波脉宽调制
三、PWM功率转换电路
根据调制脉冲的极性可分为单极式和双 极式调制两种; 根据载波信号和基准信号的频率之间的 关系,又可分为同步式和异步式两种。
(三) H型双极式可逆PWM控制电路
H型控制电路在控制方式上分双极式、 单极式和受限单极式三种。
E
ub1,ub4
O τ T t
ub1
V1
1
VD1
uP
uP
uP
O uP+uk+u
0
O t uP+uk+u
0
O t uP+uk+u
0
t
O
t
O
t
O
t
ub O τ
ub
ub
τ
T
a)
t
O
T
b)
tOΒιβλιοθήκη τ T c)t图9-9 锯齿波脉宽调制波形图
uk 1 1 T 2 u km
式中 ukm——控制信号uk的最大值。
uL E UL O
采用正弦波调制后的输出电压脉冲UAB具 有以下特点:在半个周期内,两边的脉 冲宽度小,中间的脉冲宽度大,各脉冲 的宽度基本上按正弦分布。它比单极性 直流脉宽调制的输出电压波形更接近于 正弦。
定义载波频率fp与调制波频率fk之比为载 波比N,即N=fp/fk。用三角波up幅值Upm 与正弦波uk幅值Ukm之比m=Upm/Ukm表示 调节脉冲宽度的能力,m愈大,uk幅值就 愈小,则等高不等宽脉冲宽度变窄,输 出电压减小。根据载波比的变化与否可 分为同步式调制控制与异步式调制控制。
(一)同步式调制控制
在同步式调制控制方式中,N为常数,即变频 时控制电路的三角载波频率与正弦调制波的频 率要同步变化,从而保持脉宽调制信号波形数 和相位不变。如果取N等于3的倍数,则同步 调制控制能保证逆变器输出波形的正、负半波 始终保持对称,对于三相逆变器能严格保证三 相输出波形间具有互差120°的对称关系。 但是,当输出频率很低时,由于相邻两脉冲间 的间距增大,谐波会显著增加,使负载电动机 产生较大的脉动转矩和较强的噪声,这是同步 式调制控制方式的主要缺点。
TL494脉宽调制控制电路
TL494脉宽调制控制电路TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。
TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。
其主要特性如下:主要特征集成了全部的脉宽调制电路。
片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。
内置误差放大器。
内止5V参考基准电压源。
可调整死区时间。
内置功率晶体管可提供500mA的驱动能力。
推或拉两种输出方式。
TL494外形图 TL494引脚图工作原理简述TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。
功率输出管Q1和Q2受控于或非门。
当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。
当控制信号增大,输出脉冲的宽度将减小。
参见图2。
TL494脉冲控制波形图控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。
死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。
当把死区时间控制输入端接上固定的电压(范围在0—3.3V之间)即能在输出脉冲上产生附加的死区时间。
脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V变化到3.5时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。
两个误差放大器具有从-0.3V到(Vcc-2.0)的共模输入范围,这可能从电源的输出电压和电流察觉得到。
误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相输入端进行“或”运算,正是这种电路结构,放大器只需最小的输出即可支配控制回路。
正弦脉宽调制(SPWM)控制
正弦脉宽调制(SPWM)控制2010-09-18 ylw527 + 关注献花(4)为了使变压变频器输出交流电压的波形近似为正弦波,使电动机的输出转矩平稳,从而获得优秀的工作性能,现代通用变压变频器中的逆变器都是由全控型电力电子开关器件构成,采取脉宽调制(pulse width modulation, 简称pwm ) 控制的,只有在全控器件尚未能及的特大容量时才采取晶闸管变频器。
应用最早而且作为pwm简称spwm)。
图3-1与正弦波等效的等宽不等幅矩形脉冲波序列3.1正弦脉宽调制原理一个连续函数是可以用无限多个离散函数迫近或替代的,因而可以设想用多个分歧幅值的矩形脉冲波来替代正弦波,如图3-1所示。
图中,在一个正弦半波上分割出多个等宽不等幅的波形(假设分出的波形数目n=12),如果每一个矩形波的面积都与相应时间段内正弦波的面积相等,则这一系列矩形波的合成面积就等于正弦波的面积,也即有等效的作用。
为了提高等效的精度,矩形波的个数越多越好,显然,矩形波的数目受到开关器件允许开关频率的限制。
在通用变频器采取的交-直-交变频装置中,前级整流器是不成控的,给逆变器供电的是直流电源,其幅值恒定。
