2011湖南常德中考数学及答案

合集下载

【真题】湖南省常德市中考数学试卷含答案解析()

【真题】湖南省常德市中考数学试卷含答案解析()

湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)﹣2的相反数是()A.2 B.﹣2 C.2﹣1D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2的相反数是:2.故选:A.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.11【分析】根据三角形的三边关系可得7﹣3<x<7+3,再解即可.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.3.(3分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0 D.﹣a>b【分析】根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.【点评】本题考查实数与数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.4.(3分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2 B.k>2 C.k>0 D.k<0【分析】根据一次函数的性质,可得答案.【解答】解:由题意,得k﹣2>0,解得k>2,故选:B.【点评】本题考查了一次函数的性质,y=kx+b,当k>0时,函数值y随x的增大而增大.5.(3分)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,他们的平均成绩都是86.5分,方差分别是S甲你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁【分析】根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.【解答】解:∵1.5<2.6<3.5<3.68,∴甲的成绩最稳定,∴派甲去参赛更好,故选:A.【点评】此题主要考查了方差,关键是掌握方差越小,稳定性越大.6.(3分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.7.(3分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是一个等腰三角形,高线是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.8.(3分)阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为【分析】分别根据行列式的定义计算可得结论.【解答】解:A、D==﹣7,正确;B、D x==﹣2﹣1×12=﹣14,正确;C、D y==2×12﹣1×3=21,不正确;D、方程组的解:x===2,y===﹣3,正确;故选:C.【点评】本题是阅读理解问题,考查了2×2阶行列式和方程组的解的关系,理解题意,直接运用公式计算是本题的关键.二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)﹣8的立方根是﹣2.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.10.(3分)分式方程﹣=0的解为x=﹣1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣2﹣3x=0,解得:x=﹣1,经检验x=1是分式方程的解.故答案为:﹣1【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.11.(3分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为 1.5×108千米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1 5000 0000=1.5×108,故答案为:1.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)一组数据3,﹣3,2,4,1,0,﹣1的中位数是1.【分析】将数据按照从小到大重新排列,根据中位数的定义即可得出答案.【解答】解:将数据重新排列为﹣3、﹣1、0、1、2、3、4,所以这组数据的中位数为1,故答案为:1.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.(3分)若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b 的值可能是6(只写一个).【分析】根据方程的系数结合根的判别式△>0,即可得出关于b的一元二次不等式,解之即可得出b的取值范围,取其内的任意一值即可得出结论.【解答】解:∵关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,∴△=b2﹣4×2×3>0,解得:b<﹣2或b>2.故答案可以为:6.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.14.(3分)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为0.35.视力x频数4.0≤x<4.3204.3≤x<4.6404.6≤x<4.9704.9≤x≤5.2605.2≤x<5.510【分析】直接利用频数÷总数=频率进而得出答案.【解答】解:视力在4.9≤x<5.5这个范围的频数为:60+10=70,则视力在4.9≤x<5.5这个范围的频率为:=0.35.故答案为:0.35.【点评】此题主要考查了频率求法,正确把握频率的定义是解题关键.15.(3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C 落在点H处,已知∠DGH=30°,连接BG,则∠AGB=75°.【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.【点评】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.(3分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是9.【分析】设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.【点评】本题属于阅读理解和探索规律题,考查的知识点有平均数的相关计算及方程思想的运用.规律与趋势:这道题的解决方法有点奥数题的思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选的方法,而且,多设几个未知数,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.本题还可以根据报2的人心想的数可以是6﹣x,从而列出方程x﹣12=6﹣x求解.三、(本大题2个小题,每小题5分,满分10分)17.(5分)计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(5分)求不等式组的正整数解.【分析】根据不等式组解集的表示方法:大小小大中间找,可得答案.【解答】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,4.【点评】本题考查了解一元一次不等式组,利用解一元一次不等式组的解集的表示方法是解题关键.四、(本大题2个小题,每小题6分,满分12分)19.(6分)先化简,再求值:(+)÷,其中x=.【分析】直接将括号里面通分运算,再利用分式混合运算法则计算得出答案.【解答】解:原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,把x=代入得:原式=﹣3=﹣.【点评】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.20.(6分)如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于A(4,1),B(n,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出y1<y2时x的取值范围.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征可求出k2的值,进而可得出反比例函数的解析式,由点B的纵坐标结合反比例函数图象上点的坐标特征可求出点B的坐标,再由点A、B的坐标利用待定系数法,即可求出一次函数的解析式;(2)根据两函数图象的上下位置关系,找出y1<y2时x的取值范围.【解答】解:(1)∵反比例函数y2=(k2≠0)的图象过点A(4,1),∴k2=4×1=4,∴反比例函数的解析式为y2=.∵点B(n,﹣2)在反比例函数y2=的图象上,∴n=4÷(﹣2)=﹣2,∴点B的坐标为(﹣2,﹣2).将A(4,1)、B(﹣2,﹣2)代入y1=k1x+b,,解得:,∴一次函数的解析式为y=x﹣1.(2)观察函数图象,可知:当x<﹣2和0<x<4时,一次函数图象在反比例函数图象下方,∴y1<y2时x的取值范围为x<﹣2或0<x<4.【点评】本题考查了待定系数法求一次函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用反比例函数图象上点的坐标特征求出点B的坐标;(2)根据两函数图象的上下位置关系,找出不等式y1<y2的解集.五、(本大题2个小题,每小题7分,满分14分)21.(7分)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?【分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得:.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a),解得:a≤90.∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于a的函数关系式.22.(7分)图1是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,≈1.4)【分析】作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在Rt△MEF中利用勾股定理即可求出EM的长,此题得解.【解答】解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示.∵AB=CD,AB+CD=AD=2,∴AB=CD=1.在Rt△ABE中,AB=1,∠A=37°,∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8.在Rt△CDF中,CD=1,∠D=45°,∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7.∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC为平行四边形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=≈1.4,∴B与C之间的距离约为1.4米.【点评】本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,构造直角三角形,利用勾股定理求出BC的长度是解题的关键.六、(本大题2个小题,每小题8分,满分16分)23.(8分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2);(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.【分析】(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用500乘以样本中喜欢排球的百分比可根据估计全校500名学生中最喜欢“排球”项目的写生数;(3)用360°乘以喜欢篮球人数所占的百分比即可;(4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.【解答】解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),所以喜欢乒乓球的学生所占的百分比=×100%=28%,补全条形统计图如下:(2)500×12%=60,所以估计全校500名学生中最喜欢“排球”项目的有60名;(3),篮球”部分所对应的圆心角=360×40%=144°;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,所以抽取的两人恰好是甲和乙的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.24.(8分)如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.【分析】(1)根据等边三角形的性质可得:∠OAC=30°,∠BCA=60°,证明∠OAE=90°,可得:AE是⊙O的切线;(2)先根据等边三角形性质得:AB=AC,∠BAC=∠ABC=60°,由四点共圆的性质得:∠ADF=∠ABC=60°,得△ADF是等边三角形,证明△BAD≌△CAF,可得结论.【解答】证明:(1)连接OD,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,∵A、B、C、D四点共圆,∴∠ADF=∠ABC=60°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAF=∠CAF,在△BAD和△CAF中,∵,∴△BAD≌△CAF,∴BD=CF.【点评】本题考查了全等三角形的性质和判定,等边三角形及外接圆,四点共圆等知识点的综合运用,属于基础题,熟练掌握等边三角形的性质是关键.七、(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.【分析】(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线解析式;(2)设M(t,0),先其求出直线OA的解析式为y=x,直线AB的解析式为y=2x ﹣12,直线MN的解析式为y=2x﹣2t,再通过解方程组得N(t,t),接着利用三角形面积公式,利用S △AMN =S △AOM ﹣S △NOM 得到S △AMN =•4•t ﹣•t•t ,然后根据二次函数的性质解决问题;(3)设Q (m ,m 2﹣m ),根据相似三角形的判定方法,当=时,△PQO ∽△COA ,则|m 2﹣m |=2|m |;当=时,△PQO ∽△CAO ,则|m 2﹣m |=|m |,然后分别解关于m 的绝对值方程可得到对应的P 点坐标.【解答】解:(1)∵抛物线过原点,对称轴是直线x=3,∴B 点坐标为(6,0),设抛物线解析式为y=ax (x ﹣6),把A (8,4)代入得a•8•2=4,解得a=,∴抛物线解析式为y=x (x ﹣6),即y=x 2﹣x ;(2)设M (t ,0),易得直线OA 的解析式为y=x ,设直线AB 的解析式为y=kx +b ,把B (6,0),A (8,4)代入得,解得,∴直线AB 的解析式为y=2x ﹣12,∵MN ∥AB ,∴设直线MN 的解析式为y=2x +n ,把M (t ,0)代入得2t +n=0,解得n=﹣2t ,∴直线MN 的解析式为y=2x ﹣2t , 解方程组得,则N (t ,t ),∴S △AMN =S △AOM ﹣S △NOM =•4•t ﹣•t•t=﹣t 2+2t=﹣(t ﹣3)2+3,当t=3时,S有最大值3,此时M点坐标为(3,0);△AMN(3)设Q(m,m2﹣m),∵∠OPQ=∠ACO,∴当=时,△PQO∽△COA,即=,∴PQ=2PO,即|m2﹣m|=2|m|,解方程m2﹣m=2m得m1=0(舍去),m2=14,此时P点坐标为(14,28);解方程m2﹣m=﹣2m得m1=0(舍去),m2=﹣2,此时P点坐标为(﹣2,4);∴当=时,△PQO∽△CAO,即=,∴PQ=PO,即|m2﹣m|=|m|,解方程m2﹣m=m得m1=0(舍去),m2=8(舍去),解方程m2﹣m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,﹣1);综上所述,P点坐标为(14,28)或(﹣2,4)或(2,﹣1).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.26.(10分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.(1)如图1,当M在线段BO上时,求证:MO=NO;(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;(3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC•AC.【分析】(1)先判断出OD=OA,∠AOM=∠DON,再利用同角的余角相等判断出∠ODN=∠OAM,判断出△DON≌△AOM即可得出结论;(2)先判断出四边形DENM是菱形,进而判断出∠BDN=22.5°,即可判断出∠AMB=67.5°,即可得出结论;(3)设CE=a,进而表示出EN=CE=a,CN=a,设DE=b,进而表示AD=a+b,根据勾股定理得,AC=(a+b),同(1)的方法得,∠OAM=∠ODN,得出∠EDN=∠DAE,进而判断出△DEN∽△ADE,得出,进而得出a=b,即可表示出CN=b,AC=b,AN=AC﹣CN=b,即可得出结论.【解答】解:(1)∵正方形ABCD的对角线AC,BD相交于O,∴OD=OA,∠AOM=∠DON=90°,∴∠OND+∠ODN=90°,∵∠ANH=∠OND,∴∠ANH+∠ODN=90°,∵DH⊥AE,∴∠DHM=90°,∴∠ANH+∠OAM=90°,∴∠ODN=∠OAM,∴△DON≌△AOM,∴OM=ON;(2)连接MN,∵EN∥BD,∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD,∴EN=CN,同(1)的方法得,OM=ON,∵OD=OD,∴DM=CN=EN,∵EN∥DM,∴四边形DENM是平行四边形,∵DN⊥AE,∴▱DENM是菱形,∴DE=EN,∴∠EDN=∠END,∵EN∥BD,∴∠END=∠BDN,∴∠EDN=∠BDN,∵∠BDC=45°,∴∠BDN=22.5°,∵∠AHD=90°,∴∠AMB=∠DME=90°﹣∠BDN=67.5°,∵∠ABM=45°,∴∠BAM=67.5°=∠AMB,∴BM=AB;(3)设CE=a(a>0)∵EN⊥CD,∴∠CEN=90°,∵∠ACD=45°,∴∠CNE=45°=∠ACD,∴EN=CE=a,∴CN=a,设DE=b(b>0),∴AD=CD=DE+CE=a+b,根据勾股定理得,AC=AD=(a+b),同(1)的方法得,∠OAM=∠ODN,∵∠OAD=∠ODC=45°,∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°,∴△DEN∽△ADE,∴,∴,∴a=b(已舍去不符合题意的)∴CN=a=b,AC=(a+b)=b,∴AN=AC﹣CN=b,∴AN2=2b2,AC•CN=b•b=2b2∴AN2=AC•CN.【点评】此题是相似形综合题,主要考查了正方形的性质,平行四边形,菱形的判定,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出四边形DENM是菱形是解(2)的关键,判断出△DEN∽△ADE是解(3)的关键.21 / 21。

