蜡油加氢装置简介备课讲稿
石总加氢学习班讲稿--蜡油加氢.
操作条件 压力,巴 温度,℃ 空速,时 氢油比,标米 3/m3 催化剂
中型
前 HCGO+VGO
AKZO 公司
剂藏量 245
吨的工业
装置
后
前
后
HVGO+(20-35%)HCGO
0.9478 1.21 3718 64
13.3 9.7 5.2 3.6 0.9 2.6 2.5 8.0 100.0
19.1 8.5 3.5 1.4 0.3 1.1 1.2 1.6 100.0
14.4 11.8 4.9 1.7 0.2 0.3 1.8 4.9 100.0
17.3 7.5 2.2 0.3 0.1 0.6 1.4 0.5 100.0
FCC进料中Nb↑100ppm 转化率↓1个百分点 汽油溴价↑2~3个单位
2.蜡油加氢处理工艺研究
气
加
氢
分
汽油
处
馏
柴油
理
FCC 装 置
图3 蜡油加氢处理-FCC组合工艺示意图
表5 FCC进料性质
进料
密度(20℃) g/cm3
残炭
m%
S
m%
N
m%
馏程
℃
10%
95%
* PH6.4MPa 1.0h-1 RN剂
S
ppm
811
515
5921
4825
N
ppm
83
7
747
639
Nb
ppm
76
58
137
98
RON
90.0
89.2
汽油加氢装置原理简介讲课文档
汽油加氢装置
溶剂再生塔顶解吸出来的H2S和水经过再生塔顶冷凝器(E-9304)冷却至 42℃,进入再生塔顶回流罐(D-9306)。回流罐(D-9306)的气相经过压力控制阀 送出装置,液相做为塔顶回流,用再生塔回流泵(P-9304A/B)送入再生塔顶。再 生塔底出来的溶液称为贫液,用再生塔底泵(P-9305A/B)升压,与再生塔的进料富液 在贫富液一次换热器(E-9303)、贫富液二次换热器(E-9302A/B)换热后,再用贫液冷却 器(E-9301)冷却到42~43℃,送入溶剂贮罐(D-9302)。贫液从溶剂罐(D-9302) 出来用溶剂循环泵(P-9301A/B)升压,经过流量控制阀进入循环氢脱硫塔(C-9301) 上部,另一部分送至柴油加氢装置、硫磺回收装置和催化裂化富气脱硫装置。吸收 了H2S的富液从循环氢脱硫塔塔底部经富液闪蒸罐(D-9305)去溶剂再生塔(C9302)脱附,溶剂通过吸收和解吸过程达到循环使用。
⑤蒸汽,凝结水系统: 蒸汽至各服务点,至F-9201炉膛吹扫,至各伴热线返凝结水系统。
第十七页,共35页。
汽油加氢装置
第十八页,共35页。
柴油加氢装置
一、装置简介
1 设计能力 装置设计规模为30万吨/年,年开工时间为8400小时,运转周期按三年一大修考虑。 装置主要组成分为加氢反应单元、汽提脱硫单元、柴油精制单元和公用工程四个部 分。装置操作弹性为60%-110%。 2 装置特点 本装置由中国石油工程建设公司新疆设计分公司设计,采用中压加氢精制工艺, 催化剂选用中石油研究院开发的PHF-102催化剂,保护剂为PHF-102P-2、PHF-102P-3,反 应部分采用国内成熟的炉前混氢方案,高分部分采用冷高分分离流程,分馏部分采
控制阀降压后,送往富液闪蒸罐(D-9305)。富液在富液闪蒸罐(D-9305)内进
加氢精制工艺技术(讲课稿)
加氢精制工艺技术
FRIPP
优质石脑油主要规格要求
10%,℃ 50%,℃ 90%,℃ 密度(20℃),g/cm3 硫,m% 铅,PPb 砷,PPb 烯烃,v% 赛波特颜色 ≯102 ≯149 ≯189 0.70~0.76 ≯0.03 ≯10 ≯10 1.0 ≮+30
29
加氢精制工艺技术
FRIPP
4、空速:空速提高,反应深度降低。
半再生:2.0~5.0h-1 连续重整:4.0~8.0h-1
16
加氢精制工艺技术
FRIPP
重整原料油加氢精制
预加氢技术发展及目前技术水平
1、多采用低压预加氢技术 不设增压机,氢气一次通过。
17
加氢精制工艺技术
FRIPP
几种直馏石脑油加氢精制典型数据
原料油名称 氢压,Mpa 温度,℃ 体积空速,h-1 氢油体积比 油品名称 馏程范围,℃ 硫,PPm 氮,PPm 进料 78~156 148 1.0 <0.5 <0.5 大庆直馏油 1.5 280 12.0 100 精制油 进料 45~171 120 1.4 <0.5 <0.5
6
加氢精制工艺技术
FRIPP
开发加氢精制工艺技术重要性 清洁燃料生产的需要 国家环保局要求
世界各国环保要求更加严格
7
加氢精制工艺技术
FRIPP
对汽油要求
欧Ⅲ汽油 硫 PPm(w) 烯烃 v% 2005 年 ≯500 7月1日 ≯18 芳烃 v% ≯42
8
加氢精制工艺技术
FRIPP
对柴油要求
车用柴油: 柴油硫含量≯0.05%,十六烷值≮45 欧Ⅲ柴油: 柴油硫含量≯0.035%,十六烷值≮51
加氢裂化装置概述
