细胞分离与培养技术
细胞培养方法与步骤
细胞培养方法与步骤细胞培养是指将细胞从一个生物体中取出并在实验室中培养繁殖的过程。
细胞培养可用于各种实验研究,如细胞生物学、分子生物学、药物筛选等。
细胞培养的方法多种多样,下面将介绍常见的细胞培养方法及其步骤。
一、原代细胞培养方法原代细胞培养是指将从组织或器官中分离的细胞直接进行培养。
原代细胞培养是建立细胞株的重要步骤,一般需要一定的技术和设备。
步骤:1.组织分离:从动物或人体中取得组织,如肝脏、心脏等,并用生理盐水或细胞培养基洗刷组织的表面。
2.细胞分离:将组织切割成小块,并用胰蛋白酶或胰酶进行消化,使细胞分散。
3.细胞收集:用细胞培养基冲洗消化后的组织碎片,将细胞收集到离心管中。
4.离心:将离心管放入离心机中进行离心,分离出细胞沉淀。
5.细胞培养:将细胞沉淀重新悬浮在细胞培养基中,然后转移到培养皿中进行培养。
二、细胞株培养方法细胞株培养是指将原代细胞培养到一定数目并进行传代培养的过程。
步骤:1.细胞传代:细胞达到一定密度后,用胰蛋白酶或胰酶等对细胞进行消化,将细胞分离。
2.细胞计数:用显微镜和细胞计数板对细胞进行计数,得到细胞浓度。
3.细胞培养:将分散的细胞与新鲜的培养基混合,然后转移到培养皿中进行培养。
4.细胞增殖:培养皿中的细胞经过一段时间的培养,可以看到细胞开始增殖,形成细胞集落。
5.细胞传代:当细胞集落接近充满培养皿时,需进行细胞传代,即将细胞分散到新的培养皿中。
6.细胞冻存:当细胞达到所需数量后,可以进行细胞冻存,以备之后的使用。
三、细胞培养技术要点1.无菌操作:细胞培养需要在无菌条件下进行,避免细菌或真菌的污染。
操作前需做好洗手消毒,使用无菌操作台,并加入适量的抗生素或抗菌剂到培养基中。
2.培养液选择:根据不同细胞的需要,选择适合的培养基和生长因子,以提供细胞的生长所需的营养物质。
3.培养条件控制:温度、湿度、CO2浓度等因素对细胞生长有重要影响,需根据具体要求进行调节。
4.细胞检测:在细胞培养过程中,需要定期观察和检测细胞的形态、生长情况、细胞浓度等指标,以确保细胞的正常生长和状态。
细胞生物学实验技术
细胞生物学实验技术细胞生物学实验技术是现代生命科学研究中的关键环节,它为研究人员提供了深入了解细胞结构、功能和相互作用的途径。
本文将重点介绍一些常见的细胞生物学实验技术,包括细胞培养、染色技术、分离技术和显微镜观察等。
一、细胞培养技术细胞培养是一项基础性技术,它可以将细胞从体内取出并在适当的培养基中进行增殖和维持。
细胞培养的首要任务是提供适当的培养基,其中含有必需的营养物质、生长因子和适当的温度、湿度和气体条件。
细胞培养技术广泛应用于细胞生物学实验、组织工程、药物研发等领域。
二、染色技术染色技术是细胞生物学实验中常用的方法之一,它使研究者能够对细胞内各种结构和分子进行可视化观察。
常用的染色方法包括荧光染色、酶标染色和核酸染色等。
荧光染色利用荧光标记的抗体或染料,可使特定的细胞结构或分子在显微镜下发出荧光信号,从而观察其位置和表达水平。
酶标染色则通过酶与底物的反应,使细胞或组织显示出颜色等信号。
核酸染色则利用特定染料与细胞核酸结合,以观察DNA或RNA的分布情况。
三、分离技术分离技术在细胞生物学实验中具有重要作用,它可以将不同类型的细胞或细胞组分进行分离和纯化。
常用的分离技术包括细胞离心、流式细胞术和免疫磁珠分离等。
细胞离心是通过离心机将混合细胞悬液分离成上清液和沉淀,从而获得纯化的特定类型细胞。
流式细胞术则通过流式细胞仪测量细胞的大小、形态和表面标记物,从而实现对细胞的高通量分离和分析。
免疫磁珠分离则利用特定抗体结合在磁珠表面,以实现对需要纯化的细胞或细胞组分的选择性捕获。
四、显微镜观察显微镜观察是细胞生物学实验的重要手段,它使研究者能够观察到细胞内不同的结构和过程。
传统光学显微镜可实现对细胞形态和部分细胞器的观察,但其分辨率有限。
近年来,随着超分辨显微镜技术的发展,研究者们能够突破传统光学显微镜的分辨率极限,实现对亚细胞结构和分子过程的观察。
总结细胞生物学实验技术在现代生命科学研究中发挥着至关重要的作用。
人类肝细胞的分离与培养技术
人类肝细胞的分离与培养技术随着生命科学的发展和进步,肝细胞的分离和培养技术在医学领域中越来越重要。
肝细胞作为机体内代谢和解毒的重要器官,它的功能对于人体的健康具有至关重要的影响。
因此,肝细胞的活体分离和培养技术是研究肝脏生理、病理机理及其相关疾病的重要手段之一,也是研发肝药和治疗肝病的重要基础。
一、肝细胞的分离技术1.灭菌准备分离和培养肝细胞必须有高质量的培养基和相关配件,因此必须进行严格的灭菌准备工作。
需要准备无菌离心管和培养皿、无菌试管、无菌针头等,以保证分离后的肝细胞有良好的生长环境。
2.胶原酶消化胶原酶是一种生物碱性蛋白酶,它可以使肝细胞在本身结构上受到的伤害最小,分离出的细胞也更加健康、完整。
使用胶原酶消化,可以将肝脏组织中的各类细胞分离出来,与此同时,有的组织中存在黏性蛋白质,加胶原酶后,可以有效地降低分离的黏性蛋白质含量,使其在分离过程中保持较好的完整性。
3.密度梯度离心密度梯度离心是将分离出来的细胞通过离心机离心处理,得到纯化的细胞组织。
将经胶原酶消化的混合细胞悬液注入含有石蜡或离子聚合物化合物的密度梯度管中,通过逐层离心,不断离心分离出不同密度的细胞。
二、肝细胞的培养技术肝细胞的分离与培养是肝研究的重要手段之一,为了成功地分离和培养肝细胞,还需要具备有效的培养技术。
以下是几种比较常见的肝细胞培养技术。
1.原代细胞培养原代细胞培养即从肝脏中取出肝细胞,以生理盐水或PBS等缓冲液洗涤去除血液和淋巴细胞,将肝组织制成细胞悬浮液,然后将细胞悬浮液转移到含有血清的培养基中培养。
初期内,细胞只能在特殊的培养条件下存活,随着时间的推移,细胞的生长速度会逐渐加快,直到与原始肝细胞达到一致。
2.选循环细胞培养选循环细胞培养技术是将同样的原代肝细胞在培养后进行染色体检测,并筛选出较好的染色体数量的细胞进行扩增。