2011湖南常德中考数学解析

2011湖南常德中考数学解析

x析式为 y=(x>0) .考点:待定系数法求反比例函数解析式。

 .10、(2011•常德)如图,是由四个相同的小正方体组成的立体图形,它的左视图是( )、、、、考点:科学记数法—表示较大的数。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1 370 000 000用科学记数法表示为1.37×109.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12、(2011•常德)在平面直角坐标系中,▱ABCD的顶点A、B、C的坐标分别是(0,0)、(3,0)、(4,2),则顶点D的坐标为( )A、(7,2)B、(5,4)C、(1,2)D、(2,1)考点:平行四边形的性质;坐标与图形性质。

分析:首先根据题意作图,然后由四边形ABCD是平行四边形,根据平行四边形的性质,即可求得顶点D 的坐标.解答:解:如图:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵▱ABCD的顶点A、B、C的坐标分别是(0,0)、(3,0)、(4,2),∴顶点D的坐标为(1,2).故选C.点评:此题考查了平行四边形的性质.注意数形结合思想的应用是解此题的关键.13、(2011•常德)在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是( )A、李东夺冠的可能性较小B、李东和他的对手比赛10局时,他一定赢8局C、李东夺冠的可能性较大D、李东肯定会赢考点:概率的意义。

专题:应用题。

分析:根据概率的意义,反映的只是这一事件发生的可能性的大小,不一定发生也不一定不发生,依次分析可得答案.解答:解:根据题意,有人预测李东夺冠的可能性是80%,结合概率的意义,A、李东夺冠的可能性较大,故本选项错误;B、李东和他的对手比赛10局时,他可能赢8局,故本选项错误;C、李东夺冠的可能性较大,故本选项正确;D、李东可能会赢,故本选项错误.故选C.点评:本题主要考查了概率的意义:反映的只是这一事件发生的可能性的大小,难度较小.14、(2011•常德)已知圆锥底面圆的半径为6厘米,高为8厘米,则圆锥的侧面积为( )厘米2.A、48B、48πC、120πD、60π考点:圆锥的计算。

2011-2012全国各地中考数学试题分考点解析汇编新定义和跨学科问题

2011-2012全国各地中考数学试题分考点解析汇编新定义和跨学科问题

2011-2012全国各地中考数学试题分考点解析汇编新定义和跨学科问题一、选择题1.(2011广东台山3分)如果一个定值电阻R两端所加电压为5伏时,通过它的电流为1安培,那么通过这一电阻的电流I随它的两端电压U变化的图像是【答案】D。

【考点】正比例函数的图象。

【分析】根据电流电压电阻三者关系:VIR,其中R为定值,电流I随它的两端电压U变化是正比例函数的关系,所以它的图象为过原点的直线。

故选C。

2.(2011山西省2分)如图所示,∠AOB的两边.OA、OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠DEB的度数是A.35°B.70°C.110°D.120°【答案】B。

【考点】平行线的性质,入射角与反射角的关系,三角形内角和定理,等腰三角形的性质。

【分析】过点D作DF⊥AO交OB于点F,则DF是法线,根据入射角等于反射角的关系,得∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等)。

∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=35°,∴∠2=55°;∴在△DEF中,∠DEB=180°-2∠2=70°。

故选B。

4.(2011湖南岳阳3分)下列四句话中的文字有三句具有对称规律,其中没有这种规律的一句是A、上海自来水来自海上B、有志者事竞成C、清水池里池水清D、蜜蜂酿蜂蜜【答案】B。

【考点】生活中的对称现象。

【分析】根据四个选项的特点,分析出与其它三个不同的即为正确选项:A、上海自来水来自海上,可将“水”理解为对称轴,对折后重合的字相同,故本选项错误;B、有志者事竞成,五字均不相同,所以不对称,故本选项正确;C、清水池里池水清,可将“里”理解为对称轴,对折后重合的字相同,故本选项错误;D、蜜蜂酿蜂蜜,可将“酿”理解为对称轴,对折后重合的字相同,故本选项错误。

湖南常德中考数学试题解析版.doc

湖南常德中考数学试题解析版.doc

湖南省常德市2011年中考数学试卷一、填空题(本大题8个小题,每小题3分,满分24分)1、(2011•常德)|﹣2|的绝对值=2.考点:绝对值。

分析:根据绝对值的定义;数轴上一个数所对应的点与原点的距离叫做该数绝对值解答即可.解答:解:|﹣2|=2,故答案为2.点评:本题考查了绝对值的定义,解答时要熟记绝对值只能为非负数,属于基础题.2、(2011•常德)分解因式:x2﹣4x=x(x﹣4).考点:因式分解-提公因式法。

分析:确定公因式是x,然后提取公因式即可.解答:解:x2﹣4x=x(x﹣4).点评:本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以提取公因式的要先提取公因式.3、(2011•常德)函数中自变量x的取值范围是x≠3.考点:函数自变量的取值范围;分式有意义的条件。

专题:计算题。

分析:根据分式的意义,分母不能为0,据此求解.解答:解:根据题意得x﹣3≠0,解得x≠3.故答案为x≠3.点评:本题主要考查函数自变量的取值范围和分式有意义的条件,当函数表达式是分式时,考虑分式的分母不能为0.4、(2011•常德)四边形的外角和=360°.考点:多边形内角与外角。

专题:应用题。

分析:根据多边形的内角和定理和邻补角的关系即可求出四边形的外角和.解答:解:∵四边形的内角和为(4﹣2)•180°=360°,而每一组内角和相邻的外角是一组邻补角,∴四边形的外角和等于4×180°﹣360°=360°,故答案为360°.点评:本题主要考查了多边形的内角和定理和多边形的外角和,比较简单.5、(2011•常德)如图所示的曲线是一个反比例函数图象的一支,点A在此曲线上,则该反比例函数的解析式为y=(x>0).考点:待定系数法求反比例函数解析式。

专题:待定系数法。

分析:根据图示知A(1,3),将其代入反比例函数的解析式y=(x>0),求得k值,进而求出反比例函数的解析式.解答:解:设该反比例函数的解析式是y=(x>0).∵点A(1,3)在此曲线上,∴3=k,即k=3,∴该反比例函数的解析式为y=(x>0).故答案为:y=(x>0).点评:本题考查了待定系数法求反比例函数的解析式.解题时,借用了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.6、(2011•常德)质量检测部门抽样检测出某品牌电器产品的次品率为5%,一位经销商现有这种产品1000件,估计其中次品有50件.考点:有理数的乘法。

2011中考数学真题解析111 原创好题、新题(含答案)

2011中考数学真题解析111 原创好题、新题(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编原创好题、新题一、选择题1.负数的引入是数学发展史上的一大飞跃,使数的家族得到了扩张,为人们认识世界提供了更多的工具.最早使用负数的国家是()A、中国B、印度C、英国D、法国【答案】A【考点】正数和负数.【分析】根据数学历史材料即可得出答案.【解答】解:中国是世界上最早认识和应用负数的国家,比西方早(一千多)年.负数最早记载于中国的《九章算术》(成书于公元一世纪)中,比国外早一千多年,故选A.【点评】此题主要考查了负数的来源,根据历史记载是解决问题的关键.2.(2011江苏南京,6,2分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为a的值是()A、B、2C、D、2考点:一次函数综合题。

专题:综合题。

分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PO,P A.分别求出PD、DC,相加即可.解答:解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PO,P A.∵AE =12AB P A =2,PE .PD∵⊙P 的圆心是(2,a ),∴DC =2,∴a =PD +DC故选B .点评:本题综合考查了一次函数与几何知识的应用,题中运用圆与直线的关系以及直角三角形等知识求出线段的长是解题的关键.注意函数y =x 与x 轴的夹角是45°. 3. (2011内蒙古呼和浩特,9,3)如图所示,四边形ABCD 中,DC ∥AB ,BC=1,AB=AC=AD=2.则BD 的长为( )A. 14B. 15C. 23D. 32 考点:勾股定理.专题:计算题.分析:以A 为圆心,AB 长为半径作圆,延长BA 交⊙A 于F ,连接DF .在△BDF 中,由勾股定理即可求出BD 的长.解答:解:以A 为圆心,AB 长为半径作圆,延长BA 交⊙A 于F ,连接DF .可证∠FDB=90°,∠F=∠CBF ,点评:本题考查了勾股定理,解题的关键是作出以A 为圆心,AB 长为半径的圆,构建直角三角形,从而求解.4. (2011江苏扬州,8,3分)如图,在Rt △ABC 中,∠ACB=90º,∠A=30º,BC=2,将△ABC 绕点C 按顺时针方向旋转n 度后,得到△EDC ,此时,点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )A. 30,2B.60,2C. 60,D. 60,3考点:旋转的性质;含30度角的直角三角形。

