经济数学基础答案12820
国家开放大学2020年春季学期电大《经济数学基础12》形成性考核及答案
《经济数学基础12》网上形考任务3至4及学习活动试题及答案形考任务3 试题及答案题目1:设矩阵,则的元素().答案:3题目1:设矩阵,则的元素a32=().答案:1题目1:设矩阵,则的元素a24=().答案:2题目2:设,,则().答案:题目2:设,,则().答案:题目2:设,,则BA =().答案:题目3:设A为矩阵,B为矩阵,且乘积矩阵有意义,则为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目4:设,为单位矩阵,则().答案:题目4:设,为单位矩阵,则(A - I )T =().答案:题目4:,为单位矩阵,则A T–I =().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目6:下列关于矩阵的结论正确的是().答案:对角矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:数量矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:若为可逆矩阵,且,则题目7:设,,则().答案:0题目7:设,,则().答案:0题目7:设,,则().答案:-2, 4题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目10:设矩阵,则().答案:题目10:设矩阵,则().答案:题目10:设矩阵,则().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目12:矩阵的秩是().答案:2题目12:矩阵的秩是().答案:3题目12:矩阵的秩是().答案:3题目13:设矩阵,则当()时,最小.答案:2题目13:设矩阵,则当()时,最小.答案:-2题目13:设矩阵,则当()时,最小.答案:-12题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.答案:题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.答案:题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.选择一项:A.B.C.D.答案:题目15:设线性方程组有非0解,则().答案:-1题目15:设线性方程组有非0解,则().答案:1题目15:设线性方程组有非0解,则().答案:-1题目16:设线性方程组,且,则当且仅当()时,方程组有唯一解.答案:题目16:设线性方程组,且,则当()时,方程组没有唯一解.答案:题目16:设线性方程组,且,则当()时,方程组有无穷多解.答案:题目17:线性方程组有无穷多解的充分必要条件是().答案:题目17线性方程组有唯一解的充分必要条件是().答案:题目17:线性方程组无解,则().答案:题目18:设线性方程组,则方程组有解的充分必要条件是().答案:题目18:设线性方程组,则方程组有解的充分必要条件是().答案:题目18:设线性方程组,则方程组有解的充分必要条件是()答案:题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组无解.答案:且题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组有无穷多解.答案:且题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组有唯一解.答案:题目20:若线性方程组只有零解,则线性方程组().答案:解不能确定题目20:若线性方程组有唯一解,则线性方程组().答案:只有零解题目20:若线性方程组有无穷多解,则线性方程组().答案:有无穷多解形考任务4 答案一、计算题(每题6分,共60分)1.解:综上所述,2.解:方程两边关于求导:,3.解:原式=。
经济数学基础形考答案
电大【经济数学基础】形成性考核册参考答案《经济数学基础》形成性考核册(一)一、填空题 1.___________________sin lim=-→xxx x .答案:1 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案1 3.曲线x y =+1在)1,1(的切线方程是 . 答案:y=1/2X+3/24.设函数52)1(2++=+x x x f ,则____________)(='x f .答案x 25.设x x x f sin )(=,则__________)2π(=''f .答案: 2π-二、单项选择题1. 当+∞→x 时,下列变量为无穷小量的是( D )A .)1ln(x +B . 12+x xC .21x e - D . xxsin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx x C.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.若x xf =)1(,则=')(x f ( B ). A .21x B .21x- C .x 1 D .x 1-三、解答题 1.计算极限本类题考核的知识点是求简单极限的常用方法。
它包括: ⑴利用极限的四则运算法则; ⑵利用两个重要极限;⑶利用无穷小量的性质(有界变量乘以无穷小量还是无穷小量)⑷利用连续函数的定义。
2021年电大《经济数学基础12》考试题及答案
经济数学基础形成性考核册及参考答案作业 (一)(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( )答案:D A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设,则( ).答案:BA .B .C .D .4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x(3)2111lim0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim22=--→x x x 2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
《经济数学基础》答案
第17题: 下面哪一个可以用泊松分布来衡量( B)。
A一个班学生们的身高B一段道路上碰到坑的次数C投掷硬币时遇到正面朝上的概率D某稀有金属的半衰期长短第18题: 线性回归方法是做出这样一条直线,使得它与坐标系中具有一定线性关系的各点的( C)为最小。
A水平距离的平方和B垂直距离的和C垂直距离的平方和D垂直距离的平方第19题: 当两变量的相关系数接近相关系数的最小取值-1时,表示这两个随机变量之间( B)。
A几乎没有什么相关性B近乎完全负相关C近乎完全正相关D可以直接用一个变量代替另一个第20题: 关于概率,下列说法正确的是( ABC)。
A是度量某一事件发生的可能性的方法B概率分布是不确定事件发生的可能性的一种数学模型C值介于0和1之间D所有未发生的事件的概率值一定比1小第21题: 下列哪些方面需要用到概率知识分析其不确定性( ABC )。
A外汇走势B不良贷款率预测C证卷走势D税收确认第22题: 什么样的情况下,可以应用古典概率或先验概率方法( BD )。
A不确定有什么样的结果空间B不确定结果的范围是已知的C不确定结果发生的概率不一样D不确定结果具有等可能性第23题: 关于协方差,下列说法正确的有( ABD )。
A协方差体现的两个随机变量随机变动时的相关程度B如果P=1,则I 和n有完全的正线性相关关系C方差越大,协方差越大D Cov(x,η)=E(X-EX)( η-Eη)第24题: 关于中位数,下列理解错误的有( BC )。
A当所获得的数据资料呈偏态分布时,中位数的代表性优于算术平均数B当观测值个数为偶数时,(n+1)/2位置的观测值,即X(n+1)/2为中位数C当观测值个数为偶数时,(n+1)/2位置的观测值,X(n+1)/2为中位数D将资料内所有观测值从小到大一次排列,位于中间的那个观测值,称为中位数第25题: 线性回归时,在各点的坐标为已知的前提下,要获得回归直线的方程就是要确定该直线的( BD )。
国家开放大学2020年春季学期电大《经济数学基础12》形成性考核及答案
《经济数学基础12》网上形考任务3至4及学习活动试题及答案形考任务3 试题及答案题目1:设矩阵,则的元素().答案:3题目1:设矩阵,则的元素a32=().答案:1题目1:设矩阵,则的元素a24=().答案:2题目2:设,,则().答案:题目2:设,,则().答案:题目2:设,,则BA =().答案:题目3:设A为矩阵,B为矩阵,且乘积矩阵有意义,则为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目4:设,为单位矩阵,则().答案:题目4:设,为单位矩阵,则(A - I )T =().答案:题目4:,为单位矩阵,则A T–I =().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目6:下列关于矩阵的结论正确的是().答案:对角矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:数量矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:若为可逆矩阵,且,则题目7:设,,则().答案:0题目7:设,,则().答案:0题目7:设,,则().答案:-2, 4题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目10:设矩阵,则().答案:。
电大经济数学基础参考答案
电大【经济数学根底】形成性考核册参考答案"经济数学根底"形成性考核册〔一〕一、填空题 1.___________________sin lim=-→xxx x .答案:1 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,那么________=k .答案1 3.曲线x y =+1在)1,1(的切线方程是. 答案:y=1/2X+3/24.设函数52)1(2++=+x x x f ,那么____________)(='x f .答案x 25.设x x x f sin )(=,那么__________)2π(=''f .答案:2π-二、单项选择题1. 当+∞→x 时,以下变量为无穷小量的是〔 D 〕A .)1ln(x +B . 12+x xC .21x e - D . xxsin2. 以下极限计算正确的选项是〔 B 〕 A.1lim=→xx x B.1lim 0=+→xx x C.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,那么d y =〔 B 〕. A .12d x x B .1d x x ln10C .ln10x x d D .1d xx 4. 假设函数f (x )在点x 0处可导,那么( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.假设x xf =)1(,那么=')(x f 〔 B 〕. A .21x B .21x - C .x 1 D .x 1-三、解答题 1.计算极限本类题考核的知识点是求简单极限的常用方法。
它包括: ⑴利用极限的四那么运算法那么; ⑵利用两个重要极限;⑶利用无穷小量的性质(有界变量乘以无穷小量还是无穷小量)⑷利用连续函数的定义。
《经济数学基础》习题答案及试卷(附答案)
习题解答第一章 经济活动中的函数关系分析实训一(A )1.填空题:(1)(,2][2,)-∞-+∞ ; (2)()3,5; (3)1x; (4)2x e ;2x e ; (5)473x -,提示:由()()47433433g f x x x =+=+-⎡⎤⎣⎦,所以()473x g x -=.2.(1)tan(2)y x =;(2)(3)y=;(4)y=lg(sin 2)x .3.(1)cos y u =,1xu e =-; (2)ln y u =,222u x x =-+;(3)y =1u x =+;(4)y lg u v =,v =实训一(B )1.由已知可知2110x -<-<,得到201x <<,即定义域为()()1,00,1- .2.由()21f x x -=,可得()()2111f x x -=-+,所以()()21f x x =+.也可令1x t -=.3.(1)u y e =,sin u v =,2v x =;(2)log uv ay =,21u x =+,sin v w =,2w x =. 4. ()()()log log log a a a f x f y x y xy f xy +=+==;()()log log log a a axx f x f y x y f y y ⎛⎫-=-== ⎪⎝⎭. 实训二 (A )1.填空题:(1)y =(2)[]1,3-; (3)2π-,4π; (4)12,π. 2.(1)⨯;(2)⨯;(3)⨯;(4)√.3.(1)由()cos 21y x =+,解得21arccos x y +=,()1arccos 12x y =-, 所以,()()11arccos 12fx x -=-.定义域:[]1,1x ∈-;值域:11,22y π-⎡⎤∈-⎢⎥⎣⎦(2)由()1ln 2y x =++,解得12y x e -+=,12y x e -=-,所以,()112x fx e --=-定义域:(),x ∈-∞+∞;值域:()2,y ∈-+∞ 4.【水面波纹的面积】设面积为S (2cm ),时间为t (s ),则()22502500S t t ππ==【仪器初值】()0.04200.800208986.58Q Q e Q e -⨯-===解得0.808986.582000Q e =≈.实训二(B )1.由()x a f x x b +=+,解得反函数为()11a bx f x x --=-. 由已知()1x a f x x b -+=+,可得1a bx x a x x b-+=-+,相比较,可得a 为任意实数,1b =-.2.由()ln x x ϕ=,()21ln 3g x x ϕ=++⎡⎤⎣⎦,可得()221ln 3ln 3x x g x e e e ϕ+=⋅⋅=⎡⎤⎣⎦所以,()213x g x e+=.实训三【商品进货费用】 设批次为x ,由题意: 库存费:11250030000242C x x=⋅⋅=; 订货费:2100C x =. 【原料采购费用】设批量为x ,库存费用为1C ,进货费用为2C ,进货总费用为12C C C =+.1122C x x=⋅⋅= 23200640000200C xx=⋅=所以进货总费用为:12640000C C C x x=+=+. 【商品销售问题】设需求函数关系式为:d Q ap b =+,其中p 为定价. 由已知可得:1000070700073a ba b=+⎧⎨=+⎩,解得1000a =-,80000b =,所以100080000d Q p =-+; 供给函数为:1003000s Q p =+平衡状态下:价格70p =;需求量10000d Q =. 【商品盈亏问题】设()()()()2015200052000L x R x C x x x x =-=-+=-.()6001000L =; 无盈亏产量:()0L x =,解得400x =. 【供给函数】答案:1052PQ =+⋅. 【总成本与平均成本】总成本()1306C Q Q =+,[]0,100Q ∈. 平均成本()13061306Q C Q Q Q+==+,[]0,100Q ∈.第一章自测题一、填空题1、[2,1)(1,1)(1,)---+∞2、(,)-∞+∞3、(,1)a a --4、23x x -5、2ln(1)x -6、arcsin 2x7、cos(ln )x8、2142R Q Q =-+9、22()2505;()6248100R x x x L x x x =-=-+- 10、6P = 二、选择题1、C2、B3、B4、D5、C三、计算解答题1、(1)22log , 1y u u x ==+(2)1x y u e ==+ 2、1()1 , ()1f x x f x x -=+=- 四、应用题1、(1) 6 , 8P Q == (2) 3.5 , 3P Q == (3) 6.5 , 7P Q ==2、(1)()10200C x x =+,()200()10C x C x x x==+ (2)()15R x x =(3)()()()5200L x R x C x x =-=-,无盈亏点:40x =五、证明题(略)第二章 极限与变化趋势分析实训一(A )1.(1)×;(2)√;(3)×;(4)×;(5)√. 2.(1)收敛,且lim 0n n x →∞=;(2)发散,lim n n x →∞=∞;(3)收敛,且lim 2n n x →∞=;(4)发散.3.(1)收敛,且lim 2x y →∞=;(2)收敛,且0lim 1x y →=;(3)收敛,且lim 1x y →+∞=;(4)发散.【产品需求量的变化趋势】lim lim 0t t t Q e -→+∞→+∞==.实训一(B )(1)无穷大;(2)无穷大;(3)无穷大;(4)无穷大. 【人影长度】越靠近路灯,影子长度越短,越趋向于0.实训二 (A )1.填空题(1)5;(2)2;(3)1;(4)13;(5)∞;(6)∞;(7)2. 2.(1)()()()()2211111112lim lim lim 21121213x x x x x x x x x x x x →→→-+-+===---++; (2)(222211lim2x x x x x x →→→===--;(3)()()2322000222lim lim lim 211x x x x x x x x x x x x x →→→---===---; (4)()()211121111lim lim lim 111112x x x x x x x x x →→→--⎛⎫-===-⎪---++⎝⎭. 