铁碳相图分析

合集下载

铁碳合金相图分析

铁碳合金相图分析

1点以上
1~2点
2~3点
图3-3 共析钢结晶过程示意图
3点~室温
共析钢的室温组织全部为P,呈层片状,其室温下的显微组织如图3-4 所示。
图3-4 共析钢室温下的显微组织
(二)亚共析钢的结晶过程 图 3-2 中的合金Ⅱ为 wC 0.45% 的亚共析钢,其结晶过程如图 3-5 所示。
1点以上
1~2点
A3 线 合金冷却时从奥氏体中开始析出铁素体的析出线
三、铁碳合金的结晶过程
图3-2 简化后的Fe-Fe3C相图
根据碳的质量分数和室温显微组织不同,铁碳合金可以分为工业纯 铁、钢和白口铸铁三大类,具体如下。
(一)共析钢的结晶过程 在图 3-2 中,合金Ⅰ为 wC 0.77% 的共析钢,其结晶过程如图 3-3 所示。
图3-12 亚共晶白口铸铁室温下的显微组织
(六)过共晶白口铸铁的结晶过程 图 3-2 中的合金Ⅵ为 wC 5.0% 的过共晶白口铸铁,其结晶过程如图 3-13
所示。
1点以上
1~2点
2~3点
图3-13 过共晶白口铸铁的结晶示意图
3点~室温
过共晶白口铸铁室温下的显微组织如图 3-14 所示,图中白色条状为 Fe3CⅠ , 黑白 相间的 基 体 为 Ld′ 。所 有过共 晶 白口 铸铁 的 室温 组织 均 为 Ld Fe3CⅠ,只是随着碳含量的增加, Fe3CⅠ量增加。
0.09
碳在 δ-Fe 中的最大溶解度
J
1 495
K
727
0.17 6.69
包晶点 LB δH
A 1495℃ J
Fe3C 的成分
符号 N P S Q
温度 T/℃ 1 394 727
727 室温

Fe-Fe3C相图分析

Fe-Fe3C相图分析

上一级
(1)固溶度线 ) ES:碳在奥氏体中的溶解度随温度的变化线 : PQ:碳在铁素体中的溶解度随温度的变化线 : (2)同素异构转变线 NH 和 NJ,GS 和 GP ,
3、相图中的相区 、
单相区: 、 单相区: L、α、γ、δ、 Fe3 C 两相区:L + δ, L + Fe3C,L + γ , δ + γ , γ + α 两相区: , γ + Fe3C ,α + Fe3 C 注意:根据相图规则,两个单相区之间必然夹一个 注意:根据相图规则,两个单相区之间必然夹一个 两相区,两相区的两个相就由这两个单相区的相组 两相区,两相区的两个相就由这两个单相区的相组 成。
二、恒温转变产物
共晶转变产物: 与 的机械混合物( 共晶转变产物 : γ与 Fe3C的机械混合物 ( γ+Fe3C) 称为 的机械混合物 ) 莱氏体( ) 莱氏体(Ld) 共析转变产物:铁素体(F)与渗碳体 与渗碳体(Fe 的机械混合物 共析转变产物:铁素体 与渗碳体 3C)的机械混合物 称为珠光体( ) 称为珠光体(P) 包晶转变产物:单相奥氏体( 包晶转变产物:单相奥氏体( γJ )
上一级
上一级
(2)同素异构转变 ) δ −Fe (b.c.c)→ γ−Fe (f.c.c) → γ −Fe(f.c.c) → α−Fe (b.c.c) ( (3)析出转变:从一个固相中析出另一个固相的转变 )析出转变: γ ⇒Fe3CII ; α⇒ Fe3CIII (3)恒温转变 ) a)共晶转变(ECF线):由一定成分的液相在恒温下 由一定成分的液相 )共晶转变( 线 由一定成分的液相在恒温下 同时转变成两个一定成分的固相的转变。 同时转变成两个一定成分的固相的转变。 两个一定成分 的转变 Lc ⇒ γ Ε+ Fe3C b)共析转变(PSK线):在恒温下由一个固定成分的 )共析转变( 线):在恒温下由一个固定成分的 在恒温下由 固相同时生成两个固定成分的新固相的转变 同时生成两个固定成分的新固相的转变。 固相同时生成两个固定成分的新固相的转变。 γs ⇒ αP +Fe3C

铁碳合金相图分析

铁碳合金相图分析

成P点成分的铁素体和渗碳体,即γS=αP+Fe3C。

所得到的共析体αP+Fe3C称为珠光体,用P表示。
3. 铁碳合金的平衡结晶和组织转变
1)铁碳合金的分类 工业纯铁:碳含量小于0.022%的铁碳合金称为工业纯铁, 其特点是在冷却过程中不发生共析反应。
钢:碳含量在0.022~2.14%之间的铁碳合金称为钢,其特 点是结晶过程不发生共晶反应。根据室温组织的不同,钢又 分为:
是2.25g/cm3。

碳的原子半径为0.34nm。碳有两种存在
形式:石墨和金刚石,石墨较为广泛。

石墨是由碳原子层组成,层内原子呈正六
边形。层内原子由共价键结合,原子间距为
0.142nm。层间原子由弱金属键结合,间距为
0.34nm。

石墨的晶体结构属于六方晶系,其中a=
0.46nm,c=0.670nm,每个晶胞含有四个原子。
PK
6.690.022
亚共析钢的室温平衡组织是先共析铁素体和珠光体。
亚共析钢中的先共析铁素体可能呈现不同的形态:先共 析铁素体在奥氏体晶界上形核后,可形成沿原奥氏体晶界的 网状先共析铁素体;也可沿奥氏体晶内某特定晶面生长成相 互平行的片状,即魏氏组织。
❖ 过共析钢
d1 d2
d3 P S d4
当合金从液相开始冷却:
%=c5S100% 0.76- 0.3 100%62.2%
PS
0.760.022
P%Pc5100%0.30.022100%37.8%
PS
0.760.022
此时,合金中α与Fe3C两相的相对量为:
%=c5K100% 6.69- 0.3100%95.8%
PK
6.690.022

详解铁碳相图

详解铁碳相图

详解铁碳相图(注:在解读上面铁碳相图之前,我们要明白纯铁在不同的温度下会发生同素异晶转变,这个对于我们解读上面相图很有用。

)1:ACD线:ACD线上面完全是液相,没有固相产生。

在温度1538℃时候,此时的液态铁的晶格类型为δ-Fe,如果此时的碳溶解在δ-Fe的晶格间隙中,那么就会产生一种新的相,即为铁素体相,为了区别碳溶解在α-Fe中的铁素体相,分别给它们前面加上一个δ或者α,即如果是碳溶解到晶格类型为δ-Fe的间隙中形成间隙固溶体相的就命名为δ-铁素体或直接写δ,如果是溶解到晶格类型为α-Fe的间隙中形成间隙固溶体相的就命名为α-铁素体或α或F。

伴随着温度的下降,组元----温度----成分三者是这个铁碳相图的核心理念。

要看懂这个相图,弄明白组元----温度----成分关系,就能读懂这个相图。

从图中你可以看见,即便同一个温度,不同的碳含量,它的成分是不一样的,这就是为什么要提到组元----温度----成分这三者关系的原因。

而铁碳相图会一直要用到这三者的关系来加以理解。

重点:铁素体就是碳溶解到δ-Fe和α-Fe的晶格间隙而形成的一种间隙固溶体相。

2:AEC区域和CDF区域AEC和CDF区域有液相也有固相,但是,它们的成分是不一样的,AEC区域为什么是奥氏体+液相呢?为什么CDF区域是渗碳体+液相呢?首先,AEC区域之所以是奥氏体+液相,那是因为在1500℃---1148℃时候δ-Fe会转变成γ-Fe(转变温度为1394℃),也就是说,当温度从1394℃再次冷却到1148℃的时候,这时候δ-Fe已经转变成了γ-Fe,此时的碳就会溶解到γ-Fe晶格中形成一种新的间隙固溶体相,即为奥氏体,由于受到温度原因,液相并没有全部结晶,所以在AEC区域中的成分就是奥氏体—液相。