2011年常德市初中毕业学业考试模拟试卷及答案A4

2011年常德市初中毕业学业考试模拟试卷及答案A4

2011年常德市初中毕业学业考试模拟试卷数 学(满分为120分,考试时间120分钟)一.填空题(本大题共8小题,每小题3分,满分24分) 1.|2- 3| = .2.2010年上海世博会的园区规划用地面积约为5280000m 2.将5280000用科学记数法表示 为 (结果保留两位有效数字). 3. 函数1051-=x y 中自变量x 的取值范围是 .4. 因式分解:322363x x y xy -+=_________________. 5. 六边形的内角和为_________°,外角和为__________°. 6.如图,△OPQ 是边长为4的等边三角形,若反比例函数的图象过点P ,则它的解析式是 . 7.如图,现有一个圆心角为90°,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计)8.下面是用棋子摆成的“上”字:第一个“上”字 第二个“上”字 第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:第n 个“上”字需用 枚棋子.二. 选择题(本大题共8小题,每小题3分,满分24分) 9.计算818-的结果是( )A .6B .6 C .2 D .210.下列计算正确的是( )A .x 3+x 2=x 5B .x 4÷x =x 4C .x 3·x 2=x 5D .(x 3)2=x 511.如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( )(第6题图) 第7题图12.满足不等式组⎪⎩⎪⎨⎧--≤+<+-621210)2(3x x x x 的非负整数解是( ). A .0,1,2B .1,2,3,4C .1,2D .0,1 13.A .3℃,2B .3℃,4C .4℃,2D .4℃,414.已知关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( ). A .1k >- B .1k >-且0k ≠ C .1k < D . 1k <且0k ≠ 15.已知⊙O 1和⊙O 2的半径分别为6cm 和9cm ,两圆的圆心距为10cm ,则两圆的位置关系是( ). A .外切B .外离C .相交D .内切16.如图,有反比例函数1y x=、1y x=-的图象和一个以原点为圆心,2为半径的圆,则S =阴影( ). A .2π B .4πC .8πD .16π三.(本大题有2个小题,每小题5分,满分10分) 17.计算:()sin45623183101+-+-⎪⎭⎫ ⎝⎛--18.先化间,再求值:211(1)(2)11x x x -÷+-+-,其中x =.A .B .C .D .(第16题图)19.有四张背面相同的纸牌A,B,C,D,其正面分别划有四个不同的图形(如图).张萍将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.Array 20. 如图,B C E,,是同一直线上的三个点,四边形A B C D与四边形C E F G都是正方形,连结B G D E,.(1)观察图形,猜想B G与D E之间的大小关系,并证明你的结论;(2)若延长B G交D E于点H,求证:BH D E.A DG HFEBC21.2010年4月,国务院出台“房贷新政”,确定实行更为严格的差别化住房信贷政策,对楼市产生了较大的影响.下面是某市今年2月~5月商品住宅的月成交量统计图(不完整),请根据图中提供的信息,完成下列问题:(1)该市今年2月~5月共成交商品住宅______套; (2)请你补全条形统计图;(3)该市这4个月商品住宅的月成交量的极差是____套,中位数是_______套.22.如图,平行于y 轴的直尺(一部分)与双曲线k y x=(0x >)交于点A 、C ,与x 轴交于点B 、D ,连结AC .点A 、B 的刻度分别为5、2(单位:cm ),直尺的宽度为2cm ,OB =2 cm . (1)A 点坐标为 . (2)求k 的值.(3)求梯形ABDC 的面积.(第22题)23.今年四月份,某蔬菜公司收获了土豆30吨,黄瓜13吨,现计划租用甲、乙两种货车共10辆将这两种蔬菜全部运往外地销售,已知一辆甲种货车可装土豆4吨和黄瓜1吨;一辆乙种货车可装土豆和黄瓜各2吨.(1)该蔬菜公司安排甲、乙两种货车时有几种方案?请你帮助设计出来;(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,请帮该公司算一算应选择哪种方案才能使运费最少?最少运费是多少元?BEF A OCD24.如图,⊙O 的直径AB =4,C 、D 为圆周上两点,且四边形OBCD 是菱形,过点D 的直线EF ∥AC ,交BA 、BC 的延长线于点E 、F .(1)求证:EF 是⊙O 的切线; (2)求DE 的长.七.(本大题有2个小题,每小题10分,满分20分) 25.如图,梯形ABCD 中,AB ∥CD ,∠ABC =90°,AB =8,CD =6,BC = 4,AB 边上有一动点P (不与A 、B 重合),连结DP ,作PQ ⊥DP ,使得PQ 交射线BC 于点E ,设AP =x . ⑴当x 为何值时,△APD 是等腰三角形? ⑵若设BE =y ,求y 关于x 的函数关系式;⑶若BC 的长可以变化,在现在的条件下,是否存在点P ,使得PQ 经过点C ?若存在,求出相应的AP 的长;若不存在,请说明理由,并直接写出当BC 的长在什么范围内时,可以存在这样的点P ,使得PQ 经过点C .A BCD PQ EAB C D (备用图1)ABCD (备用图2)26.如图,抛物线223=-++与x轴相交于A、B两点(点A在点B的左侧),与y轴相交y x x于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连接B C,与抛物线的对称轴交于点E,点P为线段B C上的一个动点,过点P作PF D E∥交抛物线于点F,设点P的横坐标为m;①用含m的代数式表示线段P F的长,并求出当m为何值时,四边形P E D F为平行四边形?②设B C F△的面积为S,求S与m的函数关系式.数学中考模拟试卷参考答案一、填空题 1. 3-2; 2. 5.3×106 ; 3. x >2; 4.3x(x-y)2 ; 5.720,360;6. xy 34=; 7. 2; 8. 4n+2.二、选择题9、D 10、C 11、D 12、A 13、D 14、B 15、C 16、A 三、(本大题有2个小题,每小题5分,满分10分)17.计算:()sin45623183101+-+-⎪⎭⎫ ⎝⎛--解: 原式=-3-23+1+226⨯=-3+1=-2.18.先化间,再求值:211(1)(2)11x x x -÷+-+-,其中x =.解:原式=111+-+x x (x +1)(x -1)+(x -2)=x (x -1)+(x -2) =x 2-2当x = 6 时,原式=( 6 )2-2=4.四.(本大题有2个小题,每小题6分,满分12分) 19. 解: (1) 或列表:开始A B C DA B C D 结果:AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DDA B C D A B C D A B C D(2) P(摸出两张牌面图形都是中心对称图形的纸牌) = 164=41.20. 如图,B C E ,,是同一直线上的三个点,四边形A B C D 与四边形C E F G 都是正方形,连结B G D E ,. (1)观察图形,猜想B G 与D E 之间的大小关系,并证明你的结论; (2)若延长B G 交D E 于点H ,求证:BH D E ⊥.解:(1)猜想:BG D E =B C D C =90B C G D C E ∠=∠=° C G C E =∴B C G D C E △≌△(SAS ) (2)在BC G △与D H G △中由(1)得C B G C D E ∠=∠ C G B D G H ∠=∠90D H B B C G ∴∠=∠=° BH D E ∴⊥五.(本大题有2个小题,每小题7分,满分14分) 21.成7 05 06 020.解:(1)18 000; ……………………………2分(2)如上图;……………………………………3分 (3)3 780,4 410. …………………………7分A DGHF ECB21OFEDCBA 22.解: (1)A (2,3)…3分, (2)k =6. …5分,(3)C (4,1.5)…7分,面积4.5cm 2…10分.六.(本大题有2个小题,每小题8分,满分16分)23.解:(1)设蔬菜公司应安排x 辆甲种货车,乙种货车有(10-x )辆,则有⎩⎨⎧≥-+≥-+13)10(230)10(24x x x x………………………………………………3分解之得:5≤x ≤7………………………………………………4分因为x 应取正整数.所以x 取5,6,7………………………………5分方案如下:①安排5辆甲种货车,5辆乙种货车;②安排6辆甲种货车,4辆乙种货车; ③安排7辆甲种货车,3辆乙种货车.…………………………6分(2)方案①:5×2000+5×1300=16500(元)方案②:6×2000+4×1300=17200(元) 方案③:7×2000+3×1300=17900(元)所以,蔬菜公司应选择方案①才能使运费最少,最少运费是16500元.……………9分 24.(1)证明:∵AB 是⊙O 的直径,∴∠ACB =90°. …………………………………………………… 1分 ∵四边形OBCD 是菱形, ∴OD //BC .∴∠1=∠ACB =90°. ∵EF ∥AC ,∴∠2=∠1 =90°. …………… 2分 ∵OD 是半径,∴EF 是⊙O 的切线. ………………………………………… 3分 (2)解:连结OC ,∵直径AB =4,∴半径OB =OC =2.∵四边形OBCD 是菱形,∴OD =BC =OB =OC =2.∴∠B =60°. ∵OD //BC ,∴∠EOD =∠B = 60°.在Rt △EOD中,tan 2tan 60DE OD EOD =∠=⨯︒=(第22题)七.(本大题有2个小题,每小题10分,满分20分) 25.⑴解:过D 点作DH ⊥AB 于H ,则四边形DHBC 为矩形, ∴DH =BC =4,HB =CD =6 ∴AH =2,AD =25· ∵AP =x , ∴PH =x -2,情况①:当AP =AD 时,即x =25· 情况②:当AD =PD 时,则AH =PH ∴2=x -2,解得x = 4 情况③:当AP =PD 时,则Rt △DPH 中,x 2=42+(x -2)2,解得x =5·· ∵2<x <8,∴当x 为25、4、5时,△APD 是等腰三角形··· ⑵易证:△DPH ∽△PEB ∴EBPB PHDH =,∴yx x -=-824 整理得:y =14(x -2)(8-x )=-14x 2+52x -4··⑶若存在,则此时BE =BC =4,即y =-14x 2+52x -4=4,整理得: x 2-10x +32=0∵△=(-10)2-4×32<0,∴原方程无解, ∴不存在点P ,使得PQ 经过点C ··· 当BC 满足0<BC ≤3时,存在点P ,使得PQ 经过点C 26.解:(1)A (-1,0),B (3,0),C (0,3).抛物线的对称轴是:x =1.(2)①设直线BC 的函数关系式为:y=kx+b .把B (3,0),C (0,3)分别代入得:303k b b +=⎧⎨=⎩,解得:k = -1,b =3. 所以直线BC 的函数关系式为:3y x =-+.当x =1时,y = -1+3=2,∴E (1,2).当x m =时,3y m =-+,∴P (m ,-m +3).在223y x x =-++中,当1x =时,4y =.∴()14D ,.当x m =时,223y m m =-++,∴()223F m m m -++,.∴线段DE =4-2=2,线段()222333PF m m m m m =-++--+=-+.∵P F D E ∥,∴当PF ED =时,四边形P E D F 为平行四边形.由232m m -+=,解得:1221m m ==,(不合题意,舍去).因此,当2m =时,四边形P E D F 为平行四边形.②设直线P F 与x 轴交于点M ,由()()3000B O ,,,,可得:3O B O M M B =+=.∵BPF C PF S S S =+△△. 即1111()2222S P F B M P F O M P F B M O M P F O B =+=+= .∴()()221393303222S m m m m m =⨯-+=-+≤≤.试卷点评:一、总体情况本卷共26题,满分120分,考试时间为120分钟.整卷包括选择题、填空题、解答题三种题型,其分值分别占总分的20%,20%,60%.试卷内容涵盖了数学新课程的主要学习领域,“数与代数”,“空间与图形”和“统计与概率”的分值分别约占总分的48.3%,36.7%和15%.试卷以学生的发展为本,注重对数学核心内容、基本能力和基本思想方法的考查,较好地检测了学生是否达到数学新课程标准的基本要求,关注对未来公民的基本数学素养的考查,较好地体现了义务教育阶段数学教学的基础性和普及性.二、主要特点1、注重基础,重视数学核心知识和基本技能的考查.试卷基于学生学习的需要,对初中数学的核心知识内容和基本能力进行了较为全面的考查,其内容涵盖了数学新课程的各个领域,试卷的内容比例配置较为合理,涉及到对基础知识、基本技能、数学活动过程和解决问题能力的考查.整卷中,体现数学新课程基本要求的题目约占总分的60%,“数与代数”中的“数与式”和“空间与图形”的“图形的认识”的分值约占总分的42.5%.试卷各题的陈述较为规范、明确、直白,没有人为生造的背景,没有偏题和怪题,各题目解决问题的方法也大都是通性通法,设定的评分标准较为合理.整套试卷的题目从易到难,循序渐进,难度适中,合情合理.试卷前100分的题目,涉及的知识和技能的基础性较为突出,有利于绝大多数学生的发挥.无论是基本形式的数学题,还是带有一定开放性、探究性的数学题,都基本贴近学生实际,背景公平,拉近了试题与学生的情感距离.试题的表述准确、清晰,阅读量适中.2、重视数学思想方法的考查,体现数学的价值观.试卷重视数学思想方法的考查,较好地展示了数学思想方法在学习数学中的重要地位,体现了义务教育的性质和新课程的数学教育价值观.试卷的不少题目把要考查的知识设置在一个情景或活动之下,较好地体现了数学的价值,如第26题,既考查了函数知识、抽象概括能力,数学运算能力,又充分地考查了数学思想方法,所用到的知识前后关联,每个小题的信息集中,思考起来目标清晰,所用方法多是学生所熟悉的方法,同时又具有一定综合性.3、设置开放探究性问题,给学生提供一定的思考研究空间,有利于改善学生的学习方式.试卷注意设置一定的开放性、探究性的问题,努力为学生提供一定的思考研究空间,既提高了试卷的效度,又能切实引导初中数学教学改善学生的数学学习方式.如第25题,通过P点位置的变动,让学生在几何图形的变化过程中,探究发现内含的规律.该题和学生已熟悉的知识联系密切, 既提示了几何学习的奥秘, 又有一定的思考、研究空间和逻辑推理的要求,给学生提供了自主探索的空间.。

2011年中考数学试题精选汇编《探索、规律性问题》

2011年中考数学试题精选汇编《探索、规律性问题》

2011年中考数学试题精选汇编《规律、探索、与规律性问题》一 选择题1. (2011浙江省,10,3分)如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”, 图A 3比图A 2多出4个“树枝”, 图A 4比图A 3多出8个“树枝”,……,照此规律,图A 6比图A 2多出“树枝”( )[来源:学,科,网Z,X,X,K]A.28B.56C.60D. 124【答案】C3. (2011广东肇庆,15,3分)如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n (n 是大于0的整数)个图形需要黑色棋子的个数是 ▲ .【答案】)2(+n n4. (2011内蒙古乌兰察布,18,4分)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形 有 个小圆. (用含 n 的代数式表示)【答案】(1)4n n ++或24n n ++5. (2011湖南益阳,16,8分)观察下列算式:① 1 × 3 - 22 = 3 - 4 = -1② 2 × 4 - 32= 8 - 9 = -1③ 3 × 5 - 42 = 15 - 16 = -1 ④ ……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;第1个图形第 2 个图形 第3个图形第 4 个图形第 18题图(3)你认为(2)中所写出的式子一定成立吗?并说明理由. 【答案】解:⑴246524251⨯-=-=-;⑵答案不唯一.如()()2211n n n +-+=-;⑶()()221n n n +-+ ()22221n n n n =+-++22221n n n n =+---1=-.6.(2011广东汕头,20,9分)如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数; (2)用含n 的代数式表示:第n 行的第一个数是 ,最后一个数是 ,第n 行共有 个数;(3)求第n 行各数之和. 【解】(1)64,8,15;(2)2(1)1n -+,2n ,21n -;(3)第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×7-13;类似的,第n 行各数之和等于2(21)(1)n n n --+=322331n n n -+-.二 填空题1. (2011四川绵阳18,4)观察上面的图形,它们是按一定规律排列的,依照此规律,第_____个图形共有120 个。