通过筛选出的具有较好生长速度和菌礼细胞染色体形式的细胞进行扩张和培养。
3.分化诱导培养分化诱导培养技术是将原代肝细胞和不同化学物质进行共培养,从而使肝细胞分化为肝小叶细胞或胆汁细胞,为肝细胞研究提供了更加相应的模型。
细胞培养技术中的细胞纯化和分离
细胞培养技术中的细胞纯化和分离随着生物技术和生物医学研究的不断发展,细胞培养技术也越来越成为一种重要的研究手段。
在进行细胞培养实验时,不仅需要在培养基中提供适宜的营养条件,还需要考虑如何保证细胞的纯度和分离。
因为如果细胞混合在一起,可能会对实验结果产生干扰,影响科学研究成果的准确性。
细胞纯化和分离技术的发展,为细胞培养实验提供了有力的支持。
一、细胞纯化技术所谓细胞纯化,即是指将同一类型的细胞从混合物中分离出来,获得纯种的细胞。
这种技术应用广泛,例如在干细胞研究中,需要将干细胞从其他细胞中纯化出来。
目前常用的细胞纯化技术主要有以下几种。
1.差速离心这种方法的原理是依靠细胞的不同沉降速度,在其它细胞和细胞碎片中分离出要纯化的细胞种类。
比如对于混合的细胞,进行差速离心后,重的细胞如肝细胞等就可以在离心管的底部沉淀下来;而轻的细胞比如造血干/祖细胞则可以在上层沉淀。
这种方法虽然方便快捷,但是由于离心速度的不同,有时会把不同的细胞类型离心到一个位置,分离效果并不理想。
2. 细胞排序技术细胞排序技术是一种可接受的方法。
这种方法利用一种叫做细胞分选仪(FACS)的设备来实现,FACS通过运用激光束可以捕捉到被染色的细胞,然后在细胞上打标签,这样细胞分选仪就能帮助实验人员将目标细胞分选出来。
不仅如此,FACS还可以根据设定的特定标记,为不同细胞类型分类和分选。
但是,这种方法价格昂贵,需要训练技能,限制了它的使用。
二、细胞分离技术与细胞纯化技术不同,细胞分离技术是将混合物中的不同细胞种类分离的过程。
这种技术在体外培养单一细胞的物种和组织研究中应用广泛。
1. 磁珠细胞分离技术这种技术广泛应用在制备纯化细胞的过程中。
基本原理是通过对细胞标记来实现磁性分离。
首先,将细胞和磁性珠以特定的方式结合在一起,对此进行特别处理,这样可以使细胞在磁场中受到磁力吸引。
然后,将细胞和磁珠贴附在磁性离心离心机上,以达到将细胞分离的目的。
各种免疫学方法
各种免疫学方法
免疫学中有很多种方法,以下列举其中一些:
1. 免疫细胞分离和培养:通过离心和分层技术,可以从体内分离出免疫细胞,如淋巴细胞、单核细胞等,并在体外培养它们以进行后续实验。
2. 免疫组化和免疫荧光:这些技术用于检测和定位免疫细胞和抗原在组织中的分布。
通过使用特定的抗体标记,可以在显微镜下观察到这些标记物。
3. 流式细胞术:这是一种常用的技术,用于分析和鉴定免疫细胞的表型和功能。
通过使用荧光标记的抗体,可以通过流式细胞仪检测和分离特定的细胞亚群。
4. 免疫沉淀和免疫印迹:这些技术用于检测和分离特定的蛋白质。
通过与目标蛋白质特异性结合的抗体,可以将其从复杂的混合物中分离出来,并通过免疫印迹技术进行检测。
5. 免疫基因学:这是通过研究免疫相关基因的表达和功能来了解免疫系统的方法。
包括使用PCR、实时荧光定量PCR和基因敲除等技术。
6. 酶联免疫吸附试验:这是一种常用的免疫学检测方法,通过将待测抗原或抗体与酶结合,再利用酶的催化作用对待测抗原或抗体进行放大信号反应,以提高检测的灵敏度。
7. 血清凝集试验:这是一种检测抗原或抗体的方法,通过将待测血清与已知抗原或抗体在体外进行反应,观察是否发生凝集现象来判断待测血清中是否存在相应的抗原或抗体。
8. 补体激活试验:这是一种检测补体系统活性的方法,通过观察补体系统被激活后对病原微生物的杀伤作用来评估机体的免疫功能。
9. 疫苗接种:通过接种疫苗来激发机体产生特异性免疫反应,以提高机体的免疫力,预防相应的疾病。
以上各种免疫学方法各有特点,适用于不同的应用场景。
在实际应用中,应根据具体情况选择合适的方法。
获得微生物纯培养的方法
获得微生物纯培养的方法微生物纯培养是指通过分离和纯培养微生物细胞或菌体,获得所需微生物的纯品。
获得微生物纯培养的方法可以有多种,下面介绍其中两种常见的方法。
方法一:细胞分离法细胞分离法是获得微生物纯培养的常用方法之一。
该方法通常分为以下几个步骤:1. 培养基制备:将微生物所需的培养基制成浓度适宜的培养基,并加入适量的营养物质和抗生素等调节剂。
2. 细胞采集:将制备好的培养基进行细胞采集,通常采用离心技术或显微镜观察等方法。
3. 细胞分离:将采集到的细胞通过物理或化学方法进行分离,如过滤、洗涤、离心等,获得不同种类的细胞。
4. 纯培养:将分离得到的细胞进行纯培养,通常需要使用适当的技术和设备,如酒精沉淀、磁选、过滤等,确保获得纯品。
细胞分离法的优点在于操作简单、结果可靠,但需要选择合适的培养基和分离条件,对分离细胞的种类和数量有一定的要求。
方法二:化学分离法化学分离法是指利用微生物细胞或菌体表面的化学特征进行分离的方法。
该方法通常分为以下几个步骤:1. 培养基制备:将微生物所需的培养基制成浓度适宜的培养基,并加入适量的营养物质和抗生素等调节剂。
2. 添加化学分离剂:根据不同的化学分离剂,对培养基中的微生物细胞或菌体进行干扰,使它们分离出来。
常用的化学分离剂包括酸碱、盐、有机溶剂等。
3. 细胞分离:将添加化学分离剂的培养基进行细胞分离,通常采用离心技术或显微镜观察等方法。
4. 纯培养:将分离得到的细胞进行纯培养,通常需要使用适当的技术和设备,如酒精沉淀、磁选、过滤等,确保获得纯品。
化学分离法的优点在于能够精确地控制分离条件,分离出不同种类的微生物,但需要选择合适的化学分离剂和分离条件,对分离细胞的种类和数量有一定的要求。
细胞生物学的实验方法与技巧
细胞生物学的实验方法与技巧细胞生物学是研究细胞结构和功能的科学领域。
在细胞生物学中,实验方法和技巧是非常关键的。