加氢裂化装置概述第一节装置概况海南炼油化工有限公司120×104 t/a加氢裂化装置采用FRIPP研制的FF-20和FC-14双剂串联尾油全循环的加氢裂化工艺,由某工程建设公司(SEI)进行项目总承包。
加工原料油为阿曼原油和文昌原油4:1的混合原油的减一线、减二线和减三线混合蜡油。
所需氢气来自全厂氢气管网和渣油加氢装置PSA部分。
1、装置规模本装置设计规模为120×104t/a,年开工时数为8400小时(即年满负荷生产350天)。
2、装置组成装置由反应(包括新氢、循环氢压缩机和循环氢脱硫)、分馏和吸收稳定等部分组成,此外还包括系统热工除氧部分。
反应部分:原料油通过加氢裂化反应转化为液态烃、轻石脑油、重石脑油、柴油等产品。
由原料预处理、加氢精制反应器、加氢裂化反应器、反应进料加热炉、新氢压缩机、循氢压缩机、余热锅炉等系统组成。
分馏部分:将反应部分来的生成油分馏为气体、液化石油气、轻石脑油、重石脑油、柴油及尾油(未转化油)等产品。
由脱硫化氢塔、产品分馏塔、柴油汽提塔、石脑油分馏塔、吸收脱吸塔和石脑油稳定塔等组成。
3、装置技术特点本装置采用双剂串联尾油全循环的加氢裂化工艺。
反应部分采用国内成熟的炉前混氢方案;分馏部分采用脱硫化氢塔+常压塔出柴油方案,采用分馏进料加热炉;吸收稳定部分采用重石脑油作吸收剂的方案;循环氢脱硫部分采用MDEA作脱硫剂的方案;催化剂的硫化采用干法硫化;催化剂的钝化采用低氮油注氨的钝化方案;催化剂再生采用器外再生方案。
4、装置主要设备本装置共有设备约166台(套),其中:反应器2台加热炉3座塔器7台容器23台换热器24台空冷器34片压缩机4台泵38台过滤器1套其它小型设备30台装置主要设备一览表见规程后附表。
5、装置占地加氢裂化装置的总面积为11016.75m2。
装置内除生产设备外,还设有高、低压配电室。
DCS、ITCC 和SIS机柜室与渣油加氢装置共用。
第二节原料和产品一、原料加工的原料油为阿曼油和文昌油4:1的混合原油的减一线(355~390℃)、减二线(390~440℃)和减三线(440~520℃)混合而成。
290万加氢裂化装置简介PPT课件
,操作岗位定员36人
10
中国石油华北石化公司
二、原料及主要产品性质
11
中国石油华北石化公司
装置原料
• 原料油:1#和2#常减压装置的直馏热蜡油以及罐 区来冷蜡油
设计冷热进料比为2:8
• 新氢:制氢装置来纯度99.9%(V)新氢
12
中国石油华北石化公司
装置产品
• 轻石脑油:至罐区作汽油调合组分 • 重石脑油:至连续重整装置作原料 • 航煤:产品送至罐区 • 精制柴油:至罐区作柴油产品调合组份 • 未转化油:至重油催化裂化装置作为原料 • 低分气:和柴油加氢精制装置、渣油加氢脱硫装
置来的低分气一起脱硫后去PSA装置进行氢气提 浓 • 含硫干气及汽提塔顶液:送至轻烃回收装置统一 处理
13
中国石油华北石化公司
原料油性质
原料名称 密度(20℃),kg/m3
硫,wt% 氮, g/g 残炭,wt% 氯, g/g Ni+V, g/g Na, g/g Fe, g/g Cu+Pb+Ca+Mg, g/g
馏程(ASTM-D1160),℃ IBP/5% 10%/30% 50%/70% 90%/95%
7
中国石油华北石化公司
装置概述
• 设计规模:290×104t/a
• 实际加工量:276.67×104t/a
• 操作弹性:60%~110%
• 年开工时数:8400小时
8
中国石油华北石化公司
装置组成
• 反应部分(包括新氢压缩机、循环氢压缩 机和循环氢脱硫设施)
• 分馏部分
• 公用工程部分
9
中国石油华北石化公司
蜡油加氢装置简介
100万吨/年蜡油加氢装置装置简介中国石化股份有限公司上海高桥分公司炼油事业部2007年3月编制:何文全审核:严俊校对:周新娣目录第一章工艺简介一、概述中国石化股份有限公司上海高桥分公司炼油事业部是具有五十多年历史的加工低硫石蜡基中质原油的燃料——润滑油型炼油企业,根据中国石化股份有限公司原油油种变化和适应市场发展的需求,上海高桥分公司到2007年以后除了加工大庆原油、海洋原油等低硫原油外,将主要加工含硫2.0%左右的含硫含酸进口原油。
由于常减压生产的减压蜡油和延迟焦化装置生产的焦化蜡油中含有较多的不饱和烃及硫、氮等有害的非烃化合物,这些产品无法达到催化裂化装置的要求。
为了使二次加工的蜡油达到催化裂化装置的要求,必须对焦化蜡油和减压蜡油进行加氢精制,因此上海高桥分公司炼油事业部进行原油适应性改造时,将原100万吨/年柴油加氢精制装置改造为100万吨/年蜡油加氢装置。
本装置的建设主要是为了催化裂化装置降低原料的硫含量和酸度服务。
本装置由中国石化集团上海工程有限公司设计,基础设计于2005年6月份完成,2005年8月份进行了基础设计审查,工程建设总投资2638.73万元,其中工程费用2448.74万元。
2006年7月降蜡油含硫量由原设计2.44%提高至3.28%,工程建设总概算增加820.8万元。