2011年中考数学试题分类汇总--有理数单选

2011年中考数学试题分类汇总--有理数单选

**********
21. (2011 福建泉州,3,3 分) “天上星星有几颗,7 后跟上 22 个 0” ,这是国际天文学联 合大会上宣布的消息,用科学记数法表示宇宙空间星星颗数为( ) . A. 700 10
20
B. 7 10
23
C. 0.7 10
23
D. 7 10 )
22
【答案】D 22. (2011 浙江省嘉兴,1,4 分) -6 的绝对值是( 1 (A)-6 (B)6 (C) 6 【答案】B 23. (2011 台湾台北,1) 图(一)数在线的 O 是原点,
**********
43. (2011 山东济宁,2, 3 分)据统计部门报告, 我市去年国民生产总值为 238 770 000 000 元, 那么这个数据用科学记数法表示为( ) A. 2. 3877×10 12 元 B. 2. 3877×10 11 元 C. 2 3877×10 7 元 D. 2387. 7×10 8 元 【答案】B
10
【答案】B
**********
28. (2011 浙江省舟山,1,3 分) -6 的绝对值是( 1 (A)-6 (B)6 (C) 6 【答案】B ) (D)

1 6
**********
30. (2011 安徽,1,4 分)-2,0,2,-3 这四个数中最大的是( ) A.2 B.0 C.-2 D.-2 【答案】A
7
B. 5.464 10 吨
8
C. 5.464 10 吨
9
D. 5.464 10 吨
10
【答案】B
**********
6. (2011 浙江绍兴,2,3 分到与之相关的结果个数约为 12 500 000,这个数用科学记数法表 示为( ) A. 1.25 10 【答案】C

2011年全国各地中考数学真题分类汇编:第2章实数

2011年全国各地中考数学真题分类汇编:第2章实数

第2章 实数一、选择题1. (2011福建泉州,1,3分)如在实数0,32-,|-2|中,最小的是( ).A .32-B .C .0D .|-2|【答案】B2. (2011广东广州市,1,3分)四个数-5,-0.1,12,3中为无理数的是( ).A. -5B. -0.1C. 12D. 3【答案】D3. (2011山东滨州,1,3分)在实数π、13sin30°,无理数的个数为( ) A.1 B.2 C.3 D.4 【答案】B4. (2011福建泉州,2,3分)(-2)2的算术平方根是( ).A . 2B . ±2C .-2D .2【答案】A5. (2011四川成都,8,3分)已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是 (A)0>m (B)0<n (C)0<mn (D)0>-n m【答案】C6. (2011江苏苏州,1,3分)2×(-21)的结果是( ) A.-4 B.-1 C. -41 D.23【答案】B7. (2011山东济宁,1,3分)计算 ―1―2的结果是 A .-1 B .1 C .- 3 D .3 【答案】C8. (2011四川广安,2,3分)下列运算正确的是( )A .(1)1x x --+=+B =C 22=D .222()a b a b -=-【答案】C9. ( 2011重庆江津, 1,4分)2-3的值等于( )A.1B.-5C.5D.-1· 【答案】D ·10. (2011四川绵阳1,3)如计算:-1-2= A.-1 B.1 C.-3 D.3 【答案】C11. (2011山东滨州,10,3分)在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为 ( ) A.1,2 B.1,3 C.4,2 D.4,3 【答案】A12. (2011湖北鄂州,10,3分)计算()221222-+---1(-)=( ) A .2 B .-2 C .6 D .10【答案】A13. (2011山东菏泽,6,3分)定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则、计算2☆3的值是A . 56B . 15C .5D .6【答案】A14. (2011四川南充市,5,3分) 下列计算不正确的是( )(A )31222-+=- (B )21139⎛⎫-= ⎪⎝⎭ (C )33-= (D = 【答案】A15. (2011浙江温州,1,4分)计算:(一1)+2的结果是( ) A .-1 B .1 C .-3 D .3 【答案】B16. (2011浙江丽水,4,3分)有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A .+2 B .-3 C .+3 D .+4 【答案】A17. (2011台湾台北,2)计算(-3)3+52-(-2)2之值为何?A .2B . 5C .-3D .-6 【答案】D18. (2011台湾台北,11)计算45.247)6.1(÷÷--之值为何?A .-1.1B .-1.8C .-3.2D .-3.919. (2011台湾台北,19)若a 、b 两数满足a 567⨯3=103,a ÷103=b ,则b a ⨯之值为何?A .9656710B .9356710C .6356710 D .56710 【答案】C20.(2011四川乐山1,3分)小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为A .4℃B .9℃C .-1℃D .-9℃ 【答案】 C21. (2011湖北黄冈,10,3分)计算()221222-+---1(-)=( ) A .2 B .-2 C .6 D .10 【答案】A22. (2011湖北黄石,2,3分)黄石市2011年6月份某日一天的温差为11o C ,最高气温为t o C ,则最低气温可表示为A. (11+t )oCB.(11-t ) oCC.(t -11) oCD. (-t -11) oC 【答案】C23. (2011广东茂名,1,3分)计算:0)1(1---的结果正确..的是 A .0 B .1C .2D .2-【答案】D24. (2011山东德州1,3分)下列计算正确的是(A )088=--)( (B )1221=⨯)()(-- (C )011--=() (D )22-|-|= 【答案】B25. (2011河北,1,2分)计算03的结果是( ) A .3B .30C .1D .0【答案】C26. (2011湖南湘潭市,1,3分)下列等式成立是 A. 22=- B. 1)1(-=-- C.1÷31)3(=- D.632=⨯- 【答案】A27.(2011台湾全区,2)计算33)4(7-+之值为何? A .9 B . 27 C . 279 D . 407 【答案】C28. (2011台湾全区,12)12.判断312是96的几倍?A . 1B . (31)2 C . (31)6 D . (-6)229. (2011台湾全区,14)14.计算)4(433221-⨯++之值为何?A .-1B .-611C .-512D .-323 【答案】B30. (2011湖南常德,9,3分)下列计算错误的是( )A.020111=9=± C.1133-⎛⎫= ⎪⎝⎭D.4216=【答案】B31. (2011湖北襄阳,6,3分)下列说法正确的是A.0)2(π是无理数B.33是有理数 C.4是无理数 D.38-是有理数【答案】D32.(20011江苏镇江,1,2分)在下列实数中,无理数是( )13答案【 C 】33. (2011贵州贵阳,6,3分)如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是(第6题图)(A )2.5 (B )2 2 (C ) 3 (D ) 5 【答案】D34(2011湖北宜昌,5,3分)如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )A . a < b B.a = b C. a > b D .ab > 0(第5题图)【答案】C35. (2011广东茂名,9,3分)对于实数a 、b ,给出以下三个判断: ①若b a =,则 b a =. ②若b a <,则 b a <.③若b a -=,则 22)(b a =-.其中正确的判断的个数是 A .3 B .2 C .1 D .0 【答案】C二、填空题1. (2011安徽,12,5分)根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为E =10n ,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 . 【答案】1002. (2011广东省,8,4分)按下面程序计算:输入x =3,则输出的答案是__ _ .【答案】263. (2011山东日照,13,4分)计算sin30°﹣2-= . 【答案】23-; 4. (2011四川南充市,11,3分)计算(π-3)0= . 【答案】15. (2011江西,9,3分)计算:-2-1= . 【答案】-36. (2011湖南常德,8,3分)先找规律,再填数:1111111111111111,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 【答案】110067. (2011江苏连云港,13,3分)如图,是一个数值转换机.若输入数为3,则输出数是______.【答案】658. (2011江西南昌,9,3分)计算:-2-1= . 【答案】-39. (2011湖南怀化,11,3分)定义新运算:对任意实数a 、b ,都有ab=a 2-b,例如,32=32-2=7,那么21=_____________. 【答案】310.(2011安徽,14,5分)定义运算a b=a (1-b ),下面给出了关于这种运算的几个结论:( )2-1 输出数 减去5①2✞(-2)=6 ②a ✞b= b ✞ a ③若a +b=0,则(a ✞ a )+(b ✞ b )=2 ab ④若a ✞b=0,则a =0 其中正确结论的序号是 .(在横线上填上你认为所有正确结论的序号) 【答案】①③11. (2011广东汕头,8,4分)按下面程序计算:输入x =3,则输出的答案是__ _ .【答案】2612. (20011江苏镇江,9,2分)计算:-(-12)=______;12-=______;012⎛⎫- ⎪⎝⎭=______; 112-⎛⎫- ⎪⎝⎭=_______. 答案:12,12,1,-2 13.(2011广东湛江20,4分)已知:23233556326,54360,5432120,6543360A A A A =⨯==⨯⨯==⨯⨯⨯==⨯⨯⨯=,,观察前面的计算过程,寻找计算规律计算27A = (直接写出计算结果),并比较59A 310A (填“>”或“<”或“=”)【答案】>14. (2010湖北孝感,17,3分)对实数a 、b ,定义运算★如下:a ★b=(,0)(,0)bb a a b a a a b a -⎧>≠⎪⎨≤≠⎪⎩,例如2★3=2-3=18.计算[2★(﹣4)]×[(﹣4)★(﹣2)] 【答案】115. (2011湖南湘潭市,16,3分)规定一种新的运算:ba b a 11+=⊗,则=⊗21____. 【答案】112三、解答题1. (2011浙江金华,17,6分)计算:|-1|-128-(5-π)0+4cos45°. 【解】原式=1-12×22-1+4×22=1-2-1+22=2.2. (2011广东东莞,11,6分)计算:0011)2--【解】原式=1+2-4 =03. (1) (2011福建福州,16(1),7分)计算:0|-4|+2011 【答案】解:原式414=+-1=4. (2011江苏扬州,19(1),4分)(1)30)2(4)2011(23-÷+---【答案】(1)解:原式=)8(4123-÷+-=21123--=0 5. (2011山东滨州,19,6分)计算:()101-3cos30 1.2π-︒⎛⎫+-+- ⎪⎝⎭【答案】解:原式=21122=2--+-6. (2011山东菏泽,15(1),60(4)6cos302-π-+- 解:原式=6-=1 7. (2011山东济宁,16,504sin 45(3)4︒+-π+-【答案】.解:原式4142=⨯++ 5=8. (2011山东济宁,18,6分)观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;…… 解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ;(2)证明你猜想的结论;(3)求和:211⨯+321⨯+431⨯+…+201020091⨯ . 【答案】(1)111n n -+ ·············································································································· 1分(2)证明:n 1-11+n =)1(1++n n n -)1(+n n n =1(1)n nn n +-+=)1(1+n n . ·························· 3分(3)原式=1-12+12-31+31-41+…+20091-20101=12009120102010-=. ………………5分9. (2011 浙江湖州,17,6)计算:0022sin30)π-- 【答案】解:原式=1222142-⨯++= 10.(2011浙江衢州,17(1),4分) 计算:()0232cos 45π---+︒.【答案】解:(1)原式2121=-+=+11. (2011浙江绍兴,17(1),4分)(1012cos454π-+︒+(-2);【答案】解:原式11224+⨯+3=.412. (2011浙江省,17(1),4分)(1)计算:12)21(30tan 3)21(01+-+---【答案】(1)解:12)21(30tan 3)21(01+-+---= 3213332++⨯--=13-13. (2011浙江台州,17,8分)计算:203)12(1+-+- 【答案】解:原式= 1+1+9=1114. (2011浙江温州,17(1),5分)计算:20(2)(2011)-+-【答案】解:20(2)(2011)415-+-=+-=-15. (2011浙江义乌,17(1),6分)(1)计算: 45sin 2820110-+;【答案】(1)原式=1+22-2=1+ 216. (2011广东汕头,11,6分)计算:0011)2--【解】原式=1+2-4 =017. (2011浙江省嘉兴,17,8分)(1)计算:202(3)+- 【答案】原式=4+1-3=218. (2011浙江丽水,17,6分)计算:|-1|-128-(5-π)0+4cos45°.【解】原式=1-12×22-1+4×22=1-2-1+22=2.19. (2011福建泉州,18,9分)计算:()()2201113132π-⎛⎫-+-⨯- ⎪⎝⎭.【答案】解:原式=3+(-1)⨯1-3+4…………………………(6分) =3…………………………(9分)20.(2011湖南常德,17,5分)计算:()317223-÷-⨯【答案】2921. (2011湖南邵阳,17,8分)计算:020103-。