细胞生物学的实验技术涉及到多种技术和方法,包括细胞培养、细胞分离、荧光显微镜、分子生物学等等。
在本文中,我们将会详细讨论细胞生物学中的实验方法和技巧。
一、细胞培养技术细胞培养技术是研究细胞生长、增殖、衰老等生理状态的一种重要的实验技术。
细胞培养技术通常需要使用一个适宜的培养基,该培养基还需要添加适当的营养物质和培养物质。
在培养细胞时,需要注意适宜的温度、湿度、和二氧化碳含量等因素,这些因素可以影响细胞的状态和生命活动。
另外,在细胞培养中,不可避免地会遇到一些问题,例如细胞的寿命、细胞的死亡、菌污染等问题。
为避免这些问题,需要在实验中采取一些必要的预防措施。
例如,可以使用无菌操作技术,采用CDMF等杀菌剂消毒培养器、培养器中的培养物料,这样可以有效防止细胞因菌污染而死亡。
二、细胞分离技术细胞分离技术是研究细胞的单个特性、形态和功能的一种技术。
在实验中需要利用细胞分离技术来获得一定数量的单个细胞。
细胞分离技术有多种方法,包括分离器分离、离心分离、胶体分离和酶消化等,每种方法都有其优缺点。
其中,酶消化是一种比较常见的细胞分离方法,通过加入一定量的酶,将组织内的胶原纤维、纤维素及其他基质物质消化掉,从而获得单个细胞。
在酶消化实验中,需要根据不同细胞类型、不同组织、不同生长状态等因素进行调整,以获得最佳效果。
三、荧光显微镜技术荧光显微镜技术是一种广泛用于生物学和生命科学中的高级显微镜技术。
在细胞生物学研究中,荧光显微镜技术是最常用的技术之一,因为它可以用来标记和检测细胞内的各种生物大分子,如蛋白质、核酸、酶等。
在荧光显微镜实验中,使用的荧光探针要与待检测的细胞相匹配,例如,使用荧光染料DPH来探测细胞内外膜分子的相互作用。
同时,还需注意荧光显微镜的光源选择、荧光图像的采集和分析等问题,以获得高质量的研究数据。
细胞培养的基本方法-细胞分离技术
细胞培养的基本方法-细胞分离技术细胞分离技术一、从原代组织中分离细胞将组织块分离(散)成细胞悬液的方法有多种,最常用的是机械解离细胞法、酶学解离细胞法以及螯合剂解离细胞法。
从原代组织中获得单细胞悬液的一般方法是酶解聚。
细胞暴露在酶中的时间要尽可能的短, 以保持最大的活性。
下列步骤可以解聚整个组织,获得较高产量的有活性细胞。
1. 胰蛋白酶(Trypsin)•在去除不需要的组织后,使用无菌的解剖刀和剪子把剩余的组织切成3~4mn小片,通过悬浮在无钙镁的平衡盐溶液中清洗组织碎片。
让组织碎片沉淀,去除上清液。
重复清洗2到3次。
•将盛有组织碎片的容器置于冰上,去除残留的上清液。
加入0.25 %溶解在无钙镁的平衡盐溶液中的胰蛋白酶(100mg组织加入1ml胰蛋白酶)。
•在4C孵育6到18小时,使几乎没有胰蛋白酶活性的酶尽可能渗透进去。
•移弃组织碎片中的胰蛋白酶,在37C孵育包含残留胰蛋白酶的组织碎片20到30分钟。
•在组织碎片加入热的完全培养基,用移液管轻轻地分散组织。
如果使用无血清培养基,要加入大豆胰蛋白酶抑制剂。
•通过无菌不锈钢丝网(100〜200mm过滤,分散所有剩余组织。
计数和接种细胞,进行培养。
2. 胶原酶(Collagenase)•用无菌解剖刀和剪子把剩余组织切成3~4mm」、片,用Hanks'平衡液(HBSS清洗组织碎片几次。
•加入胶原酶(50〜200单位/ml,溶解在HBSS中)。
•在37C孵育4到18小时。
加入3mM CaCI2增加解离效率。
•通过无菌不锈钢丝网或尼龙网过滤细胞悬液,以分离分散细胞、组织碎片和较大的碎片。
如果需要进一步的解聚,在碎片中加入新鲜的胶原酶。
•通过离心在HBSS中清洗悬液几次。
•再一次在培养基中悬浮细胞,计数和接种细胞,进行培养。
3. Dis pase•用无菌解剖刀和剪子把剩余组织切成3~4mn小片,用不含钙镁的平衡盐溶液清洗组织碎片几次。
•加入Dispase (0.6〜2.4单位/ml溶解在无钙镁的平衡盐溶液)•在37C孵育20分钟到几个小时。
细胞分离和分离纯化技术
细胞分离和分离纯化技术细胞是生命的基本单位,我们要研究细胞的生物学功能,就需要进行细胞分离和分离纯化技术。
细胞分离和分离纯化技术可以将混合的细胞群体进行分离,获取纯化的单一细胞群体,从而对细胞进行更深入的研究。
本文将介绍几种常见的细胞分离和分离纯化技术。
1. 离心法离心法是一种简单易行的细胞分离技术。
在此方法中,可将细胞放置在高速离心机中,通过离心将细胞组织按照密度和尺寸分离开来。
密度较高的细胞会沉淀到底部,而密度较低的细胞则会悬浮在上层。
离心法离心速度的大小会影响到离心的结果,不同的细胞类型需要使用不同的离心速度。
这种方法简单易行,但需要特别小心,因为在高速旋转的过程中,细胞组织可能会破裂,导致细胞死亡。
2. 过滤法过滤法是另一种细胞分离的方法,以过滤网将细胞从混合物中筛选出来。
这种方法可以很快地分离大量的细胞,适用于很多细胞类型。
这种方法同时也是一种非特异的方法,一些物质(如血液组分和其他蛋白质)也会被一同筛选出来。
3. 免疫磁珠法免疫磁珠法通过使用特定特异性的抗体结合在磁珠表面,利用磁性分离细胞。
这种方法尤其适用于分离少量目标细胞,如白细胞。
首先,需要获得对于目标细胞表面标识物(分子)的特异性抗体,并将其附加到磁珠表面。
细胞混合物中的细胞会与抗体结合,从而被磁珠捕捉到。
磁珠可以通过磁力分离和释放,使细胞得到纯化和分离。
4. 梯度离心法梯度离心法是将细胞组织沿离心管分层的一种方法。
物体在液体中受到的浮力与置于该物体上的液体的重量相等,这种原理称作阿基米德定律。
根据阿基米德浮力的作用,浓度较高的溶液放置于溶液浓度较低的液体上,便可以制造一个密度梯度。
将细胞过滤掉,将需要分离的细胞放在梯度的上层,通过离心制造一个压力来将细胞层逐渐沉淀到不同的层中。
以此方法分离出的细胞的纯度较高。
5. 流式细胞分选法流式细胞分选法是一种高效和灵活的细胞分选技术。
在此方法中,将经过标记的细胞悬浮于缓冲液中通过流式细胞仪进行分离。