3.(1)222112lim lim 2111x x x x x x x →+∞→+∞-⎛⎫-==- ⎪+--⎝⎭; (2)()()()1121lim lim lim 22222222n n n n n n n n n n n n →∞→∞→∞⎛⎫++++-⎛⎫-=-==- ⎪⎪ ⎪+++⎝⎭⎝⎭. 【污染治理问题】由题意可知,该问题为等比级数问题,首项为a ,公比为45,则设n 周后所剩污染物为n a ,则45nn a a ⎛⎫= ⎪⎝⎭,因为4lim 05nn a →∞⎛⎫= ⎪⎝⎭,所以,可以确定随着时间的推移能将污染物排除干净.【谣言传播】 (1)1lim (t)lim11ktt t P ae -→∞→∞==+;(2)121(t)0.8110t P e-==+,可解得2ln 407.38t =≈.实训二(B )1.填空题(1)32π-; (2)0;0.(无穷小与有界函数的乘积为无穷小)(3)0a =,2b =-.2.(1)()3320lim3h x h x x h→+-=;(2)442x x x →→→===.3.由()3lim 30x x →-=,且232lim 43x x x kx →-+=-,可得()23lim 20x x x k →-+=,解得3k =-.4.由题意可知()()21116lim lim 511x x x x x ax bx x→→--++==--,可得7a =-,6b =.实训三 (A )1.填空题(1)1e -;(2)3e -;(3)e ;(4)e ;(5)3k =;(6)5050.1230⨯⨯=万元,()55010.125038.1⨯+-=万元,50.125041.1e ⨯=万元. 2.(1)6e -;(2)1e -;(3)2e -;(4)01e =. 3.(1)0.042003 6.68rtPe e ⨯==万元; 2.25o P =万元.(2)24.38t p =万元;24.43t p =万元.实训三(B )1.(1)(()0111lim 1lim 1lim 11x x x x x x e x x x --→∞→∞→∞⎡⎤⎛⎛⎫⎛⎫-=-=-==⎢⎥⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦;(2)()15lim 15xx x x e →→∞=+=;(3)()1111111lim lim 11xxx x xx e ---→→=+-=;(4)()()()1000ln 121limlim ln 12limln 12x x x x x x x xx →→→+=+=+ ()()112limln 12lnlim 12ln 2x xx x x x e →→=+=+==.2.322lim lim 122x xc x x x c c e e x c x c →∞→∞+⎛⎫⎛⎫=+== ⎪ ⎪--⎝⎭⎝⎭,所以3c =. 实训四 (A )1.填空题 (1)(]0,3;(2)()243,110,1x x x f x x ⎧-+≤-=⎨>⎩;(3)()0lim 1x f x -→=-,()0lim 0x f x +→=,()0lim x f x →不存在; (4)()(),22,-∞--+∞ ; (5)1x =,2x =;(6)1k =.2.图略,()0lim 1x f x -→=,()0lim 0x f x +→=,()0lim x f x →不存在. 3.()()1lim 11x f x f -→==,()1lim 2x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在1x =处不连续.【个人所得税计算】个人所得税的起征点为月收入3500元.850035005000-=,50000.2555455⨯-=;1200035008500-=,85000.25551145⨯-=.【出租车费用】图略,()8, 322, 3836, 8x f x x x x x ≤⎧⎪=+<≤⎨⎪->⎩.实训四 (B )1.图略,()()0lim 10x f x f -→=-=,()0lim 0x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在0x =处不连续.2.由连续的定义可知:()()220lim 1xx k f x e →==+=.3.因为()01f =,()01lim sin00x x f x→=≠(无穷小与有界函数的乘积), 所以0x =为第一类的可去间断点.第二章自测题一、填空题 1、1- 2、1 3、12- 4、345、221,02,0x x x x ⎧+=⎪⎨≠⎪⎩6、1-7、100 ; 0 8、0.035; 5.15e(万)(万)二、选择题1、C2、A3、C4、A5、B 三、计算解答题1、(1)原式=211(1)1 lim lim0(1)(1)1x xx xx x x→→--==+-+(2)原式=lim lim x x=1lim2x==-(3)设1xe t-=,则ln(1)x t=+,0x→时,0t→,原式=10011lim lim1ln(1)ln(1)limln(1)t ttttt ttt→→→==+⋅++1111lnln[lim(1)]ttet→===+(4)原式=sin[lim sin[limx x→+∞=s i n[l]s i n00x===2、(0)2f=00l i m()l) x x xf x---→→→==00lim lim(12x x--→→==+=00lim()lim(2)2x xf x x++→→=+=lim()2(0)xf x f→∴==()f x∴在0x=点连续,从而()f x在(,)-∞+∞内连续.四、应用题第三章经济最优化问题分析实训一(A )1.填空题(1)45x ; (2)2313x -; (3)23x ; (4)5232x --;(5)2ln 2x ; (6)1ln10x ; (7)0; (8)0.2.2log y x =,1ln 2y x '=.212ln 2x y ='=,122ln 2x y ='=.3.(1)()141y x -=-,即43y x =-; (2)()222y x +=--,即22y x =-+; (3)cos y x '=,312x k y π='==,切线方程为123y x π⎛⎫=- ⎪⎝⎭,即126y x π=-. 实训一(B )1.()()()20001sin010limlim lim sin 00x x x x f x f x f x x x x→→→-'====-.2.()()()()000002lim h f x h f x f x h f x h →+-+--()()()()0000022lim2h f x h f x hh f x h f x h →+-=+--()()()()00000022limlim 12h h f x h f x hh f x h f x h →→+-=⋅=+--. 其中()()()00002lim2h f x h f x f x h→+-'=,()()()()()00000021limh h f x f x h f x f x h f x →='+----⎡⎤⎡⎤⎣⎦⎣⎦. 3.因为3,02⎛⎫⎪⎝⎭不在21y x =上,不是切点.设过点3,02⎛⎫⎪⎝⎭与21y x =相切的切线的切点坐标为21,a a ⎛⎫ ⎪⎝⎭,则切点为21,a a ⎛⎫ ⎪⎝⎭的切线方程为:()2312Y X a a a -=--,有已知3,02⎛⎫ ⎪⎝⎭在切线上,带入可得1a =,所以切线方程为:()121y x -=--,即23y x =-+.实训二 (A )1.(1)223146y x x x '=+-; (2)11'ln n n y nx x x --=+; (3)21'41y x x =++; (4)2cosx cosx sinx'(x 1)x y +-=+. 2.(1)22'1xy x =+; (2)22'2sin3x 3cos3x x x y e e =+; (3)'y = (4)22sec cos122'csc sinx 2tan 2cos sin222x x y x x x x ====.3.(1)''2y =; (2)''2x x y e xe --=-+(3)222222(1x )2(2x)''224(1x )x y x x --+-==-+--; (4)2322222(1x)2''2arctanx 1(1x )x x x y x +-=++++. 4.(1)2212dy x xdx y y --+==;(2)x y x y dy y e y xy dx e x xy x++--==--. 【水箱注水】由24r h =,12r h =,22311133212h v r h h h πππ⎛⎫=== ⎪⎝⎭,两边求导得214v h h π''=,由已知2v '=,3h =,带入可得: 1294h π'=,89h π'=所以水位上升的速度为89π米/分.【梯子的滑动速度】由题意可得22100x y +=,两边求导可得:220dx dy xy dt dt +=,即dx y dy dt x dt=-, 将8y =,6x =,0.5dy dt =带入可得:820.563dy dt =-⨯=-.所以梯子的另一端华东的速度为23米/秒.负号表示运动方向. 实训二 (B )1.(1)11(1ln )e x e x y x x x e -=+++; (2)()()1112121y x x x ⎫'=--⎪⎪-+⎭. 2.()()cos sin x x y e x f e x ''=++. 3.将1y y xe -=两边对x 求导可得:0y y dy dy e xe dx dx --=,即1y ydy e dx xe =-.…………(1) 将0,1x y ==带入(1)可得:y e '=. 对(1)继续求导,()()()22121y y y y y y y e xe e e xy e y e xe ''----''==-.4.(1)22x z z xy x ∂'==∂, 22y zz yx y ∂'==∂; (2)2xy x z z ye xy x ∂'==+∂,2xy y z z xe x y∂'==+∂. 实训三 (A )1.填空题(1)单调递增区间,(),0-∞;单调递减区间()0,+∞. (2)6a =-.(3)驻点. (4)()00f x ''<.2.()()3444110y x x x x x '=-=-+=,得驻点1230,1,1x x x ==-=,单调递增区间:()()1.0 1.-+∞ ,单调递减区间:()().10.1-∞- .3.()()23693310y x x x x '=--=-+=,得驻点121,3x x =-=.又由于:66y x ''=-,()1120y ''-=-<,所以11x =-为极大点,极大值为0; ()360y ''=>,所以23x =为极小点,极小值为32-.【定价问题】21200080R PQ P P ==-,25000502500050(1200080)6250004000C Q P P =+=+-=-, 224000160T Q P ==-,21200080625000400024000160L R C T P P P P =--=--+-+28016160649000P P =-+-160161600L P '=-+=,解得:101P =, 167080L =.【售价与最大利润】1100200Q p =-,21100200R PQ P P ==-;220019004400L R C P P =-=+-,40019000L P '=-+=,解得 4.75P =此时:150Q =,112.5L =. 【最小平均成本】210000501000050x x c x x x ++==++;21000010c x '=-+=,解得100x =.【最大收入】315x R px xe -==,33155x x R exe--'=-3(155)0x x e-=-=,解得:3x =,此时115p e -=,145R e -=.实训三 (B )1.(1)设()1xf x e x =--,()10xf x e '=->(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. (2)设()()ln 1f x x x =-+,()1101f x x'=->+(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. 2.()cos cos3f x a x x '=+,没有不可导点,所以cos cos 033f a πππ⎛⎫'=+=⎪⎝⎭,得2a =.又()2sin 3sin3f x x x ''=--,03f π⎛⎫''=<⎪⎝⎭,所以3x π=为极大值点,极大值为3f π⎛⎫= ⎪⎝⎭【采购计划】 设批量为x ,采购费:132********200C x x =⨯=; 库存费:222xC x =⨯=;总费用:12640000C C C x x=+=+; 264000010C x'=-+=,解得800x =唯一驻点, 所以采购分4次,每次800吨,总费用最小.第三章自测题一、填空题 1. 2 2. 12-3. 21x -4. 1-5. 212c o s x xx+ 6. 17. 2l n3x + 8. 2 ; 09. 11ln ; ln y x y x yxy y x x xy --+⋅⋅+10. 12x =二、选择题1、C2、A3、A4、D5、A 三、计算解答题1、(1)([1]y x '''=+=+[12]()1x =⋅⋅⋅==(2)222()()2x x x x y e x e x xe e --'''=⋅+⋅-=- 2、方程221x y xy +-=两边对x 求导,得22()0x y y y x y ''+⋅-+= 解得:22y xy y x-'=-,将0,1x y ==代入,得切线斜率12k =,所以,切线方程为:11(0)2y x -=-,即:220x y -+=. 3、定义域(,)-∞+∞2363(2)y x x x x '=-=- 令0y '=,得驻点120,2x x ==递增区间:(,0)-∞、(2,)+∞ 递减区间:(0,2)极大值:(0)7f = 极小值:(2)3f = 四、应用题1、50S t ==(50)50dSt dt'== 所以,两船间的距离增加的速度为50千米/小时. 2、第四章 边际与弹性分析实训一(A )1.填空题(1)0.2x ∆=, 2.448y ∆=, 2.2dy =. (2)1x dy edx ==. (3)12dy x dx x ⎛⎫=+⎪⎝⎭. (4)cos(21)x +,2cos(21)x +. (5)[]()f g x ',[]()()f g x g x ''.2.(1)(12)dy x dx =+; (2)221dy dx x =+; (3)222(22)x x dy xe x e dx --=-; (4)322(1)dy x x dx -=-+; (5)23(1)1dy dx x =-+; (6)1dx dy x nx=. 3.()ln 11x y x x '=+++,11ln 22x y ='=+,所以11ln 22x dy dx =⎛⎫=+ ⎪⎝⎭. 【金属圆管截面积】2s r π=,2200.05ds r r πππ=∆=⨯=.实训一(B )1.(1)2sec x ;(2)1sin 5x 5;(3)2x ;(4)232x ;(5)21x +;(6)arctan x . 2.将x yxy e+=两边对x 求导,()1x yy xy ey +''+=+,解得:x y x ye yy x e ++-'=-,所以x y x ye ydy dx x e++-=-.3.(1110.001 1.00052≈+⨯=;(20.02221 2.001783⎛⎫==≈+= ⎪⨯⎝⎭; (3)()ln 1.01ln(10.01)0.01=+≈; (4)0.0510.05 1.05e ≈+=. 【圆盘面积的相对误差】2s r π=,0.2r ∆≤()'2s ds s r r r r π∆≈=∆=∆(1)()()22482240.29.65s ds cm cm πππ∆≈=⨯⨯==; (2)2220.22 1.67%24r r r s ds s s r r ππ∆∆∆≈===⨯≈. 实训二 (A )1.(1)()2'2x f x xe =;(2)[]1'()(1)a bf x x e a x ac --=++.2.(1)()21900110090017751200C =+⨯=;17757190036C ==. (2)()39002C '=,表示第901件产品的成本为32个单位;()51000 1.673C '=≈,表示第1001件产品的成本为53个单位. 3.(1)(50)9975R =;9975199.550R ==. (2)()502000.0250199R '=-⨯=,表示第51件产品的收入为199个单位. 4.22()()100.01520050.01200L R x C x x x x x x =-=---=--,50.020L x '=-=,解得唯一驻点250x =,所以当每批生产250个单位产品时,利润达到最大.实训二(B )1.()()()()()242,04282, 4x x x x L x R x C x x x ⎧--+≤≤⎪=-=⎨⎪-+>⎩, 即()232,0426, 4x x x L x x x ⎧-+-≤≤⎪=⎨⎪->⎩,求导()3,041, 4x x L x x -+≤<⎧'=⎨->⎩,令()0L x '=解得3x =百台(唯一驻点) 所以每年生产300台时,利润达到最大.()()430.5L L -=-万元,在最大利润的基础上再生产1百台,利润将减少0.5万元.2.()0.50.25C a a =+(万元)()2152R a aa =- ()22150.50.25 4.750.522a L a a a a a =---=-+-令() 4.750L a a '=-+=,解得 4.75a =(百台)又()10L a ''=-<,有极值的第二充分条件,可知当 4.75a =为最大值(唯一驻点) 所以该产品每年生产475台时,利润最大.