初三数学正数和负数试题答案及解析

初三数学正数和负数试题答案及解析

初三数学正数和负数试题答案及解析1.如果收入80元记作+80元,那么支出20元记作()A.+20元B.﹣20元C.+100元D.﹣100元【答案】B.【解析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 因此,∵“收入”和“支出”相对,∴收入80元记作+80元,则支出20元记作﹣20元.故选B.【考点】正数和负数.2.如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作 ( )A.-3m B.3 m C.6 m D.-6 m【答案】A【解析】根据正负数的概念即可得到水位下降3m时水位变化记作-3m故选A【考点】正数和负数3.下列四个数中,最小的数是()A.﹣B.0C.﹣2D.2【答案】C【解析】画一个数轴,将A=﹣、B=0、C=﹣2、D=2标于数轴之上,可得:∵C点位于数轴最左侧,∴C选项数字最小.故选:C.【考点】数轴法比较有理数大小4.下列各数中,比-1小的是()A.-2B.0C.2D.3【答案】A.【解析】比-1小的数是应该是负数,且绝对值大于1的数;分析选项可得,只有A符合.故选A.【考点】有理数大小比较.5.的绝对值是()A.B.C.D.【答案】A.【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点-2到原点的距离是2,所以-2的绝对值是2,故选A.【考点】绝对值.6.如果+30m表示向东走30m,那么向西走40m表示为()A.+40m B.-40m C.+30m D.-30m【答案】B【解析】此题主要用正负数来表示具有意义相反的两种量:向东走记为正,则向西走就记为负,直接得出结论即可.如果+30米表示向东走30米,那么向西走40m表示-40m.【考点】正数和负数.7.的相反数是()A.B.C.D.【答案】A.【解析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。

因此,的相反数是.故选A.【考点】相反数.8.矩形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示放置.点A1,A2,A3,A4…和点C1,C2,C3,C4…,分别在直线 (k>0)和x轴上,若点B1(1,2),B2(3,4),且满足,则直线的解析式为,点的坐标为,点的坐标为_ .【答案】;(7,8);().【解析】∵B1(1,2),B2(3,4),∴A1(0,2),A2(1,4).∵A1,A2在直线 (k>0)上,∴.∴直线的解析式为.∵A3的横坐标与B2的横坐标相同,为3,且A3在直线上,∴A3(3,8).∵∥,,∴. ∵,∴.∴,∴.∴.∵A4在直线上,∴.∴B3(7,8).同理,可得B4(15,16),B5(31,32),…可见:Bn(n=1,2,…)的横坐标为1,3,7,15,31,…,;Bn (n=1,2,…)的纵坐标为2,4,8,16,32,…,.∴Bn().【考点】1.探索规律题(图形的变化类);2.一次函数图象上点的坐标特征;3.矩形的性质.9.如果规定收入为正,支出为负,收入500元记作+500元,那么支出237元应记作 () A.-500元B.-237元C.237元D.500元【答案】B【解析】根据题意,支出237元应记作-237元,所以选B.10.一运动员某次跳水的最高点离跳台2m,记作+2m,则水面离跳台10m可以记作A.-10m B.-12m C.+10m D.+12m【答案】A。

2011年中考数学试题分类37_投影与视图

2011年中考数学试题分类37_投影与视图

第37章 投影与视图一、选择题1. (2011浙江金华,2,3分)如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是( )A .6B .5C .4D .3 【答案】B2. (2011湖北鄂州,12,3分)一个几何体的三视图如下:其中主视图都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为( ) A .2πB .12π C . 4πD .8π【答案】C3. (2011安徽芜湖,3,4分)如图所示,下列几何体中主视图、左视图、俯视图都相同的 是().【答案】C4. (2011福建福州,3,4分)在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是 ( )第12题图42 2 4左视图右视图 俯视图ABDC【答案】A5. (2011江苏扬州,5,3分)如图是由几块小立方块所搭成的几何体的俯视图,小正方体中的数字表示该位置小立方块的个数,则该几何体的主视图是()【答案】A6. (2011山东德州2,3分)一个几何体的主视图、左视图、俯视图完全相同,它一定是(A)圆柱(B)圆锥(C)球体(D)长方体【答案】C7. (2011山东济宁,8,3分)如图,是有几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是()A. 3个B. 4个C. 5个D. 6个【答案】B8. (2011山东日照,5,3分)如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为()【答案】C9. (2011山东泰安,6 ,3分)下列几何体:(第8题)其中,左视图是平等四边形的有( )A.4个B.3个C. 2个D.1个` 【答案】B10.(2011山东威海,10,3分)如图是由一些大小相同的小立方体组成的几何体的主视图和左视图, 则组成这个几何体的小立方体的个数不可能是( )A .3个B .4个C . 5个D .6个 【答案】D11. (2011山东烟台,2,4分)从不同方向看一只茶壶,你认为是俯视效果图的是( )【答案】A12. (2011浙江杭州,8,3)如图是一个正六棱柱的主视图和左视图,则图中的a =( )A .23B .3C .2 D.1【答案】B13. (2011宁波市,6,3分)如图所示的物体的府视图是ABCD(第4题图)【答案】D14. (2011浙江衢州,1,3分)如下图,下列几何体的俯视图是右面所示图形的是( )【答案】A15. (2011浙江绍兴,4,4分)由5个相同的正方体搭成的几何体如图所示,则它的左视图是( )A. B. C. D.主视方向【答案】D16. (2011浙江台州,2,4分)下列四个几何体中,主视图是三角形的是( )【答案】B17. (2011浙江温州,3,4分)如图所示的物体由两个紧靠在一起的圆柱体组成,它的主视图是( )【答案】A主视方向A.B. C. D. (第4题)A.B. C. D.18. (2011浙江义乌,4,3分)如图,下列水平放置的几何体中,主视图不是..长方形的是( )【答案】B19. (2011浙江省嘉兴,5,4分)两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是( ) (A )两个外离的圆 (B )两个外切的圆 (C )两个相交的圆(D )两个内切的圆【答案】D20.(2011浙江丽水,2,3分)如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是( )A .6B .5C .4D .3【答案】B21. (2011江西,3,3分)将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).【答案】C22. (2011甘肃兰州,6,4分)如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是水平面主视方向(第5题)A .B .C .D .A .B .C .D .【答案】D23. (2011湖南常德,10,3分)如图3,是由四个相同的小正方形组成的立体图形,它的左视图是( )【答案】A24. (2011江苏连云港,8,3分)如图,是由8个相同的小立方块搭成的几何体,它的三个视图都是2×2的正方形,若拿掉若干个小立方块后(几何体不倒掉...),其三个视图仍都为2×2的正方形,则最多能拿掉小立方块的个数为( ) A .1B .2C .3D .4【答案】B25. (2011江苏宿迁,3,3分)下列所给的几何体中,主视图是三角形的是(▲)【答案】B26. (2011江苏泰州,4,3分)右图是一个几何体的三视图,则这个几何体是图3主视方向A B CD21 11正面A .B .C .D .俯视图左视图主视图A .圆锥B .圆柱C .长方体D . 球体 【答案】A27. (2011山东济宁,10,3分)如图,是某几何体的三视图及相关数据,则下面判断正确的是A .a c >B .b c >C .2224a b c += D .222a b c +=【答案】D28. (2011山东聊城,2,3分)如图,空心圆柱的左视图是( )【答案】C29. (2011四川成都,2,3分)如图所示的几何体的俯视图是D【答案】Dac2b第10题30. (2011四川广安,9,3分)由n 个相同的小正方体堆成的几何体,其视图如下所示,则n 的最大值是( ) A .18 B .19 C .20 D .21【答案】A31. (2011四川内江,8,3分)由一些大小相同的小正方体搭成的几何体的俯视图如右图所示,其正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是12213ABCD【答案】B32. (2011四川宜宾,6,3分)如图所示的几何体的正视图是( )【答案】D33. (2011重庆綦江,3,4分)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是( )A .B .C .D . 【答案】:CA .B. C. D.(第6题图)主视图俯视图34.(2011江西南昌,3,3分)将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是().A. B. C. D. 图甲图乙第3题图【答案】C35.(2011江苏淮安,4,3分)如图所示的几何体的主视图是()A. B. C. D.【答案】B36.(2011江苏南通,6,3分)下列水平放置的几何体中,俯视图是矩形的是【答案】B37.(2011四川绵阳8,3)由四个相同的小正方体搭建了一个积木,它的三视图如右图所示,则这个积木可能是【答案】B38. (2011四川乐山4,3分)如图(2),在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 分别是 AB 、BB 1、BC 的中点,沿EG 、EF 、FG 将这个正方体切去一个角后,得到的几何体的俯视图是【答案】 B39. (2011四川凉山州,11,4分)一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为( )A .66B .48C .48236D .57【答案】A40. (2011安徽芜湖,3,4分)如图所示,下列几何体中主视图、左视图、俯视图都相同的是【答案】CABCD41. (2011湖北武汉市,8,3分)右图是某物体的直观图,它的俯视图是A .B .C .D . 【答案】A42. (2011湖北黄石,5,3分)如图(1)所示的几何体的俯视图是【答案】B43. (2011湖南衡阳,3,3分)如图所示的几何体的主视图是( )A .B .C .D .【答案】B44. (2011贵州贵阳,4,3分)一个几何体的三视图如图所示,则这个几何体是主视图 左视图 俯视图(第4题图)(A )圆柱 (B )三棱锥 (C )球 (D )圆锥 【答案】D45. (2011广东肇庆,3,3分)如图是一个几何体的实物图,则其主视图是图DCBA【答案】C46. (2011湖北襄阳,8,3分)有一些相同的小立方块搭成的几何体的三视图如图2所示,则搭成该几何体的小立方块有A.3块B.4块C.6块D.9块【答案】B47. (2011湖南永州,10,3分)如图所示的几何体的左视图是( )【答案】B .48. (2011江苏盐城,3,3分)下面四个几何体中,俯视图为四边形的是【答案】D49. (2011山东东营,3,3分)一个几何体的三视图如图所示,那么这个几何体是( )【答案】C50. (2011江苏镇江,3,2分)已知某几何体的三个视图(如图),此几何体是( )A B CD A . B . C .D(第10题)图2主视图左视图 俯视图A.正三棱柱B. 三棱锥C. 圆锥D. 圆柱【答案】C51.(2011内蒙古乌兰察布,5,3分)如图是由五个相同的小正方体搭成的几何体,它的主视图是()【答案】B52.(2011重庆市潼南,6,4分)如图,在四个几何体中,主视图与其它几何体的主视图的形状不同的是【答案】C53.(2011安徽,3,4分)下图是五个相同的小正方体搭成的几何体,其左视图是()A. B.C.D.【答案】A54.(2011广东湛江4,3分)下面四个几何体中,主视图是四边形的几何体有6题图A B CD第5题图A CB D正面圆锥 圆柱 球 正方体 A 1个 B 2个 C 3个 D 4个【答案】B55. (2011贵州安顺,6,3分)如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是( )A .B .C .D .【答案】A56. (2011湖南湘潭市,4,3分)一个几何体的三视图如下图所示,这个几何体是A.球B. 圆柱C.长方体D.圆锥【答案】B57. (2011湖北荆州,4,3分)如图,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm ,则投影三角尺的对应边长为 A . 8cm B .20cm C .3.2 cm D .10cm【答案】B左视图 俯视图主视图58. (2011湖北宜昌,6,3分) 如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大心的变化情况是( ). A.越来越小 B.越来越大 C.大小不变 D.不能确定【答案】A59.(2011湖北宜昌,8,3分)一个圆锥体按如图所示摆放,它的主视图是( ).【答案】A二、填空题1. (2011山东菏泽,12,3分)如图是正方体的展开图,则原正方体相对 两个面上的数字之和的最小值的是 .【答案】62. (2011山东东营,17,4分)如图,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中; 共有1个小立方体,其中1个看得见,0个看不见;如图②中;把共有8个小立方体,其中7个看得见,1个看不见;如图③中;共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看得见的小立方体有______________个【答案】913. (2011山东枣庄,14,4分)如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是 .【答案】左视图4. (2010湖北孝感,14,3分)一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有个.主视图 左视图【答案】5 三、解答题1. (2011广东广州市,20,10分)5个棱长为1的正方体组成如图5的几何体.(1)该几何体的体积是 (立方单位),表面积是 (平方单位) (2)画出该几何体的主视图和左视图【答案】(1)5,22正面图5主视图左视图。