从这点出发,设想把上述一系列等宽不等幅的矩形波用一系列等幅不等宽的矩形脉冲波来替代(见图3-2),只要每个脉冲波的面积都相等,也应该能实现与正弦波等效的功能,称作正弦脉宽调制(spwm)波形。
例如,把正弦半波分作n等分(在图3-2中,n=9),把每一等分的正弦曲线与横轴所包抄的面积都用一个与此面积相等的矩形脉冲来代替,矩形脉冲的幅值不变,各脉冲的中点与正弦波每一等分的中点相重合,这样就形成spwm波形。
同样,正弦波的负半周也可用相同的方法与一系列负脉冲波等效。
这种正弦波正、负半周分别用正、负脉冲等效的spwm波形称作单极式spwm。
图3-2spwm波形图3-3是spwm变压变频器主电路的原理图,图中vt1~vt6是逆变器的六个全控型功率开关器件,它们各有一个续流二极管(vd1~vd6)和它反并联接。
TL494脉宽调制控制电路
TL494脉宽调制控制电路TL494脉宽调制控制电路TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。
TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。
其主要特性如下:主要特征集成了全部的脉宽调制电路。
片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。
内置误差放大器。
内止5V参考基准电压源。
可调整死区时间。
内置功率晶体管可提供500mA的驱动能力。
推或拉两种输出方式。
TL494外形图 TL494引脚图工作原理简述TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。
功率输出管Q1和Q2受控于或非门。
当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。
当控制信号增大,输出脉冲的宽度将减小。
参见图2。
TL494脉冲控制波形图控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。
死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。
当把死区时间控制输入端接上固定的电压(范围在0—3.3V之间)即能在输出脉冲上产生附加的死区时间。
脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V 变化到3.5时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。
两个误差放大器具有从-0.3V到(Vcc-2.0)的共模输入范围,这可能从电源的输出电压和电流察觉得到。
误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相输入端进行“或”运算,正是这种电路结构,放大器只需最小的输出即可支配控制回路。
PWM(脉宽调制)的基本原理及其应用实例
PWM(脉宽调制)的基本原理及其应用实例脉宽调制(P ulse W idth M odulation)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。
模拟电路模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。
9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。
与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。
模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V, 5V}这一集合中取值。
模拟电压和电流可直接用来进行控制,如对汽车收音机的音量进行控制。
在简单的模拟收音机中,音量旋钮被连接到一个可变电阻。
拧动旋钮时,电阻值变大或变小;流经这个电阻的电流也随之增加或减少,从而改变了驱动扬声器的电流值,使音量相应变大或变小。
与收音机一样,模拟电路的输出与输入成线性比例。
尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。
其中一点就是,模拟电路容易随时间漂移,因而难以调节。
能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。
模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比。
模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。
数字控制通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。
此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。
简而言之,PWM是一种对模拟信号电平进行数字编码的方法。
通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。
PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。