细胞生物学中的细胞分离和培养技术
细胞生物学中的细胞分离和培养技术细胞分离和培养技术在细胞生物学领域中起着至关重要的作用。
通过这些技术,科学家们能够分离出人体或其他生物体中的不同类型的细胞,并将其培养在适当的培养基中,使其继续生长和繁殖。
这些技术为我们研究细胞的功能和特性提供了重要的工具。
本文将详细介绍细胞分离和培养技术的原理、方法和应用。
一、细胞分离技术细胞分离是指将复杂的组织和器官中的细胞分离出来,以获得纯净的细胞群。
常用的细胞分离技术包括机械法、酶消化法和负选择法等。
1. 机械法机械法是最简单也是最常用的细胞分离方法之一。
它利用机械力对组织进行研磨或切割,使组织细胞变成悬浮状态。
通过滤网或离心等方法,能够分离出不同大小、形态和密度的细胞。
2. 酶消化法酶消化法是利用特定的酶对组织进行消化,以破坏组织细胞之间的黏着力,并分离出单个的细胞。
常用的消化酶包括胰蛋白酶、胶原酶和牛血清蛋白酶等。
3. 负选择法负选择法是通过标记已知种类的细胞,并将其排斥在分离细胞群之外,从而获得目标细胞。
这种方法可以用于从复杂的细胞混合物中分离出特定的细胞类型。
二、细胞培养技术细胞培养技术是将分离出的细胞放入适当的培养基中,并提供适宜的温度、湿度和营养条件,使细胞能够在体外继续生长、增殖和分化。
细胞培养技术广泛应用于医学研究、药物筛选和生物工程等领域。
1. 组织培养组织培养是将整个组织或组织片段放置在培养皿中,并提供适当的培养基,使组织细胞能够在体外长时间存活。
通过组织培养,可以研究组织的生长、分化和再生能力。
2. 原代细胞培养原代细胞培养是将从动物体内直接分离得到的细胞进行培养。
这些细胞最接近原始状态,具有更大的培养和繁殖能力。
原代细胞培养广泛应用于研究和生产中。
3. 细胞系细胞系是指从原代细胞培养中得到的无限增殖能力的细胞。
细胞系广泛应用于药物筛选、疫苗生产、毒性测试等领域。
常见的细胞系有HeLa细胞、293细胞和NIH/3T3细胞等。
三、细胞培养技术的应用细胞培养技术在许多领域都有重要的应用。
微生物四大基本技术
微生物四大基本技术微生物学是生物学的重要学科之一,其主要研究微生物的生物学特性及其对环境的影响,包括微生物的生理、生态、遗传、进化及其应用等方面。
微生物学中的四大基本技术是鉴定、分离、培养和纯化,下面将详细介绍四个技术及其在微生物学中的应用。
一、鉴定技术鉴别和分类微生物的目的是确定微生物种属的名称和系统学位置,并集成有关微生物的生物学、生态学、遗传学、生化学与人类学等知识。
鉴定技术在微生物分类鉴定和研究中发挥十分重要的作用,如确定食品污染中的病原菌、确定土壤中的益生菌、确定自然生态系统中的微生物群等。
二、分离技术分离技术是将混合物中的微生物单元分开,主要包括单菌分离和纯菌培养两个步骤。
单菌分离利用对微生物的生长特点,通过变形培养、酶切和物理分离等手段提取单个菌单元;纯菌培养是将分离出的单个微生物菌单元在合适的培养基上培育,从而获得单一的纯菌培养物。
分离技术是微生物学中最基础、最原始的技术,主要用于检测、分离和鉴定微生物的种类和数量。
采用分离技术对微生物进行分离和纯化,可以排除影响微生物研究的干扰因素,从而帮助研究人员更准确地刻画微生物的特性和生态功能。
三、培养技术培养技术是指将微生物体系移植至特定的培养基中进行培育的过程,可分为常规培养和特殊培养两种。
常规培养主要是将微生物体系在营养丰富的培养基上进行培育,包括液体培养和固体培养;特殊培养则是指使用特定的培养基和条件对某些微生物进行培养。
培养技术可以帮助研究人员获得微生物样品,便于研究微生物的特性和生态功能。
不同类型的微生物需要在不同的营养基上进行培养,通过调整培养条件,可以影响微生物的生理生化特性,进而研究微生物对外界环境的响应机制。
四、纯化技术纯化技术是指将杂质和其它污染物从分离出的微生物单元或培养物中去除,使其成为单一的微生物纯种。
纯化技术主要包括精细过滤、免疫沉淀、离心沉淀、磁珠分离和柱层析等,其中柱层析技术应用最为广泛。
纯化技术对于微生物研究至关重要,可大幅提高微生物的纯度和活性,从而更好地揭示微生物的功能和代谢途径。
实验室细胞培养的一般步骤
实验室细胞培养的一般步骤细胞培养是一项重要的实验室技术,广泛应用于生命科学研究以及医药产业中。
下面将为您介绍一般的细胞培养步骤,希望能为您提供一些指导意义。
第一步:制备培养基细胞培养的第一步是制备适合细胞生长的培养基。
培养基通常包括营养物质、氨基酸、维生素、生长因子等,可以为细胞提供足够的养分和环境条件。
根据不同的细胞类型和实验目的,制备不同种类和浓度的培养基。
第二步:分离细胞在细胞培养之前,需要将细胞从组织、器官或已有培养物中分离出来。
通常采用酶消化、机械剪切或离心等方法来分离细胞。
分离后,细胞可以在培养基中生长和繁殖。
第三步:细胞接种将分离出的细胞接种到含有培养基的培养皿或培养瓶中。
接种密度要适当,不宜过稀或过密。
同时,需要将培养基中的氧气和二氧化碳平衡,通常使用CO2培养箱来提供适宜的气体环境。
第四步:细胞培养经过接种后,细胞开始在培养基中生长和分裂。
在培养过程中,需要控制细胞的温度、湿度和pH值,保持适宜的生长条件。
此外,定期更换新鲜的培养基可以提供足够的营养物质,维持细胞的正常生长。
第五步:细胞检测和观察细胞培养的过程中,需要定期对细胞进行检测和观察。
包括细胞数量的计数、形态的观察和生长曲线的绘制等。
通过这些检测和观察,可以了解细胞的健康状态、增殖速率以及其他相关参数。
第六步:细胞应用或冻存根据研究或实验的需要,可以选择将细胞用于进一步的实验、传代培养或冻存保存。
冻存细胞需要使用适当的冻存液,将细胞缓慢冷冻并存放在液氮罐中,以便长期保存。
细胞培养是一项需要耐心和细心的工作,每一步都需要严格控制条件和遵循操作规范。
只有如此,才能获得可靠的实验结果和高质量的细胞培养。
希望本文能为您提供参考,更好地开展细胞培养工作。