2011中考数学真题解析80 平行四边形的性质(含答案)

2011中考数学真题解析80 平行四边形的性质(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编平行四边形的性质一、选择题1.(2011江苏苏州,12,3分)如图,在四边形ABCD中,AB∥CD,AD∥BC,AC、BD 相交于点0.若AC=6,则线段AO的长度等于_______.考点:平行四边形的判定与性质.专题:计算题.分析:根据在四边形ABCD中,AB∥CD,AD∥BC,求证四边形ABCD是平行四边形,然后即可求解.解答:解:∵在四边形ABCD中,AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵AC=6,∴AO= 12AC=12×6=3.故答案为:3.点评:此题主要考查学生对平行四边形的判定与性质的理解和掌握,难度不大,属于基础题.2.(2011广州,2,3分)已知□ABCD的周长为32,AB=4,则BC=()A. 4B. 12C. 24D. 28【考点】平行四边形的性质.【专题】计算题.【分析】根据平行四边形的性质得到AB=CD,AD=BC,根据2(AB+BC)=32,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长是32,∴2(AB+BC)=32,∴BC=12.故选B.【点评】本题主要考查对平行四边形的性质的理解和掌握,能利用平行四边形的性质进行计算是解此题的关键.3.(2011湖南常德,12,3分)在平面直角坐标系中,□ABCD的顶点A、B、C的坐标分别是(0,0)、(3,0)、(4,2)则顶点D的坐标为()A.(7,2) B. (5,4) C.(1,2) D. (2,1)考点:平行四边形的性质;坐标与图形性质。

分析:首先根据题意作图,然后由四边形ABCD是平行四边形,根据平行四边形的性质,即可求得顶点D的坐标.解答:解:如图:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵▱ABCD的顶点A、B、C的坐标分别是(0,0)、(3,0)、(4,2),∴顶点D的坐标为(1,2).故选C.点评:此题考查了平行四边形的性质.注意数形结合思想的应用是解此题的关键. 4.(2011广西防城港 5,3分)如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°考点:平行四边形的性质 角平分线定义 专题:四边形分析::根据平行四边形的对边平行和角平分线的定义,以及平行线的性质求∠1的度数即可.由AD ∥BC ,∠B =80°得∠BAD =180°-∠B =100°.由AE 平分∠BAD 得∠DAE =21∠BAD=50°,从而∠AEB =∠DAE =50°.由CF ∥AE ,得∠1=∠AEB =50°.解答:B点评:此题主要考查平行四边形的性质和角平分线的定义,属于基础题型.5. (2011•玉林,5,3分)如图,在平行四边形ABCD 中,∠B=80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )A 、40°B 、50°C 、60°D 、80°考点:平行四边形的性质。

2011年中考数学试题分类11 函数与一次函数

2011年中考数学试题分类11 函数与一次函数
【答案】C
30.(2011湖北黄石,10,3分)已知梯形ABCD的四个顶点的坐标分别为A(-1,0),B(5,0),C(2,2),D(0,2),直线y=kx+2将梯形分成面积相等的两部分,则k的值为
A.- B.- C.- D.-
【答案】A
31.(2011湖南衡阳,6,3分)函数 中自变量x的取值范围是()
【答案】A
46.(2011江苏南通,9,3分)甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图像如图所示.根据图像信息,下列说法正确的是
A.甲的速度是4千米/小时
B.乙的速度是10千米/小时
【答案】B
3.(2011广东广州市,9,3分)当实数x的取值使得有意义时,函数y=4x+1中y的取值范围是().
A.y≥-7B.y≥9C.y>9D.y≤9
【答案】B
4.(2011山东滨州,6,3分)关于一次函数y=-x+1的图像,下列所画正确的是( )
【答案】C
5.(2011重庆江津,4,4分)直线y=x-1的图像经过象限是( )
C.x≥D.x<
【答案】A
25.(2011四川乐山3,3分)下列函数中,自变量x的取值范围为x<1的是
A. B. C. D.
【答案】D
26.(2011四川乐山8,3分)已知一次函数 的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式 的解集为
A.x<-1 B.x>-1 C.x>1 D.x<1
A.第一、二、三象限B.第一、二、四象限
C.第二、三、四象限D.第一、三、四象限

湖南省常德市2011年中考数学试题(word版含答案解析)

湖南省常德市2011年中考数学试题(word版含答案解析)

一、填空题(本大题8个小题,每小题3分,满分24分)1、(2011•某某)|﹣2|的绝对值= 2 .考点:绝对值。

分析:根据绝对值的定义;数轴上一个数所对应的点与原点的距离叫做该数绝对值解答即可.解答:解:|﹣2|=2,故答案为2.点评:本题考查了绝对值的定义,解答时要熟记绝对值只能为非负数,属于基础题.2、(2011•某某)分解因式:x2﹣4x= x(x﹣4).考点:因式分解-提公因式法。

分析:确定公因式是x,然后提取公因式即可.解答:解:x2﹣4x=x(x﹣4).点评:本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以提取公因式的要先提取公因式.3、(2011•某某)函数中自变量x的取值X围是x≠3.考点:函数自变量的取值X围;分式有意义的条件。

专题:计算题。

分析:根据分式的意义,分母不能为0,据此求解.解答:解:根据题意得x﹣3≠0,解得x≠3.故答案为x≠3.点评:本题主要考查函数自变量的取值X围和分式有意义的条件,当函数表达式是分式时,考虑分式的分母不能为0.4、(2011•某某)四边形的外角和= 360°.考点:多边形内角与外角。

专题:应用题。

分析:根据多边形的内角和定理和邻补角的关系即可求出四边形的外角和.解答:解:∵四边形的内角和为(4﹣2)•180°=360°,而每一组内角和相邻的外角是一组邻补角,∴四边形的外角和等于4×180°﹣360°=360°,故答案为360°.点评:本题主要考查了多边形的内角和定理和多边形的外角和,比较简单.5、(2011•某某)如图所示的曲线是一个反比例函数图象的一支,点A在此曲线上,则该反比例函数的解析式为y=(x>0).考点:待定系数法求反比例函数解析式。

专题:待定系数法。

分析:根据图示知A(1,3),将其代入反比例函数的解析式y=(x>0),求得k值,进而求出反比例函数的解析式.解答:解:设该反比例函数的解析式是y=(x>0).∵点A(1,3)在此曲线上,∴3=k,即k=3,∴该反比例函数的解析式为y=(x>0).故答案为:y=(x>0).点评:本题考查了待定系数法求反比例函数的解析式.解题时,借用了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.6、(2011•某某)质量检测部门抽样检测出某品牌电器产品的次品率为5%,一位经销商现有这种产品1000件,估计其中次品有50 件.考点:有理数的乘法。

2011年长沙市中考数学模拟试题(二)及答案

2011年长沙市中考数学模拟试题(二)及答案

2011年常德市初中毕业会考数学模拟试卷考生注意:1、请考生在试题卷首填写好准考证号及姓名.2、请将答案填写在答题卡上,填写在试题卷上的无效.3、本学科试题卷共 4页,七道大题,满分120 分,考试时量 120 分钟.4、考生可带科学计算器参加考试. 一、填空题(本大题8个小题,每小题3分,满分24分) 1.—31的倒数等于 。

2.因式分解:2x 2-4xy +2y 2= 。

3.某流感病毒的直径大约是0.0000000812米,用科学计数法(保留两个有效数字)约为 米。

4.如图1,已知直线AB ∥CD,∠BAE=28°,∠DCE=50°, 则∠AEC= 。

5.函数y=1x x 的自变量x 的取值范围为 。

6.用一半径为6㎝的扇形做成一个底面半径为3㎝的圆锥的侧面,则该扇形的面积为 ㎝2。

7.将点A(22,0)绕着原点顺时针方向旋转45°得到点B ,则点B 的坐标是 。

8.观察表一,寻找规律,表二、表三分别是从表一中选取的一部分,则b -a= 。

二、选择题(本大题8个小题,每小题3分,满分24分) 9.下面四个算式中正确的是( )A. 3a +2b=5abB. (a 3)2=a 5C. (-a)3÷(-a)=-a 2D. 3x 3·(-2x 2)=-6x 5 10.已知两个相似三角形的相似比为2:3,则它们的面积比为( )A. 2 :3B. 4:9C. 3 :2D. 2 :311.已知两圆的半径分别为方程x 2-8x +15=0的两根,若这两圆的圆心距为6,则这两圆的位置关系为( )A. 外离B. 外切C. 相交D. 内切 12.如下图是某个物体的三视图,则该物体是( )D E C AB图1表三 表一表二A. 圆柱B. 圆锥C. 球13.不等式组{103≥+-x x 的解集在数轴上表示正确的是( )14.如图2,BD 为⊙O 的直径,点A 、C 均在⊙O 上,∠CBD=60°, )A. 21B. 22C. 23D. 3315.下列命题是真命题的是( ) A. 经过三点确定一个圆B. 对角线相等的四边形是矩形C. 到三角形三边的距离相等的点是三角形的外心D. 菱形的对角线互相垂直平分16.如图3,小明从图中的二次函数y= ax 2+bx +c 的图像中,观察得出了下面五条信息,①a<0 ②c=0 ③函数的最小值为-3 ④当x<0时,y>0 ⑤当0<x 1<x 2<2时,y 1>y 2 你认为其中正确的个数为( ) A. 2 B. 3 C. 4 D. 5 三、(本大题2个小题,每小题5分,满分10分) 17.计算:(-1)2011-2- +(π-2012)0+8+(21)1- 18.先化简,然后选一个你喜欢的a 的值代入求值。