很有意思的如果碳含量达不到析出渗碳体的碳含量要求的话,液相是不会析出渗碳体,那么从图中可以看出,要从液相中析出渗碳体的的碳含量要求是必须大于或等于3.4%,即为图中的点C,而这个点也有意义的,它就是共晶点。

铁碳合金相图分析

铁碳合金相图分析

第四章铁碳合金第一节铁碳合金的相结构与性能一、纯铁的同素异晶转变δ-Fe→γ-Fe→α-Fe体心面心体心同素异晶转变——固态下,一种元素的晶体结构随温度发生变化的现象.特点:是形核与长大的过程重结晶将导致体积变化产生内应力通过热处理改变其组织、结构→ 性能二、铁碳合金的基本相基本相定义力学性能溶碳量铁素体 F碳在α-Fe中的间隙固溶体强度,硬度低,塑性,韧性好最大%奥氏体 A碳在γ-Fe中的间隙固溶体硬度低,塑性好最大%渗碳体Fe3C Fe与C的金属化合物硬而脆800HBW,δ↑=αk=0%第二节铁碳合金相图一、相图分析两组元:Fe、 Fe3C上半部分图形二元共晶相图共晶转变:1148℃ 727℃→ + Fe3C →P + Fe3C莱氏体Ld Ld′2、下半部分图形共析相图两个基本相:F、Fe3C共析转变:727℃→ + Fe3C珠光体P二、典型合金结晶过程分类:三条重要的特性曲线① GS线---又称为A3线它是在冷却过程中由奥氏体析出铁素体的开始线或者说在加热过程中铁素体溶入奥氏体的终了线.② ES线---是碳在奥氏体中的溶解度曲线当温度低于此曲线时就要从奥氏体中析出次生渗碳体通常称之为二次渗碳体因此该曲线又是二次渗碳体的开始析出线.也叫Acm线.③ PQ线---是碳在铁素体中的溶解度曲线.铁素体中的最大溶碳量于727oC时达到最大值%.随着温度的降低铁素体中的溶碳量逐渐减少在300oC以下溶碳量小于%.因此当铁素体从727oC冷却下来时要从铁素体中析出渗碳体称之为三次渗碳体记为Fe3CⅢ.工业纯铁<%C钢——亚共析钢、共析钢%C、过共析钢白口铸铁——亚共晶白口铸铁、共晶白口铸铁、过共晶白口铸铁L → L+A → A → PF+Fe3CL → L+A → A → A+F →P+FL → L+A → A → A+ Fe3CⅡ→P+ Fe3CⅡ4、共晶白口铸铁L → LdA+Fe3C →LdA+Fe3C+ Fe3CⅡ → Ld′P+Fe3C+Fe3CⅡ5、亚共晶白口铸铁L → LdA+Fe3C + A →Ld+A+ Fe3CⅡ → Ld′+P+ Fe3CⅡ6、过共晶白口铸铁L → LdA+Fe3C + Fe3C → Ld + Fe3C→ Ld′+ Fe3C三、铁碳合金的成分、组织、性能之间的关系1、含碳量对铁碳合金平衡组织的影响2、含碳量对铁碳合金力学性能的影响四、铁碳合金相图的应用1、选材方面的应用2、在铸造、锻造和焊接方面的应用3、在热处理方面的应用第三节碳钢非合金钢碳钢是指ωc≤%,并含有少量锰、硅、磷、硫等杂质元素的铁碳合金.铁碳合金具有良好的力学性能和工艺性能,且价格低廉,故广泛应用.一、杂质元素对碳钢性能的影响1、锰Mn + FeO → MnO + Fe 脱氧Mn+ S → MnS 炉渣去硫Mn溶入铁素体→ 固溶强化Mn溶入Fe3C → 形成合金渗碳体Fe, Mn3C Mn <%,对性能影响不大2、硅Si + FeO → SiO2 + Fe 脱氧Si溶入铁素体→ 固溶强化Si<%,对性能影响不大3、硫钢中S+Fe → FeS.FeS与Fe形成低熔点的共晶体985℃分布在晶界上,当钢在热加工1000~1200℃时,共晶体熔化,导致开裂——热脆消除热脆:Mn+ S → MnS熔点高1620℃并有一定塑性硫是一种有害元素4、磷钢中磷全部溶于铁素体,产生强烈固溶强化,低温时更加严重——冷脆磷是一种有害元素二、碳钢的分类按含碳量分:低碳钢~、中碳钢~、高碳钢~%按质量分类:普通碳钢、优质碳钢、特殊碳钢S、P含量按用途分类:碳素结构钢、碳素工具钢三、碳钢的牌号、性能和应用1、碳素结构钢GB700-88 Q195, Q215, Q235, Q255, Q275五大类,20个钢种GB700-79 A1, A2, A3, A4, A5Q235-AF表示:σs≥235Mpa,质量等级为A,沸腾钢.应用:Q195, Q215——塑性高,用于冲压件、铆钉、型钢等; Q235——强度较高,用于轴、拉杆、连杆等;Q255, Q275——强度更高,用于轧辊、主轴、吊钩等.2、优质碳素结构钢优质碳素结构钢:优质钢、高级优质钢A、特级优质钢E 牌号:08F ——冲压件;45——齿轮、连杆、轴类;65 Mn——弹簧、弹簧垫圈、轧辊等.3、碳素工具钢牌号:T8、T8A——木工工具;T10、T10A——手锯锯条、钻头、丝锥、冷冲模;T12、T12A——锉刀、绞刀、量具.4、铸钢表示方法:用力学性能表示ZG200-400σs≥200Mpa,σb≥400Mpa用化学成分表示ZG30%C用于制作形状复杂且强度和韧性要求较高的零件,如轧钢机架、缸体、制动轮、曲轴等.. 状态图中的特性点Fe- Fe3C相图中各点的温度、浓度及其含义Fe-Fe3C 相图中各特性点的符号及意义二. 状态图中的特性线Fe-C合金相图中的特性线三. 状态图中的相区在Fe-Fe3C相图中共有五个单相区、七个两相区和三个三相区.五个单相区是:ABCD以上——液相区LAHNA——δ固溶体区δα、δNJESGN——奥氏体区γ或AGPQG——铁素体区α或FDFKL——渗碳体区Fe3C或Cm两相区是:L+δ、L+γ、L+ Fe3C、δ+γ、α+γ、γ+ Fe3C和α+ Fe3C.三个三相区是:HJB线、ECF线和PSK线.1. 工业纯铁含C≤%——其显微组织为铁素体+Fe3CⅢ.2. 钢含C在~%——其特点是高温组织为单相奥氏体具有良好的塑性因而适于锻造.根据室温组织的不同钢又可分为三类:① 亚共析钢< C <%——其组织是铁素体+珠光体② 共析钢C=%——其组织为珠光体③ 过共析钢< C≤%——其组织为珠光体+渗碳体3. 铁在1538ºC结晶为δ-FeX射线结构分析表明它具有体心立方晶格.当温度继续冷却至1394ºC时δ-Fe转变为面心立方晶格的γ- Fe通常把δ-Fe←→γ- Fe的转变称为A4转变转变的平衡临界点称为A4点.当温度继续降至912ºC时面心立方晶格的γ- Fe又转变为体心立方晶格的α-Fe把γ- Fe←→α-Fe的转变称为A3转变转变的平衡临界点称为A3点.4. 三条重要的特性曲线① GS线---又称为A3线它是在冷却过程中由奥氏体析出铁素体的开始线或者说在加热过程中铁素体溶入奥氏体的终了线.② ES线---是碳在奥氏体中的溶解度曲线当温度低于此曲线时就要从奥氏体中析出次生渗碳体通常称之为二次渗碳体因此该曲线又是二次渗碳体的开始析出线.也叫Acm线.③ PQ线---是碳在铁素体中的溶解度曲线.铁素体中的最大溶碳量于727ºC时达到最大值%.随着温度的降低铁素体中的溶碳量逐渐减少在300ºC以下溶碳量小于%.因此当铁素体从727ºC冷却下来时要从铁素体中析出渗碳体称之为三次渗碳体记为Fe3CⅢ.四. 名词1. 铁素体:是碳在α-Fe中形成的固溶体常用“δ”或“F”表示.铁素体在770ºC以上具有顺磁性在770ºC以下时呈铁磁性.通常把这种磁性转变称为A2转变把磁性转变温度称为铁的居里点.碳溶于δ-Fe中形成的固溶体叫δ铁素体在1495ºC时其最大溶碳量为%.2. 顺磁性:就是在顺磁物质中分子具有固有磁矩无外磁场时由于热运动各分子磁矩的取向无规宏观上不显示磁性;在外磁场作用下各分子磁矩在一定程度上沿外场排列起来宏观上呈现磁性这种性质称为顺磁性.3. 