原代滋养层细胞的分离培养及鉴定
一、概述原代细胞是从组织或器官中分离得到的未经过传代培养的细胞,通常被用于研究细胞的特性和生物学行为。
在细胞生物学研究中,原代细胞的分离、培养及鉴定是非常重要的步骤,它们可以为科学家提供更加真实的细胞生理功能和反应。
本文将讨论原代滋养层细胞的分离培养及鉴定方法。
二、原代滋养层细胞的分离1. 准备工作在进行原代滋养层细胞的分离前,先准备必要的材料和试剂,包括消毒器械、胰酶、培养基和培养皿等。
2. 组织样本的处理将所需的组织样本取出并进行消毒处理,然后用无菌工具将其切割成小块。
3. 酶解和分离将组织样本块放入含有适量胰酶的培养基中,进行酶解和振荡分离,以获得细胞悬浮液。
4. 细胞分离通过离心等方法,将细胞悬浮液离心沉淀,然后将上清液中的细胞转移到新的培养皿中。
三、原代滋养层细胞的培养1. 培养基的准备根据原代滋养层细胞的类型和特性,选择适当的培养基,并添加相应的生长因子和营养成分。
2. 细胞的培养条件将分离得到的原代滋养层细胞接种于含有培养基的培养皿中,放置在恒温培养箱内,保持适当的温度和湿度条件,定期更换培养基。
3. 细胞的观察和维护利用显微镜观察细胞的生长情况和形态特征,定期对细胞进行传代培养,确保细胞的健康和稳定生长。
四、原代滋养层细胞的鉴定1. 形态学鉴定采用显微镜观察细胞的形态特征,包括大小、形状、胞浆及核的结构等,与已知的细胞形态进行比对鉴定。
2. 免疫细胞化学鉴定利用免疫细胞化学染色技术,检测细胞内特定蛋白的表达情况,例如细胞信号分子或细胞骨架蛋白等,来确定细胞的类型和特性。
3. 分子生物学鉴定通过PCR、Western blot等分子生物学技术,检测细胞内特定基因的表达情况,以确定细胞的遗传特性和分子水平特征。
五、结论原代滋养层细胞的分离培养及鉴定是细胞生物学研究中的重要环节,操作规范和技术熟练对于获得高质量的原代细胞至关重要。
只有通过严格的分离和培养条件,并结合形态学、免疫细胞化学及分子生物学鉴定等手段,才能得到真实、可靠的实验结果,并为细胞生物学研究提供可靠的资料。
淋巴细胞分离与培养
• (2)培养空间 • 培养液与液面上的空间二者的体积比例 一般以1∶10 为宜,培养液液面高度最好 维持在2~5mm 的范围,以便于气体交 换。 • (3)恒温培养箱 • 温度应维持在37 ℃,CO2 浓度为5 % ,O2 为95 % ,100 %的饱和湿度。
• 5、常见失败原因 • (1) 污染 • 污染仍是细胞培养失败的主要原因,包括 细菌和真菌,中药制剂尤易出现真菌污染。 支原体污染不易发觉,但对细胞生长影响 较小,尤其只培养72 小时。一般是分离 过程中的用液和培养基出现了污染。
• EB病毒可有效地转化外周血B淋巴细胞, 建立永生的淋巴母细胞系,可永久保存宝 贵的病例材料。世界上许多遗传研究中 心都用此方法处理每一份血标本,在液 氮中冻存转化后的淋巴细胞。这样就可 以无限期地保存、复苏和增殖病人体细 胞样本,建立人类遗传种质库
• 淋巴细胞是EBV的天然宿主,EBV对B 细胞有天然的亲和力并可使其发生转化 并增殖。与通常在体外使用的B细胞活化 剂引起的B细胞的暂时的一过性分裂不同, EBV转化的淋巴细胞是一种非裂解型细 胞:病毒感染后不能在细胞体内复制后 代,但能整合在宿主细胞基因组上,一 部分整合了病毒基因组的细胞发生转化
• (2)血样本的采集:先以碘酒和75%乙 醇消毒皮肤。用2ml灭菌注射器吸取约 0.2ml肝素,作静脉穿刺,抽取外周静脉血 1ml。转动针筒以混匀肝素 • (3)接种:常规消毒后,立即将针头插入 灭菌小瓶内,送入超净工作台 ,在火焰旁 将血液滴入2~3个盛有5ml培养液的培养 瓶内,每瓶0.2~0.3ml(6号针头45度倾 斜,约20滴),盖上橡皮塞,轻轻摇动以 混匀。贴好标签,将培养瓶放在37℃恒温 箱内静置培养72h。
• 2、方法 • (1).采静脉血2ml 加入肝素抗凝管 • (2).用竹签将血块轻轻剥离管壁(主张用 玻璃棒),2000rPm 离心20 分钟,用毛 细吸管吸取上清(血清)于血清收集管中, 于4℃冰箱保存备用,
细胞培养流程
细胞培养流程细胞培养是生物学实验中常用的一种技术手段,通过细胞培养可以使细胞在体外环境中持续生长和繁殖。
细胞培养流程包括细胞的分离、传代、培养和检测等步骤,下面将详细介绍细胞培养的流程及注意事项。
1. 细胞分离。
细胞培养的第一步是从组织或细胞悬液中分离出需要的细胞种群。
常用的方法包括机械分离、酶消化和细胞筛选等。
在进行细胞分离时,需要注意避免对细胞造成损伤,保证细胞的完整性和活力。
2. 细胞传代。
细胞传代是指将细胞从一个培养皿中移植到另一个培养皿中,以维持细胞的生长和增殖。
在进行细胞传代时,需要注意细胞的密度和培养基的配比,以确保细胞的正常生长和分裂。
3. 细胞培养。
细胞培养是指将分离和传代后的细胞放置在含有营养物质和生长因子的培养基中进行培养。
培养基的选择和配制对细胞的生长和表型具有重要影响,需要根据不同类型的细胞进行合理选择。
4. 细胞检测。
在细胞培养过程中,需要对细胞进行定期的检测,包括形态学观察、生长曲线分析、细胞纯度检测等。
通过对细胞的检测,可以及时发现细胞的异常情况,并采取相应的措施进行处理。
细胞培养过程中需要注意的事项:保持无菌操作,细胞培养过程需要在无菌条件下进行,避免细胞受到外界污染。
控制培养条件,包括温度、湿度、CO2浓度等,确保细胞在适宜的环境中生长。
定期更换培养基,培养基中的营养物质和生长因子会随着时间逐渐耗尽,需要定期更换新的培养基。
避免细胞过度传代,过度传代会导致细胞老化和突变,影响细胞的生长和功能。
总之,细胞培养是一项复杂而又重要的实验技术,正确的细胞培养流程和操作规范对于细胞生物学研究具有至关重要的意义。
希望本文介绍的细胞培养流程及注意事项能够对您有所帮助,祝您的细胞培养工作顺利进行!。
分离培养原理
分离培养原理