常德数学:答案

常德数学:答案

2011年常德市初中学业水平考试指导丛书 · 数学参考答案附:考标中的几处错误1.10面图3中的∠AOB 的位置如下图2. 26面“预计2008、2009年”,应为“预计2009、2010年”达标训练一1. 2011,81,5 2.>,<,>,= 3. C 4.15 5. 0.0030,2 6.7 7. 4+23,2+1 8.(1)3,(2)33,(3)333,(4)3333. 22...2211...111-= 33…33; 2n 个1 n 个2 n 个3=3333339.3n-2,(6,5) 10.65,nn 1-,17 达标训练二1.3m+5n2.-6x 63.B4.D5.x ≠36.64 x 77.20118.A9.A 10.(1)(x-3)2,(2)a (2a-1)2,(3)a (a+1)(a-1),((4)x+7)(x-5),(5)(a+b )(a-c ), (6)2(1)x x -11.y x - 12.A 13.-360b 2,1 14.(1)原式=a 2-5b 2,-3;(2)x 3-1,-9;(3)b a b +,若a=2,b=1,原式=31 15.(1)21,1,23 (2)4s m l=(3)∵a+b -c=m ,∴a+b=m+c . a 2+2ab+b 2=m 2+2mc+c 2, 2ab=m 2+2mc ,AOABO∴11(2)2424ab m m cs ml a b c m c+===+++.达标训练三1、B2、C3、C4、(1)-57,(2)-1.5,(3)2,(4)x1=0 x2=0.5,(5)x1=-1.4 x2=0.6, (6)2535±5、(1)x=5,y=1 (2)x=5,y=156、m=1,2;总有实数根,因为m2+8>07、x=-1,y=1;-2,5和1,0和-1和4(依次1,2,3行)8.解(1)设摩托车的速度是x千米/时,则抢修车的速度是1.5x千米/时.由题意得45x-451.5x=38,解得x=40. 经检验,x=40千米/时是原方程的解且符合题意.答:摩托车的速度为40千米/时.解(2) 当甲、乙两人同时到达时,由题意得t+4560=4545,解得t=14.∵乙不能比甲晚到,∴t≤14.∴t最大值是14(时);或:答:乙最多只能比甲迟14(时)出发.9.解:(1)5,6,9.(2)设二月份男、女服装的销售收入分别为x万元、y万元,根据题意,得解之,得3.52.5 xy=⎧⎨=⎩,.答:二月份男、女服装的销售收入分别为3.5万元、2.5万元.10.解(1)设购进A 种商品x 件,B 种商品y 件.根据题意,得12001000360000,(13801200)(12001000)60000.x y x y +=⎧⎨-+-=⎩解之,得200,120.x y =⎧⎨=⎩(2)由于A 商品购进400件,获利为(1380-1200)×400 = 72000(元).从而B 商品售完获利应不少于81600-72000 = 9600(元). 设B 商品每件售价为x 元,则120(x -1000)≥9600. 解之,得x ≥1080.所以,B 种商品最低售价为每件1080元. 11.解:(1)(2)由(1)得:1560008000100000x y x y +=⎧⎨+=⎩解得:105x y =⎧⎨=⎩;蔬菜共有3108570⨯+⨯=吨. 答:这批蔬菜共有70吨.12.解:设每盒茶叶的进价为x 元, 则整理,得 . 去分母,化简得 x 2-10x -1200=0 ,(x -40)(x +30)=0.由此解得x 1=40, x 2=-30(舍). 经检验 x =40.答:每盒茶叶的进价为40元.3502400)502400)(5(50%)201(=---+⋅+xx x13.(1)依题意得216412y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩解之得1163x y =⎧⎨=-⎩,2242x y =-⎧⎨=⎩. ∴(63)A -,,(42)B -,.(2)作AB 的垂直平分线交x 轴,y 轴于C D ,两点,交AB 于M 由(1)可知:OA =OB =∴AB =∴122OM AB OB =-=, 过B 作BE x ⊥轴,E 为垂足, 由BEO CMO △∽△, 得:OC OM OB OE =,∴54OC =, 同理:52OD =,∴550042C D ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,,, 设CD 的解析式为y kx b =+(0k ≠),∴50452k b b ⎧=+⎪⎪⎨⎪-=⎪⎩ ∴252k b =⎧⎪⎨=-⎪⎩.∴AB 的垂直平分线的解析式为:522y x =-.达标训练四1.12≤t≤202.D3. D4. B5.54001.1>x 6.-2≤x ≤1 7.18、-2<x ≤3 所以正整数解为1,2,39.(1)7x <- (2) x <-1 10.0≤x <4 11. 25-x ,-5(25-x );16 12.(1)385÷42≈9.2∴单独租用42座客车需10辆,租金为320×10=3200元.385÷60≈6.4∴单独租用60座客车需7辆,租金为460×7=3220元.(2)设租用42座客车 x 辆,则60座客车(8-x )辆,由题意得: 解之得:733≤x ≤1855. ∵x 取整数, ∴x =4,5.当x =4时,租金为320×4+460×(8-4)=3120元; 当x =5时,租金为320×5+460×(8-5)=2980元. 答:租用42座客车5辆,60座客车3辆时,租金最少.说明:若学生列第二个不等式时将“≤”号写成“<”号,也对. 13.(1)设有x 人,则4515535x x+=-,∴x =175人.(2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:3555(4)175320400(4)1500y y y y +-⎧⎨+-⎩≥≤, 解这个不等式组,得111244y ≤≤.∵y 取正整数,∴y = 2. ∴4-y = 4-2 = 2.∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元. ···达标训练五1、42、C 3.(6,0) 4、(-2,3)等 5、(-3,1) 6、(3,0),(4,3) 7、(3,1) 8、B 9、A(3,0)、B(0,3)、C(-3,0)、D(0,-3) 面积为 9.42 10.B达标训练六1.B2. 1y >2y >3y3. ④ 4.2,x =(2,-3) 5.B 6.y=(x+4)2-27.(1,-1)或(-1,1) 8. 分析:由图象可知,二次函数y =ax 2+bx +c 的图象与x 轴有两个交点,故①b 2>4ac 正确,由对称轴为x =-1知2a —b =0成立,故②2a +b =0不成立,由点A (-3,0),关于对称轴为x =-1的对称点为(1,0),所以a +b +c =0成立,即a -b +c =0不成立,又2<5,a <0,∴2a >5a,即b>5 a ,∴④5a <b 成立.【答案】B9、x >2 , x >21, x ≥-1且≠2 , 全体实数 10、y=x 25-2711.(1)B 的坐标为(15,900),直线AB 的函数关系式为:1803600S t =-+.(2)在1803600S t =-+中,令S =0,得01803600t =-+.解得:t =20.即小明的父亲从出发到体育馆花费的时间为20分钟,因而小明取票的时间也为20分钟. ∵20<25,∴小明能在比赛开始前到达体育馆. 12.(1)3y x=,(2)11124y x =-+13.(1)根据题意,得(24002000)8450x y x ⎛⎫=--+⨯ ⎪⎝⎭, 即2224320025y x x =-++. (2)由题意,得22243200480025x x -++=.解这个方程,得12100200x x ==,. 要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. (3)对于2224320025y x x =-++,当150x =时,5000y =最大值. 所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元. 14. (1) ∵OABC 是平行四边形,∴AB∥OC,且AB = OC = 4,∵A ,B 在抛物线上,y 轴是抛物线的对称轴, ∴ A,B 的横坐标分别是2和– 2,代入y =241x +1得, A(2, 2 ),B(– 2,2),∴M (0,2), (2) ① 过点Q 作QH ⊥ x 轴,设垂足为H , 则HQ = y ,HP = x –t , 由△HQP ∽△OMC ,得:42tx y -=, 即: t = x – 2y , ∵ Q(x ,y ) 在y = 241x +1上, ∴ t = –221x + x –2.当点P 与点C 重合时,梯形不存在,此时,t = – 4,解得x = 1±5, 当Q 与B 或A 重合时,四边形为平行四边形,此时,x = ± 2∴x 的取值范围是x ≠ 1±5, 且x ≠± 2的所有实数. ② 分两种情况讨论:1)当CM > PQ 时,则点P 在线段OC 上, ∵ CM ∥PQ ,CM = 2PQ ,∴点M 纵坐标为点Q 纵坐标的2倍,即2 = 2(241x +1),解得x = 0 ,∴t = –2021+ 0 –2 = –2 . 2)当CM < PQ 时,则点P 在OC 的延长线上, ∵CM ∥PQ ,CM = 21PQ ,∴点Q 纵坐标为点M 纵坐标的2倍,即241x +1=2⨯2,解得: x = ±32. --- 当x = –32时,得t = –2)32(21–32–2 = –8 –32, 当x =32时, 得t =32–8.15.(1) ∵CQ =t ,OP t ,CO =8 ∴OQ =8-t∴S △OPQ =21(8)22t t -=-+(0<t <8)(2) 四边形O PBQ 的面积为一个定值,且等于(3)当△OPQ 与△PAB 和△QPB 相似时, △QPB 必须是一个直角三角形,依题意只能是∠QPB =90°又∵BQ 与AO 不平行 ∴∠QPO 不可能等于∠PQB ,∠APB 不可能等于∠PBQ∴根据相似三角形的对应关系只能是△OPQ ∽△PBQ ∽△ABP∴8=解得:t =4 经检验:t =4是方程的解且符合题意(从边长关系和速度)此时P (,0)∵B (8)且抛物线214y x bx c =++经过B 、P 两点,∴抛物线是2184y x =-+,直线BP 是:8y =-设M (m 8-)、N (m ,2184m -+)∵M 在BP 上运动 ∴m ≤≤∵21184y x =-+与28y =-交于P 、B 两点且抛物线的顶点是P∴当m ≤12y y >∴12MN y y =-=21(24m --+ ∴当m =MN 有最大值是2∴设MN 与BQ 交于H 点则4)M 、H∴S △BHM =132⨯⨯=∴S △BHM :S 五边形QOPMH ==3:29 ∴当MN 取最大值时两部分面积之比是3:29.达标训练7[达标训练7.1]1.54°41′,144°41′2. C3.D4..255. A6.900 7.略 [达标训练7.2]1. 2<x<8 2. 13 3. 3, △ABE ≌△ACE ,△BED ≌△CED , △ABD ≌△ACD4. 5.C E ∠=∠(答案不惟一,也可以是AB FD =或AD FB =) 5.80° 6.C 7. D 8.A9.(1)易证∠A=∠B=300,可得结论。

湖南省14市州2011年中考数学试题分类解析专题(1-11)-4

湖南省14市州2011年中考数学试题分类解析专题(1-11)-4

湖南省14市州2011年中考数学专题1:实数一、选择题1.(湖南长沙3分)2-等于A .2B .2-C .12D .12-【答案】A 。

【考点】绝对值。

【分析】根据绝对值的性质可知:|-2|=2。

故选A 。

2.(湖南常德3分)下列计算错误的是A.020111=B.819=±C.11()33-=D.4216=【答案】B 。

【考点】零指数幂,算术平方根,负整数指数幂,有理数的乘方。

【分析】对零指数幂,算术平方根,负整数指数幂,有理数的乘方四个考点计算即可::解:A 、20110=1,故本选项正确,不符合题意;B 、819=,故本选项错误,符合题意;C 、11()33-=,故本选项正确,不符合题意;D 、24=16,故本选项正确,不符合题意。

故选B 。

3.(湖南常德3分)我国以 2010年11月1日零时为标准记时点,进行了第六次全国人口普查查得全国总人口约为l 370 000 000,请将总人口用科学记数法表示为A . 81.3710⨯B .91.3710⨯ C. 101.3710⨯ D. 813.710⨯【答案】B 。

【考点】科学记数法。

【分析】根据科学记数法的定义,科学记数法的表示形式为1010n a a <⨯≤,其中1,n 为整数,表示时关键要正确确定a 的值以及n 的值。

在确定n 的值时,看该数是大于或等于1还是小于1。

当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,n 为它第一个有效数字前0的个数(含小数点前的1个0)。

l 370 000 000一共10位,从而l 370 000 000=91.3710⨯。

故选B 。

4.(湖南郴州3分)-12的绝对值是A 、12B 、-12C 、-2D 、2【答案】A 。

【考点】绝对值。

【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的义,在数轴上,点-12到原点的距离是12,所以-12的绝对值是12,故选A 。