二、装置概况及特点1.装置规模及组成蜡油加氢精制装置技术改造原料处理能力为100万吨/年,年开工时数8400小时。
本装置为连续生产过程。
主要产品为蜡油、柴油、汽油。
本装置由反应部分、循环氢脱硫部分、氢压机部分(包括新氢压缩机、循氢压缩机)、加热炉部分及公用工程部分等组成。
2.生产方案混合原料经过滤后进入缓冲罐,用泵升压,经换热、混氢,再经换热进入加热炉,加热至350℃后进反应器进行加氢,反应产物经换热后进热高分进行气液分离,气相进一步冷却,进冷高分进行气液分离,气相进新增的循环氢脱硫塔脱硫后作为循环氢与新氢混合,组成混合氢循环使用;液相减压后至热低分,热低分的液相至催化裂化装置。
石蜡加氢精制装置简介和重点部位及设备
石蜡加氢精制装置简介和重点部位及设备一、装置简介(一)装置发展及类型1.装置发展石蜡精制工艺有白土精制、渗透精制、硫酸精制和加氢精制四种类型,其中白土精制和渗透精制都不容易脱净蜡中的稠环芳烃,难以生产对于纯度要求很高的食品工业用蜡:而硫酸精制方法的主要缺点是产品产率低,劳动条件恶劣,有大量的废渣产生,污染环境。
无论在生产成本上,产品产率和质量及环境保护上,石蜡加氢精制均比其他精制工艺有明显的优越性。
因此,在国外主要炼油厂中,石蜡加氢精制己逐步代替其他精制工艺。
1957年加拿大萨尼亚炼油厂首先宣布用钼钻铝催化剂加氢精制生产白石蜡,由于该工艺对蜡中稠环芳烃组分有很好的加氢转化能力,容易制取食品级纯度商品蜡而进一步为人们重视;其后催化重整工艺的兴起,为炼油厂提供了廉价的氢气来源,尤为石蜡加氢精制装置的建设创造了有利条件。
1962年一套处理量为1.5X104t/a、10.OMPa的石蜡和凡士林加氢精制装置在西德汉堡建成。
1963年美国大西洋公司费城炼油厂建成日处理量300t /a的石蜡加氢精制装置,代替原来的石蜡硫酸和渗透精制工艺。
我国从20世纪70年代初正式开始研究石蜡加氢精制催化剂和工艺,1979年11月大庆石化总厂首次采用5053催化剂进行处理量6X104t/a的低压石蜡加氢装置开工投产。
1981年10月石油工业部对481—2B催化剂及中压石蜡加氢精制工艺组织技术鉴定,本工艺先后在东方红炼油厂(现中石化燕山分公司炼油厂)、抚顺石油一厂、荆门炼油厂、大连石油七厂、茂名炼油厂实现工业化。
1983年11月第一套采用石蜡加氢专用催化剂处理量为6X104t/a的石蜡加氢装置在东方红炼油厂投产,1984年另两套石蜡加氢装置在抚顺石油一厂和荆门炼油厂投产,1986年又两套石蜡加氢装置在大连石油七厂和茂名炼油厂相继投产。
2.装置的主要类型20世纪60年代以来国外陆续发展的蜡加氢精制工艺有十多种,可归纳为五种类型见表2—85。
蜡油加氢装置简介
100万吨/年蜡油加氢装置装置简介中国石化股份有限公司上海高桥分公司炼油事业部2007年3月编制:何文全审核:严俊校对:周新娣目录第一章工艺简介 (1)一、概述 (1)二、装置概况及特点 (1)三、原材料及产品性质 (2)四、生产工序 (4)五、装置的生产原理 (5)六、工艺流程说明 (5)七、加工方案 (6)八、自动控制部分 (10)九、装置内外关系 (11)第二章设备简介 (13)一、加热炉 (13)二、氢压机 (13)三、非定型设备 (13)四、设备一览表 (15)五、设备简图 (20)第一章工艺简介一、概述中国石化股份有限公司上海高桥分公司炼油事业部是具有五十多年历史的加工低硫石蜡基中质原油的燃料——润滑油型炼油企业,根据中国石化股份有限公司原油油种变化和适应市场发展的需求,上海高桥分公司到2007年以后除了加工大庆原油、海洋原油等低硫原油外,将主要加工含硫2.0%左右的含硫含酸进口原油。
由于常减压生产的减压蜡油和延迟焦化装置生产的焦化蜡油中含有较多的不饱和烃及硫、氮等有害的非烃化合物,这些产品无法达到催化裂化装置的要求。
为了使二次加工的蜡油达到催化裂化装置的要求,必须对焦化蜡油和减压蜡油进行加氢精制,因此上海高桥分公司炼油事业部进行原油适应性改造时,将原100万吨/年柴油加氢精制装置改造为100万吨/年蜡油加氢装置。
本装置的建设主要是为了催化裂化装置降低原料的硫含量和酸度服务。
本装置由中国石化集团上海工程有限公司设计,基础设计于2005年6月份完成,2005年8月份进行了基础设计审查,工程建设总投资2638.73万元,其中工程费用2448.74万元。
2006年7月降蜡油含硫量由原设计2.44%提高至3.28%,工程建设总概算增加820.8万元。
二、装置概况及特点1.装置规模及组成蜡油加氢精制装置技术改造原料处理能力为100万吨/年,年开工时数8400小时。
本装置为连续生产过程。
主要产品为蜡油、柴油、汽油。
石蜡加氢精制装置说明与危险因素防范措施
石蜡加氢精制装置说明与危险因素防范措施石蜡加氢精制装置是一种用于将黄蜡或石蜡通过加氢处理转化为白蜡的一种工业设备。