分离培养原理是微生物学中的一个重要实验技术,它的主要原理是通过分离单个微生物细胞,使其在含有适宜营养物质的培养基上生长和繁殖。
分离培养的步骤主要包括:取样、稀释、涂布、培养和分离。
1. 取样:从样品中取出微生物的来源,如土壤、水样、食物等。
样品的选择应根据研究的目的来确定。
2. 稀释:将样品进行适当的稀释,目的是使样品中的微生物浓度降低,达到单个微生物细胞可以被分离的程度。
3. 涂布:将稀释后的样品取少量涂布在含有适宜的培养基上,通过均匀涂布的方法,将微生物细胞分散在培养基上。
4. 培养:将涂布的培养基进行恒温培养,提供适宜的温度、
pH值和营养物质等条件,使微生物细胞可以生长和繁殖。
5. 分离:观察培养基上的微生物生长情况,找到单个微生物细胞形成的菌落,使用无菌的工具将这些菌落分离提取到新的培养基上,进行纯化和鉴定等后续研究。
通过分离培养可以获得单个微生物的纯培养物,方便于对微生物进行形态、生理和遗传特性的研究。
同时,分离培养还可以用于筛选具有特定功能的微生物,如产生抗生素的菌株、降解环境污染物的菌株等,有助于微生物资源的开发与利用。
细胞分离与培养技术
编辑ppt
21
细胞分离技术
二、从原代组织中分离细胞 组织和器官采集:
人标本:可采取无菌手术法切取少量所需的组织或器官(活检和手术)。 大量的动物组织:先麻醉或处死,浸入70%酒精中,使毛皮全部浸湿,从腹
过滤细胞悬液,以免堵塞喷嘴。
编辑ppt
20
细胞分离技术--从血液、体液中分离细胞
优缺点:
流式细胞仪分选纯度较高、回收率高,分选一些具有比较复杂细胞标 记的细胞时相当有用的,例如要分选出白血病人骨髓中某些 CD34+CD13-CD45dim的幼稚细胞,只需要在流式上简单地逻辑设门就 可以了,而且流式可以双通道分选,也就是同一时间分选出两种细胞, 流式分选成本比磁珠低。
9
细胞分离技术--从血液、体液中分离细胞
黏附法分离血中单核细胞、T,B淋巴细胞
因B淋巴细胞和单核细胞能黏附于 尼龙纤维柱上(聚酰胺纤维柱), 所以可将其与T淋巴细胞分离。
编辑ppt
10
具体步骤:
单个核细胞用含20%小牛血清RPMI-1640制成(2.5-3) ×107/ml的细胞悬液。
先用Hanks液,再用含20%小牛血清的RPMI-1640液冲洗平衡尼 龙纤维柱,冲洗液尽量流净。
3.中性蛋白酶(Dispase)
用无菌解剖刀和剪子把剩余组织切成1-2mm3小块,用不含钙镁的平衡 盐溶液清洗组织碎片几次
加入Dispase(0.6~2.4单位/ml 溶解在无钙镁的平衡盐溶液)
在37℃孵育20分钟到几个小时。
编辑ppt
28
细胞分离技术
通过无菌不锈钢丝网或尼龙网过滤细胞悬液,分离分散细胞、组织碎 片和较大的碎片。如需进一步的解聚,在碎片中加入新鲜的Dispase
细胞培养的操作步骤
细胞培养的操作步骤细胞培养是一种常见的实验室技术,用于研究和生产生物学领域的细胞。
细胞培养的操作步骤通常包括以下几个环节:准备培养基和试剂、细胞传代和细胞分离、细胞接种和培养条件的控制。
一、准备培养基和试剂1.确定所使用的培养基类型,如DMEM、RPMI-1640等,并根据实验的需求将其配制好。
2.购买所需的培养基添加剂,如胎牛血清(FBS)、生长因子、抗生素等,并根据实验要求将其加入到培养基中。
3.清洁工作台,并将所需的器具和试剂取出,进行消毒处理。
二、细胞传代和细胞分离4.将细胞传代物接种到一个新的培养器中。
根据实验的要求,可以使用细胞培养瓶或细胞培养皿等容器。
5.静置一段时间,让细胞附着在底部表面上,并增加培养基的吸附。
6.将旧的培养基小心地倒掉,并用含有酶的溶液,如胰酶-EDTA或胰蛋白酶,洗涤细胞。
此步骤旨在除去细胞表面的蛋白质和粘附物,使细胞能够自由分离。
7.加入一定量的培养基,将细胞解离,并通过轻轻摇动容器促进细胞的分散。
8.将分散的细胞转移到新的培养器中,并加入适量的培养基使其恢复生长。
三、细胞接种9.将细胞培养器中的细胞进行视觉检查,确保它们的形态和数量适合接种。
10.使用显微镜检查细胞的活力、纯度和质量。
如果细胞质量不佳,应根据需要调整细胞密度或传代更多次。
11.根据实验要求,将细胞重新分散并计算细胞密度。
12.准备接种物:使用无菌技术,将细胞和培养基混合,并在接种器中将混合物分散均匀。
13.将接种物小心地滴入新的培养器中,确保细胞均匀分布。
14.检查细胞的附着情况并加入适量的培养基。
四、培养条件的控制15.放置培养器在恒温培养箱中,保持适当的温度(通常在37摄氏度)、湿度和二氧化碳浓度(通常是5%)。
16.定期检查细胞的生长状况,观察细胞的形态和数量,以确定培养基是否需要更换或细胞是否需要传代。
17.如果需要传代,在细胞接种后一段时间内,观察细胞的生长速率和密度,根据需要调整传代时间和细胞密度。
细胞生物学研究中的细胞处理技术综述
细胞生物学研究中的细胞处理技术综述细胞处理技术是细胞生物学研究中不可或缺的工具,在细胞分离、培养、检测、转染等方面发挥着重要作用。
本文将介绍一些常见的细胞处理技术及其应用。
一、细胞分离技术1.胶原酶消化法胶原酶消化法是从组织中分离出单个细胞的常见方法。
胶原酶是一种分解胶原蛋白的酶,能够溶解组织细胞之间的胶原质。
通过将组织碎片放入含有适量胶原酶的消化液中搅拌,可以将组织分解成单个细胞。
胶原酶消化法适用于体积较大的组织,如动物胰腺、肝脏和心脏等。
2.胰蛋白酶消化法胰蛋白酶消化法是一种常见的细胞分离方法,它通常应用于体积较小的组织,如细胞悬液和培养细胞。
胰蛋白酶能够消化大多数细胞的外层细胞膜,使细胞变得松散,并将它们从组织中分离出来。
在胰蛋白酶消化过程中,还会产生一种称为血清抑制物(SIS)的物质,该物质能够抑制胰蛋白酶的消化作用,避免对细胞造成伤害。
二、细胞培养技术1.原代细胞培养原代细胞培养是指从组织中采集到未经处理的细胞,在培养皿中的初次培养。
这种细胞培养方法具有许多优点,如它能够保持细胞群体的原始状态,使研究人员能够更好地了解细胞的生理和生化特性。