实训三 (A )1.填空题 (1)1axy=;(2)21x Ey Ex ==;(3)1ln()4p η=-;(4)()334η=,()41η=,()554η=. 2.(1)15x η=; (2)3(3)5η=,价格为3时,价格上涨1%,需求下降0.6%,缺乏弹性;(5)1η=,价格为5时,价格上涨1%,需求下降1%,单位灵敏性; 6(6)5η=,价格为6时,价格上涨1%,需求下降1.2%. 3.(1)500P =元时,100000Q =张. (2)18002ppη=-.(3)1η=时,18002600p p p =-⇒=所以:当0600p ≤<时,1η<;当600900p <≤时,1η>.实训三 (B )1.(1)224202EQ x x Q Ex Q x '==--,243x EQ Ex ==-,所以价格增长5%,需求量减少6.7%;(2)()()3220R x xQ x x x ==--,x =403Q =.2.(1)2Q P '=-,48P Q ='=-,经济意义:在价格4P =的基础上,增加一个单位,需求量减少8个单位.(2)22275P P Q Q P η'=-=-,4320.542359P η===,经济意义,在4P =的基础上涨1%,需求减少0.54%.(3)375R PQ p p ==-,3375375p p p pη-=-,(4)0.46η=,经济意义,在4P =的基础上,若价格上涨1%,收入上涨0.46%.(4)198(6)0.46234η-=≈-,经济意义,在6P =的基础上,若价格上涨1%,收入减少0.46%. (5)375R p p =-,275305R p p '=-=⇒=,又6R p ''=-,()5300R ''=-<,所以由极值的第二充分条件,可知5P =时,总收入最大.第四章自测题一、填空题 1. 22 ; 2xxe e2.212x 3. arctan x4. 0.1 ; 0.63 ; 0.6 5. 45 ; 11 ; 456.10 ; 10% ; 变动富有弹性 7. 15%20% 8. 10% 二、选择题1、C2、B3、D4、A5、C 三、计算解答题1、(1)2222222()()2(2)x x x x y x e x e xe x e x ''''=⋅+⋅=+⋅2222222(1)x x x x e x e x e x =+=+ 22(1)xd y y d x xe x d x'∴==+ (2)222sin(12)[sin(12)]y x x ''=+⋅+2222s i n (12)c o s (12)(12)x x x '=+⋅+⋅+ 24s i n (24)x x =+ 24s i n (24)d y y d x x x d x'∴==+ 2、方程242ln y y x -=两边对x 求导,得31224dy dyy x dx y dx⋅-⋅⋅= 解得,3221dy x y dx y =-,3221x y dy dx y ∴=-3、四、应用题1、(1)()60.04C Q Q '=+ ()300()60.02C Q C Q Q Q Q==++(2)2300()0.02C Q Q'=-+令()0C Q '=,得Q = (3)2()()(204)204R Q P Q Q Q Q Q Q =⋅=-⋅=-2()()() 4.0214300L Q R Q C Q Q Q =-=-+- ()8.0414L Q Q '=-+ 令()0L Q =,得Q =2、 4Q P '=-(1)(6)24Q '=-,6P =时,价格上升1个单位,需求量减少24个单位.(2)22224(1502)15021502P P P Q P Q P P η''=-⋅=-⋅-=-- 24(6)13η=6P =时,价格变动1%,需求量变动2413% (3)23()()(1502)1502R P Q P P P P P P =⋅=-⋅=-33(1502)1502E R P PR P P E P R P P''=⋅=⋅--2215061502P P -=-61113P EREP==-6P =时,若价格下降2%,总收入将增加2213%第五章 经济总量问题分析实训一(A )1.填空题(1)3x ,3x C +; (2)3x ,3x C +; (3)cos x -,cos x C -+;(4C ; (5)arctan x ,arctan x C +.2.(1)B ; (2)C ; (3)D ; (4)A .3.(1)5322225x x C -+;(2)31cos 3xx e x C --+;(3)21x x C x-++; (4)(2)ln 2xe C e+. 4.(1)1arctan x C x--+;(2)sin cos x x C ++. 【曲线方程】由题意()21f x x '=+,所以()()()23113f x f x dx x dx x x C '==+=++⎰⎰,又过点()0,1带入,得到1C =,所以曲线方程为:()3113f x x x =++. 【总成本函数】由题意可得()220.01C x x x a =++,又固定成本为2000元,所以 ()220.012000C x x x =++. 【总收入函数】()()278 1.2780.6R x x dx x x C =-=-+⎰,由()000R C =⇒=,所以总收入函数为()2780.6R x x x =-.实训一(B )1.填空题(1)sin 2ln x x x +;(2)223cos3x e x +;(3)ln x x C +. 2.(1)D ; (2)B .3.(1)322233331u u u I du u du u u u -+-⎛⎫==-+- ⎪⎝⎭⎰⎰ 2133ln 2u u u C u=-+++; (2))32332333I dx x x C ===-+⎰;(3)()222222121212arctan 11x x I dx dx x C x x x x x ++⎛⎫==+=-++ ⎪++⎝⎭⎰⎰; (4)()()()1111tttt te e I dt edt e t C e +-==-=-++⎰⎰.实训二 (A )1.填空题 (1)212x ; (2)x e --; (3)ln x ; (4)arctan x ; (5)23x x +; (6)arcsin x . 2.(1)B ; (2)B .3.(1)()()()11cos 2121sin 2122I x d x x C =++=++⎰; (2)()()3212313139I x x C =+=++;(3)()()231ln ln ln 3I x d x x C ==+⎰;(4)111xx I e d e C x ⎛⎫=-=-+ ⎪⎝⎭⎰.4.(1)sin sin sin x xI e d x eC ==+⎰; (2)()()11ln 11x xx I d e e C e =+=+++⎰;(3)()()2222ln 22d x x I x x C x x -+==-++-+⎰;(4)22221111111x x x I dx dx x x x ++-⎛⎫==+- ⎪+++⎝⎭⎰⎰ 21l n (1)a r c t a n 2x x x C=++-+. 5.(1)()x x x x x I xd e xe e dx xe e C -----=-=-+=--+⎰⎰;(2)()()()ln 1ln 1ln 1I x dx x x xd x =+=+-+⎰⎰()()11ln 1ln 111x x x x dx x x dx x x +-=+-=+-++⎰⎰()()l n 1l n 1x x x x C =+-+++. 【需求函数】由已知,()111000ln3100033p pQ p dp C ⎛⎫⎛⎫=-⨯=+ ⎪ ⎪⎝⎭⎝⎭⎰ 又因为0p =时,1000Q =,代入上式,得到0C =.所以,()110003pQ p ⎛⎫= ⎪⎝⎭.【资本存量】由已知,32()2(1)y I t dt t C ===++⎰⎰因为0t =时,2500498y C C =+=⇒= 所以,322(1)498y t =++.实训二 (B )1.填空题(1)ln ()f x C +;(2)arctan(())f x C +;(3)'()()xf x f x C -+. 2.(1)()()2arctan 1x x x d e I e C e ==++⎰;(2)()()11131431dx I dx x x x x ⎛⎫==-⎪-+-+⎝⎭⎰⎰113l n 3l n 1l n 441x I x x C C x -=⎡--+⎤+=+⎣⎦+;(3)()()2arctan 111dxI x C x ==++++⎰;(4)()22222x x x x x I x d e x e e dx x e xe dx -----=-=-+=--⎰⎰⎰()22222x x x x x x I x e xe e C x e xe e C ------=----+=-+++. 【物体冷却模型】设()T t 为t 时刻物体的温度,由冷却定律可得:0()dTk T T dt=-, 分离变量0dT kdt T T =-,两边积分0dTkdt T T =-⎰⎰,可得:()0ln ln T T kt c -=+,0()kt T t T ce =+.由已知()0100T =,()160T =,020T =,带入得到:80c =,ln 2k =-, 所以ln2()2080t T t e -⋅=+, 当ln 23020803te t -⋅=+⇒=.实训三 (A )1.填空题 (1)122lim(1)nn i i n n→∞=+∑;(2)2)x dx -;(3)2π;(4)0. 2.(1)12010(3)3S x dx =+=⎰; (2)12218(2)3S x x dx -=--=⎰;(3)1303(1)4S x dx =-=⎰或034S ==⎰.实训三 (B )1.(1)分割:将[]0,4n 等分,每份长度为4n ;(2)近似代替:2412823i i n iA n n n⎡⎤+⎛⎫∆=⋅+= ⎪⎢⎥⎝⎭⎣⎦;(3)求和:()2212221111281281282nnni ii i n n n in n iA A n nn===++++≈∆===∑∑∑; (4)取极限:()2211282lim16n n n n A n→∞++==. 2.1sin xdx π⎰.3.22211113ln ln 222x dx x x x ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭⎰.实训四 (A )1.填空题(1)64;(2)1;(3)2π;(4)3;(5)1. 2.(1)()()()44341118111144I x d x x =--=-=⎰; (2)()()44223328I x dx xx =+=+=⎰;(几何上为直角三角形的面积)(3)22242200111222x x e I e dx e -===⎰; (4)2112111xx I e d e e x =-=-=⎰(5)01cos sin 222x x x I dx πππ++===⎰; (6)0;(利用当积分区间为对称区间,被积函数为奇函数时定积分的性质) (7)121211122222235I xdx xdx xdx xdx -=+=+=+=⎰⎰⎰⎰;(8)02sin 4I xdx π==⎰.(利用定积分的周期性)【资本存量问题】 (1)434211214I t ===⎰(万元);(4)33224422820 6.87x xtx x ⎛⎫==-=⇒=≈ ⎪⎝⎭⎰.【投资问题】01000P =,200A = 0.05()200T t tdP e dt-= 0.05()0.05020040004000TT t T t P edt e -==-+⎰ 10t =,0.5400040002595t P e=-+= 因为0.515741600T P e-≈<,所以,此项投资不恰当.实训四 (B )1.因为()1229214x dx --+=-⎰,()1129214x dx -+=⎰,()20216x dx +=⎰,()21214x dx +=⎰, ()3222213x dx +=⎰, 所以应该分两种情况: (1)因为()3403kf x dx =⎰,()()332240221816333k f x dx x dx -+=-==⎰⎰ 所以,0k =; (2)因为()()102112f x dx f x dx ---=⎰⎰,由对称性可知1k =-.2.对()21f x dx -⎰作代换令1x t -=(切记:定积分的换元要换限,积分值不变),则有:()()21011f x dx f t dt --=⎰⎰,所以,()()21101101112tte f x dx f t dt dt dt e t ---==+++⎰⎰⎰⎰ ()()()()001101011132ln 1ln 2ln 121t t td e ed te t e t e --+=++=+++=+++⎰⎰. 3.()()()()11111111I xf x dx xdf x x f x f x dx ----'===-⎰⎰⎰()()()()21111110x f f e f f --=+--=+-=.因为()()222x x f x e xe --'==-,()f x 为奇函数,所以()()110f f +-=.【储存费用问题】第五章自测题一、填空题 1.sin x x e c ++2.5314453x x x c -++ 3.ln xdx4.21ln 2x c +5.196.327.94π8.21200 ;200Q Q - 9.二、选择题1、D2、B3、A4、B5、C 三、计算解答题 1、(1)原式=1111()(3)(2)532dx dx x x x x =--+-+⎰⎰ 113[l n 3l n 2]l n 552x x x c cx -=--++=++ (2)原式=22111112sin ()cos cos cos1d x x x πππ-==-⎰2、(1)222222212(1)()()(1)(1)x x x F x G x dx dx x x x x ++++==++⎰⎰22111()arctan 1dx x c x x x=+=-+++⎰(2)222222212(1)3()()(1)(1)x x x F x G x dx dx x x x x -+--==++⎰⎰ 22131()3arctan 1dx x c x x x=-=--++⎰3、原式=31222(1)(1)1)33x x =+=+=⎰⎰四、应用题 1、(1)32412)2(24S x x dx x x =-=-=(2)1100()()1x x S e e dx ex e =-=-=⎰2、(1)2()()(100020)C Q C Q dQ Q Q dQ '==-+⎰⎰2311000103Q Q Q c =-++(0)9000C = ,9000c ∴=, 321()10100090003C Q Q Q Q ∴=-++ ()3400R Q Q = 321()()()10240090003L Q R Q C Q Q Q Q =-=-++- (2)令()()R Q C Q ''=,得60Q = 最大利润(60)99000L =(元) 3、.期末考试(90分钟)一、选择题(每题3分,共9分)1、设()0, 0x f x k x ≠=⎪=⎩在0x =处连续,问k =( )。
国家开放大学《经济数学基础》期末考试复习题及参考答案