这种设备将石蜡加热至一定温度后与氢气反应,通过饱和烃的裂解与合成反应,将石蜡中的不饱和化合物去除,从而得到更纯净的白蜡产品。
然而,在进行石蜡加氢精制过程中,也存在一些危险因素需要引起注意,并采取相应的防范措施来保证设备操作的安全。
下面将对石蜡加氢精制装置的危险因素和防范措施进行详细说明。
1.高温和高压:石蜡加氢精制过程需要高温和高压环境,而高温和高压环境下容易引发爆炸和火灾等危险。
因此,需要严格控制加热温度和操作压力,确保设备的安全运行。
同时,需要定期检查和维护设备的阀门、管道和容器,确保其能够承受高温和高压环境的要求。
2.氢气泄漏:石蜡加氢精制过程需要使用氢气,而氢气是一种易燃易爆的气体,一旦泄漏可能引发火灾和爆炸。
因此,需要在装置中设置可靠的气体泄漏报警装置,并定期检查其是否正常工作。
同时,需要定期对氢气系统进行检查和维护,确保气体管道的完整性,避免泄漏的发生。
3.工作环境污染:石蜡加氢精制过程中会产生一些有害气体和污染物,如硫化氢、二甲苯等。
这些物质对人体健康有一定的危害。
因此,需要在装置周围设置通风系统和排气装置,确保工作环境的良好通风。
同时,操作人员需要佩戴防护装备,如防毒面具、防护手套和防护眼镜等,避免有害物质的直接接触。
4.废水和废气处理:石蜡加氢精制过程会产生大量的废水和废气。
这些废水和废气中含有一些有害物质,需要进行处理,以避免对环境造成污染。
因此,需要在装置中设置废水处理和废气处理系统,并定期进行检查和维护,确保其正常工作。
综上所述,石蜡加氢精制装置的操作过程中需要注意防范各种危险因素,以保证设备操作的安全。
通过控制加热温度和操作压力、设置气体泄漏报警装置、保持良好的通风环境、佩戴防护装备和进行废水和废气的处理等措施,可以有效减少事故的发生,保障人员的身体健康和环境的安全。
蜡油加氢装置简介
蜡油加氢装置简介 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】100万吨/年蜡油加氢装置装置简介中国石化股份有限公司上海高桥分公司炼油事业部2007年3月编制:何文全审核:严俊校对:周新娣目录第一章工艺简介一、概述中国石化股份有限公司上海高桥分公司炼油事业部是具有五十多年历史的加工低硫石蜡基中质原油的燃料——润滑油型炼油企业,根据中国石化股份有限公司原油油种变化和适应市场发展的需求,上海高桥分公司到2007年以后除了加工大庆原油、海洋原油等低硫原油外,将主要加工含硫2.0%左右的含硫含酸进口原油。
由于常减压生产的减压蜡油和延迟焦化装置生产的焦化蜡油中含有较多的不饱和烃及硫、氮等有害的非烃化合物,这些产品无法达到催化裂化装置的要求。
为了使二次加工的蜡油达到催化裂化装置的要求,必须对焦化蜡油和减压蜡油进行加氢精制,因此上海高桥分公司炼油事业部进行原油适应性改造时,将原100万吨/年柴油加氢精制装置改造为100万吨/年蜡油加氢装置。
本装置的建设主要是为了催化裂化装置降低原料的硫含量和酸度服务。
本装置由中国石化集团上海工程有限公司设计,基础设计于2005年6月份完成,2005年8月份进行了基础设计审查,工程建设总投资2638.73万元,其中工程费用2448.74万元。
2006年7月降蜡油含硫量由原设计2.44%提高至3.28%,工程建设总概算增加820.8万元。
二、装置概况及特点1.装置规模及组成蜡油加氢精制装置技术改造原料处理能力为100万吨/年,年开工时数8400小时。
本装置为连续生产过程。
主要产品为蜡油、柴油、汽油。
本装置由反应部分、循环氢脱硫部分、氢压机部分(包括新氢压缩机、循氢压缩机)、加热炉部分及公用工程部分等组成。
2.生产方案混合原料经过滤后进入缓冲罐,用泵升压,经换热、混氢,再经换热进入加热炉,加热至350℃后进反应器进行加氢,反应产物经换热后进热高分进行气液分离,气相进一步冷却,进冷高分进行气液分离,气相进新增的循环氢脱硫塔脱硫后作为循环氢与新氢混合,组成混合氢循环使用;液相减压后至热低分,热低分的液相至催化裂化装置。
炼油厂加氢联合装置设备培训
炼油厂加氢联合装置设备培训1. 简介炼油厂加氢联合装置是一种重要的炼油工艺装置,用于将重油加氢转化为轻质产品。
为了更好地了解和掌握炼油厂加氢联合装置的设备运行和维护,本文将对该装置进行详细的培训说明。
2. 设备介绍2.1 加氢反应器加氢反应器是炼油厂加氢联合装置的核心设备之一。
其主要功能是将重油中的硫、氮、氧和金属杂质等物质通过加氢反应转化为轻质产品,并净化燃料油。
加氢反应器采用高压、高温的反应环境,通过加氢催化剂的作用,实现重油加氢反应的目的。
2.2 氢气制备装置氢气制备装置是炼油厂加氢联合装置中另一个重要的设备。
其主要功能是通过蒸汽重整和气化等工艺,将石化气、煤气等原料转化为高纯度的氢气,供加氢反应器使用。
氢气制备装置通常包括蒸汽重整器、换热器、氢气净化装置等组成。
2.3 反应器附属设备炼油厂加氢联合装置还包括一系列的反应器附属设备,如冷凝器、分离器、循环泵等。