铁磁性:就是磁性很强的物质在未磁化时宏观上不显示出磁性但在外加磁场后将会显示很强的宏观磁性.4. 奥氏体:是碳溶于γ-Fe中所形成的固溶体用“γ”或“A”表示.奥氏体只有顺磁性而不呈现铁磁性.碳在γ-Fe 中是有限溶解其最大溶解度为%1148ºC.5. 渗碳体:是铁与碳的稳定化合物Fe3C 用“C”表示.其含碳量为%.由于碳在α-Fe中的溶解度很小所以在常温下碳在铁碳合金中主要是以渗碳体的形式存在.渗碳体于低温下具有一定的铁磁性但是在230ºC以上铁磁性就消失了所以230ºC是渗碳体的磁性转变温度称为A0转变.渗碳体的熔点为1227ºC.它不能单独存在总是与铁素体混合在一起.在钢中它主要是强化相它的形态、大小及分布对钢的性能有很大的影响.另外渗碳体在一定的条件下可以分解形成石墨状的自由碳.即Fe3C——→3Fe+C石墨6. 珠光体:是由铁素体和渗碳体所组成的机械混合物常用“P”表示.珠光体存在于727ºC以下至室温.五. 铁碳合金相图的应用一在选材方面的应用若需要塑性、韧性高的材料应选用低碳钢含碳为~%;需要强度、塑性及韧性都较好的材料应选用中碳钢含碳为~%;当要求硬度高、耐磨性好的材料时应选用高碳钢含碳为~%.一般低碳钢和中碳钢主要用来制造机器零件或建筑结构.高碳钢主要用来制造各种工具.二在制定热加工工艺方面的应用铁碳相图总结了不同成分的合金在缓慢加热和冷却时组织转变的规律即组织随温度变化的规律这就为制定热加工及热处理工艺提供了依据.钢处于奥氏体状态时强度较低、塑性较好便于塑性变形.因此钢材在进行锻造、热轧时都要把坯料加热到奥氏体状态.各种热处理工艺与状态图也有密切的关系退火、正火、淬火温度的选择都得参考铁碳相图.六. 应用铁碳相图应注意的几个问题1. 铁碳相图不能说明快速加热或冷却时铁碳合金组织的变化规律.2. 可参考铁碳相图来分析快速加热或冷却的问题但还应借助于其他理论知识.3. 相图告诉我们铁碳合金可能进行的相变但不能看出相变过程所经过的时间.相图反映的是平衡的概念而不是组织的概念.铁碳相图是由极纯的铁和碳配制的合金测定的而实际的钢铁材料中还含有或有意加入许多其他元素.其中有些元素对临界点和相的成分都有很大的影响此时必须借助于三元或多元相图来分析和研究.第二部分晶体结构一. 金属键1. 金属键:金属原子依靠运动于其间的公有化的自由电子的静电作用而结合起来这种结合方式叫金属键.2. 在固态金属及合金中众多的原子依靠金属键牢固的结合在一起.二. 晶体结构1. 晶体:凡是原子或离子、分子在三维空间按一定规律呈周期性排列的固体均是晶体.液态金属的原子排列无周期规则性不为晶体.2. 晶体结构:是指晶体中原子或离子、分子、原子集团的具体排列情况也就是晶体中这些质点原子或离子、分子、原子集团在三维空间有规律的周期性的重复排列方式.3. 三种典型的金属晶体结构a. 体心立方晶格:晶胞的三个棱边长度相等三个轴间夹角均为90º构成立方体.除了在晶胞的八个角上各有一个原子外在立方体的中心还有一个原子.b. 面心立方晶格:在晶胞的八个角上各有一个原子构成立方体在立方体6个面的中心各有一个原子.c. 密排六方晶格:在晶胞的12个角上各有一个原子构成六方柱体上底面和下底面的中心各有一个原子晶胞内还有3个原子.三. 固溶体1. 固溶体:合金的组元以不同的比例相互混合混合后形成的固相的晶体结构与组成合金的某一组元的相同这种相就称为固溶体.2. 置换固溶体:是指溶质原子位于溶剂晶格的某些结点位置所形成固溶体.3. 间隙固溶体:是指溶质原子不是占据溶剂晶格的正常结点位置而是填入溶剂原子间的一些间隙中.4. 金属化合物:是合金组元间发生相互作用而形成的一种新相又称为中间相其晶格类型和性能均不同于任一组元一般可以用分子式大致表示其组成.除了固溶体外合金中另一类相是金属化合物.四. 金属的结晶1. 金属的结晶:金属由液态转变为固态的过程称为凝固由于凝固后的固态金属通常是晶体所以又将这一转变过程称之为结晶.2. 杠杆定律的应用.在合金的结晶过程中合金中各个相的成分以及它们的相对含量都在发生着变化.为了了解相的成分及其相对含量就需要应用杠杆定律.对于二元合金两相共存时两个平衡相的成分固定不变.五. 同素异构转变当外部条件如温度和压强改变时金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变或同素异构转变.六. 晶体的各向异性各向异性是晶体的一个重要特性是区别于非晶体的一个重要标志.晶体具有各向异性的原因是由于在不同的晶向上的原子紧密程度不同所致.原子的紧密程度不同意味着原子之间的距离不同从而导致原子之间的结合力不同使晶体在不同晶向上的物理、化学和机械性能不同.第三部分元素的影响1. 锰和硅的影响:锰和硅是炼钢过程中必须加入的脱氧剂用以去除溶于钢液中的氧.它还可以把钢液中的F eO还原成铁并生成MnO和SiO2.脱氧剂中的锰和硅总会有一部分溶于钢液中冷至室温后即溶于铁素体中提高铁素体的强度.锰对钢的机械性能有良好的影响它能提高钢的强度和硬度当含锰量低于%时可以稍微提高或不降低钢的塑性和韧性.碳钢中的含硅量一般小于%它也是钢中的有益元素.硅溶于铁素体后有很强的固溶强化作用显著的提高了钢的强度和硬度但含量较高时将使钢的塑性和韧性下降.2. 硫的影响:硫是钢中的有害元素.硫只能溶于钢液中在固态中几乎不能溶解而是以FeS夹杂的形式存在于固态钢中.硫的最大危害是引起钢在热加工时开裂这种现象称为热脆.防止热脆的方法是往钢中加入适量的锰形成MnS可以避免产生热脆.硫能提高钢的切削加工性能.在易切削钢中含硫量通常为%~%同时含锰量为%~%.3. 磷的影响:一般来说磷是有害的杂质元素.无论是高温还是低温磷在铁中具有较大的溶解度所以钢中的磷都固溶于铁中.磷具有很强的固溶强化作用它使钢的强度、硬度显著提高但剧烈地降低钢的韧性尤其是低温韧性称为冷脆磷的有害影响主要就在于此.4. 氮的影响:一般认为钢中的氮是有害元素但是氮作为钢中合金元素的应用已日益受到重视.5. 氢的影响:氢对钢的危害是很大的.一是引起氢脆.二是导致钢材内部产生大量细微裂纹缺陷——白点在钢材纵断面上呈光滑的银白色的斑点在酸洗后的横断面上则成较多的发丝壮裂纹.存在白点时钢材的延伸率显著下降尤其是断面收缩率和冲击韧性降低的更多有时可接近于零值.因此具有白点的钢是不能用的.6. 氧及其它非金属夹杂物的影响:氧在钢中的溶解度非常小几乎全部以氧化物夹杂的形式存在于钢中如FeO、AL2O3、SiO2、MnO、CaO、MgO等.除此之外钢中往往存在FeS、MnS、硅酸盐、氮化物及磷化物等.这些非金属夹杂物破坏了钢的基体的连续性在静载荷和动载荷的作用下往往成为裂纹的起点.它们的性质、大小、数量及分布状态不同程度地影响着钢的各种性能尤其是对钢的塑性、韧性、疲劳强度和抗腐蚀性能等危害很大.因此对非金属夹杂物应严加控制.第四部分热处理一. 热处理的作用1. 热处理:是将钢在固态下加热到预定的温度保温一定的时间然后以预定的方式冷却下来的一种热加工工艺.钢中组织转变的规律是热处理的理论基础称为热处理原理.热处理原理包括钢的加热转变、珠光体转变、马氏体转变、贝氏体转变和回火转变.在临界温度以下处于不稳定状态的奥氏体称为过冷奥氏体.钢在加热和冷却时临界温度的意义如下:Ac1——加热时珠光体向奥氏体转变的开始温度;Ar1——冷却时奥氏体向珠光体转变的开始温度;Ac3——加热时先共析铁素体全部转变为奥氏体的终了温度;Ar3——冷却时奥氏体开始析出先共析铁素体的温度;Accm——加热时二次渗碳体全部溶入奥氏体的终了温度;Arcm——冷却时奥氏体开始析出二次渗碳体的温度.