5.(湖南郴州3分)我市“十二五”规划耕地保有量指标为4050000亩,4050000用科学记数法表示正确的是A 、4.05×107B 、4.05×106C 、4.05×105D 、405×105【答案】B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年常德市初中毕业学业考试数 学 试 题 卷(满分120分,考试时间120分钟)一、填空题(本大题8个小题,每小题3分,满分24分)1. (2011湖南常德,1,3分)2______.-=【答案】22. (2011湖南常德,2,3分)分解因式:24_________.x x -=【答案】()4x x -3. (2011湖南常德,3,3分)函数13y x =-中自变量x 的取值范围是_______________. 【答案】3x ≠4. (2011湖南常德,4,3分)四边形的外角和为__________.【答案】360°5. (2011湖南常德,5,3分)如图所示的曲线是一个反比例函数图象的一支,点A 在此曲线上,则该反比例函数的解析式为_______________.【答案】3y x= 6. (2011湖南常德,6,3分)质量检验部门抽样检测出某品牌电器产品的次品率为5%,一位经销商现有这种产品1000件,估计其中次品有_________件.【答案】507. (2011湖南常德,7,3分)如图,已知⊙O 是△ABC 的外接圆,且∠C =70°,则∠OAB =__________.【答案】20°8. (2011湖南常德,8,3分)先找规律,再填数:1111111111111111,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 【答案】11006二、选择题(本大题8个小题,每小题3分,满分24分)9. (2011湖南常德,9,3分)下列计算错误的是( )A.020111=9=± C.1133-⎛⎫= ⎪⎝⎭D.4216= 【答案】B10.(2011湖南常德,10,3分)如图,是由四个相同的小正方形组成的立体图形,它的左视图是( )【答案】A 11.(2011湖南常德,11,3分)我国以2010年11月1日零时为标准记时点,进行了第六次全国人口普查,查得全国总人口约为1 370 000 000人,请将总人口用科学计数法表示为( )A.81.3710⨯B. 91.3710⨯C.101.3710⨯D. 813.710⨯【答案】B12.(2011湖南常德,12,3分)在平面直角坐标系中,□ABCD 的顶点A 、B 、C 的坐标分别是(0,0)、(3,0)、(4,2)则顶点D 的坐标为( )A .(7,2) B. (5,4) C.(1,2) D. (2,1)【答案】C13.(2011湖南常德,13,3分)在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是( )A .李东夺冠的可能性较小 B. 李东和他的对手比赛10局时,他一定会赢8局C .李东夺冠的可能性较大 D. 李东肯定会赢【答案】C14.(2011湖南常德,14,3分)已知圆锥底面圆的半径为6厘米,高为8厘米,则圆锥的侧面积为( )A .48厘米2 B. 48π厘米2 C. 120π厘米2 D. 60π厘米2【答案】D15.(2011湖南常德,15,3分)小华同学利用假期时间乘坐一大巴去看望在外打工的妈妈.出发时,大巴的油箱装满了油,匀速行驶一段时间后,油箱内的汽油恰剩一半时又加满了油,接着按原速度行驶,到目的地时油箱中还剩有13箱汽油.设油箱中所剩的汽油量为V (升),时间为t 的大致图象是( )【答案】D16.(2011湖南常德,16,3分)设min {x ,y }表示x,y 两个数中的最小值,例如min {0,2}=0,min {12,8}=8,则关于x 的函数y 可以表示为( )A. ()()2222x x y x x <⎧⎪=⎨+≥⎪⎩B. ()()2222x x y x x +<⎧⎪=⎨≥⎪⎩ C. y =2x D. y =x +2【答案】D三、(本大题2个小题,每小题5分,满分10分)17.(2011湖南常德,17,5分)计算:()317223-÷-⨯ 【解】2918.(2011湖南常德,18,5分)解不等式组:211481x x x x ->+⎧⎨-<+⎩ 【解】解不等式①得,x > 2解不等式②, x < 3 A B C D① ②所以此不等式组的解集为2<x < 3四、(本大题2个小题,每小题6分,满分12分)19.(2011湖南常德,19,6分)先化简,再求值.221211, 2.111x x x x x x x ⎛⎫-+-+÷= ⎪+-+⎝⎭其中 【解】221211111x x x x x x ⎛⎫-+-+÷ ⎪+-+⎝⎭()()()21111111111122==2.21x x x x x x x x x x x x x ⎛⎫-+=+ ⎪ ⎪++--⎝⎭+=+-=-=- 当时,原式20.(2011湖南常德,20,6分)在一个不透明的口袋里,装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个.若从中任意摸出一个球,这个球是白球的概率为0.5 .(1)求口袋中红球的个数.(2)若摸到红球记0分,摸到白球记1分,摸到黄球记2分,甲从口袋中摸出一个球不放回,再摸出一个.请用画树状图的方法求甲摸得两个球且得2分的概率.【解】(1)设袋中有红球x 个,则有20.521x=++,解得x =1. 所以,袋中的红球有1个.(2)画树状图如下:由上述树状图可知:所有可能出现的结果共有12种.其中摸出两个得2分的有4种.所以P (从中摸出两个得2分)=41123. 五、(本大题2个小题,每小题7分,满分14分) 21.(2011湖南常德,21,7分)如图,已知四边形ABCD 是平行四边形.(1)求证:△MEF ∽△MBA ;(2)若AF ,BE 分别是∠DAB ,∠CBA 的平分线,求证DF =EC【证明】(1)∵□ABCD ,∴CD ∥AB∴∠MEF =∠MBA ,∠MFE =∠MAB∴△MEF ∽△MBA(2)在□ABCD 中,∵CD ∥AB∴∠DF A =∠FAB又∵AF 是∠DAB 的平分线∴∠DAF =∠F AB∴∠DAF =∠DF A∴AD =DF同理可得EC =BC∵□ABCD ,∴AD =BC∴DF =EC22.(2011湖南常德,22,7分)随着“十一五”期间中央系列强农惠农政策的出台,农民的收入和生活质量及消费走势发生了巨大的变化,农民的生活消费结构趋于理性化,并呈现出多层次的消费结构,为了解我市农民消费结构状况,随机调查了部分农民,并根据调查数据,将2008年和2010年我市农民生活消费支出情况绘成了如下统计图表:2 13 2 1 3 1 1 2 3 3 2 开始白 白 红 黄白 红 黄 第二次 第一次 得分白 白 黄白 红 黄白 白 红请解答如下问题:(1)2008年的生活消费支出总额是多少元?支出费用中支出最多的项目是哪一项?(2)2010年我市农民生活消费支出统计表中a 、b 、c 的值分别是多少?(3)2008年到2010年的生活消费支出总额的年平均增长率是多少?【解】(1)2370+360+1060+390+420+400=5000(元)所以2008年的生活消费支出总额是5000元;支出费用中支出最多的项目是食品.(2)a =6050-(2630+521+1380+430+605)=484(元)b =484÷6050=0.08c =605÷6050=0.1(3)设2008年到2010年的生活消费支出总额的年平均增长率是x ,根据题意有()2500016050x += 解得1210%, 2.1()x x ==-舍去所以2008年到2010年的生活消费支出总额的年平均增长率是10%六、(本大题2个小题,每小题8分,满分16分)23.(2011湖南常德,23,8分)某城市规定:出租车起步价允许行驶的最远路程为3千米,超过3千米的部分按每千米另收费.甲说:“我乘这种出租车走了11千米,付了17元”;乙说:“我乘这种出租车走了23千米,付了35元”.请你算一算这种出租车的起步价是多少元?以及超过3千米后,每千米的车费是多少元?【解】设这种出租车的起步价是x 元,超过3千米后每千米收费y 元,根据题得()()113175,23335 1.5x y x x y y +-=⎧=⎧⎪⎨⎨+-==⎪⎩⎩解得 所以这种出租车的起步价是5元,超过3千米后每千米收费1.5元24.(2011湖南常德,24,8分)青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图所示)一天,灰太狼在自家城堡顶部A 处测得懒羊羊所在地B 处的俯角为60°,然后下到城堡的C 处,测得B 处的俯角为30°.已知AC=40米,若灰太狼以5m/s 的速度从城堡底部D 处出发,几秒钟后能抓到懒羊羊?(结果精确到个位)【解】在Rt △ABD 中,∠ABD =60° ∵tan 60AD BD=︒,∴0tan60AD BD =⋅=在Rt △BCD 中,∠CBD =30°tan 30CD BD=︒∴0tan 303CD BD BD =⋅=由AD -CD=AC ,得到40=,解得BD≈34.6(米) 34.6÷5=6.92≈7(秒)六、(本大题2个小题,每小题10分,满分20分)25.(2011湖南常德,25,10分)已知 △ABC ,分别以AC 和BC 为直径作半圆1O 、2,O P 是AB的中点.(1)如图1,若△ABC 是等腰三角形,且AC =BC ,在 ,AC BC 上分别取点E 、F ,使12,AO E BO F ∠=∠则有结论①△EO 1P ≌△PO 2F ②四边形12PO CO 是菱形.请给出结论②的证明;(2)如图2,若(1)中△ABC 是任意三角形,其它条件不变,则(1)中的两个结论还成立吗?若成立,请给出证明;(3)如图3,若PC 是1O 的切线,求证:2223AB BC AC =+【证明】(1)∵BC 是⊙O 2直径,则O 2是BC 的中点又P 是AB 的中点.,∴P O 2是△ABC 的中位线∴P O 2 =12AC 又AC 是⊙O 1直径∴P O 2= O 1C=12AC 同理P O 1= O 2C =12BC ∵AC =BC∴P O 2= O 1C=P O 1= O 2C∴四边形12PO CO 是菱形(2)结论①△PO 1E ≌△PO 2F 成立,结论②不成立证明:在(1)中已证PO 2=12AC ,又O 1E =12AC ∴PO 2=O 1E同理可得PO 1=O 2F∵PO 2是△ABC 的中位线∴PO 2∥AC∴∠PO 2B =∠ACB同理∠P O 1A=∠ACB∴∠PO 2B =∠P O 1A∵∠AO 1E =∠BO 2F∴∠P O 1A+∠AO 1E =∠PO 2B+∠BO 2F即∠P O 1E =∠F O 2 P∴△EO 1P ≌△PO 2F ;(3)延长AC 交⊙O 2于点D ,连接BD.∵BC 是⊙O 2的直径,则∠D=90°,又PC 是1O 的切线,则∠ACP=90°,∴∠ACP=∠D又∠PAC=∠BAD∴△A PC ∽△BAD又P 是AB 的中点 ∴12AC AP AD AB == ∴AC=CD ∴在Rt △BCD 中,2222²BC CD BD AC BD =+=+ 在Rt △ABD 中,222AB AD BD =+∴()22222243AB AC BD AC BD AC =+=++ ∴2223AB BC AC =+26.(2011湖南常德,26,10分)如图,已知抛物线过点A (0,6),B (2,0),C (7,52). (1)求抛物线的解析式;(2)若D 是抛物线的顶点,E 是抛物线的对称轴与直线AC 的交点,F 与E 关于D 对称,求证:∠CFE=∠AFE ;(3)在y 轴上是否存在这样的点P ,使△AFP 与△FDC 相似,若有,请求出所有合条件的点P 的坐标;若没有,请说明理由.【解】(1)设经过A (0,6),B (2,0),C (7,52)三点的抛物线的解析式为y =ax 2+bx +c , 则:642054972c a b c a b c ⎧⎪=⎪++=⎨⎪⎪++=⎩解得1,4, 6.2a b c ==-= ∴ 此抛物线的解析式为 21462y x x =-+ (2)过点A 作AM ∥x 轴,交FC 于点M ,交对称轴于点N. ∵抛物线的解析式21462y x x =-+可变形为()21422y x =-- ∴抛物线对称轴是直线x =4,顶点D 的坐标为(4,-2).则AN=4. 设直线AC 的解析式为11y k x b =+, 则有1116572b k b =⎧⎪⎨+=⎪⎩,解得111,62k b =-=. ∴ 直线AC 的解析式为1 6.2y x =-+ 当x=4时,146 4.2y =-⨯+=∴点E 的坐标为(4,4),∵点F 与E 关于点D 对称,则点F 的坐标为(4,-8) 设直线FC 的解析式为22y k x b =+, 则有222248572k b k b +=-⎧⎪⎨+=⎪⎩,解得227,222k b ==-. ∴ 直线FC 的解析式为722.2y x =- ∵AM 与x 轴平行,则点M 的纵坐标为6.当y =6时,则有7226,2x -=解得x =8. ∴AM =8,MN=AM —MN=4∴AN =MN∵FN ⊥AM∴∠ANF=∠MNF又NF=NF∴△ANF ≌△MNF∴∠CFE=∠AFE(3)∵C 的坐标为(7,52),F 坐标为(4,-8)∴CF == ∵又A 的坐标为(0,6),则FA == 又DF =6,若△AFP ∽△DEF∵EF ∥AO ,则有∠PAF=∠AFE , 又由(2)可知∠DFC=∠AFE ∴∠PAF=∠DFC若△AFP 1∽△FCD则1P A AF DF CF =,即162P A =,解得P 1A=8. ∴O P 1=8-6=2∴P 1的坐标为(0,-2).若△AFP 2∽△FDC则2P A AF CF DF =,6=,解得P 2A=532. ∴O P 2=532-6=412. ∴P 2的坐标为(0,-412). 所以符合条件的点P 的坐标有两个,分别是P 1(0,-2),P 2(0,-412).。

相关文档
最新文档