这些设备的功能是辅助加氢反应器的运行,确保反应器内的温度、压力和流体的稳定。
3. 设备运行3.1 加氢反应器运行加氢反应器的运行是炼油厂加氢联合装置的核心部分。
在正常运行过程中,需要注意以下几个方面:•加氢反应器的温度和压力控制;•加氢催化剂的投料和再生;•氢气的供应和回收;•废气排放和废水处理。
3.2 氢气制备装置运行氢气制备装置的正常运行对加氢联合装置的稳定运行起着至关重要的作用。
以下几个方面需要注意:•蒸汽重整和气化的工艺参数控制;•氢气净化装置的运行和维护;•氢气的储存和分配。
3.3 反应器附属设备运行反应器附属设备的正常运行可以保证加氢反应器的效率和安全性。
以下几个方面需要重点关注:•冷凝器的冷却效果和水质控制;•分离器的分离效果和流体平衡控制;•循环泵的流量和压力控制。
4. 设备维护为了保证炼油厂加氢联合装置的长期稳定运行,设备维护工作显得尤为重要。
以下几个方面需要注意:•定期的设备巡检和维护;•加氢催化剂的更换和再生;•装置的清洗和检修。
03蜡油加氢裂化装置
3蜡油加氢裂化装置预评价报告3.1装置概况根据总加工流程安排,需建设一套220×104t/a加氢裂化装置。
加工原料为苏丹混合原油的减压蜡油,所用氢气由PSA装置提供。
采用一段全循环流程,最大限度生产中间馏分油,作为全厂产品调合组份。
少量的加氢裂化尾油去重油催化裂化作为原料,冷低分气脱硫后去PSA装置进行氢气提浓,含硫气体和不稳定石脑油至轻烃回收装置。
3.1.1装置名称中国石油天然气股份有限公司广西石化分公司蜡油加氢裂化装置。
3.1.2装置规模及设计能力装置规模为220×104t/a,实际加工量为219.78×104t/a。
年操作时数8400小时。
3.1.3原料及产品3.1.3.1原料来源装置加工原料油为常减压蒸馏装置的减一、减二和减三线蜡油219.78×104t/a。
3.1.3.2产品及去向产品品种及去向见表3.1-1。
装置产品:石脑油、航煤、柴油和尾油。
副产品:冷低分气脱硫后去PSA氢提浓装置,汽提塔顶气至轻烃回收装置。
产品品种及去向见表3.1-1。
3.1.3.3物料平衡装置物料平衡见表3.1-2。
3.1.4公用工程消耗3.1.4.1水用量水用量见表3.1-3。
3.1.4.2电用量电用量见表3.1-4。
3.1.4.3蒸汽用量装置蒸汽用量见表 3.1-5。
3.1.4.4燃料用量燃料用量见表3.1-6。
3.1.4.5压缩空气用量压缩空气用量见表 3.1-7。
3.1.4.6氮气用量装置氮气用量见表 3.1-8。
3.1.5装置的平面布置占地面积:180×90=16200 m2。
压缩机厂房分两层布置,房内设置桥式吊车。
装置的所有管桥及构架均采用钢结构。
装置内留有足够的吊装检修用场地,以满足大型吊车接近与回旋。
反应构架上方设置单轨电动吊车与手动葫芦,大型泵的上方设置有检修用手动葫芦或检修吊梁,以方便检修与维护。
管桥成组合式布置,仪表电缆、电气电缆拟以槽盒的形式布置在管桥最上层,便于检修和维护,同时节省地下空间,所有设备与建、构筑物均沿管桥两侧布置;管桥下设置泵房。
裂解汽油加氢装置PPT培训课件
在完成生产任务或需要维护时,按照操作规程关闭装置,确 保安全。
装置的运行监控
压力监控
监控装置内的压力变化,确保压 力在正常范围内,防止超压或欠
压。
温度监控
监控装置内的温度变化,确保温度 在正常范围内,防止过热或过冷。
液位监控
监控装置内的液位高度,确保液位 在正常范围内,防止过高或过低。
装置的异常处理
装置的应用场景
应用场景
裂解汽油加氢装置广泛应用于石油化工、煤化工等领域,主要用于生产高纯度 轻质油品,如航空煤油、车用汽油等。
市场需求
随着环保要求的提高和油品质量的升级,裂解汽油加氢装置的市场需求不断增 加,具有广阔的发展前景。
02 裂解汽油加氢装置操作流 程
装置的启动与关闭
启动
在确认装置准备就绪后,按照操作规程启动装置,并检查各 部分是否正常工作。
研发更高效、稳定的催化剂,提高裂解汽油加氢装置的转化率和 选择性。
节能减排技术
推广节能减排技术,降低装置能耗和污染物排放,提高环保性能。
智能化控制
应用先进的自动化和智能化控制技术,提高装置的稳定性和操作 效率。
应用领域拓展
化工领域
扩大裂解汽油加氢装置在化工领域的应用,如生产高品质燃料油、 石化原料等。
05 裂解汽油加氢装置经济效 益分析
能耗与成本分析
直接能耗
裂解汽油加氢装置的直接能耗 主要包括原料的加热、反应所 需的热量以及冷却等环节的能
耗。
间接需的能 耗。
原料成本
原料的采购、运输等成本是装 置总成本的重要组成部分。
人工成本
操作人员的工资、培训等费用 也是装置运行成本的一部分。
国际合作与交流
加强国际合作与交流,引进先进技术和管理经验,提高我国裂解汽 油加氢装置的国际竞争力。
炼油厂加氢联合装置设备培训讲义