通常把加热时的临界温度加注下标“C”而把冷却时的临界温度加注下标“r”.2. 珠光体转变——是过冷奥氏体在临界温度A1以下比较高的温度范围内进行的转变.珠光体转变是单相奥氏体分解为铁素体和渗碳体两个新相的机械混合物的相变过程因此珠光体转变必然发生碳的重新分布和铁的晶格改组.由于相变在较高温度下发生铁、碳原子都能进行扩散所以珠光体转变是典型的扩散型相变.无论珠光体、索氏体还是屈氏体都属于珠光体类型的组织.它们的本质是相同的都是铁素体和渗碳体组成的片层相间的机械混合物.它们之间的差别只是片层间距的大小不同而已.珠光体的片层间距:450~150 nm形成于A1~650℃温度范围内.索氏体的片层间距:150~80nm形成于650~600℃温度范围内.屈氏体的片层间距:80~30nm形成于600~550℃温度范围内.3. 马氏体转变——是指钢从奥氏体化状态快速冷却抑制其扩散性分解在较低温度下低于Ms点发生的转变.马氏体转变属于低温转变.钢中马氏体是碳在α-Fe中的过饱和固溶体具有很高的强度和硬度.由于马氏体转变发生在较低温度下此时铁原子和碳原子都不能进行扩散马氏体转变过程中的Fe的晶格改组是通过切变方式完成的因此马氏体转变是典型的非扩散型相变.二. 热处理工艺1. 退火和正火:将金属及其合金加热保温和冷却使其组织结构达到或接近平衡状态的热处理工艺称为退火或回火.A. 低温退火去应力退火:是指钢材及各类合金为消除内应力而施行的退火.加热温度< A1 碳钢及低合金钢550~650℃高合金工具钢600~750℃B. 再结晶退火:加热温度> Tr Tr+150~250℃C. 扩散退火:是指为了改善和消除在冶金过程中形成的成分不均匀性而实行的退火.1 通过扩散退火可以使在高温下固溶于钢中的有害气体主要是氢脱溶析出这时称为脱氢退火.2 均匀化退火的任务在于消除枝晶成分偏析改善某些可以溶入固溶体夹杂物如硫化物的状态从而使钢的组织与性能趋与均一.扩散退火的加热温度> Ac3 Acm 在固相线以下高温加热同时也要考虑不使奥氏体晶粒过于长大.碳钢1100~1200℃D. 完全退火:是指将充分奥氏体化的钢缓慢冷却而完成重结晶过程的退火.加热温度 Ac3+30~50℃E. 等温退火:是指将奥氏体用较快的速度冷却到临界点以下较高温度范围进行珠光体等温转变的退火. 加热温度 Ac3~Ac12. 正火:是指将碳合金加热到临界点Ac3以上适当温度并保持一定时间然后在空气中冷却的工艺方法.过共析钢正火后可消除网状碳化物而低碳钢正火后将显著改善钢的切削加工性.所有的钢铁材料通过正火均可使锻件过热晶粒细化和消除内应力.正火比退火的冷却速度快正火后的组织比退火后的组织细.3. 淬火与回火1. 淬火:是指将钢通过加热、保温和大于临界淬火速度Vc的冷却是过冷奥氏体转变为马氏体或贝氏体组织的工艺方法.2. 钢的淬透性:就是钢在淬火时能够获得马氏体的能力它是钢材本身固有的一个属性.3. 当淬火应力在工件内超过材料的强度极限时在应力集中处将导致开裂.4. 回火:本质上是淬火马氏体分解以及碳化物析出、聚集长大的过程.它与淬火不同点是由非平衡态向平衡态稳定态的转变.4. 化学热处理:是将工件放在一定的活性介质中加热使非金属或金属元素扩散到工件表层中、改变表面化学成分的热处理工艺.如:渗入碳、氮、硼、钒、铌、铬、硅等元素第五部分宏观检验一. 宏观检验主要可分为低倍组织及缺陷酸蚀检验、断口检验、硫印检验等.二. 酸蚀试验在宏观检验领域中酸蚀检验是最常用的检验金属材料缺陷、评定钢铁产品质量的方法.如果一批钢材在酸蚀中显示出不允许存在的缺陷或超过允许程度的缺陷时其它检验可不必进行.1. 酸蚀试验:是用酸蚀方法来显示金属或合金的不均匀性.1 热酸浸蚀实验方法2 冷酸浸蚀实验方法3 电解腐蚀实验方法2. 酸蚀试验所检验的常见组织和缺陷A:偏析:是钢中化学成分不均匀现象的总称.在酸蚀面上偏析若是易蚀物质和气体夹杂物析集的结果将呈现出颜色深暗、形状不规则而略凹陷、底部平坦的斑点;若是抗蚀性较强元素析集的结果则呈颜色浅淡、形状不规则、比较光滑微凸的斑点.根据偏析的位置和形状可分为中心偏析、锭型偏析或称方框偏析、点状偏析、白斑和树枝状组织.中心偏析:出现在试面中心部位形状不规则的深暗色斑点.锭型偏析:具有原钢锭横截面形状的、集中在一条宽窄不同的闭合带上的深暗色斑点.B. 疏松:这种缺陷是钢凝固过程中由于晶间部分低熔点物最后凝固收缩和放出气体而产生的孔隙.在横向酸蚀面上这种孔隙一般呈不规则多边形、底部尖狭的凹坑这种凹坑多出现在偏析斑点之内.根据疏松分布的情况可分为中心疏松和一般疏松.C. 夹杂:宏观夹杂可分为外来金属、外来非金属和翻皮三大类.D. 缩孔:由于最后凝固的钢液凝固收缩后得不到填充而遗留下来的宏观孔穴.E. 气泡:由于钢锭浇注凝固过程中所产生和放出气体所造成的.一般可分为皮下气泡和内部气泡两类.a. 皮下气泡: 由于浇注时钢锭模涂料中的水分和钢液发生作用而产生的气体.b. 内部气泡:又可分为蜂窝气泡和针孔气泡.蜂窝气泡是由于钢液去气不良所导致一般为不允许存在的缺陷存在钢坯内部在试面上较易浸蚀象排列有规律的点状偏析但颜色更深暗些;针孔是因为较深的皮下气泡在锻轧过程中未焊合而被延伸成细管状在横试面上呈孤立的针状小孔.白点:也称发裂是由于氢气脱溶析集到疏松孔中产生巨大压力和钢相变时所产生的局部内应力联合造成的细小裂缝.在横试面上呈细短裂缝三. 硫印检验是一种定性检验是用来直接检验硫元素并间接检验其它元素在钢中偏析或分布情况的操作.硫印检验时先用5~10%的稀硫酸水溶液浸泡相纸5分钟左右后取出去除多余的硫酸溶液把湿润的相纸感光面贴到受检表面上应确保相纸与试样面的紧密接触不能发生任何滑动排除相纸与试样面的气泡和液滴.其化学反应大致为:MnS+H2SO4→MnSO4+H2S↑FeS+H2SO4→FeSO4+H2S↑H2S+2AgBr→2HBr+Ag2S↓几秒到几分钟后将从试面上揭下的相纸在水中冲洗约10分钟然后放入定影液中定影10分钟以上取出后在流动水中冲洗30分钟以上干燥后既成.四. 断口检验1. 脆性断口:通常工程上把没有明显塑性变形的断裂统称为脆性断裂发生脆性断裂的断口为脆性断口.脆性断口也称晶状断口是指出现大量晶界破坏的耀眼光泽断口断口中晶状区的面积与断口原始横截面积的百分比则是脆性断面率也称晶状断面率.2. 结晶状断口:此种断口具有强烈的金属光泽有明显的结晶颗粒断面平齐而呈银灰色.是一种正常的断口.属于脆性断口.3. 纤维状断口:这种断口呈无光泽和无结晶颗粒的均匀组织.通常在断口的边缘有明显的塑性变形.一般情况下是允许存在的.属于韧性断口.4. 瓷状断口:是一种类似瓷碎片的断口呈亮灰色、致密、有绸缎的光泽和柔和感.是一种正常的断口.5. 台状断口:这种断口出现在纵向断面上呈比基体颜色略浅、变形能力稍差、宽窄不同、较为平坦的片状平台状.多分布在偏析内.6. 撕痕状断口:这种断口出现在纵向断面上沿热加工方向呈灰白色、变形能力差致密而光滑的条带.7. 层状断口:这种断口出现在纵向断面上呈劈裂的朽木状或高低不平的、无金属光泽的、层次起伏的条带条带中伴有白亮或灰色线条.8. 缩孔残余断口:出现在纵向断口的轴心区是非结晶状条带或疏松区有时伴有非金属夹杂物或夹杂沿条带常带有氧化色.9. 石状断口:在断口表面呈现粗大而凹凸不平的沿晶界断裂的粗晶颜色暗灰而无金属光泽象有棱角的沙石颗粒堆砌在一起.。