题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调减少的是().答案:题目3:设,则().答案:题目3:设,则().答案:题目3:设,则=().答案:题目4:当时,下列变量为无穷小量的是().答案:题目4:当时,下列变量为无穷小量的是().答案:题目4:当时,下列变量为无穷小量的是().答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目6:().答案:0题目6:().答案:-1题目6:().答案:1题目7:().答案:题目7:().答案:().题目7:().答案:-1题目8:().答案:题目8:().答案:题目8:().答案:().题目9:().答案:4题目9:().答案:-4题目9:().答案:2题目10:设在处连续,则().答案:1 题目10:设在处连续,则().答案:1 题目10:设在处连续,则().答案:2题目11:当(),()时,函数在处连续.答案:题目11:当(),()时,函数在处连续.答案:题目11:当(),()时,函数在处连续.答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目13:若函数在点处可导,则()是错误的.答案:,但题目13:若函数在点处可微,则()是错误的.答案:,但题目13:若函数在点处连续,则()是正确的.答案:函数在点处有定义题目14:若,则().答案:题目14:若,则().答案:1题目14:若,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目16:设函数,则().答案:题目16:设函数,则().答案:题目16:设函数,则().答案:题目17:设,则().答案:题目17:设,则().答案:题目17:设,则().答案:题目18:设,则().答案:题目18:设,则().答案:题目18:设,则().答案:题目19:设,则().答案:题目19:设,则().答案:题目19:设,则().答案:题目20:设,则().答案:题目20:设,则().答案:题目20:设,则().答案:题目21:设,则().答案:题目21:设,则().答案:题目21:设,则().答案:题目22:设,方程两边对求导,可得().答案:题目22:设,方程两边对求导,可得().答案:题目22:设,方程两边对求导,可得().答案:题目23:设,则().答案:题目23:设,则().答案:题目23:设,则().答案:-2题目24:函数的驻点是().答案:题目24:函数的驻点是().答案:题目24:函数的驻点是().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目1:下列函数中,()是的一个原函数.答案:题目1:下列函数中,()是的一个原函数.答案:题目1:下列函数中,()是的一个原函数.答案:题目2:若,则(). 答案:题目2:若,则().答案:题目2:若,则(). 答案:题目3:(). 答案:题目3:().答案:题目3:(). 答案:题目4:().答案:题目4:().答案:题目4:().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目6:若,则(). 答案:题目6:若,则().答案:题目6:若,则(). 答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目10:(). 答案:0题目10:().答案:0题目10:(). 答案:题目11:设,则(). 答案:题目11:设,则().答案:题目11:设,则(). 答案:题目12:下列定积分计算正确的是().答案:题目12:下列定积分计算正确的是().答案:题目12:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目14:计算定积分,则下列步骤中正确的是().答案:题目14:().答案:题目14:().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目17:下列无穷积分中收敛的是().答案:题目17:下列无穷积分中收敛的是().答案:题目17:下列无穷积分中收敛的是().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:题目1:设矩阵,则的元素().答案:3题目1:设矩阵,则的元素a32=().答案:1题目1:设矩阵,则的元素a24=().答案:2题目2:设,,则().答案:题目2:设,,则()答案:题目2:设,,则BA =().答案:题目3:设A为矩阵,B为矩阵,且乘积矩阵有意义,则为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目4:设,为单位矩阵,则()答案:题目4:设,为单位矩阵,则(A - I )T =().答案:题目4:,为单位矩阵,则A T–I =().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目6:下列关于矩阵的结论正确的是().答案:对角矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:数量矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:若为可逆矩阵,且,则题目7:设,,则().答案:0题目7:设,,则().答案:0题目7:设,,则().答案:-2, 4题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目10:设矩阵,则().答案:题目10:设矩阵,则().答案:题目10:设矩阵,则().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目12:矩阵的秩是().答案:2题目12:矩阵的秩是().答案:3题目12:矩阵的秩是().答案:3题目13:设矩阵,则当()时,最小.答案:2题目13:设矩阵,则当()时,最小.答案:-2题目13:设矩阵,则当()时,最小.答案:-12题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量答案:题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.答案:题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.选择一项:A.B.C.D.答案:题目15:设线性方程组有非0解,则().答案:-1 题目15:设线性方程组有非0解,则().答案:1题目15:设线性方程组有非0解,则().答案:-1题目16:设线性方程组,且,则当且仅当()时,方程组有唯一解.答案:题目16:设线性方程组,且,则当()时,方程组没有唯一解.答案:题目16:设线性方程组,且,则当()时,方程组有无穷多解.答案:题目17:线性方程组有无穷多解的充分必要条件是().答案:题目17线性方程组有唯一解的充分必要条件是().:答案:题目17:线性方程组无解,则().答案:题目18:设线性方程组,则方程组有解的充分必要条件是().答案:题目18:设线性方程组,则方程组有解的充分必要条件是().答案:题目18:设线性方程组,则方程组有解的充分必要条件是()答案:题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组无解.答案:且题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组有无穷多解.答案:且题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组有唯一解.答案:题目20:若线性方程组只有零解,则线性方程组()答案:解不能确定题目20:若线性方程组有唯一解,则线性方程组().答案:只有零解题目20:若线性方程组有无穷多解,则线性方程组().答案:有无穷多解一、计算题(每题6分,共60分)1.解:综上所述,2.解:方程两边关于求导:,3.解:原式=。
经济数学基础形成性考核册参考答案
经济数学基础形成性考核册参考答案经济数学基础作业1一、填空题: 1、0; 2、1;3、x -2y +1=0;4、2x ;5、-2π;二、单项选择题: 1、D ; 2、B ; 3、B ; 4、B ; 5、B ; 三、解答题 1、计算极限(1)解:原式=1lim→x )1)(1()2)(1(+---x x x x=1lim→x 12+-x x=21(2)解:原式=2lim→x )4)(2()3)(2(----x x x x=2lim→x 43--x x=-21(3)解:原式=0lim→s xx x )11(11+---=lim →s 111+--x=-21(4)解:原式=∞→s lim 22423531xx x x +++-=21(5)解:∵x 0→时,xx sm x x sm 5~53~3∴0lim→x xsm xsm 53=0lim→x xx53=53(6)解:2lim→x )2sin(42--x x =2lim →x 242--x x=2lim→x (x+2)=4 2、设函数: 解:0lim →x f(x)=0lim →x (sin x1+b)=b+→0lim x f(x)=+→0lim x xxsin 1≤(1)要使f(x)在x=0处有极限,只要b=1, (2)要使f(x)在x=0处连续,则-→0lim x f(x)=+→0lim x =f(0)=a即a=b=1时,f(x)在x=0处连续 3、计算函数的导数或微分: (1)解:y '=2x +2xlog 2+2log1x(2)解:y '=2)()()(d cx cb ax d cx a ++-+=2)(d cx bc ad +-(3)解:y '=[)53(21--x ]'=-21)53(23--x ·(3x-5)' =-23)53(23--x(4)解:y '=x21-(e x+xe x)=x21-e x -xe x(5)解:∵y '=ae ax sinbx+be ax cosbx =e ax (asmbx+bcosbx) ∴dy=e ax (asmbx+bcosbx)dx(6)解: ∵y '=-21xe x1+23x 21∴dy=(-21xex1+23x)dx(7)解:∵y '=-x21+sin x +xex22-∴dy=(xex22--x21 sin x )dx(8)解:∵y '=nsin n -1x+ncosnx∴dy=n(nsin n -1+ cosnx)dx(9)解:∵y '=)1221(1122xx xx ++++=211x+∴dxxdy 211+=(10)解:xxxxxotxxxxy y 652321cot226121116121ln 1csc1222--+-⋅='-++=4、(1)解:方程两边对x 求导得 2x+2yy '-y-xy '+3=0 (2y-x)y '=y -2x -3 y '=xy x y ---232∴dy=dxxy x y ---232(2)解:方程两边对x 求导得:Cos(x+y )·(1+y ')+e xy (y+xy ')=4 [cos(x+y)+xe xy ]y '=4-cos(x+y)-ye xy y '=xyxey x yexy y x ++-+-)cos()cos(45.(1)解:∵y '=22212)1(11Xx x x+='+∙+2222)1(22)1(1)12(X XX X XX Y +∙-+='+=''=222)1()1(2X X +-(2)解:)()1(2121'-='-='-xxxx xy=x x21212123----)(212122'-=''---xx yx x41432325--+14143)1(=+=''y经济数学基础作业2一、填空题:1、2x ln 2+2 2、sinx+C3、-C x F +-)1(2124、ln(1+x 2)5、-211x+二、单项选择题: 1、D 2、C 3、C 4、D 5、B三、解答题:1、计算下列不定积分: (1)解:原式=⎰dx e x )3(= Cee x +3ln )3(=Cx e +-13ln )3((2)解:原式=dxXXXX X)21(2⎰++=Cxxx +++523422221(3)解:原式=⎰++-dxx x x 2)2)(2(=⎰-dx x )2( =Cx x+-222(4)解:原式=-⎰--)21(21121x d x=-x 21ln 21-+C (5)解原式=⎰+2212)2(21dxx=⎰++)2()2(212212x d x=C x ++232)2(31(6)解:原式=Z ⎰xd x sin=-2cos C x + (7)解:原式=-2⎰2cos x xd=-2xcos ⎰+dxx x 2cos 22 =-2xcos Cx smx ++242(8)解:原式=⎰++)1()1ln(x d x=(x+1)ln(x+1)-⎰++)1ln()1(x d x =(x+1)ln(x+1)-x+c2、计算下列积分 (1)解:原式=⎰⎰-+--dx x dx x )1(12)1(11=(x-12)2(11)222x xx-+-=2+21=25(2)解:原式=⎰-xde x 1121=121xe -=e e -(3)解:原式=⎰+x d xeln ln 1113=⎰++-)1(ln )ln 1(1213x d x e=1)ln 1(2321ex +=4-2 =2(4)解:原式=xxdsm 22102⎰π=⎰-xdxsm xxsm 2021022122ππ=02cos 412πx=21-(5)解:原式=⎰xx xde2ln 1=dxxx e e xx⎰--12211ln 22=⎰-dx xe e 2122=14222exe-=)414(222--ee=412+e(6)解:原式=⎰⎰-+dxxedx x404=4+⎰--x xde 04=⎰-----)(0444x d exexx=04444xee----=14444+----e e =455--e经济数学基础作业3一、填空题: 1. 3 2. -723. A 与B 可交换4. (I-B )-1A5. 3100210001-二、单项选择题:1.C2.A3.C4.A5.B三、解答题 1、解:原式=⎥⎦⎤⎢⎣⎡⨯+⨯⨯+⨯⨯+⨯-⨯+⨯-0315130501121102 =⎥⎦⎤⎢⎣⎡53212、解:原式=⎥⎦⎤⎢⎣⎡⨯-⨯⨯-⨯⨯+⨯⨯+⨯0310031002100210 =⎥⎦⎤⎢⎣⎡00003、解:原式=[]24)1(50231⨯+-⨯+⨯+⨯- =[]02、计算:解:原式=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--142301215427401277197=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-------7724300012675741927 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423012121553、设矩阵:解:222321013211023210132)2(21)1(110111132=--=--+---=A011211321==B0=∙=∴B A AB4、设矩阵:解:A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0110214742101112421λλ要使r (A )最小。
经济数学基础复习资料答案(更新至2012年7月最新)
经济数学基础复习资料答案一、单项选择题1.设xx f 1)(=,则=))((x f f (C ). A .x 1 B .21xC .xD .2x2.设11)(+=xx f ,则=))((x f f (A ).A .11++x xB .x x +1C .111++xD .x+11 3.设xx f +=11)(,则=))((x f f (A ).A .x x ++21B .x x ++12C .x +21D .x+114.下列各函数对中,(D )中的两个函数相等.A .2)()(x x f =,x x g =)( B .11)(2--=x x x f ,1)(+=x x gC .2ln )(x x f =,x x g ln 2)(=D .x x x f 22cos sin )(+=,1)(=x g 5.下列各函数对中两个函数相等的是(C ). A .2)(x x f =,x x g =)( B .2)()(x x f =,x x g =)(C .3ln )(x x f =,x x g ln 3)(= D .2ln )(x x f =,x x g ln 2)(= 6.函数xx y -++=41)2ln(的定义域是(A).A .)42(,-B .)4()42(∞+-,,C .)4(,-∞D .)2(∞+, 7.函数x x y -++=5)1ln(1的定义域为(D ). A .),1(+∞- B .,5](-∞ C .]5,1(- D .]5,0()0,1( - 8.函数242--=x x y 的定义域是(B ). A .)2[∞+-, B .)2()22[∞+-,, C .)2()2(∞+---∞,, D .)2()2(∞+-∞,, 9.函数lg(1)xy x =+的定义域是 (D ).A .1x >-B .0x >C .0x ≠D .10x x >-≠且 10.下列函数在区间),(+∞-∞上单调增加的是(C ).A .x sinB .x 21 C .x 3 D .31x - 11.下列函数在区间)(∞+-∞,上是单调下降的是(D ). A .x sin B .x3 C .2x D .x -5 12.下列函数在区间),(+∞-∞上单调减少的是(D ).A .x cosB .x 2C .2x D .x -2 13.下列函数在区间),(+∞-∞上单调减少的是(D ). A .x sin B .x 2 C .2x D .x -3 14.下列函数中的单调减函数是(C).A .3x y = B .xy 1=C .x y -=D .x e y = 15.下列函数在指定区间),(+∞-∞上单调增加的是(B ).A .x sinB .x eC .2x D .x -3 16.下列函数在区间),(+∞-∞上单调减少的是(D ). A .x cos B .x 2 C .2x D .x -3 17.下列函数中,(D )在区间),(+∞-∞上是单调减少的. A .x e B .x sin C .12+-x D .23+-x 18.函数1)(2-=x x f 在区间]10[,上是(A ). A .单调增加 B .单调减少 C .先增加后减少 D .先减少后增加 19.下列结论中,(D )是正确的.A .基本初等函数都是单调函数B .偶函数的图形关于坐标原点对称C .周期函数都是有界函数D .奇函数的图形关于坐标原点对称 20.下列函数中为偶函数的是(A).A .x x y sin =B .x x y +=2C .xxy --=22 D .x x y cos =20.下列函数中为偶函数的是(C).A .x x y -=2B .11ln +-=x x y C .2x x e e y -+= D .x x y sin 2=21.下列函数中为奇函数的是(B ).A .x x sin 3B .)1ln(2x x ++ C .2x x e e -+ D .2sin 2+x x22.下列函数中为奇函数的是(C ).A .x x sinB .x lnC .)1ln(2x x ++ D .2x x +23.下列函数中为奇函数的是(C ). A .x x y -=2B .xxe e y -+= C .11ln+-=x x y D .x x y sin = 24.极限=--→11sin)1(lim 1x x x (C). A .-1 B .1 C .0 D .不存在25.极限=→xx x 21sinlim 0(C). A .21B .2C .0D .不存在 26.已知1sin )(-=xxx f ,当(A )时,)(x f 为无穷小量。
2020年秋季国家开放大学《经济数学基础12》形考任务(1-4)试题答案解析