炼油厂加氢联合装置设备培训讲义一、引言本讲义旨在对炼油厂加氢联合装置设备进行详细介绍和培训,帮助相关人员全面了解加氢联合装置设备的工作原理、操作方法和维护保养等内容。
加氢联合装置是炼油厂中关键的设备之一,对炼油过程中的加氢反应和分离过程起着重要作用。
二、加氢联合装置概述2.1 加氢联合装置定义加氢联合装置是一种常见的炼油装置,广泛应用于石油加工工业中。
它主要用于加工重质石油原料,在高温高压条件下,通过加氢反应,将重质石油分子中的硫、氮、氧等杂质去除,提高产品质量。
2.2 加氢联合装置组成加氢联合装置由多个关键设备组成,主要包括加氢反应器、加氢再生装置、催化剂床、分馏塔等。
这些设备相互配合,完成加氢反应和产品分离等工作。
三、加氢联合装置工作原理3.1 加氢反应加氢联合装置的核心是加氢反应,该反应利用催化剂,在高温高压条件下,将重质石油原料中的硫、氮、氧等杂质还原为气体。
加氢反应可分为三个步骤,包括准备步骤、反应步骤和再生步骤。
3.2 催化剂床加氢联合装置中的催化剂床用于提供反应所需的催化剂,并完成催化剂的再生。
催化剂床是由多层催化剂组成,通过循环流化床技术实现催化剂的循环使用。
3.3 分馏塔分馏塔是加氢联合装置中的关键设备之一,用于将加氢反应产物进行分离。
分馏塔利用不同组分的沸点差异,将产物分为不同的馏分,提取目标产品。
四、加氢联合装置操作方法4.1 加氢反应操作加氢联合装置的加氢反应需要严格控制温度、压力和进料流量等参数。
操作人员应根据实际情况,准确调整这些参数,以保证加氢反应的效果和稳定性。
4.2 催化剂床操作催化剂床的操作包括催化剂的投料、床层的管理和催化剂的再生等。
操作人员应注意催化剂的质量和催化剂床的稳定性,及时进行维护和更换。
4.3 分馏塔操作分馏塔的操作包括进料控制、温度控制和馏分收集等。
操作人员应掌握分馏塔的运行规律,合理调整操作参数,确保目标产品的质量和产量。
五、加氢联合装置维护保养5.1 装置检修定期对加氢联合装置进行检修,检查设备的运行状态和性能。
炼油厂加氢联合装置设备培训讲义
扬子石化股份有限公司炼油厂加氢联合装置100万吨/年中压加氢裂化装置120万吨/年柴油加氢精制装置设备培训讲义编写:谭金龙戴国军2004年2月18日§1 概述联合加氢装置由100万吨/年中压加氢裂化、120万吨/年柴油加氢精制两套装置组成,总投资5.1亿元,由中石化北京设计院(BDI)设计。
装置设备选型采用国产和进口相结合,选用技术先进、质量可靠、性能价格等比较好的产品,节省投资并考虑今后技术上的进一步改造与发展。
装置中采用进口的设备有:加氢裂化新氢压缩机K-53101A/B、循环氢压缩机K-53102的干气密封系统、8台高压多级泵(4台反应进料泵,4台贫胺液升压泵)、注氨泵、硫化剂泵、部分工艺阀门、关键仪表等。
设备具体情况介绍如下。
1.设备概况表1-1 装置设备数量100万吨/年中压加氢裂化装置120万吨/年柴油加氢精制装置总计反应器(R) 2台1台3台塔器(C) 6台2台8台容器(D) 25台20台45台加热炉(F) 2座1座3座换热器(E) 22台10台32台空冷器(A) 27 16 43台过滤器(FI) 3列3列6列泵(P) 42台(含液力透平) 24台66台压缩机(K) 3台3台6台风机2台2台4台其它工艺设备26台套12台套38台套总计160台套94台套254台套2.设备位号简介(1) 设备代号:(2) 设备位号:设备位号由设备代号后缀5位数字组成:设备代号-X Y Z a b代号的含义a) X:装置种类1 常减压装置,2 催化裂化装置,3 延迟焦化装置,4 蒸汽裂解装置,5 加氢装置,6 硫磺回收装置,7 公用工程系统,8 油品储运系统b) Y:装置代号1 一套常减压装置,2 二套常减压装置1 一套延迟焦化,2 二套延迟焦化1 二加氢装置,2 一加氢装置,3 加氢裂化,4 加氢精制1 硫磺回收,2 酸水汽提c) Z:装置内部划分的单元号反应系统为100#,分馏部分为200#,胺液再生系统300#,公用工程系统400#。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蜡油加氢装置简介100万吨/年蜡油加氢装置装置简介中国石化股份有限公司上海高桥分公司炼油事业部2007年3月编制:何文全审核:严俊校对:周新娣目录第一章工艺简介 (1)一、概述 (1)二、装置概况及特点 (1)三、原材料及产品性质 (2)四、生产工序 (4)五、装置的生产原理 (5)六、工艺流程说明 (5)七、加工方案 (6)八、自动控制部分 (10)九、装置内外关系 (11)第二章设备简介 (14)一、加热炉 (14)二、氢压机 (14)三、非定型设备 (14)四、设备一览表 (16)五、设备简图 (21)第一章工艺简介一、概述中国石化股份有限公司上海高桥分公司炼油事业部是具有五十多年历史的加工低硫石蜡基中质原油的燃料——润滑油型炼油企业,根据中国石化股份有限公司原油油种变化和适应市场发展的需求,上海高桥分公司到2007年以后除了加工大庆原油、海洋原油等低硫原油外,将主要加工含硫2.0%左右的含硫含酸进口原油。