材料科学基础-8-铁碳相图

材料科学基础-8-铁碳相图
4.30%<ω(C)<6.69%
(二)典型铁碳合金的平衡转变过程及其组织
(1)ωC=0.01%的工业纯铁
室温组织:α+Fe3CⅢ
相组成物: α+Fe3C
例:求ωC=0.01%工
业纯铁中的组织组成
物与相组成物相对量。
相组成物: α+Fe3C
% =
0.01 − 0.0008
× 100% = 0.14%
例:求ωC=0.4%亚共析钢中组织组成物和相组成物的相
对量。
相组成物:Fe3C+α
α%=[(6.69-0.4)/(6.690.0008)]×100%=94%
Fe3C%=[(0.4-0.0008)/(6.690.0008)]×100%=6%
或Fe3C%=1-94%=6%
组织组成物:P+α
P%=[(0.4-0.0218)/(0.770.0218)]×100%=50.5%
α%=[(0.77-0.4)/(0.770.0218)]×100%=49.5%
亚共析钢的室温组织
珠光晶过程示意图
组织组成物P+Fe3CⅡ
相组成物α+ Fe3C
(4)过共析钢
(4)过共析钢
例:求ωC=2.0%
过共析钢的组织
组成物相对量。
组织组成物相对量
P+Fe3CⅡ :
γS→αP + Fe3C (727℃)
共析线
二、Fe-Fe3C相图分析
②特性点分析
0
0
二、Fe-Fe3C相图分析
③相图中的线
二、Fe-Fe3C相图分析
3条重要的固态转变线:
a、GS线——
•奥氏体中开始析出铁素体

铁碳相图(有各特征点、线顺序演示画法)

铁碳相图(有各特征点、线顺序演示画法)
以Fe3C为基, 性能硬而脆。 塑性很差
共析转变线PSK: (A1线)
AS 727℃ FP+ Fe3C P
A
F
珠光体是铁素体 和渗碳体片层相 间的组织, 呈指 纹状。 较高强度和硬度, 塑性较差
HJB: 包晶反应 LB+δH⇄ AJ
δ
L
A
三条重要的相界线 Acm
A3
三、典型合金的平衡结晶过程
㈥ 亚共晶白口铁的结晶过程 L → L + A→ A(初生) + Ld → A+ Fe3CⅡ+ Ld → P+Fe3CⅡ+Ld’ • 亚共晶白口铁室温组织为P+Fe3CⅡ+Ld’。
㈦ 过共晶白口铁的结晶过程 L → L+Fe3CⅠ →Ld+ Fe3CⅠ →Ld’+ Fe3CⅠ,
• 过共晶白口铸铁室温组织为Fe3CⅠ+Ld’。
1 2
L+A
A
3
3’
F +Fe3C
4
• 珠光体是铁素体与渗碳体片层相间的组织, 呈指 纹状。
㈢ 亚共析钢的结晶过程 L→L+δ →L+ A → A → F+A → F+ P (F+Fe3C)
F中析出Fe3CⅢ, 量少,忽略不计. 室温组织: F+P
亚共析钢室温组织: F+P, 随C%增加,P含量增加。
>0.9%C, Fe3CⅡ为晶界 连续网状, 强度下降, 但硬度仍上升。
>2.11%C, 组织中有以 Fe3C为基的Le’,硬度高 脆性大, 难以切削加工。
⒊ 含碳量对工艺性能的影响 ① 切削性能: 中碳钢合适 ② 可锻性能: 低碳钢好 ③ 焊接性能: 低碳钢好 ④ 铸造性能: 共晶合金好

铁碳相图详解

铁碳相图详解

三、典型铁碳合金的平衡结晶过程铁碳相图上的合金,按成分可分为三类:⑴ 工业纯铁(〈0.0218% C ),其显微组织为铁素体晶粒,工业上很少应用。

⑵ 碳钢(0.0218%~2。

11%C ),其特点是高温组织为单相A,易于变形,碳钢又分为亚共析钢(0.0218%~0。

77%C)、共析钢(0.77%C )和过共析钢(0。

77%~2.11%C )。

⑶ 白口铸铁(2。

11%~6。

69%C ),其特点是铸造性能好,但硬而脆,白口铸铁又分为亚共晶白口铸铁(2。

11%~4。

3%C )、共晶白口铸铁(4.3%C )和过共晶白口铸铁(4.3-6.69%C)下面结合图3-26,分析典型铁碳合金的结晶过程及其组织变化.图3—26 七种典型合金在铁碳合金相图中的位置㈠ 工业纯铁(图3-26中合金①)的结晶过程合金液体在1~2点之间通过匀晶反应转变为δ铁素体.继续降温时,在2~3点之间,不发生组织转变。