2020年秋季国家开放大学《经济数学基础12》形考任务(1-4)试题答案解析形考任务一(红色标注选项为正确选项)单项选择题(每题4分,共100分)题目1正确获得4.00分中的4.00分标记题目题干函数的定义域为().选择一项:A.B.C.D.反馈你的回答正确题目2正确获得4.00分中的4.00分标记题目题干下列函数在指定区间上单调增加的是().选择一项:A.B.C.D.反馈你的回答正确题目3不正确获得4.00分中的0.00分标记题目题干设,则=().选择一项:A.B.C.D.反馈你的回答不正确题目4正确获得4.00分中的4.00分标记题目题干当时,下列变量为无穷小量的是().选择一项:A.B.C.D.反馈你的回答正确题目5正确获得4.00分中的4.00分标记题目题干下列极限计算正确的是().选择一项:A.B.C.D.反馈你的回答正确题目6正确获得4.00分中的4.00分标记题目题干().选择一项:A. 2B. 1C. 0D. -1反馈你的回答正确题目7正确获得4.00分中的4.00分标记题目题干().选择一项:A. 1B. 2C. -2D. -1反馈你的回答正确题目8正确获得4.00分中的4.00分标记题目题干().选择一项:A. 0B.C.D.反馈你的回答正确题目9正确获得4.00分中的4.00分标记题目题干().选择一项:A. 0B. 1C. 2D. 4反馈你的回答正确题目10正确获得4.00分中的4.00分标记题目题干设在处连续,则().选择一项:A. 0B.C. -1D. 1反馈你的回答正确题目11正确获得4.00分中的4.00分标记题目题干当(),()时,函数在处连续.选择一项:A.B.C.D.反馈你的回答正确题目12正确获得4.00分中的4.00分标记题目题干曲线在点的切线方程是().选择一项:A.B.C.D.反馈你的回答正确题目13正确获得4.00分中的4.00分标记题目题干若函数在点处可导,则()是错误的.选择一项:A.,但B. 函数在点处可微C. 函数在点处连续D. 函数在点处有定义反馈你的回答正确题目14正确获得4.00分中的4.00分标记题目题干若,则().选择一项:A.C.D. -1反馈你的回答正确题目15正确获得4.00分中的4.00分标记题目题干设,则().选择一项:A.B.C.D.反馈你的回答正确题目16正确获得4.00分中的4.00分标记题目题干设函数,则().选择一项:A.B.C.D.你的回答正确题目17正确获得4.00分中的4.00分标记题目题干设,则().选择一项:A.B.C.D.反馈你的回答正确题目18正确获得4.00分中的4.00分标记题目题干设,则().选择一项:A. 2B.C.D.反馈你的回答正确题目19正确获得4.00分中的4.00分标记题目题干设,则().选择一项:A.B.C.D.反馈你的回答正确题目20正确获得4.00分中的4.00分标记题目题干设,则().选择一项:A.B.C.D.反馈你的回答正确题目21正确获得4.00分中的4.00分标记题目题干设,则().选择一项:A.B.C.D.反馈你的回答正确题目22正确获得4.00分中的4.00分标记题目题干设,方程两边对求导,可得().选择一项:A.B.C.D.反馈你的回答正确题目23正确获得4.00分中的4.00分标记题目题干设,则().选择一项:A.B.C.D.反馈你的回答正确题目24正确获得4.00分中的4.00分标记题目题干函数的驻点是().选择一项:A.B.C.D.反馈你的回答正确题目25正确获得4.00分中的4.00分标记题目题干设某商品的需求函数为,则需求弹性().选择一项:A.B.C.D.反馈你的回答正确形考任务二(红色标注选项为正确选项)单项选择题(每题4分,共100分)单项选择题(每题5分,共100分)题目1正确获得5.00分中的5.00分标记题目题干下列函数中,()是的一个原函数.选择一项:A.B.C.D.反馈你的回答正确题目2正确获得5.00分中的5.00分标记题目题干若,则().选择一项:A.B.C.D.反馈你的回答正确题目3正确获得5.00分中的5.00分标记题目题干().选择一项:A.B.C.D.反馈你的回答正确题目4正确获得5.00分中的5.00分标记题目题干().选择一项:A.B.C.D.反馈你的回答正确题目5正确获得5.00分中的5.00分标记题目题干下列等式成立的是().选择一项:A.B.C.D.反馈你的回答正确题目6正确获得5.00分中的5.00分标记题目题干若,则().选择一项:A.B.C.D.你的回答正确题目7正确获得5.00分中的5.00分标记题目题干用第一换元法求不定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈你的回答正确题目8正确获得5.00分中的5.00分标记题目题干下列不定积分中,常用分部积分法计算的是().选择一项:A.B.C.D.反馈你的回答正确题目9获得5.00分中的5.00分标记题目题干用分部积分法求不定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈你的回答正确题目10正确获得5.00分中的5.00分标记题目题干().选择一项:A. 0B.C. 1D.反馈你的回答正确题目11正确获得5.00分中的5.00分标记题目题干设,则().选择一项:A.B.C.D.反馈你的回答正确题目12正确获得5.00分中的5.00分标记题目题干下列定积分计算正确的是().选择一项:A.B.C.D.反馈你的回答正确题目13正确获得5.00分中的5.00分标记题目题干下列定积分计算正确的是().选择一项:A.B.C.D.反馈你的回答正确题目14正确获得5.00分中的5.00分标记题目题干().选择一项:A. 1B.C.D.反馈你的回答正确题目15正确获得5.00分中的5.00分标记题目题干用第一换元法求定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈你的回答正确题目16正确获得5.00分中的5.00分标记题目题干用分部积分法求定积分,则下列步骤正确的是().选择一项:A.B.C.D.反馈你的回答正确题目17正确获得5.00分中的5.00分标记题目题干下列无穷积分中收敛的是().选择一项:A.B.C.D.反馈你的回答正确题目18正确获得5.00分中的5.00分标记题目题干求解可分离变量的微分方程,分离变量后可得().选择一项:A.B.C.D.反馈你的回答正确题目19正确获得5.00分中的5.00分标记题目题干根据一阶线性微分方程的通解公式求解,则下列选项正确的是().选择一项:A.B.C.D.反馈你的回答正确题目20正确获得5.00分中的5.00分标记题目题干微分方程满足的特解为().选择一项:A.B.C.D.反馈你的回答正确形考任务三(红色标注选项为正确选项)单项选择题(每题4分,共100分)单项选择题(每题5分,共100分)题目1正确获得5.00分中的5.00分标记题目题干设矩阵,则的元素().选择一项:A. 2B. -2C. 1D. 3反馈你的回答正确题目2正确获得5.00分中的5.00分标记题目题干设,,则().选择一项:A.B.C.D.反馈你的回答正确题目3正确获得5.00分中的5.00分标记题目题干设A为矩阵,B为矩阵,且乘积矩阵有意义,则为()矩阵.选择一项:A.B.C.D.反馈你的回答正确题目4正确获得5.00分中的5.00分标记题目题干设,为单位矩阵,则(A - I)T=().选择一项:A.B.C.D.反馈你的回答正确题目5正确获得5.00分中的5.00分标记题目题干设均为阶矩阵,则等式成立的充分必要条件是().选择一项:A.B.C.D.反馈你的回答正确题目6正确获得5.00分中的5.00分标记题目题干下列关于矩阵的结论正确的是().选择一项:A. 数量矩阵是对称矩阵B. 若均为零矩阵,则有C. 若,,则D. 若,且,则反馈你的回答正确题目7正确获得5.00分中的5.00分标记题目题干设,,则().选择一项:A. 0B. 2C. -2D. 4反馈你的回答正确题目8正确获得5.00分中的5.00分标记题目题干设均为阶可逆矩阵,则下列等式成立的是().选择一项:A.B.C.D.反馈你的回答正确题目9正确获得5.00分中的5.00分标记题目题干下列矩阵可逆的是().选择一项:A.B.C.D.反馈你的回答正确题目10正确获得5.00分中的5.00分标记题目题干设矩阵,则().选择一项:A.B.C.D.反馈你的回答正确题目11正确获得5.00分中的5.00分标记题目题干设均为阶矩阵,可逆,则矩阵方程的解().选择一项:A.B.C.D.反馈你的回答正确题目12正确获得5.00分中的5.00分标记题目题干矩阵的秩是().选择一项:A. 1B. 3C. 2D. 0反馈你的回答正确题目13正确获得5.00分中的5.00分标记题目题干设矩阵,则当()时,最小.选择一项:A. 0B. 1C. 2D. -2反馈你的回答正确题目14正确获得5.00分中的5.00分标记题目题干对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.选择一项:A.B.C.D.反馈你的回答正确题目15正确获得5.00分中的5.00分标记题目题干设线性方程组有非0解,则().选择一项:A. 1B. -1C. 2D. 0反馈你的回答正确题目16正确获得5.00分中的5.00分标记题目题干设线性方程组,且,则当且仅当()时,方程组有唯一解.选择一项:A.B.C.D.反馈你的回答正确题目17正确获得5.00分中的5.00分标记题目题干线性方程组有唯一解的充分必要条件是().选择一项:A.B.C.D.反馈你的回答正确题目18正确获得5.00分中的5.00分标记题目题干设线性方程组,则方程组有解的充分必要条件是().选择一项:A.B.C.D.反馈你的回答正确题目19正确获得5.00分中的5.00分标记题目题干对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组无解.选择一项:A.且B.且C.且D.且反馈你的回答正确题目20正确获得5.00分中的5.00分标记题目题干若线性方程组有无穷多解,则线性方程组().选择一项:A. 只有零解B. 有无穷多解C. 解不能确定D. 无解反馈你的回答正确形考任务四(红色标注选项为正确选项)单项选择题(每题4分,共100分)一、计算题(每题6分,共60分)(如果以附件形式提交,请在在线输入框中,输入“见附件”)题目1完成获得60.00分中的60.00分未标记标记题目题干1.设,求.2.已知,求.3.计算不定积分.4.计算不定积分.5.计算定积分.6.计算定积分.7.设,求.8.设矩阵,,求解矩阵方程.9.求齐次线性方程组的一般解.10.求为何值时,线性方程组答案:评论评语:未标记标记题目信息文本二、应用题(每题10分,共40分)(如果以附件形式提交,请在在线输入框中,输入“见附件”)题目2完成获得40.00分中的40.00分未标记标记题目题干1.设生产某种产品个单位时的成本函数为(万元),求:①时的总成本、平均成本和边际成本;②产量为多少时,平均成本最小.2.某厂生产某种产品件时的总成本函数为(元),单位销售价格为(元/件),问产量为多少时可使利润达到最大?最大利润是多少?3.投产某产品的固定成本为36(万元),边际成本为(万元/百台).试求产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低.4.生产某产品的边际成本为(万元/百台),边际收入为(万元/百台),其中为产量,求:①产量为多少时利润最大;②在最大利润产量的基础上再生产2百台,利润将会发生什么变化.答案:。
经济数学基础综合练习及参考答案(积分部分)Word版
经济数学基础综合练习及参考答案第二部分 积分学一、单项选择题1.在切线斜率为2x 的积分曲线族中,通过点(1, 4)的曲线为( ).A .y = x 2 + 3B .y = x 2+ 4 C .y = 2x + 2 D .y = 4x 2. 若⎰+1d )2(x k x = 2,则k =( ).A .1B .-1C .0D .21 3.下列等式不成立的是().A .)d(e d e xxx = B .)d(cos d sin x x x =- C .x x x d d 21= D .)1d(d ln x x x =4.若c x x f x +-=-⎰2ed )(,则)(x f '=( ).A. 2e x-- B. 2e 21x- C. 2e 41x- D. 2e 41x--5. =-⎰)d(e x x ( ).A .c x x+-e B .c x x x ++--e eC .c x x+--eD .c x x x +---e e6. 若c x x f xx+-=⎰11e d e)(,则f (x ) =( ).A .x 1 B .-x 1 C .21x D .-21x7. 若)(x F 是)(x f 的一个原函数,则下列等式成立的是( ).A .)(d )(x F x x f xa=⎰B .)()(d )(a F x F x x f xa-=⎰C .)()(d )(a f b f x x F ba-=⎰D .)()(d )(a F b F x x f ba-='⎰8.下列定积分中积分值为0的是( ).A .x xx d 2e e 11⎰--- B .x x x d 2e e 11⎰--+ C .x x x d )cos (3⎰-+ππD .x x x d )sin (2⎰-+ππ9.下列无穷积分中收敛的是( ).A .⎰∞+1d ln x x B .⎰∞+0d e x xC .⎰∞+12d 1x x D .⎰∞+13d 1x x10.设R '(q )=100-4q ,若销售量由10单位减少到5单位,则收入R 的改变量是( ).A .-550B .-350C .350D .以上都不对 11.下列微分方程中,( )是线性微分方程. A .y y yx '=+ln 2B .xxy y y e 2=+'C .y y x y e ='+''D .x y y x y xln e sin ='-''12.微分方程0)()(432=+'''+'xy y y y 的阶是( ).A. 4B. 3C. 2D. 1 二、填空题 1.=⎰-x x d e d 2. 2.函数x x f 2sin )(=的原函数是.3.若c x x x f ++=⎰2)1(d )(,则=)(x f .4.若c x F x x f +=⎰)(d )(,则x f xx)d e(e --⎰= .5.=+⎰e12dx )1ln(d dx x .6.=+⎰-1122d )1(x x x. 7.无穷积分⎰∞++02d )1(1x x 是.(判别其敛散性)8.设边际收入函数为R '(q ) = 2 + 3q ,且R (0) = 0,则平均收入函数为.9. 0e)(23='+''-y y x是 阶微分方程.10.微分方程2x y ='的通解是.三、计算题⒈⎰x x x d 1sin22.⎰x x xd 23.⎰x x x d sin 4.⎰+x x x d 1)ln ( 5.x x x d )e 1(e 3ln 02⎰+ 6.x xx d ln e 1⎰7.2e 1x ⎰8.x x x d 2cos 2π0⎰9.x x d )1ln(1e 0⎰-+10.求微分方程12+=+'x x y y 满足初始条件47)1(=y 的特解. 11.求微分方程0e 32=+'+y y xy 满足初始条件3)1(=-y 的特解.12.求微分方程x xyy ln =-'满足 11==x y 的特解.13.求微分方程y y x y ln tan ='的通解.14.求微分方程xxy y x ln =-'的通解.15.求微分方程y x y -='2的通解.16.求微分方程x x y y x sin =+'的通解.四、应用题1.投产某产品的固定成本为36(万元),且边际成本为)(x C '=2x + 40(万元/百台). 试求产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低. 2.已知某产品的边际成本C '(x )=2(元/件),固定成本为0,边际收益R '(x )=12-0.02x ,问产量为多少时利润最大?在最大利润产量的基础上再生产50件,利润将会发生什么变化?3.生产某产品的边际成本为C '(x )=8x (万元/百台),边际收入为R '(x )=100-2x (万元/百台),其中x 为产量,问产量为多少时,利润最大?从利润最大时的产量再生产2百台,利润有什么变化?4.已知某产品的边际成本为34)(-='x x C (万元/百台),x 为产量(百台),固定成本为18(万元),求最低平均成本. 5.设生产某产品的总成本函数为 x x C +=3)((万元),其中x 为产量,单位:百吨.销售x 百吨时的边际收入为x x R 215)(-='(万元/百吨),求:(1) 利润最大时的产量;(2) 在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化?试题答案一、单项选择题1. A 2.A 3. D 4. D 5. B 6. C 7. B 8. A 9. C 10. B 11. D 12. C 二、填空题1. x x d e2- 2. -21cos2x + c (c 是任意常数) 3. )1(2+x 4. c F x+--)e ( 5. 0 6. 0 7. 收敛的 8. 2 + q 239. 2 10. c x y +=33 三、计算题⒈ 解 c x x x x xx +=-=⎰⎰1cos )1(d 1sin d 1sin22.解 c x xx x x x +==⎰⎰22ln 2)(d 22d 23.解 c x x x x x x x x x x ++-=+-=⎰⎰sin cos d cos cos d sin4.解 ⎰+x x x d 1)ln (=⎰+-+x x x x x d 1)(21ln 1)(2122=c x x x x x +--+4)ln 2(21225.解x x x d )e 1(e 3ln 02⎰+=⎰++3ln 02)e d(1)e 1(x x = 3ln 03)e 1(31x +=356 6.解)(ln d 2ln 2)2(d ln d ln e 1e1e 1e 1x x x x x x x xx ⎰⎰⎰-==e1e 14e 2d 2e 2x x x -=-=⎰e 24d 2e 2e 1-=-=⎰x x7.解x xx d ln 112e 1⎰+=)ln d(1ln 112e 1x x++⎰=2e 1ln 12x+=)13(2-8.解 x x x d 2cos 20⎰π=202sin 21πx x -x x d 2sin 2120⎰π=22cos 41πx =21- 9.