由于常减压生产的减压蜡油和延迟焦化装置生产的焦化蜡油中含有较多的不饱和烃及硫、氮等有害的非烃化合物,这些产品无法达到催化裂化装置的要求。
为了使二次加工的蜡油达到催化裂化装置的要求,必须对焦化蜡油和减压蜡油进行加氢精制,因此上海高桥分公司炼油事业部进行原油适应性改造时,将原100万吨/年柴油加氢精制装置改造为100万吨/年蜡油加氢装置。
本装置的建设主要是为了催化裂化装置降低原料的硫含量和酸度服务。
本装置由中国石化集团上海工程有限公司设计,基础设计于2005年6月份完成,2005年8月份进行了基础设计审查,工程建设总投资2638.73万元,其中工程费用2448.74万元。
2006年7月降蜡油含硫量由原设计2.44%提高至3.28%,工程建设总概算增加820.8万元。
二、装置概况及特点1.装置规模及组成蜡油加氢精制装置技术改造原料处理能力为100万吨/年,年开工时数8400小时。
本装置为连续生产过程。
主要产品为蜡油、柴油、汽油。
本装置由反应部分、循环氢脱硫部分、氢压机部分(包括新氢压缩机、循氢压缩机)、加热炉部分及公用工程部分等组成。
2.生产方案混合原料经过滤后进入缓冲罐,用泵升压,经换热、混氢,再经换热进入加热炉,加热至350℃后进反应器进行加氢,反应产物经换热后进热高分进行气液分离,气相进一步冷却,进冷高分进行气液分离,气相进新增的循环氢脱硫塔脱硫后作为循环氢与新氢混合,组成混合氢循环使用;液相减压后至热低分,热低分的液相至催化裂化装置。
热低分气相经冷凝冷却至冷低分,冷低分的液相至汽柴油加氢装置。
3.装置平面布置在总体布置,节约用地的基础上,根据生产流程、防火、防爆、安全、卫生、环境保护、施工、检修等要求,结合场地自然条件,紧凑、合理地布置。
力求工艺流程合理,物料流线短,并充分依托、利用现有设施和资源,节约建设投资,同时满足生产、操作、节能、有利管理的要求。
本装置建东有#3常减压蒸馏装置,建南是常减压装置的原料罐区,建西是延迟焦化装置,建北与催化重整装置组成联合装置,加热炉、氢压机、控制室等集中布置,功能分区,保留6米宽的消防、检修通道,达到节约用地、节能、安全、紧凑的要求。
防火间距符合规范。
4.工艺技术特点⑴为避免原料油与空气接触氧化产生聚合物,减轻高温部位的结焦,故在原料油缓冲罐的罐顶采用了燃料气保护。
⑵原料油经预热后与氢气在换热器前混合,这样可提高换热器的换热效率,减少进料加热炉炉管结焦。
⑶在热高分顶出口空冷器上游设置注水设施,避免铵盐析出堵塞管线和设备。
⑷循环氢系统增加脱硫塔,进行脱除硫化氢。
⑸在反应部分的流程设计中,考虑了催化剂预硫化设施。
预硫化采用液相预硫化方法,预硫化油为直馏煤油,硫化剂为二甲基二硫。
催化剂再生按器外再生考虑。
⑹分馏部分采用单塔汽提流程,即从反应油气中分离出来的液相反应生成油先进入脱硫化氢塔,用过热蒸汽汽提方法将硫化氢脱除,然后至催化装置热进料或者冷却后去罐区。
脱硫化氢塔脱除的含硫化氢干气自压至制氢装置或干气脱硫装置。
⑺本装置的最主要工艺特点就是采用了热高分流程。
热高分流程能充分地利用热能,降低能耗,它主要是将反应生成物经热高压分离器及热低压分离器分离后,大部分的液相物料不必经过冷却后再换热的过程,而直接由分离器压至分馏部分,这样使热量得到了最有效的利用。
三、原材料及产品性质1.原料本装置的原料为焦化蜡油和减压蜡油的混合原料。
表2 混合原料油的主要性质(设计值)本装置的补充氢由80万吨/年连续重整装置提供,其组成详见表32. 产品本装置的主要产品为汽油、柴油和蜡油。
3. 辅助材料性质⑴催化剂及保护剂的物化性质⑵二甲基二硫市售工业标准⑶苯甲酸胺市售工业标准⑷直馏煤油四、生产工序本装置的生产工序分为反应、分离和循环氢脱硫三部分。
1.反应工序混合原料自装置外来,在原料油缓冲罐液面控制下,通过原料油过滤器进入原料缓冲罐。
自原料缓冲罐出来的原料油经原料泵升压后,在流量控制下,经换热器换热后与混合氢混合,经反应流出物/混合进料换热器换热后进入反应进料加热炉加热至反应所需温度后进入加氢精制反应器,在反应器内进行加氢反应,主要是脱除其中的有机硫、氮、氧化物,以及烯烃饱和,以提高汽柴油的质量。
反应产物进入产物分离器,经气液相分离,气相经氢气循环机作为循环氢,液相则进入分馏系统。
2.分离工序分离工序是将加氢反应后的生成油中的H2S、NH3、H2O脱除,以保证产品中杂质含量合格。
反应生成油(柴油蜡油混合组分)从热低分D603进入脱硫化氢塔,塔底用过热蒸汽汽提,以达到脱除杂质的目的。
热低分的汽柴油组分直接进柴油加氢装置。