温度降低到3点以后,开始从d 铁素体中析出奥氏体,在3~4点之间,随温度下降,奥氏体的数量不断增多,到达4点以后,d 铁素体全部转变为奥氏体。

在4~5点之间,不发生组织转变。

冷却到5点时,开始从奥氏体中析出铁素体,温度降到6点,奥氏体全部转变为铁素体。

在6-7点之间冷却,不发生组织转变.温度降到7点,开始沿铁素体晶界析出三次渗碳体Fe 3C III 。

7点以下,随温度下降,Fe 3C III 量不断增加,室温下Fe 3C III 的最大量为:%31.0%1000008.069.60008.00218.03=⨯--=ⅢC Fe Q .图3—27为工业纯铁的冷却曲线及组织转变示意图。

工业纯铁的室温组织为a+Fe 3C III ,如图3—28所示,图中个别部位的双晶界内是Fe 3C III 。

图3-27 工业纯铁的冷却曲线及组织转变示意图 图3-28 工业纯铁的显微组织 400× ㈡ 共析钢(图3-26中合金②)的结晶过程共析钢的含碳量为0.77%,超过了包晶线上最大的含碳量0。

铁碳相图分析

铁碳相图分析

二、铁碳合金相图的分析Fe-Fe3C相图如图3-25所示。

可以看出,Fe-Fe3C相图由三个基本相图(包晶相图、共晶相图和共析相图)组成。

相图中有五个基本相:液相L,高温铁素体相δ,铁素体相α,奥氏体相γ和渗碳体相Fe3C。

这五个基本相构成五个单相区(其中Fe3C为一条垂线),并由此形成七个两相区:L+δ、L+γ、L+ Fe3C、δ+γ、γ+ Fe3C 、γ+α和α+ Fe3C。

图3-25 以相组成物标注的铁碳合金相图在Fe-Fe3C相图中,ABCD为液相线,AHJECF为固相线。

相图中各特征点的温度、成分及其含义如表3-2所示。

点的符号温度/℃含碳量/%说明A 1538 0 纯铁熔点B 1495 0.53 包晶反应时液相的成分C 1148 4.3 共晶点L C ⇄γE+Fe3CD 1227 6.69 渗碳体的熔点E 1148 2.11 碳在γ-Fe中的最大溶解度F 1148 6.69 渗碳体G 912 0 γ-Fe ⇄α-Fe同素异构转变点H 1495 0.09 碳在δ-Fe中的最大溶解度Fe- Fe3HJB水平线(1495︒C)为包晶线,与该线成分(0.09%~0.53%C)对应的合金在该线温度下将发生包晶转变:L0.53 + δ0.09→γ0.17(式中各相的下角标为相应的含碳量),转变产物为奥氏体。

ECF水平线(1148︒C)为共晶线,与该线成分(2.11%~6.69%C)对应的合金在该线温度下将发生共晶转变:L4.3→γ2.11 + Fe3C。

转变产物为奥氏体和渗碳体的机械混合物,称为莱氏体,用符号“Le”表示。

莱氏体的组织特点为蜂窝状,以Fe3C为基,性能硬而脆。

PSK水平线(727︒C)为共析线,与该线成分(0.0218%~6.69%C)对应的合金在该线温度下将发生共析转变:γ0.77→α0.0218+ Fe3C。

转变产物为铁素体和渗碳体的机械混合物,称为珠光体,用符号“P”表示。

二元相图——铁碳相图部分

二元相图——铁碳相图部分

室温P组织中Fe何时二次渗碳体的含量 最大? 约多少?
2.11 0.77 22.6% 6.69 0.77
Fe3C II
22
过共析钢的室温组织
硝酸酒精浸蚀
苦味酸浸蚀
23
亚共晶钢的结晶过程
亚共晶铸铁的结晶组织
P(黑色树枝状)
图中树枝状的大块黑色组成体是先共晶A转变成 的P,其余部分为变态莱氏体。由先共晶A中析出的二 次渗碳体依附在共晶渗碳体上而难以分辨。
25
P(由初生 A 转变而来)
亚共晶白口铁的室温组织
26
共晶组织结晶
共晶铸铁的结晶组织
P(黑色颗粒)
1148C L4.3 2.11 Fe3C
28
P(黑色颗粒)
渗碳体
共晶白口铁的室温组织
29
二次渗碳体的相对量由杠杆法则计算可达11.8%,其实常依附于共晶渗碳体而无法分辨。
过共晶组织
2.4 二元相图实例分析
Fe-Fe3C相图
1. 铁碳合金中存在哪些基本相?
铁素体(BCC结构)----C原子溶于 - Fe形成的固溶体; 奥氏体(FCC结构)----C原子溶于 - Fe形成的固溶体; 渗碳体(正交点阵)------C与铁原子形成复杂结构的化合物; 石墨(六方结构)------碳以游离态石墨稳定相存在。
奥氏体
渗碳体(Cementite, Fe3C )
• Fe 和 C 形成的复杂结构的金属化合物(间隙化合物), 其碳含量为Wc=6.69%,熔点为1227℃,
根据生成条件不同 , 有条状、网状、片状、粒状等形 态, Fe3C的大小、数量、分布对铁碳合金性能有很大影响。
4%硝酸酒精浸蚀 呈白色
4%苦味酸溶液浸蚀 呈暗黑色

铁碳相图分析

铁碳相图分析

铁碳相图分析一、点、线、区及其含义(一)点各特征点温度、碳的浓度及意义。

各特征点符号是国际通用的,不能随意更换。

(二)线液相线是ABCD,固相线是AHJECF。

两条磁性转变线MO和230 ℃虚线。

(三)区单相区-5个相图中有5个基本的相,相应的有5个相区:液相区(L)-ABCD以上区域δ固溶体区-AHNA奥氏体区(γ)-NJESGN铁素体区(α)-GPQG以左渗碳体区(Fe3C)-DFK直线14两相区-7个7个两相区分别存在于两个单相区之间:L+δ-AHJBAL+γ-BJECBL+ Fe3C-DCFDδ+γ-HNJHγ+α-GPSGγ+ Fe3C-ESKFCEα+ Fe3C-PQLKSP三相区(三条水平线)-3个包晶线-水平线HJB(L+δ+γ)共晶线-水平线ECF (L +γ+Fe 3C )共析线-水平线PSK (γ+α+ Fe 3C )二、包晶转变(水平线HJB )在1495℃的恒温下,0.53%的液相与0.09%的δ 铁素体发生包晶反应,形成0.17%的奥氏体,其反应式为:包晶转变刚要开始时, δH 和γJ 相对含量 计算如下: 0.09%至 0.53%,都要经历此过程,且不论包晶转变前后转变过程如何,都要获得单相的奥氏体。

含碳量2.11%以下,都有获得单相γ过程。

由于温度高,碳原子扩散较快,所以包晶偏析并不严重。

但高合金钢,合金元素扩散较慢,可能造成严重的包晶偏析。

三、共晶转变(水平线ECF )共晶转变是在1148℃恒温下,由 4.3%液相转变为2.11%的奥氏体和6.69%的渗碳体。

其反应式为:L C γE + Fe 3C形成 γ与 Fe 3C 的机械混合物,称为莱氏体,用 L d 表示。

渗碳体是连续分布的相,奥氏体呈短棒状(或颗粒状)分布在渗碳体的基体上。

莱氏体中γ与Fe 3C 的相对含量:2.11%~6.69% 范围都要发生共晶转变,叫铸铁,因组织中有莱氏体,断口呈银白色叫做白口铸铁。

Fe-C相图具体分析

Fe-C相图具体分析

Fe-C 相图分析一. Fe-C 双重相图铁碳合金是铁与碳组成的合金,在合金中当碳含量超过固溶体的溶解限度后,剩余的碳以两种存在方式:渗碳体Fe 3C 或石墨。

在通常情况下,铁碳合金是按Fe-Fe 3C 系进行转变。

但在极为缓慢冷却或加入促进石墨化的元素的条件下碳才以石墨的形式存在,因此Fe-石墨系是更稳定的状态。

按照这样情况,铁碳相图常表示为Fe-Fe 3C 和Fe-石墨双重相图,如图6.1所示。

Fe 3C T /0CD 'K 'δC wt.%图6.1 Fe-C 双重相图图中实线部分为Fe-Fe 3C 相图,虚线表示Fe-C 相图,实线与虚线重合的部分以实线表示。