电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脉宽调制控制电路学生姓名:胡真 学号:20085042054工业现场控制当中,经常要用到一些可变的直流电压,而一般的直流电源其值是固定不变的,为了得到可变的直流电压,我们一般采用脉宽调制控制电路,也就是我们通常所说的PWM 控制电路。
该电路是利用半导体功率晶体管或晶闸管等开关器件的导通和关断,把直流电压变成电压脉冲列,控制电压脉冲的宽度或周期达到变压目的,或者控制电压脉冲宽度和脉冲列的周期以达到变压变频的目的的一种变换电路,多用在开关稳压电源、不间断电源(UPS)以及交直流电机调速等控制电路中。
1. 脉宽调制控制电路的工作原理图1 PWM 控制电路原理基本的脉宽调制控制电路包括电压-脉宽变换器和开关式功率放大器两部分,如图1所示。
运算放大器N 工作在开环状态,实现把连续电压信号变成脉冲电压信号。
二极管VD 在V1关断时为感性负载RL 提供释放电感储能形成续流回路。
N 的反相端输入三个信号:一个是锯齿波或三角波调制信号up ,其频率是主电路所需的开关调制频率,一般为1~4kHz ;另一个是控制电压uk ,其极性与大U u 0 u cD小随时可变; 再一个是负偏置电压u0,其作用是在Uc =0时通过Rp 的调节使比较器的输出电压Ub 为宽度相等的正负方波。
当Uc>0时,锯齿波过零的时间提前,结果在输出端得到正半波比负半波窄的调制方波。
当Uc<0时,锯齿波过零的时间后移,结果在输出端得到正半波比负半波宽的调制方波。
图2 PWM 控制负载的波形图PWM 信号加到主控电路的开关管V 的基极时,负载RL 两端电压uL 的波形如图2所示。
显然,通过PWM 控制改变开关管在一个开关周期T 内的导通时间τ的长短,就可实现对RL 两端平均电压UL 大小的控制。
2. 典型脉宽调制电路2.1. 对脉宽调制器的基本要求(1)死区要小,调宽脉冲的前后沿的斜率要大,也就是比较器的灵敏度要足够高。
(2)在设计实际电路时,应使其简单、可靠,且不受外界干扰。
(3)考虑与功率转换电路的耦合问题。
tt2T 2T T TT +τT +τ ττ OO uu U U E E2.2.锯齿波脉宽调制器图3锯齿波脉冲宽度调制器图3所示的锯齿波脉宽调制器是由锯齿波发生器和电压比较器组成。
锯齿波发生器采用定时器NE555接成无稳态多谐振荡器。
电源电压+Ec通过电阻R1、R2和R3对电容器C2进行充电,当C2的端电压达到一定值时,定时器NE555内部的晶体管导通,C2上的电压经R3迅速放电,因而在NE555的引脚7输出锯齿波。
要保证输出近似为线性斜波,则Uc=kt=Q/C,电荷量为电流对时间的积分,则i 为常数,进而R2上的电压为常数。
为提高锯齿波的线性度和电路的温度稳定性,让NE555的引脚7经过电阻R4接射极输出器V1,并通过C3正反馈到R2的上端,使C2在充电期间,R2上的压降接近为常数,使输出近似为线性斜波。
电压比较器是由正反馈运算放大器N构成的。
采用正反馈是为了避免干扰,提高输出脉冲前后沿的陡度。
C3为自举电容,R1=R2=5Kohm,R4=1Kohm, R3=200ohm,f=1.44/[(R1+R2+R3)C2]。
射极输出器的特点:(1)电压放大倍数小于1,约等于1;(2)输入电阻高;(3)输出电阻低;(4)输出与输入同相。
射极输出器的应用则主要利用它具有输入电阻高和输出电阻低的特点。
(1)因输入电阻高,它常被用在多级放大电路的第一级,可以提高输入电阻,减轻信号源负担。
(2)因输出电阻低,它常被用在多级放大电路的末级,可以降低输出电阻,提高带负载能力。
(3)利用 ri 大、 ro 小以及 Au =1 的特点,也可将射极输出器放在放大电路的两级之间,起到阻抗匹配作用,这一级射极输出器称为缓冲级或中间隔离级。
2.3. 三角波脉宽调制器图4 三角波脉宽调制器电路脉宽调制器也常用三角波发生器代替锯齿波脉冲源,如图4所示。
后级电路为单极性脉冲宽度比较电路。
运算放大器N1组成基型迟滞比较器,N2组成反相积分器,它们共同组成正反馈回路,形成自激振荡,由N1输出方波,N2输出三角波。
基型迟滞比较器N1具有上行迟滞特性,它的基准电压为0V ,高、低输出电位由稳压管VS1、VS2的稳定电压决定。
当VS1、VS2的稳定电压值o1o2相等时,迟滞比较器对应的输入和输出参数都是大小相等、方向相反的。
N1输出的方波经电位器RP 分压后加到积分器N2的输入端,经过积分输出形成对称的三角波。
三角波电压up 与控制信号uk 被加到单极性脉冲宽度比较电路的输入端。
从图中可以看出,V1、V2的发射结和VD1、VD2形成一个死区,只有当uk-up 超过两个结压降Uab (1.2~1.4V)时,比较器才有输出,其输出波形如图5所示。
当uk=0,且三角波的幅值Um ≤Uab 时,u01=u02=0,见图5左;当uk>0时,V1、V3工作,u01、u02输出波形见图5中;当uk<0时,V2、V4工作,u01、u02输出波形见图5右。
该电路输出的脉冲信号是单极性的,因此用于单极(输出一种极性脉冲电压)模式PWM 功率转换电路控制。
图5单极性脉宽调制器输出波形2.4. 数字式脉宽调制器图6是利用PC 机接口控制实现脉宽调制的PWM 电路。