解法一 x x x x x x x d 1)1ln(d )1ln(1e 01e 01e 0⎰⎰---+-+=+ =x x d )111(1e 1e 0⎰-+---=1e 0)]1ln([1e -+---x x =e ln =1解法二 令1+=x u ,则u uu u u u u x x d 1ln d ln d )1ln(e 1e 1e 11e 0⎰⎰⎰-==+-=11e e e e1=+-=-u10.解 因为 x x P 1)(=,1)(2+=x x Q 用公式 ]d 1)e([ed 12d 1c x x y xx xx +⎰+⎰=⎰-]d 1)e ([e ln 2ln c x x x x ++=⎰-x cx x c x x x ++=++=24]24[1324 由 4712141)1(3=++=c y , 得 1=c 所以,特解为 xx x y 1243++=11.解 将方程分离变量:x y y x y d e d e 32-=- 等式两端积分得 c x y +-=--3e 31e 212 将初始条件3)1(=-y 代入,得 c +-=---33e 31e 21,c =3e 61--所以,特解为:33e e 2e32--+=x y12.解:方程两端乘以x1,得xxx y x y ln 2=-' 即x xxy ln )(=' 两边求积分,得 c xx x x x x x y +===⎰⎰2ln )(ln d ln d ln 2 通解为: cx xx y +=2ln 2 由11==x y ,得1=c所以,满足初始条件的特解为:x xx y +=2ln 2 13.解 将原方程分离变量x x yy yd cot ln d = 两端积分得 lnln y = ln C sin x 通解为 y = eC sin x14. 解 将原方程化为:xy x y ln 11=-',它是一阶线性微分方程, x x P 1)(-=,xx Q ln 1)(=用公式 ()d ()d e[()e d ]P x x P x x y Q x x c -⎰⎰=+⎰]d e ln 1[e d 1d 1c x xx x x x +⎰⎰=⎰- ]d e ln 1[e ln ln c x x x x+=⎰- ]d ln 1[c x xx x +=⎰)ln (ln c x x +=15.解 在微分方程y x y -='2中,x x Q x P 2)(,1)(==由通解公式)d e 2(e )d e 2(e d d c x x c x x y xx x x +=+⎰⎰=⎰⎰--)e 2e 2(e )d e 2e 2(e c x c x x x x x x x x +-=+-=--⎰)e 22(x c x -+-=16.解:因为xx P 1)(=,x x Q sin )(=,由通解公式得)d e sin(e d 1d 1c x x y xx x x +⎰⎰=⎰-=)d e sin (eln ln c x x x x+⎰- =)d sin (1c x x x x+⎰=)sin cos (1c x x x x++-四、应用题1.解 当产量由4百台增至6百台时,总成本的增量为⎰+=∆64d )402(x x C =642)40(x x+= 100(万元)又 xc x x C x C x ⎰+'=d )()(=x x x 36402++ =xx 3640++令 0361)(2=-='xx C , 解得6=x .x = 6是惟一的驻点,而该问题确实存在使平均成本达到最小的值. 所以产量为6百台时可使平均成本达到最小.2.解 因为边际利润)()()(x C x R x L '-'='=12-0.02x –2 = 10-0.02x 令)(x L '= 0,得x = 500x = 500是惟一驻点,而该问题确实存在最大值. 所以,当产量为500件时,利润最大.当产量由500件增加至550件时,利润改变量为5505002550500)01.010(d )02.010(x x x x L -=-=∆⎰ =500 - 525 = - 25 (元)即利润将减少25元.3. 解 L '(x ) =R '(x ) -C '(x ) = (100 – 2x ) – 8x =100 – 10x令L '(x )=0, 得 x = 10(百台)又x = 10是L (x )的唯一驻点,该问题确实存在最大值,故x = 10是L (x )的最大值点,即当产量为10(百台)时,利润最大. 又 x x x x L L d )10100(d )(12101210⎰⎰-='=20)5100(12102-=-=x x即从利润最大时的产量再生产2百台,利润将减少20万元.4.解:因为总成本函数为⎰-=x x x C d )34()(=c x x +-322当x = 0时,C (0) = 18,得 c =18 即 C (x )=18322+-x x 又平均成本函数为 xx x x C x A 1832)()(+-== 令 0182)(2=-='x x A , 解得x = 3 (百台) 该题确实存在使平均成本最低的产量. 所以当x = 3时,平均成本最低. 最底平均成本为9318332)3(=+-⨯=A (万元/百台) 5.解:(1) 因为边际成本为 1)(='x C ,边际利润)()()(x C x R x L '-'=' = 14 – 2x 令0)(='x L ,得x = 7由该题实际意义可知,x = 7为利润函数L (x )的极大值点,也是最大值点. 因此,当产量为7百吨时利润最大.(2) 当产量由7百吨增加至8百吨时,利润改变量为 87287)14(d )214(xx x x L -=-=∆⎰ =112 – 64 – 98 + 49 = - 1 (万元)即利润将减少1万元.经济数学基础综合练习及参考答案第二部分 积分学一、单项选择题1.在切线斜率为2x 的积分曲线族中,通过点(1, 4)的曲线为( ).A .y = x 2 + 3B .y = x 2+ 4 C .y = 2x + 2 D .y = 4x 2. 若⎰+1d )2(x k x = 2,则k =( ).A .1B .-1C .0D .21 3.下列等式不成立的是().A .)d(e d e xxx = B .)d(cos d sin x x x =- C .x x x d d 21= D .)1d(d ln x x x =4.若c x x f x +-=-⎰2ed )(,则)(x f '=( ).A. 2e x-- B. 2e 21x- C. 2e 41x- D. 2e 41x--5. =-⎰)d(e x x ( ).A .c x x+-e B .c x x x ++--e eC .c x x+--eD .c x x x +---e e6. 若c x x f xx+-=⎰11e d e)(,则f (x ) =( ).A .x 1 B .-x 1 C .21x D .-21x7. 若)(x F 是)(x f 的一个原函数,则下列等式成立的是( ).A .)(d )(x F x x f xa=⎰B .)()(d )(a F x F x x f xa-=⎰C .)()(d )(a f b f x x F ba-=⎰D .)()(d )(a F b F x x f ba-='⎰8.下列定积分中积分值为0的是( ).A .x xx d 2e e 11⎰--- B .x x x d 2e e 11⎰--+ C .x x x d )cos (3⎰-+ππD .x x x d )sin (2⎰-+ππ9.下列无穷积分中收敛的是( ).A .⎰∞+1d ln x x B .⎰∞+0d e x xC .⎰∞+12d 1x x D .⎰∞+13d 1x x10.设R '(q )=100-4q ,若销售量由10单位减少到5单位,则收入R 的改变量是( ).A .-550B .-350C .350D .以上都不对 11.下列微分方程中,( )是线性微分方程. A .y y yx '=+ln 2B .xxy y y e 2=+'C .y y x y e ='+''D .x y y x y xln e sin ='-''12.微分方程0)()(432=+'''+'xy y y y 的阶是( ).A. 4B. 3C. 2D. 1 二、填空题 1.=⎰-x x d e d 2. 2.函数x x f 2sin )(=的原函数是.3.若c x x x f ++=⎰2)1(d )(,则=)(x f .4.若c x F x x f +=⎰)(d )(,则x f xx)d e(e --⎰= .5.=+⎰e12dx )1ln(d dx x .6.=+⎰-1122d )1(x x x. 7.无穷积分⎰∞++02d )1(1x x 是.(判别其敛散性)8.设边际收入函数为R '(q ) = 2 + 3q ,且R (0) = 0,则平均收入函数为.9. 0e)(23='+''-y y x是 阶微分方程.10.微分方程2x y ='的通解是.三、计算题⒈⎰x x x d 1sin22.⎰x x xd 23.⎰x x x d sin 4.⎰+x x x d 1)ln ( 5.x x x d )e 1(e 3ln 02⎰+ 6.x xx d ln e 1⎰7.2e 1x ⎰8.x x x d 2cos 2π0⎰9.x x d )1ln(1e 0⎰-+10.求微分方程12+=+'x x y y 满足初始条件47)1(=y 的特解. 11.求微分方程0e 32=+'+y y xy 满足初始条件3)1(=-y 的特解.12.求微分方程x xyy ln =-'满足 11==x y 的特解.13.求微分方程y y x y ln tan ='的通解.14.求微分方程xxy y x ln =-'的通解.15.求微分方程y x y -='2的通解.16.求微分方程x x y y x sin =+'的通解.四、应用题1.投产某产品的固定成本为36(万元),且边际成本为)(x C '=2x + 40(万元/百台). 试求产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低. 2.已知某产品的边际成本C '(x )=2(元/件),固定成本为0,边际收益R '(x )=12-0.02x ,问产量为多少时利润最大?在最大利润产量的基础上再生产50件,利润将会发生什么变化?3.生产某产品的边际成本为C '(x )=8x (万元/百台),边际收入为R '(x )=100-2x (万元/百台),其中x 为产量,问产量为多少时,利润最大?从利润最大时的产量再生产2百台,利润有什么变化?4.已知某产品的边际成本为34)(-='x x C (万元/百台),x 为产量(百台),固定成本为18(万元),求最低平均成本. 5.设生产某产品的总成本函数为 x x C +=3)((万元),其中x 为产量,单位:百吨.销售x 百吨时的边际收入为x x R 215)(-='(万元/百吨),求:(1) 利润最大时的产量;(2) 在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化?试题答案二、单项选择题1. A 2.A 3. D 4. D 5. B 6. C 7. B 8. A 9. C 10. B 11. D 12. C 二、填空题1. x x d e2- 2. -21cos2x + c (c 是任意常数) 3. )1(2+x 4. c F x+--)e ( 5. 0 6. 0 7. 收敛的 8. 2 + q 239. 2 10. c x y +=33 三、计算题⒈ 解 c x x x x xx +=-=⎰⎰1cos )1(d 1sin d 1sin22.解 c x xx x x x +==⎰⎰22ln 2)(d 22d 23.解 c x x x x x x x x x x ++-=+-=⎰⎰sin cos d cos cos d sin4.解 ⎰+x x x d 1)ln (=⎰+-+x x x x x d 1)(21ln 1)(2122=c x x x x x +--+4)ln 2(21225.解x x x d )e 1(e 3ln 02⎰+=⎰++3ln 02)e d(1)e 1(x x = 3ln 03)e 1(31x +=356 6.解)(ln d 2ln 2)2(d ln d ln e 1e1e 1e 1x x x x x x x xx ⎰⎰⎰-==e1e 14e 2d 2e 2x x x -=-=⎰e 24d 2e 2e 1-=-=⎰x x7.解x xx d ln 112e 1⎰+=)ln d(1ln 112e 1x x++⎰=2e 1ln 12x+=)13(2-8.解 x x x d 2cos 20⎰π=202sin 21πx x -x x d 2sin 2120⎰π=22cos 41πx =21- 9.解法一 x x x x x x x d 1)1ln(d )1ln(1e 01e 01e 0⎰⎰---+-+=+ =x x d )111(1e 1e 0⎰-+---=1e 0)]1ln([1e -+---x x =e ln =1解法二 令1+=x u ,则u uu u u u u x x d 1ln d ln d )1ln(e 1e 1e 11e 0⎰⎰⎰-==+-=11e e e e1=+-=-u10.解 因为 x x P 1)(=,1)(2+=x x Q 用公式 ]d 1)e([ed 12d 1c x x y xx xx +⎰+⎰=⎰-]d 1)e ([e ln 2ln c x x x x ++=⎰-x cx x c x x x ++=++=24]24[1324 由 4712141)1(3=++=c y , 得 1=c 所以,特解为 xx x y 1243++=11.解 将方程分离变量:x y y x y d e d e 32-=- 等式两端积分得 c x y +-=--3e 31e 212 将初始条件3)1(=-y 代入,得 c +-=---33e 31e 21,c =3e 61--所以,特解为:33e e 2e32--+=x y12.解:方程两端乘以x1,得xx x y x y ln 2=-' 即 xx xy ln )(=' 两边求积分,得 c x x x x x x x y +===⎰⎰2ln )(ln d ln d ln 2 通解为: cx x x y +=2ln 2 由11==x y ,得1=c 所以,满足初始条件的特解为:x x x y +=2ln 2 13.解 将原方程分离变量 x x yy y d cot ln d = 两端积分得 lnln y = ln C sin x通解为 y = e C sin x14. 解 将原方程化为:xy x y ln 11=-',它是一阶线性微分方程, x x P 1)(-=,xx Q ln 1)(= 用公式 ()d ()d e [()e d ]P x x P x x y Q x x c -⎰⎰=+⎰]d e ln 1[e d 1d 1c x xx x x x +⎰⎰=⎰- ]d e ln 1[e ln ln c x x x x +=⎰- ]d ln 1[c x xx x +=⎰ )ln (ln c x x +=15.解 在微分方程y x y -='2中,x x Q x P 2)(,1)(==由通解公式)d e 2(e )d e 2(e d d c x x c x x y x x x x +=+⎰⎰=⎰⎰-- )e 2e 2(e )d e 2e 2(e c x c x x x x x x x x +-=+-=--⎰)e 22(x c x -+-=16.解:因为xx P 1)(=,x x Q sin )(=,由通解公式得 )d e sin (e d 1d 1c x x y x x x x +⎰⎰=⎰-=)d e sin (e ln ln c x x x x+⎰- =)d sin (1c x x x x+⎰ =)sin cos (1c x x x x ++-四、应用题1.解 当产量由4百台增至6百台时,总成本的增量为⎰+=∆64d )402(x x C =642)40(x x += 100(万元) 又 xc x x C x C x⎰+'=00d )()(=x x x 36402++ =x x 3640++ 令 0361)(2=-='x x C , 解得6=x .x = 6是惟一的驻点,而该问题确实存在使平均成本达到最小的值. 所以产量为6百台时可使平均成本达到最小.2.解 因为边际利润)()()(x C x R x L '-'='=12-0.02x –2 = 10-0.02x令)(x L '= 0,得x = 500x = 500是惟一驻点,而该问题确实存在最大值. 所以,当产量为500件时,利润最大. 当产量由500件增加至550件时,利润改变量为 5505002550500)01.010(d )02.010(x x x x L -=-=∆⎰ =500 - 525 = - 25 (元)即利润将减少25元.3. 解 L '(x ) =R '(x ) -C '(x ) = (100 – 2x ) – 8x =100 – 10x令L '(x )=0, 得 x = 10(百台) 又x = 10是L (x )的唯一驻点,该问题确实存在最大值,故x = 10是L (x )的最大值点,即当产量为10(百台)时,利润最大.又 x x x x L L d )10100(d )(12101210⎰⎰-='=20)5100(12102-=-=x x即从利润最大时的产量再生产2百台,利润将减少20万元.4.解:因为总成本函数为⎰-=x x x C d )34()(=c x x +-322当x = 0时,C (0) = 18,得 c =18即 C (x )=18322+-x x又平均成本函数为 x x x x C x A 1832)()(+-==令 0182)(2=-='x x A , 解得x = 3 (百台) 该题确实存在使平均成本最低的产量. 所以当x = 3时,平均成本最低. 最底平均成本为 9318332)3(=+-⨯=A (万元/百台) 5.解:(1) 因为边际成本为 1)(='x C ,边际利润)()()(x C x R x L '-'=' = 14 – 2x 令0)(='x L ,得x = 7 由该题实际意义可知,x = 7为利润函数L (x )的极大值点,也是最大值点. 因此,当产量为7百吨时利润最大.(2) 当产量由7百吨增加至8百吨时,利润改变量为 87287)14(d )214(x x x x L -=-=∆⎰ =112 – 64 – 98 + 49 = - 1 (万元) 即利润将减少1万元.。