不过原代细胞培养通常需要一定的时间来建立培养体系,同时也需要浪费大量动物组织。
2.细胞系培养细胞系培养是指从原代培养物中筛选并遗传传承的细胞株,在连续培养中进行传代。
与原代培养物相比,细胞系培养具有许多优点,如它可以在短时间内获得大量细胞,使实验结果更快更可靠,并且相同批次的细胞具有较高的同质性,能够减少实验中的变异性。
同时使用细胞系还能保证不浪费动物组织资源。
三、细胞检测技术1.流式细胞术流式细胞术是一种先进的高通量细胞分析技术,可以同时分析和评估数以千计的单个细胞。
流式细胞术可以对细胞进行一系列操作,如计数、筛选、鉴定、排序和分离等,可以分析细胞形态、表面蛋白、内部蛋白和DNA含量等。
流式细胞术在生物医学研究、免疫学、肿瘤学等领域具有广泛的应用前景。
骨髓间充质干细胞分离与培养技术
上述四种分选方法中,由于FACS和MACS分选 法的细胞通量较低,难以满足临床BMSCs应用研究
中细胞用量较大的需要,同时经过了磁场或电场的 作用难以评估对细胞功能的影响程度。所以,目前
在临床试验中应用的BMSCs分离技术还是以差速 贴壁法和梯度离心法为主[I2]o
2骨髓间充质干细胞的鉴定
低氧环境会降低BMSCs体外生长时细胞内氧化应 激物浓度、减少DNA损伤、延缓细胞衰老并维持细 胞分化能力[26] 0
3.2接种、传代及冻存:细胞接种密度是BMSCs体
外扩增时的重要问题。在骨髓细胞悬液的初代培养
中,差速贴壁法分离时一般多以1 X106 ~2x106个/ cm2进行接种[2-3],密度梯度离心法分离时以约1 x
取合适的技术才能最大程度地减少BMSCs研究的 差异性0
1.1差速贴壁法:差速贴壁法是传统的BMSCs分 离方法,它利用了 BMSCs与骨髓中其他细胞的贴壁
性能差异及酶消化敏感性差异而逐步达到纯化扩增
[基金项目]国家自然科学基金青年项目(81701856) [作者单位]1•中国人民解放军空军军医大学基础医学院学员一大
1.2密度梯度离心法:密度梯度离心法是针对骨髓
中不同细胞的大小和密度差异进行分选。骨髓细胞
梯
面,
使得不
同类型细胞沉降至其等密度点,然后吸取特定位置
富集的细胞。在离心分层时,红细胞及多核细胞因
比重(1.080 g/mL)较大而沉降于底部,其次是单个
核细胞(包括BMSCs、造血干细胞、单核细胞等),悬
浮密度位于(1.053 -1.075 )g/mL,血浆及其溶解物
分别以电场和磁场形式施加作用力而分离目的细
胞。在实际应用中.MACS操作简单而快速,细胞通 量高,成本相对低,对细胞活性影响低,但是无法同
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24
在4℃孵育6到18小时,使胰蛋白酶尽可能渗透进去 移弃组织碎片中的胰蛋白酶,在37℃孵育包含残留 胰蛋白酶的组织碎片20到30分钟 在组织碎片加入热的完全培养基,用移液管轻轻地分散组织。如果使
用无血清培养基,要加入大豆胰蛋白酶抑制剂
通过无菌不锈钢丝网(100-200目)过滤,计数和接种细胞,进行培 养
25
2. 胶原酶 (Collagenase)
用无菌解剖刀和剪子把剩余组织切成1-2mm3小块,用Hanks'平衡液 (HBSS)清洗组织碎片几次
加入胶原酶(50~200单位/ml,溶解在HBSS中)
在37℃孵育4到18小时。加入3mM CaCl2增加解离效率
26
通过无菌不锈钢丝网或尼龙网过滤细胞悬液,分离分散细胞、组织碎
包括胰蛋白酶、胶原酶和中性蛋白酶等。
23
1.胰蛋白酶 (Trypsin)
在去除不需要的组织后,使用无钙镁的平衡盐溶液清洗组织块, 重复清洗2到3次。用无菌的解剖刀和剪子把组织切成 1-2mm3小块。
将盛有组织碎片的容器臵于冰上。加入0.25%溶解在无钙镁的 平衡盐溶液中的胰蛋白酶(100mg组织加入1ml 胰蛋白酶)。
分别制
备所需 浓度的
的单核细胞冲
落或用刮刀轻 刮,收集贴壁 的单核细胞。
培养皿以尽量洗下未贴壁细胞
(淋巴细胞)。
细胞悬
液。
9
黏附法分离血中单核细胞、T,B淋巴细胞
因B淋巴细胞和单核细胞能黏附于
尼龙纤维柱上(聚酰胺纤维柱),
所以可将其与T淋巴细胞分离。
10
具体步骤:
单个核细胞用含20%小牛血清RPMI-1640制成(2.5-3)×107/ml的 细胞悬液。
32
轻轻翻转培养瓶,使培养液刚刚覆盖组织块,每隔2~3天换一次培养液
观察到有大量成纤维细胞长出后轻轻去除组织块,继续培养
待细胞快长满时用0.25%胰蛋白酶消化细胞并传代培养,
取第3~5代细胞用于实验
33
培养24h
培养96h
培养120h
34
举例(初步淋巴细胞分离法):
放血处死动物,无菌取胸腺和脾组织,去除脂肪和结缔组织,放入盛 有含5%小牛血清的D-Hank’s液(不含钙镁,含青霉素200kU· -1、链 L 霉素200mg· -1)平皿的网纱中(200目) L 用注射器针芯轻轻碾碎胸腺和脾组织,使单个细胞经网进入溶液中 溶液移入离心管中, 1200 rpm离心10min,弃上清, D-Hank’s液洗涤 细胞,加入DMEM培养液计数和调节细胞浓度,进行培养
30
将培养液移至离心管中,1200rpm离心10min,弃上清 再加入含0.25%胰蛋白酶的D-Hank’s液4ml,培养消化30min
200目尼龙网纱过滤,1200 rpm离心10min,弃上清 将获得的细胞在37℃、5%CO2培养箱中培养24h,弃去未黏附细胞
(如淋巴细胞,红细胞),此时的贴壁细胞即为原代滑膜细胞
19
注意事项:
分选细胞常用于细胞亚群进一步的功能研究,因此,整个过程均需 要严格无菌操作,流式细胞仪进行无菌冲洗。
此法分离得到的T细胞纯度可达到99%,收获率可达到90%。
由于喷嘴孔很小(约70~100μm),分选前用30~40μm孔径的滤网 过滤细胞悬液,以免堵塞喷嘴。
20
优缺点:
流式细胞仪分选纯度较高、回收率高,分选一些具有比较复杂细胞标
临床药理研究所
1
现代生物技术
基因工程技术
细胞工程技术
酶工程技术
发酵工程技术
细胞培养
2
从血液、体液中分离细胞
原代培养
从原代组织中分离细胞
从原培养容器中分离细胞 -- 传代培养
3
采血方法:
人 静脉穿刺、耳垂或手指针刺采血; 小动物(大鼠、小鼠) 剪尾法、眼眶采血、心脏穿刺 法、断颈取血或股动脉放血。
18
流式细胞术分离法分离T、B淋巴细胞:
密度梯度离心法分离单个核细胞,用RPMI-1640培养基配成1×107 /ml; 加适量FITC-抗CD3或FITC-抗CD19,4℃孵育30min, 用RPMI-1640
培养基洗2次;
用流式细胞仪进行分析。在散射光参数图上选取淋巴细胞群,在荧光 参数图上选取绿色荧光阳性的细胞进行分选。
11
免疫磁珠法(MACS)分离T、B淋巴细胞:
磁性微珠是20世纪80年代初以高分子材料和金属离子(如Fe3O4) 为原料聚合而成的一种以金属离子为核心、外层均匀地包裹高分子聚合 体的固相微粒,即磁性微珠。在液相中,受外加磁场的吸引作用,磁性 微珠可快速沉降。以磁性微珠为载体,包被上针对某种细胞表面抗原的 特异性抗体即可制成免疫磁性微珠。
是能得到大量单细胞;
组织块法操作简单,实验成本低,可得到具较高纯度的心肌细胞。
因此,心肌细胞原代培养常用的方法多用酶消化法和组织块法两种。
37
心肌细胞的酶消化培养法:
1.心肌组织的选择:
生后1~4天的Wistar乳鼠心脏等。
2.心肌组织块的制备:
稳定、高质量的分选:纯度(90-99%) 对细胞无损伤
分离效率较流式细胞仪分
选略低 且耗材相对较贵,适合无
操作简便、快速:消毒方便,手动分选30分钟内 完成,autoMACS分选2.5-10分钟之内完成。
从实验室到临床:MACS技术可以实现105-1011个 细胞分选。有autoMACS和CliniMACS。
12
免疫磁性微珠用于细胞的分离和纯化的基本原理及步骤是:首先将抗
特异细胞表面抗原的抗体致敏到磁珠上,待它与混合体系中的细胞反应
后,利用磁力的作用,使与致敏结合的细胞与其它物质分离,达到纯化、 分离的目的。
通常有二种分离方式:阳性分离和阴性分离。阳性分离是直接从细胞
混合液中分离出靶细胞,阴性分离是利用磁珠去除无关细胞,使靶细胞 得以分离。
大型流式细胞仪设备且对分
选细胞纯度要求不高的分选。 只适用于简单标记的细胞 分离
分选后细胞适用于后续实验:分选后适用于细胞 培养和体内实验,分选得到的标记和未标记细胞 组分均可回收利用。
从细胞到分子分选:不仅可以分选各种细胞,还 可以分选转染细胞、亚细胞物质、蛋白质、DNA、 RNA及mRNA。
枸橼酸钠法:先配制2%枸橼酸钠,取0.15-0.2ml加于1ml血液中即 可抗凝;
EDTA法(186.1):每ml血液中加0.5mmol/L EDTA 2µ l。
5
体液标本采集: 在局部70%酒精消毒灭菌后,用灭菌注射器穿刺入体腔 (如胸腔,腹腔,关节腔等)抽取液体样品。
膝关节腔穿刺
胸腔穿刺
6
血样中红细胞和白细胞的分离:
利用细胞的相对密度或大小不同而沉降速度不同的原理,以自然沉 降法结合不同速度的离心沉降法将不同的细胞分离。 抗凝血,室温或37℃下直立静臵30-60min,红细胞沉降至下层,中 间乳白色薄膜层为白细胞及血小板,上层为淡黄色血浆。也可将抗凝血 与3%明胶(经灭菌消毒)等量或3︰l量混合于离心管中,直立静臵30-
动物的骨髓:可以无菌手术采取一段股骨,用灭菌注射器,将小牛血清或培
养液从断端一端加压注射以从另一断端出骨髓。
22
制备细胞悬液方法:
将组织块分离(散)成细胞悬液的方法有多种,最常用 的是机械解离细胞法、酶学解离细胞法以及螯合剂解离 细胞法。
从原代组织中获得单细胞悬液的一般方法是酶解聚。细
胞暴露在酶中的时间要尽可能的短,以保持最大的活性。
先用Hanks液,再用含20%小牛血清的RPMI-1640液冲洗平衡尼龙纤 维柱,冲洗液尽量流净。
将尼龙柱预温37℃,再用配制的单个核细胞悬液2ml装入尼龙纤维 柱,不使流出,37℃温箱内静臵l小时。 取下注射针头,用预温37℃含20%小牛血清的RPM I-1640培养液冲 洗尼龙纤维柱,洗出者即为未黏附的T淋巴细胞。 从注射器内取出尼龙纤维,在4℃的RPMI-1640液内漂洗,并轻轻挤 压,将黏附的B细胞洗脱收集(B淋巴细胞中混有的单核细胞可用贴 壁法将其分离)。 收集的T、B淋巴细胞可分别用Hanks液悬浮,洗涤,离心(250g, 7min),并重复洗涤3次。计算活细胞,计数悬液中的细胞数后制 备所需浓度的T和B淋巴细胞悬液。
35
举例(乳鼠原代心肌细胞培养法): 基本原理:
心肌细胞培养方法有离体心脏灌注法、酶消化法和组织块法,将心
肌组织分离成单个细胞,用培养基制成心肌细胞悬液,在体外适宜条件 下使之生长繁殖,并保留其结构与功能特性。
36
评价:
离体心脏灌注法对乳大鼠来说实施难度大;
酶消化法操作流程长,细胞对消化酶浓度及作用时间要求严格,但
60min,红细胞沉于管底,上层乳白色混浊液含白细胞。
7
血中单个核细胞的分离: 单个核细胞包括淋巴细胞和单核细胞,其相对密度在
1.050-1.077之间,采用速度沉降法原理使其分离。
淋巴细胞分离液
8
血中单核细胞的分离: 利用细胞在培养过程中贴壁时间的早晚不同进行细胞分离
多将悬液放入12cm直径的培养 单 个 核 细 胞 悬 液 皿中,于37℃培养箱中静臵3060min。此时单核细胞贴壁,而 淋巴细胞尚未贴壁,倾出未贴 壁细胞,并用Hanks液轻轻冲洗 用Hanks液强 力冲洗吹打与 震荡,将贴壁 计数后
在37℃孵育20分钟到几个小时。
28
通过无菌不锈钢丝网或尼龙网过滤细胞悬液,分离分散细胞、组织碎
片和较大的碎片。如需进一步的解聚,在碎片中加入新鲜的Dispase
通过离心在平衡盐溶液中清洗悬液几次
再一次在培养基中悬浮细胞,计数和接种细胞,进行培养