尽管Fe-Fe 3C 相图是一个亚稳相图,但一般情况下铁碳合金中的相变化遵循Fe-Fe 3C 相图,所以通常也将其称为平衡相图,在Fe-Fe 3C 相图中的相或反应生成的各种组织都分别称为平衡相或平衡组织。

二. Fe-Fe3C相图分析1.相区五个单相区:ABCD(液相线)—液相区(L) AHNA—δ相区NJESGN—奥氏体区(γ或A) GPQG—铁素体区(α或F)DFK—渗碳体区(Fe3C或Cm)ABCD为固相线,AHJECF为液相线。

七个两相区:L+δ、L+γ、L+ Fe3C、δ+γ、γ+α、γ+Fe3C、α+ Fe3C五条水平线:HJB—包晶转变线、ECF—共晶转变线、PSK—共析转变线770℃(MO)虚线—铁素体的磁性转变线(又称为A2线)230℃虚线—渗碳体的磁性转变线2. 三个恒温转变(1)包晶转变(1495℃HJB水平线):凡成分贯穿HJB恒温线的铁碳合金(w(C)=0.09-0.53%),冷却到1495℃,w(C)=0.53%的液相与w(C)=0.09%的δ相发生包晶反应,生成w(C)=0.17%的γ相即奥氏体A。

包晶反应式记为1495CB H JLδγ︒+→,其中的下标字母表示该相的成分点。

(2)共晶转变(1148℃ECF水平线):反应式为11483CC EL Fe Cγ︒↔+,w(C)=2.11-6.69%的合金冷却时,在1148℃都发生共晶转变。

铁碳相图详解

铁碳相图详解

Fe-C相图详解图1 Fe-Fe3C合金相图1、相图中的基本相及其符号表示(1)液相(L):铁碳合金在熔化温度以上形成的均匀液体。

(2)高温铁素体(δ):碳固溶在δ-Fe中形成的间隙固溶体,呈体心立方晶格结构;因存在的温度较高,故称高温铁素体或δ固溶体,在1394℃以上存在;在1495℃时溶碳量最大,碳的质量分数为0.09%。

(3)铁素体(α/F):碳固溶在α-Fe中形成的间隙固溶体,呈体心立方晶格结构;由于晶格间隙很小,其溶碳能力很低,常温下仅能溶解为0.0008%的碳,在727℃时最大的溶碳能力为0.02%,因此其性能几乎和纯铁相同,强度、硬度不高,但具有良好的塑性与韧性。

(4)奥氏体(γ/A):碳固溶在γ-Fe中形成的间隙固溶体, 呈面心立方晶格结构,是钢铁的一种层片状的显微组织;由于八面体间隙较大,因此可以容纳更多的碳;奥氏体塑性很好,强度较低,具有一定韧性,不具有铁磁性。

(5)渗碳体(Fe3C):铁与碳形成的金属化合物;渗碳体的含碳量为ωc=6.67%,熔点为1227℃;其晶格为复杂的正交晶格,硬度很高,塑性、韧性几乎为零,脆性很大;在铁碳合金中有不同形态的渗碳体,其数量、形态与分布对合金的性能有直接影响:一次渗碳体(Fe3C I):液相合金冷却到液相线以下时析出的渗碳体,为块状。

共晶渗碳体(Fe3C共晶):莱氏体中的渗碳体,呈骨骼/树枝状。

二次渗碳体(Fe3C II):由奥氏体中析出的渗碳体,为网状。

共析渗碳体(Fe3C共析):珠光体中的渗碳体,呈片状。

三次渗碳体(Fe3C III):从铁素体晶界上析出,沿铁素体晶界呈断续片状/短棒状分布。

(6)珠光体(P):铁素体和渗碳体一起组成的机械混合物;力学性能介于两者之间。

(7)莱氏体(Ld/Ld’):常温下是珠光体、渗碳体和共晶渗碳体的混合物;当温度高于727℃时,莱氏体由奥氏体和渗碳体组成,用符号Ld表示;在低于727℃时,莱氏体是由珠光体和渗碳体组成,用符号Ld’表示,称为变态莱氏。

(完整word版)铁碳相图分析

(完整word版)铁碳相图分析

二、铁碳合金相图的分析Fe-Fe3C相图如图3-25所示。

可以看出,Fe-Fe3C相图由三个基本相图(包晶相图、共晶相图和共析相图)组成。

相图中有五个基本相:液相L,高温铁素体相δ,铁素体相α,奥氏体相γ和渗碳体相Fe3C。

这五个基本相构成五个单相区(其中Fe3C为一条垂线),并由此形成七个两相区:L+δ、L+γ、L+ Fe3C、δ+γ、γ+ Fe3C 、γ+α和α+ Fe3C。

图3-25 以相组成物标注的铁碳合金相图在Fe-Fe3C相图中,ABCD为液相线,AHJECF为固相线。

相图中各特征点的温度、成分及其含义如表3-2所示。

Fe- Fe3CHJB水平线(1495︒C)为包晶线,与该线成分(0.09%~0.53%C)对应的合金在该线温度下将发生包晶转变:L0.53+ δ0.09→γ0.17(式中各相的下角标为相应的含碳量),转变产物为奥氏体。

ECF水平线(1148︒C)为共晶线,与该线成分(2.11%~6.69%C)对应的合金在该线温度下将发生共晶转变:L4.3→γ2.11 + Fe3C。

转变产物为奥氏体和渗碳体的机械混合物,称为莱氏体,用符号“Le”表示。

莱氏体的组织特点为蜂窝状,以Fe3C为基,性能硬而脆。

PSK水平线(727︒C)为共析线,与该线成分(0.0218%~6.69%C)对应的合金在该线温度下将发生共析转变:γ0.77→α0.0218 + Fe3C。

转变产物为铁素体和渗碳体的机械混合物,称为珠光体,用符号“P”表示。

珠光体的组织特点是两相呈片层相间分布,性能介于两相之间。

共析线又称为A1线。

此外,Fe- Fe3C相图中还有六条固态转变线:GS、GP为γ⇄α固溶体转变线,HN、JN为δ⇄γ固溶体转变线,例如,GS线是冷却时铁素体从奥氏体中析出开始、加热时铁素体向奥氏体转变终了的温度线。

GS线又称为A3线,JN线又称为A4线。

ES线为碳在γ-Fe中的固溶线。

在1148︒C,碳的溶解度最大,为2.11%,随温度降低,溶解度下降,到727︒C 时溶解度只有0.77%。

干货丨铁碳相图顶级解读

干货丨铁碳相图顶级解读

干货丨铁碳相图顶级解读铁碳相图基础篇Fe-C合金相图实际上是Fe-Fe3C相图,铁碳合金的基本组元也应该是纯铁和Fe3C。

铁碳合金相图是研究铁碳合金的工具,是研究碳钢和铸铁成分、温度、组织和性能之间关系的理论基础,也是制定各种热加工工艺的依据。

1、Fe-C相图中重要的点2、Fe-C相图中重要的线3、Fe-C合金平衡结晶过程Fe-Fe3C相图中的相:Ⅳ、过共析钢(0.77%<C%<2.11%)Ⅴ、共晶白口铁(C%=4.3%)Ⅵ、亚共晶白口铸铁(2.11%<C%<4.3%)Ⅶ、过共晶白口铸铁(C%>4.3%)是不是已经凌乱了,不要急,咱们再从下面这个角度继续推演这个过程:铁碳相图可视篇组织及相组成计算接下来让我们们看一下含碳量不同的液相的析晶过程:C%很低亚共析共析过共析亚共晶共晶过共晶铁碳相图升华篇板条马氏体:在低、中碳钢及不锈钢中形成,由许多成群的、相互平行排列的板条所组成的板条束。