3.循环氢脱硫工序自D-604顶部出来的冷高分气 (循环氢)经脱硫塔前分离器(D-621)分液后进循环氢脱硫塔(C-603),由溶剂再生装置再生后的贫胺液经贫胺液水冷器(E-611)、贫胺液罐(D-620)、贫胺液泵(P-618/A.B)后进入C-603作为吸收剂吸收循环氢中的硫化氢,通过调节冷却水量控制进C-603的贫胺液与脱硫气体的温差为5℃。
C-603底部的富胺液回加氢裂化胺再生装置再生。
五、装置的生产原理焦化蜡油和减压蜡油在一定的温度、压力下,借助于催化剂进行加氢脱金属、脱硫、脱氮、烯烃和芳烃饱和、部分转化等反应,同时对含硫量较高的循环氢进行脱硫。
从而使精制蜡油符合催化裂化装置进料的要求。
加氢精制经过几十年的发展,工艺技术水平有了很大提高,并趋于成熟。
FF-14催化剂是针对蜡油而开发的加氢精制催化剂,它具有孔结构合理、酸性适中等特点,中型加氢装置评价结果表明:FF-14催化剂在保持高加氢脱氮活性的同时,催化剂的加氢脱硫活性明显高于参比剂,可以提高蜡油加氢精制装置脱硫能力,并且不降低脱氮和芳烃饱和能力。
故本次设计采用FF-14催化剂。
本次蜡油加氢精制装置技术改造,利旧原汽柴油加氢精制装置,工艺流程仍采用热高分流程,新增循环氢脱硫系统,停开分馏塔C602。
六、工艺流程说明温度80℃的减压蜡油和焦化蜡油在罐区用泵送入装置后按一定比例混合,通过原料油过滤器(FL-601/A.B)除去原料中大于25微米的颗粒后,进入原料油缓冲罐(D-601),该罐顶用燃料气进行气封,以达到隔绝空气、防止油品氧化之目的。
然后用进料泵(P-601/A.B)将混合蜡油从D-601抽出升压后,经原料油/精制蜡油换热器(E-604/A.B)换热后与混合氢混合,该混合进料经反应流出物/混合进料换热器(E-601/A~C)换热后进入反应进料加热炉(F-601),加热至350︒C(末期375℃)后进入加氢精制反应器(R-601)。
由R-601出来的反应物经E-601/A~C与混合进料换热温度降至220︒C后,进热高压分离器(D-602)。
热高分气体经热高分气/混合氢换热器(E-602)、热高分气空冷器(A-601/A~D)、热高分气冷却器(E-603)冷至45︒C后进入冷高压分离器(D-604) 进行油、气、水三相分离。
为防止热高分气在冷却过程中析出铵盐,堵塞管路和设备,通过除盐水泵(P-602/A~C)抽取除盐水罐(D-611)的除盐水,注入A-601前。
自D-604顶部出来的冷高分气(循环氢)经脱硫塔前分离器(D-621)分液后进循环氢脱硫塔(C-603),由加氢裂化胺再生装置后的贫胺液经贫胺液水冷器(E-611)、贫胺液罐(D-620)、贫胺液泵(P-618/A.B)后进入C-603作为吸收剂吸收循环氢中的硫化氢,通过调节冷却水量控制进C-603的贫胺液与脱硫气体的温差为5︒C。
C-603底部的富胺液回加氢裂化胺再生装置再生。
脱硫后的循环氢经循环氢压缩机入口分液罐(D-610)分液、循环氢压缩机(K-602)升压后,与来自新氢压缩机(K-601/A.B)出口的新氢混合成为混合氢循环使用。
D-604的油相经液控阀降压后进入冷低压分离器(D-605)。
D-602的热高分油经液控阀降压后,进入热低压分离器(D-603),D-603气相经热低分气冷却器(E-605)冷却到45︒C后与冷高分油混合进入冷低压分离器(D-605)。
D-603底部的热低分油(精制蜡油)进入脱硫化氢塔,塔底用过热蒸汽汽提,以达到脱除杂质的目的。
C601底油与原料油在E-604/A.B换热至160︒C后作为热出料至催化裂化装置。
停工时精制蜡油通过精制蜡油空冷器A-604/A~D冷却至90︒C去罐区。
D-605的冷低分油(汽柴油),去柴油加氢精制装置。
停工时去罐区。
D-604 、D-605底部排出的含硫污水自压至酸性水处理装置。
D-605顶部的含硫气体,自压至140万吨/年加氢裂化装置脱硫塔。
D-610排放的废氢自压至火炬管网。
压力为1.9~2.0MPa的补充氢由连续重整装置来,经新氢压缩机入口分液罐(D-608)分液后,再经新氢压缩机(K-601/A.B)升压后与K-602出口的循氢混合成为混合氢。
七、加工方案1.物料平衡4.消耗指标5.辅助材料及消耗6.主要操作条件⒎操作条件的影响7.1 加氢反应器影响加氢转化催化剂活性因素甚多,不同使用条件如温度、压力、空速、H2/油,将直接影响原料中有机硫的转化率,故选择合适的操作条件对有机硫加氢转化活性极为重要。
①反应温度有机硫加氢转化反应是放热反应,因此从热力学角度看,降低温度有利于转化反应,温度越低,有机硫的平衡浓度愈低,但因为加氢转化反应的平衡常数较大,因此从提高反应速度着想,反应应在较高温度下进行。
因此操作温度一般为280~370℃。
如400℃就有可能产生聚合结焦副反应(尤其对C7以上重质烃最重要)。
当温度超过430℃时可能发生析炭反应,放出的大量热使催化剂床层飞温,损坏催化剂和设备。
因此,反应温度应严格控制,特别是对含烯烃较多或碳氧化物含量较高的原料,反应起始温度不要控制的过高。