经济数学基础课后答案(概率统计第三分册)
习 题 一1.写出下列事件的样本空间: (1) 把一枚硬币抛掷一次; (2) 把一枚硬币连续抛掷两次;(3) 掷一枚硬币,直到首次出现正面为止;(4) 一个库房在某一个时刻的库存量(假定最大容量为M ).解 (1) Ω={正面,反面} △ {正,反}(2) Ω={(正、正),(正、反),(反、正),(反、反)} (3) Ω={(正),(反,正),(反,反,正),…} (4) Ω={x ;0 ≤x ≤ m } 2.掷一颗骰子的试验,观察其出现的点数,事件A =“偶数点”,B =“奇数点”,C =“点数小于5”,D =“小于5的偶数点”,讨论上述各事件间的关系.解 {}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A ΩA 与B 为对立事件,即B =A ;B 与D 互不相容;A ⊃D ,C ⊃D.3. 事件A i 表示某个生产单位第i 车间完成生产任务,i =1,2,3,B 表示至少有两个车间完成生产任务,C 表示最多只有两个车间完成生产任务,说明事件B 及B -C 的含义,并且用A i (i =1,2,3)表示出来.解 B 表示最多有一个车间完成生产任务,即至少有两个车间没有完成生产任务. 313221A A A A A A B ++=B -C 表示三个车间都完成生产任务321321321321+++A A A A A A A A A A A A B =321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++=321A A A C B =-4. 如图1-1,事件A 、B 、C 都相容,即ABC ≠Φ,把事件A +B ,A +B +C ,AC +B ,C -AB 用一些互不相容事件的和表示出来.解 B A A B A +=+C B A B A A C B A ++=++C B A B B AC +=+BC A C B A C B A AB C ++=-5.两个事件互不相容与两个事件对立的区别何在,举例说明.解 两个对立的事件一定互不相容,它们不可能同时发生,也不可能同时不发生;两个互不相容的事件不一定是对立事件,它们只是不可能同时发生,但不一定同时不发生. 在本书第6页例2中A 与D 是对立事件,C 与D 是互不相容事件. 6.三个事件A 、B 、C 的积是不可能事件,即ABC =Φ,问这三个事件是否一定互不相容?画图说明.解 不一定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件ABC =Φ,但是A 与B 相容.7. 事件A 与B 相容,记C =AB ,D =A+B ,F =A -B. 说明事件A 、C 、D 、F 的关系.解 由于AB ⊂A ⊂A+B ,A -B ⊂A ⊂A+B ,AB 与A -B 互不相容,且A =AB +(A -B). 因此有A =C +F ,C 与F 互不相容, D ⊃A ⊃F ,A ⊃C.8. 袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率. 解 记事件A 表示“取到的两个球颜色不同”. 则有利于事件A 的样本点数目#A =1315C C .而组成试验的样本点总数为#Ω=235+C ,由古典概率公式有P (A )==Ω##A 2815281315=C C C (其中#A ,#Ω分别表示有利于A 的样本点数目与样本空间的样本点总数,余下同)9. 计算上题中取到的两个球中有黑球的概率.解 设事件B 表示“取到的两个球中有黑球”则有利于事件B 的样本点数为#25C B =.1491)(1)(2825=-==C C B P B P -10. 抛掷一枚硬币,连续3次,求既有正面又有反面出现的概率.解 设事件A 表示“三次中既有正面又有反面出现”, 则A 表示三次均为正面或三次均为反面出现. 而抛掷三次硬币共有8种不同的等可能结果,即#Ω=8,因此图1-1图1-2143821#1)(1)(=-=Ω-=-=A A P A P # 11. 10把钥匙中有3把能打开一个门锁,今任取两把,求能打开门锁的概率.解 设事件A 表示“门锁能被打开”. 则事件A 发生就是取的两把钥匙都不能打开门锁.15811)(1)(21027==Ω-=-=CC A A P A P -## 从9题-11题解中可以看到,有些时候计算所求事件的对立事件概率比较方便. 12. 一副扑克牌有52张,不放回抽样,每次一张,连续抽取4张,计算下列事件的概率:(1)四张花色各异; (2)四张中只有两种花色.解 设事件A 表示“四张花色各异”;B 表示“四张中只有两种花色”.,113113113113452##C C C C A , C Ω== ) +#2132131133131224C C C C C C B (= 105013##)(4524.C ΩA A P ===30006048+74366##)(452 )(.C ΩB B P ===13. 口袋内装有2个伍分、3个贰分,5个壹分的硬币共10枚,从中任取5枚,求总值超过壹角的概率.解 设事件A 表示“取出的5枚硬币总值超过壹角”.)+(+C =##25231533123822510C C C C C C A C Ω , = 50252126)(.ΩA A P ==##=14. 袋中有红、黄、黑色球各一个,每次任取一球,有放回地抽取三次,求下列事件的概率:A =“三次都是红球” △ “全红”,B =“全白”,C =“全黑”,D =“无红”,E =“无白”,F =“无黑”,G =“三次颜色全相同”,H =“颜色全不相同”,I =“颜色不全相同”.解 #Ω=33=27,#A =#B =#C =1, #D =#E =#F =23=8, #G =#A +#B +#C =3,#H =3!=6,#I =#Ω-#G =24271)()()(===C P B P A P 278)()()(===F P E P D P 982724)(,92276)(,91273)(======I P H P G P 15. 一间宿舍内住有6位同学,求他们中有4个人的生日在同一个月份的概率. 解 设事件A 表示“有4个人的生日在同一个月份”.#Ω=126,#A =21124611C C0073.01221780##)(6==ΩA A P =16. 事件A 与B 互不相容,计算P )(B A +. 解 由于A 与B 互不相容,有AB =Φ,P (AB )=0.1)(1)()(=-==+AB P AB P B A P17. 设事件B ⊃A ,求证P (B )≥P (A ). 证 ∵B ⊃A∴P (B -A )=P (B ) - P (A ) ∵P (B -A )≥0 ∴P (B )≥P (A )18. 已知P (A )=a ,P (B )=b ,ab ≠0 (b >0.3a ),P (A -B )=0.7a ,求P (B +A ),P (B -A ),P (B +A ).解 由于A -B 与AB 互不相容,且A =(A -B )+AB ,因此有P (AB )=P (A )-P (A -B )=0.3aP (A +B )=P (A )+P (B )-P (AB )=0.7a +b2P (B -A )=P (B )-P (AB )=b -0.3aP(B +A )=1-P (AB )=1-0.3a19. 50个产品中有46个合格品与4个废品,从中一次抽取三个,计算取到废品的概率. 解 设事件A 表示“取到废品”,则A 表示没有取到废品,有利于事件A 的样本点数目为#A =346C ,因此P (A )=1-P (A )=1-3503461C C ΩA-=## =0.225520. 已知事件B ⊃A ,P (A )=ln b ≠ 0,P (B )=ln a ,求a 的取值范围.解 因B ⊃A ,故P (B )≥P (A ),即ln a ≥ln b ,⇒a ≥b ,又因P (A )>0,P (B )≤1,可得b >1,a ≤e ,综上分析a 的取值范围是:1<b ≤a ≤e21. 设事件A 与B 的概率都大于0,比较概率P (A ),P (AB ),P (A +B ),P (A )+P (B )的大小(用不等号把它们连接起来).解 由于对任何事件A ,B ,均有AB ⊂A ⊂A +B且P (A +B )=P (A )+P (B )-P (AB ),P (AB )≥0,因此有P (AB )≤P (A )≤P (A +B )≤P (A )+P (B )22. 一个教室中有100名学生,求其中至少有一人的生日是在元旦的概率(设一年以365天计算).解 设事件A 表示“100名学生的生日都不在元旦”,则有利于A 的样本点数目为#A =,而样本空间中样本点总数为#Ω=,所求概率为1001003653641##1)(1)(-=Ω-=-=A A P A P= 0.239923. 从5副不同手套中任取4只手套,求其中至少有两只手套配成一副的概率.解 设事件A 表示“取出的四只手套至少有两只配成一副”,则A 表示“四只手套中任何两只均不能配成一副”.21080##)(4101212121245===C C C C C C ΩA A P 62.0)(1)(=-=A P A P24. 某单位有92%的职工订阅报纸,93%的人订阅杂志,在不订阅报纸的人中仍有85%的职工订阅杂志,从单位中任找一名职工求下列事件的概率: (1)该职工至少订阅一种报纸或期刊; (2)该职工不订阅杂志,但是订阅报纸.解 设事件A 表示“任找的一名职工订阅报纸”,B 表示“订阅杂志”,依题意P (A )=0.92,P (B )=0.93,P (B |A )=0.85P (A +B )=P (A )+P (A B )=P (A )+P (A )P (B |A )=0.92+0.08×0.85=0.988P (A B )=P (A +B )-P (B )=0.988-0.93=0.05825. 分析学生们的数学与外语两科考试成绩,抽查一名学生,记事件A 表示数学成绩优秀,B表示外语成绩优秀,若P (A )=P (B )=0.4,P (AB )=0.28,求P(A |B ),P (B |A ),P (A +B ).解 P (A |B )=7.04.028.0)()(==B P AB PP (B |A)=7.0)()(=A P AB PP (A +B )=P (A )+P (B )-P (AB )=0.5226. 设A 、B 是两个随机事件. 0<P (A )<1,0<P (B )<1,P (A |B )+P (A |B )=1. 求证P (AB )=P (A )P (B ).证 ∵P ( A |B )+P (A |B )=1且P ( A |B )+P (A |B )=1∴P ( A |B )=P (A |B ))(1)()()()()()(B P AB P A P B P B A P B P AB P --==P (AB )[1-P (B )]=P ( B )[P ( A )-P ( AB )]整理可得P (AB )=P ( A ) P ( B )27. 设A 与B 独立,P ( A )=0.4,P ( A +B )=0.7,求概率P (B ). 解 P ( A +B )=P (A )+P (A B )=P ( A )+P (A ) P ( B )⇒ 0.7=0.4+0.6P ( B )⇒ P ( B )=0.528. 设事件A 与B 的概率都大于0,如果A 与B 独立,问它们是否互不相容,为什么?3解 因P ( A ),P ( B )均大于0,又因A 与B 独立,因此P ( AB )=P ( A ) P ( B )>0,故A 与B 不可能互不相容.29. 某种电子元件的寿命在1000小时以上的概率为0.8,求3个这种元件使用1000小时后,最多只坏了一个的概率. 解 设事件Ai表示“使用1000小时后第i 个元件没有坏”,i =1,2,3,显然A 1,A 2,A 3相互独立,事件A 表示“三个元件中最多只坏了一个”,则A=A 1A 2A 3+1A A 2A 3+A 12A A 3+A 1A 23A ,上面等式右边是四个两两互不相容事件的和,且P (A 1)=P (A 2)=P (A 3)=0.8P ( A )=[][])()(3)(12131A P A P A P +=0.83+3×0.82×0.2 =0.89630. 加工某种零件,需经过三道工序,假定第一、二、三道工序的废品率分别为0.3,0.2,0.2,并且任何一道工序是否出现废品与其他各道工序无关,求零件的合格率. 解 设事件A 表示“任取一个零件为合格品”,依题意A 表示三道工序都合格.P (A )=(1-0.3)(1-0.2)(1-0.2)=0.44831. 某单位电话总机的占线率为0.4,其中某车间分机的占线率为0.3,假定二者独立,现在从外部打电话给该车间,求一次能打通的概率;第二次才能打通的概率以及第m 次才能打通的概率(m 为任何正整数).解 设事件A i 表示“第i 次能打通”,i =1,2,…,m ,则P (A 1)=(1-0.4)(1-0.3)=0.42 P (A 2)=0.58 × 0.42=0.2436 P (A m )=0.58m -1 × 0.4232. 一间宿舍中有4位同学的眼镜都放在书架上,去上课时,每人任取一副眼镜,求每个人都没有拿到自己眼镜的概率.解 设A i 表示“第i 人拿到自己眼镜”,i =1,2,3,4. P ( A i )=41,设事件B 表示“每个人都没有拿到自己的眼镜”. 显然B 则表示“至少有一人拿到自己的眼镜”. 且B =A 1+A 2+A 3+A 4.P (B )=P (A 1+A 2+A 3+A 4)=∑∑∑-+-=≤≤≤≤4141414321)()()()(i j i k j i k j i i i i A A A A P A A A P A A P A p <<<P (A i A j )=P (A i )P (A j |A i )=)41(1213141≤≤=⨯j i < P (A i A j A k )=P (A i )P (A j |A i )P (A k |A i A j )=41×31×21=241(1≤i <j <k ≤4) P (A 1A 2A 3A 4) =P (A 1)P (A 2|A 1)P (A 3|A 1A 2)×P (A 4|A 1A 2A 3)=2411213141=⨯⨯⨯ 85241241121414)(3424=-⨯+⨯-⨯=C C B P83)(1)(=-=B P B P33. 在1,2,…,3000这3000个数中任取一个数,设A m =“该数可以被m 整除”,m =2,3,求概率P (A 2A 3),P (A 2+A 3),P (A 2-A 3). 解 依题意P (A 2)=21,P (A 3)=31P (A 2A 3)=P (A 6)=61P (A 2+A 3)=P (A 2)+P (A 3)-P (A 2A 3)=32613121=-+ P (A 2-A 3)=P (A 2)-P (A 2A 3)=316121=-34. 甲、乙、丙三人进行投篮练习,每人一次,如果他们的命中率分别为0.8,0.7,0.6,计算下列事件的概率: (1)只有一人投中; (2)最多有一人投中; (3)最少有一人投中.解 设事件A 、B 、C 分别表示“甲投中”、“乙投中”、“丙投中”,显然A 、B 、C 相互独立.设A i 表示“三人中有i 人投中”,i =0,1,2,3,依题意,)()()() ()(0C P B P A P C B A P A P ===0.2×0.3×0.4×=0.024P ( A 3 )=P ( ABC )=P ( A ) P ( B ) P ( C )4=0.8×0.7×0.6=0.336P (A 2)=P (AB C )+P (A B C )+P (A BC )=0.8×0.7×0.4+0.8×0.3×0.6+0.2×0.7×0.6=0.452 (1) P (A 1)=1-P (A 0)-P (A 2)-P (A 3)=1-0.024-0.452-0.336=0.188(2) P (A 0+A 1)=P (A 0)+P (A 1)=0.024+0.188=0.212 (3) P (A +B +C )=P (0A )=1-P (A 0)=0.97635. 甲、乙二人轮流投篮,甲先开始,假定他们的命中率分别为0.4及0.5,问谁先投中的概率较大,为什么?解 设事件A 2n -1B 2n 分别表示“甲在第2n -1次投中”与“乙在第2n 次投中”,显然A 1,B 2,A 3,B 4,…相互独立.设事件A 表示“甲先投中”.⋯+++=)()()()(543213211A B A B A P A B A P A P A P⋯⨯⨯⨯⨯=+++0.40.5)(0.60.40.50.60.42 743.014.0=-=计算得知P (A )>0.5,P (A )<0.5,因此甲先投中的概率较大.36. 某高校新生中,北京考生占30%,京外其他各地考生占70%,已知在北京学生中,以英语为第一外语的占80%,而京外学生以英语为第一外语的占95%,今从全校新生中任选一名学生,求该生以英语为第一外语的概率.解 设事件A 表示“任选一名学生为北京考生”,B 表示“任选一名学生,以英语为第一外语”. 依题意P (A )=0.3,P (A )=0.7,P (B |A)=0.8,P (B |A )=0.95. 由全概率公式有P (B )=P (A )P (B |A )+P (A )P (B |A )=0.3×0.8+0.7×0.95=0.90537. A 地为甲种疾病多发区,该地共有南、北、中三个行政小区,其人口比为9 : 7 : 4,据统计资料,甲种疾病在该地三个小区内的发病率依次为4‰,2‰,5‰,求A 地的甲种疾病的发病率.