空间形状是扁条状的,一个奥氏体晶粒可转变成几个板条束(通常3到5个)回火马氏体:低温(150~250oC)回火产生的过饱和程度较低的马氏体和极细的碳化物共同组成的组织。

这种组织极易受腐蚀,光学显微镜下呈暗黑色针状组织(保持淬火马氏体位向),与下贝氏体很相似,只有在高倍电子显微镜下才能看到极细小的碳化物质点。

珠光体:铁碳合金中共析反应所形成的铁素体与渗碳体组成的片层相间的机械混合物;特征:呈现珍珠般的光泽;力学性能介于铁素体与渗碳体之间,强度较高,硬度适中,塑性和韧性较好马氏体+下贝氏体+屈氏体回火屈氏体:碳化物和a-相的混合物。

特征:它由马氏体在350~500℃时中温回火形成。

其组织特征是铁素体基体内分布着极细小的粒状碳化物,针状形态已逐渐消失,但仍隐约可见,碳化物在光学显微镜下不能分辨,仅观察到暗黑的组织,在电镜下才能清晰分辨两相,可看出碳化物颗粒已明显长大。

莱氏体:奥氏体与渗碳体的共晶混合物。

铁碳相图的分析及应用

铁碳相图的分析及应用

铁碳相图的分析及应用铁碳相图是描述铁和碳混合体系中不同组织和组分相变关系的图表。

在该图中,横轴表示碳含量,纵轴表示温度。

铁碳相图可以分为三个区域:铁铁素体区、铁奥氏体区和铁珠光体区。

铁铁素体区是指碳含量低于2.11%的区域。

在这一区域内,铁的晶体结构主要是针状的铁素体。

随着碳含量的增加,铁的晶体结构会逐渐变为面心立方结构的奥氏体。

铁奥氏体区是指碳含量在2.11%至6.7%之间的区域。

在这一区域内,铁的晶体结构主要是面心立方结构的奥氏体。

随着碳含量的增加,奥氏体中的碳溶解度也会增加。

铁珠光体区是指碳含量大于6.7%的区域。

在这一区域内,铁的晶体结构主要是珠光体。

随着碳含量的增加,铁的硬度和脆性都会增加。

铁碳相图在冶金学和材料科学中有广泛的应用,主要包括以下几个方面:1. 理解和预测材料的相变行为:铁铁素体区、铁奥氏体区和铁珠光体区的存在和相变关系,可以帮助科学家和工程师理解和预测材料在不同温度和碳含量下的相变行为。

比如,通过铁碳相图可以确定钢材的相变温度和相变组织,从而指导钢材的热处理工艺。

2. 材料强度和韧性的控制:铁碳相图可以指导材料的合金化和热处理工艺,从而控制材料的强度和韧性。

以钢材为例,通过在铁铁素体区添加合适的合金元素,可以提高钢材的强度和硬度;通过在铁奥氏体区进行适当的热处理,可以提高钢材的韧性和塑性。

3. 材料组织和性能的调控:铁碳相图可以帮助科学家和工程师预测不同温度和碳含量下材料的组织和性能,并通过调控温度、合金元素和热处理工艺等手段来实现所需的材料性能。

比如,在航空航天领域,通过对铁碳相图的研究和应用,可以开发出高温和高强度的铁基合金材料,以满足航空发动机等高温工作环境的需求。

4. 材料失效分析和改进:铁碳相图可以帮助科学家和工程师分析材料失效的原因,并提出改进措施。

比如,通过分析钢材中的碳含量和组织变化,可以了解钢材的强度和韧性是否满足设计要求,并根据需要进行相应的材料改进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、铁碳合金相图的分析
Fe-Fe3C相图如图3-25所示。

可以看出,Fe-Fe3C相图由三个基本相图(包晶相图、共晶相图和共析相图)组成。

相图中有五个基本相:液相L,高温铁素体相?,铁素体相?,奥氏体相?和渗碳体相Fe3C。

这五个基本相构成五个单相区(其中Fe3C为一条垂线),并由此形成七个两相区:L+δ、L+?、L+ Fe3C、δ+?、?+ Fe3C 、?+?和?+ Fe3C。

图3-25 以相组成物标注的铁碳合金相图
在Fe-Fe3C相图中,ABCD为液相线,AHJECF为固相线。

相图中各特征点的温度、成分及其含义如表3-2所示。

点的符号温度/℃含碳量/% 说明
A 1538 0 纯铁熔点
B 1495 包晶反应时液相的成分
C 1148 共晶点L C ??E+ Fe3C
D 1227 渗碳体的熔点
E 1148 碳在?-Fe中的最大溶解度
F 1148 渗碳体
G 912 0 ?-Fe ??-Fe同素异构转变点
H 1495 碳在?-Fe中的最大溶解度
J 1495 包晶点L B+?H ??J
K 727 渗碳体
N 1394 0 ?-Fe??-Fe同素异构转变点
P 727 碳在?-Fe中的最大溶解度
S 727 共析点?S ??P+ Fe3C
Q 室温室温下碳在?-Fe中的溶解度Fe- Fe3C
HJB水平线(1495?C)为包晶线,与该线成分(%~%C)对应的合金在该线温度下将发生包晶转变:+ ???(式中各相的下角标为相应的含碳量),转变产物为奥氏体。

ECF水平线(1148?C)为共晶线,与该线成分(%~%C)对应的合金在该线温度下将发生共晶转变:?? + Fe3C。

转变产物为奥氏体和渗碳体的机械混合物,称为莱氏体,用符号“Le”表示。

莱氏体的组织特点为蜂窝状,以Fe3C为基,性能硬而脆。

PSK水平线(727?C)为共析线,与该线成分(%~%C)对应的合金在该线温度下将发生共析转变:??? + Fe3C。

转变产物为铁素体和渗碳体的机械混合物,称为珠光体,用符号“P”表示。

珠光体的组织特点是两相呈片层相间分布,性能介于两相之间。

共析线又称为
A1线。

此外,Fe- Fe3C相图中还有六条固态转变线:
GS、GP为???固溶体转变线,HN、JN为δ??固溶体转变线,例如,GS线是冷却时铁素体从奥氏体中析出开始、加热时铁素体向奥氏体转变终了的温度线。

GS线又称为A3线,JN线又称为A4线。

ES线为碳在?-Fe中的固溶线。

在1148?C,碳的溶解度最大,为%,随温度降低,溶解度下降,到727?C 时溶解度只有%。

所以含碳量超过%的铁碳合金自1148?C冷至727?C 时,会从奥氏体中析出渗碳体,称为二次渗碳体,标记为Fe3C II。

二次渗碳体通常沿奥氏体晶界呈网状分布。

ES线又称为A cm线。

PQ线为碳在?-Fe中的固溶线。

在727?C,碳的溶解度最大,为%,随温度降低,溶解度下降,到室温时溶解度仅为%。

所以铁碳合金自727?C向室温冷却的过程中,将从铁素体中析出渗碳体,称为三次渗碳体,标记为Fe3C III。

因其析出量极少,在含碳量较高的合金中不予以考虑,但是对于工业纯铁和低碳钢,因其以不连续网状或片状分布于铁素体晶界,会降低塑性,所以对于Fe3C III的数量和分布还是要加以控制。

综上所述可见,铁碳合金中的渗碳体根据形成条件不同可分为一次渗碳体Fe3CⅠ(由液相直接析出的渗碳体)、二次渗碳体Fe3CⅡ、三次渗碳体Fe3CⅢ、共晶渗碳体和共析渗碳体五种。

它们分属于不同的组织组成物,区别仅在于形态和分布不同,但都同属于一个相。

由于它们的形态和分布不同,所以对铁碳合金性能的影响也不相同。

另外,Fe- Fe3C相图中还有两条物理性能转变线:MO线(770?C )是铁素体磁性转变温度。

在770?C以上,铁素体为顺磁性物质,在770?C以下,铁素体转变为铁磁性物质。

此线又称为A2线;UV线(230?C)是渗碳体磁性转变温度,又称为A0线。

相关文档
最新文档