它由8位二进制计数器CD4520、8位数值比较器2×CD4585和并行接口芯片8255A 构成。
在时钟脉冲CP 作用下,计数器的8位输出(引脚3~6、11~14)从“0”开始逐次加“1”,当8位输出全为“1”(对应于十进制255)时,再来CP 脉冲又将从“0”开始。
显然,计数器输出数字斜坡信号,其周期为CP 脉冲周期的256倍,这种周期性数字斜波信号所起的作用与模拟PWM 方式中的锯齿波作用相同。
计数器输出的周期性数字斜坡信号称为B 组数字量。
8位二进制数值比较器由两片4位数值比较器CD4585构成。
数值比较器A 组数据来自8255A 端口A(PA0~PA7),故At tttOOOO u o1 u o1 u o1 u o2u o2 u o2 c -u P u c -u P c -u Pu u组数据是微机输出的数字控制信号,它相当于模拟PWM方式的控制电压。
只要计数器的输出值小于8255A端口A输出的数值,则第二级CD4585(图中上片)的“A>B”输出端保持高电平。
当比较器的两个输入值相等时,“A>B”端变为零,并且直到计数器溢出之前保持为低电平。
溢出后,“A>B”端恢复为高电平,并重复执行该过程。
图6计数比较式PWM电路3.PWM功率转换电路脉宽调制控制电路广泛应用于脉宽调速系统中,其调制控制方法很多。
下面以单相式电动机调速为例介绍几种控制变换电路。
PWM控制电路有可逆和不可逆之分。
可逆是指电动机可以正反两个方向旋转;不可逆是指电动机只能单向旋转。
对于可逆系统,分为单极式和双极式驱动两种。
即在一个PWM周期内,作用在电枢两端的脉冲电压是单一极性的;双极式驱动则是在一个PWM周期内,作用在电枢两端的脉冲电压是正负交替的。
3.1.简单的不可逆PWM控制电路图7 简单不可逆PWM 控制电路图7左所示为一个简单的不可逆PWM 控制变换电路原理图。
电源电压E 一般由交流电网经不控整流电路供电,也可以用蓄电池供电,VD1在V1关断时为电枢回路提供释放电感储能形成续流回路,C1的作用是消除电源在直流供电线路上的谐波电压对电路的干扰。
图7右为稳态时电枢端电压ua 、电枢平均电压Ua 和电枢电流ia 的波形。
可见,稳态电流ia 是脉动的,其平均值等于负载电流IM=Mfz/Sm 。
其中,Mfz 为包括电动机空载转矩在内的负载转矩,Sm 为电动机额定励磁下的转矩电流比。
电流波动会导致电机输出转矩的波动。
只有提高PWM 频率可以大大减小电流波动,而使转矩的波动减小。
3.2.制动不可逆PWM 控制电路图7 制动不可逆PWM 控制电路a)Bu u bu u tT τ E i a ,i u a , E U E简单不可逆PWM控制电路,由于电流方向不能反向,所以不能产生制动作用,使其性能受到影响。
为了产生制动作用,必须增加一个开关管,为反向电流提供通路。
下面介绍另外一种PWM控制电路——制动不可逆PWM控制电路。
图7左所示为具有制动状态的不可逆PWM控制电路。
它由两个功率晶体管V1、V2和两个二极管VD1、VD2组成。
V1是起调制作用的主控管,V2是辅助管。
来自脉宽调制电路的两个极性相反的脉冲电压ub1、ub2分别作用到V1、V2的基极。
控制电路工作在电动状态时的电压、电流波形如图7右所示。
电动状态:0≤t<τ,ub1为正,V1导通;ub2为负,V2截止,E加到电枢两端,流过其电流ia沿回路1从A点流向B点,电动机工作在电动状态;τ≤t<T,ub1为负,V1截止,切断了电动机的电源回路,单端输电感中的自感电动势使ia沿回路2经二极管VD2续流,电动机仍工作在电动状态。
虽然ub2为正,但VD2的正向压降给V2的集电极与发射极间加了反向电压,使V2不能导通。
只要ia在ub1为负期间不衰减到零,电动机则始终工作在电动状态,V1和VD2交替导通,而V2永远截止,此时电枢平均电压Ua>ED。
若电动机在惯性带动下工作时间较长,电枢电流ia在ub1为负的期间内会衰减到零时,则会出现Ua<ED,ia,即电动机处于发电运行状态的情况。
在τ≤t <T期间, V2在电动机转动反电动势ED和ub2为正的作用下饱和导通,电流ia经V2沿回路3闭合。
这时,外力作功,电流ia的方向由B到A与ED同向,产生能耗制动。
到t = T后, ub2为负, V2截止,这时因自感电动势和反电动势的共同作用,反向电流ia只能经VD1和电源E沿回路4闭合,实现回馈制动。
这种情况下, V2、VD1交替导通。
由于VD1导通时的管压降使V1反向加压,因此V1截止。
进入发电运行状态后,电枢电流变化如图7-9c所示。
反向制动作用使电动机转速下降,直到在ub1为正时反向电流ia衰减到零, V1才开始饱和导通,电动机又进入电动状态工作。
此外,由于某种原因,或者电动机工作在轻载情况下,负载电流很小时,电动和制动状态交替出现,电流ia的变化曲线近似如图7-9d所示,在一个开关周期之内, V1、VD2、V2、VD1轮流导通。
四条电流闭合回路1、2、3、4交替工作。
在τ≤t <T期间,续流电流ia沿回路2很快降到零(t=t1时刻),由于VD2两端被切断, V2便导通,反电动势经V2沿回路3形成反向电流。
在T≤t <t2期间,回馈制动电流沿回路4经VD1续流,到t=t2时电流衰减到零,使V1导通,电枢电流再次改变方向沿回路1流通。