解 设事件A 1,A 2,A 3分别表示从A 地任选一名居民其为南、北、中行政小区,易见A 1,A 2,A 3两两互不相容,其和为Ω.设事件B 表示“任选一名居民其患有甲种疾病”,依题意:P (A 1)=0.45,P (A 2)=0.35,P (A 3)=0.2,P (B |A 1)=0.004,P (B |A 2)=0.002,P (B |A 3)=0.005=∑=31)|()(i i i A B P A P= 0.45 × 0.004 + 0.35 × 0.002 + 0.2 × 0.005=0.003538. 一个机床有三分之一的时间加工零件A ,其余时间加工零件B ,加工零件A 时,停机的概率为0.3,加工零件B 时停机的概率为0.4,求这个机床停机的概率.解 设事件A 表示“机床加工零件A ”,则A 表示“机床加工零件B ”,设事件B 表示“机床停工”.)|()()|()()(A B P A P A B P A P B P +=37.0324.0313.0=⨯+⨯= 39. 有编号为Ⅰ、Ⅱ、Ⅲ的3个口袋,其中Ⅰ号袋内装有两个1号球,1个2号球与1个3号球,Ⅱ号袋内装有两个1号球和1个3号球,Ⅲ号袋内装有3个1号球与两个2号球,现在先从Ⅰ号袋内随机地抽取一个球,放入与球上号数相同的口袋中,第二次从该口袋中任取一个球,计算第二次取到几号球的概率最大,为什么?解 设事件A i 表示“第一次取到i 号球”,B i 表示第二次取到i 号球,i =1,2,3.依题意,A 1,A 2,A 3构成一个完全事件组.41)()(,21)(321===A P A P A P41)|()|(,21)|(131211===A B P A B P A B P41)|()|(,21)|(232221===A B P A B P A B P61)|(,31)|(,21)|(333231===A B P A B P A B P应用全概率公式∑==31)|()()(i i j i j A B P A P B P 可以依次计算出4811)(,4813)(,21)(321===B P B P B P . 因此第二次取到1号球的概率最大. 40. 接37题,用一种检验方法,其效果是:对甲种疾病的漏查率为5%(即一个甲种疾病患者,经此检验法未查出的概率为5%);对无甲种疾病的人用此检验法误诊为甲种疾病患者的概率为1%,在一次健康普查中,某人经此检验法查为患有甲种疾病,计算该人确实患有此病的概率.解 设事件A 表示“受检人患有甲种疾病”,B 表示“受检人被查有甲种疾病”,由37题计算可5知P (A )=0.0035,应用贝叶斯公式)|()()|()()|()()|(A B P A P A B P A P A B P A P B A P +=01.09965.095.00035.095.00035.0⨯⨯⨯=+25.0= 41. 甲、乙、丙三个机床加工一批同一种零件,其各机床加工的零件数量之比为5 : 3 : 2,各机床所加工的零件合格率,依次为94%,90%,95%,现在从加工好的整批零件中检查出一个废品,判断它不是甲机床加工的概率.解 设事件A 1,A 2,A 3分别表示“受检零件为甲机床加工”,“乙机床加工”,“丙机床加工”,B 表示“废品”,应用贝叶斯公式有∑==31111)|()()|()()|(i i i A B P A P A B P A P B A P7305020+1030+06.05.006.05.0=⨯⨯⨯⨯=....74)|(1)|(11=-=B A P B A P42. 某人外出可以乘坐飞机、火车、轮船、汽车4种交通工具,其概率分别为5%,15%,30%,50%,乘坐这几种交通工具能如期到达的概率依次为100%,70%,60%与90%,已知该旅行者误期到达,求他是乘坐火车的概率.解 设事件A 1,A 2,A 3,A 4分别表示外出人“乘坐飞机”,“乘坐火车”,“乘坐轮船”,“乘坐汽车”,B 表示“外出人如期到达”.∑==41222)|()()|()()|(i i i A B P A P A B P A P B A P1.05.04.03.03.015.0005.03.015.0⨯+⨯+⨯+⨯⨯==0.20943. 接39题,若第二次取到的是1号球,计算它恰好取自Ⅰ号袋的概率.解 39题计算知P (B 1)=21,应用贝叶斯公式21212121)()|()()|(111111=⨯==B P A B P A P B A P44. 一箱产品100件,其次品个数从0到2是等可能的,开箱检验时,从中随机地抽取10件,如果发现有次品,则认为该箱产品不合要求而拒收,若已知该箱产品已通过验收,求其中确实没有次品的概率.解 设事件A i 表示一箱中有i 件次品,i =0, 1, 2. B 表示“抽取的10件中无次品”,先计算P ( B )∑++⨯===20101001098101001099)1(31)|()()(i i i C C C C A B P A P B P37.0)(31)|(0==B P B A P45. 设一条昆虫生产n 个卵的概率为λλ-=e !n p nn n =0, 1, 2, …其中λ>0,又设一个虫卵能孵化为昆虫的概率等于p (0<p <1). 如果卵的孵化是相互独立的,问此虫的下一代有k 条虫的概率是多少?解 设事件A n =“一个虫产下几个卵”,n =0,1,2….B R =“该虫下一代有k 条虫”,k =0,1,….依题意λλ-==e !)(n p A P nn n⎩⎨⎧≤≤=-nk qp C n k A B P kn k k n n k 00)|(>其中q =1-p . 应用全概率公式有∑∑∞=∞===kn n k n n n k n k A B P A P A B P A P B P )|()()|()()(0∑∞=-λ--λ=l n k n k n q p k n k n n !)(!!e !∑∞=-λ--λλk n k n kk n q k p !)()(e !)(6由于q k n kn k n k n k n q k n q λ∞=--∞=-∑∑=-λ=-λe !)()(!)()(0,所以有 ,2,1,0e)(e e !)()(===--k kp k p B P pp q k k λλλλλ7习 题 二1. 已知随机变量X 服从0-1分布,并且P {X ≤0}=0.2,求X 的概率分布.解 X 只取0与1两个值,P {X =0}=P {X ≤0}-P {X <0}=0.2,P {X =1}=1-P {X =0}=0.8. 2. 一箱产品20件,其中有5件优质品,不放回地抽取,每次一件,共抽取两次,求取到的优质品件数X 的概率分布.解 X 可以取0, 1, 2三个值. 由古典概型公式可知{})2,1,0(2202155===-m C C C m X P mm 依次计算得X 的概率分布如下表所示:3. 上题中若采用重复抽取,其他条件不变,设抽取的两件产品中,优质品为X 件,求随机变量X 的概率分布.解 X 的取值仍是0, 1, 2.每次抽取一件取到优质品的概率是1/4,取到非优质品的概率是3/4,且各次抽取结果互不影响,应用伯努利公式有{}1694302=⎪⎭⎫⎝⎛==X P{}1664341112=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C X P {}1614122=⎪⎭⎫⎝⎛==X P4. 第2题中若改为重复抽取,每次一件,直到取得优质品为止,求抽取次数X 的概率分布. 解 X 可以取1, 2, …可列个值. 且事件{X = n }表示抽取n 次,前n -1次均未取到优质品且第n 次取到优质品,其概率为41431⋅⎪⎭⎫⎝⎛-n . 因此X 的概率分布为 {}⋯=⎪⎭⎫⎝⎛==-,2,143411n n X P n5. 盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次一个直到取得新球为止,求下列随机变量的概率分布. (1)抽取次数X ; (2)取到的旧球个数Y .解 (1)X 可以取1, 2, 3, 4各值.{}{}4491191232431=⨯====X P X P {}22091091121233=⨯⨯==X P {}2201991011121234=⨯⨯⨯==X P (2) Y 可以取0, 1, 2, 3各值 .{}{}4310====X P Y P {}{}44921====X P Y P {}{}220932====X P Y P {}{}220143====X P Y P 6. 上题盒中球的组成不变,若一次取出3个,求取到的新球数目X 的概率分布. 解 X 可以取0, 1, 2, 3各值.{}2201031233===C C X P{}2202713122319===C C C X P{}22010823121329===C C C X P{}22084331239===C C X P7. 已知P {X =n }=p n,n =1, 2, 3, …, 求p 的值.8解 根据{}∑=∞=11n n X P =, 有 ∑∞=-==111n n pp P 解上面关于p 的方程,得p =0.5.8. 已知P {X =n }=p n, n =2, 4, 6, …,求p 的值.解 1122642=-=⋯+++p p p p p解方程,得p =2±/29. 已知P {X =n }=cn , n =1, 2, …, 100, 求c 的值. 解 ∑=+⋯++==10015050)10021(1n c c cn =解得 c =1/5050 .10. 如果p n =cn _2,n =1, 2, …, 问它是否能成为一个离散型概率分布,为什么?解 ,1121∑=∑∞=∞=n n n n c p 由于级数∑∞=121n n 收敛, 若记∑∞=121n n =a ,只要取ac 1=, 则有∑∞=1n n p =1,且p n >0. 所以它可以是一个离散型概率分布.11. 随机变X 只取1, 2, 3共三个值,其取各个值的概率均大于零且不相等并又组成等差数列,求X 的概率分布.解 设P {X =2}=a ,P {X =1}=a -d , P {X =3}=a +d . 由概率函数的和为1,可知a =31, 但是a -d 与a +d 均需大于零,因此|d |<31, X 的概率分布为其中d 应满足条件:0<|d |<312. 已知{}λ-==e !m c λm X P m ,m =1, 2, …, 且λ>0, 求常数c . 解{}∑∑∞=-∞====11e!1m m m m c m X p λλ由于∑∑∞=∞==+=10e !1!m mm mm m λλλ, 所以有∑∞=---=-=-=11)e 1(e )1e (e !m m c c m c λλλλλ 解得 λ--=e 11c13. 甲、乙二人轮流投篮,甲先开始,直到有一人投中为止,假定甲、乙二人投篮的命中率分别为0.4及0.5,求: (1)二人投篮总次数Z 的概率分布; (2)甲投篮次数X 的概率分布; (3)乙投篮次数Y 的概率分布.解 设事件A i 表示在第i 次投篮中甲投中,j 表示在第j 次投篮中乙投中,i =1, 3, 5, …, j =2, 4, 6,…,且A 1, B 2, A 3, B 4,…相互独立.(1){}{}1222321112---=-=k k k A B A B A p k Z P = (0.6×0.5)1-k ·0.4= 0.4(0.3)1-k k=1, 2, …{})(2212223211k k k k B A B A B A p k Z P ---===0.5×0.6×(0.6×0.5)1-k =0.3kk=1, 2, …(2) {}{}12223211---==n n n A B A B A p n X P{}n n n n B A B AB A p 212223211---+)5.06.04.0()5.06.0(1⨯+⨯=-n,2,13.07.01=⨯=-n n (3) {}4.0)(01===A P Y P{}{}{}122121121211+--+==n n n n n A B A B A P B A B A P n Y P)4.05.05.0(6.0)5.06.0(1⨯+⨯⨯⨯=-n,2,13.042.01=⨯=-n n 14. 一条公共汽车路线的两个站之间,有四个路口处设有信号灯,假定汽车经过每个路口时遇到绿灯可顺利通过,其概率为0.6,遇到红灯或黄灯则停止前进,其概率为0.4,9求汽车开出站后,在第一次停车之前已通过的路口信号灯数目X 的概率分布(不计其他因素停车).解 X 可以取0, 1, 2, 3, 4 .P { X =0 } =0.4 P { X =1 }=0.6×0.4=0.24 P { X =2 } =0.62×0.4=0.144 P { X =3 } =0.63×0.4=0.0864 P { X =4 } =0.64=0.129615. ⎩⎨⎧∈=.,0],[,sin )(其他,b a x x x f问f (x )是否为一个概率密度函数,为什么?如果(1).π23,)3( ;π,0)2( ;2π,0======b a b a b a π解 在[0, 2π]与[0, π]上,sin x ≥0,但是,1d sin π0≠⎰x x,1d sin 2π0=⎰x x 而在⎥⎦⎤⎢⎣⎡π23,π上,sin x ≤0.因此只有(1)中的a , b 可以使f (x )是一个概率密度函数.16. ⎪⎩⎪⎨⎧≤=-.0,00e)(,22x x cx x f cx ,>其中c >0,问f (x )是否为密度函数,为什么?解 易见对任何x ∈(-∞ , +∞) , f ( x ) ≥ 0,又1d e 202=⎰-∞+x cx cxf (x )是一个密度函数 .17.⎩⎨⎧+=.0.2<<,2)(其他,a x a x x f问f ( x )是否为密度函数,若是,确定a 的值;若不是,说明理由. 解 如果f ( x )是密度函数,则f ( x )≥0,因此a ≥0,但是,当a ≥0时,444|d 2222≥+==⎰⨯++a x x a a a a 由于x x f d )(⎰+∞∞-不是1,因此f ( x )不是密度函数. 18. 设随机变量X ~f ( x )⎪⎩⎪⎨⎧∞++=.,0,,)1(π2)(2其他<<x a x x f 确定常数a 的值,如果P { a < x < b } =0.5,求b 的值.解)arctan 2π(2arctan π2d )1(π22a x x x a a-π==+⎰⎰+∞+∞ 解方程 π2⎪⎭⎫ ⎝⎛a arctan - 2π=1 得 a = 0{}b x x x f b x P b barctan π2|arctan π2d )(000==⎰=<< 解关于b 的方程:π2arctan b =0.5 得 b =1.19. 某种电子元件的寿命X 是随机变量,概率密度为⎪⎩⎪⎨⎧≥=.100,0,100100)(2<x x x x f3个这种元件串联在一个线路中,计算这3个元件使用了150小时后仍能使线路正常工作的概率.解 串联线路正常工作的充分必要条件是3个元件都能正常工作. 而三个元件的寿命是三个相互独立同分布的随机变量,因此若用事件A 表示“线路正常工作”,则3])150([)(>X P A P ={}32d 1001502150=⎰∞+x x X P => 278)(=A P 20. 设随机变量X ~f ( x ),f ( x )=A e-|x|,确定系数A ;计算P { |X | ≤1 }. 解 A x A x A x x 2d e 2d e10||=⎰=⎰=∞+-∞+∞--解得 A =21 {}⎰⎰---==≤10||11d e d e 211||x x X P x x632.0e 11≈-=-21. 设随机变量Y 服从[0, 5]上的均匀分布,求关于x 的二次方程4x 2+4xY +Y +2=0有实数根的概率.解 4x 2+4xY +Y +2=0. 有实根的充分必要条件是△=b 2-4ac =16Y 2-16(Y +2)=16Y 2-16Y -32≥0 设事件P (A )为所求概率.则{}{}{}120321616)(2-≤+≥=≥--=Y P Y P Y Y P A P=0.622. 设随机变量X ~ f ( x ),⎪⎩⎪⎨⎧-=.,01||,1)(2其他,<x xcx f确定常数c ,计算.21||⎭⎬⎫⎩⎨⎧≤X P 解 π|arcsin d 1111211c x c x x c ==-⎰=--c =π131arcsin 2d 1121||0212121 2=π=-π=⎭⎬⎫⎩⎨⎧≤⎰-xx x X P 23. 设随机变量X 的分布函数F ( x )为⎪⎩⎪⎨⎧≥=.1,1,10,0,0)(x x x A x x F <<,< 确定系数A ,计算{}25.00≤≤X P ,求概率密度f ( x ). 解连续型随机变量X 的分布函数是连续函数,F (1)=F (1-0),有A =1.⎪⎩⎪⎨⎧=.,0,10,21)(其他<<x xx f {}5.0)0()25.0(25.00=-=≤≤F F X P24. 求第20题中X 的分布函数F ( x ) . 解 {}t x X P x F t xd e 21)(||-∞-⎰=≤= 当t ≤ 0时,x t xt x F e 21d e 21)(=⎰=∞- 当t >0时,t t t x F t x t t x d e 21d e 21d e 21)(-00||⎰+⎰=⎰=-∞--∞-x x ---=-+=e 211)e 1(212125. 函数(1+x 2)-1可否为连续型随机变量的分布函数,为什么? 解 不能是分布函数,因F (-∞)= 1 ≠ 0. 26. 随机变量X ~f ( x ),并且)1(π)(2x ax f +=,确定a 的值;求分布函数F ( x );计算{}1||<X P . 解 a x a x x a ==⎰+=∞+∞-∞+∞-arctan πd )1(π12因此a =1x xt t t x F ∞-∞-=⎰+=arctan π1d )1(π1)(2x arctan π121+= {}⎰+=⎰+=-12112d )1(π12d )1(π11||x x x x X P <21arctan π210==x27. 随机变量X 的分布函数F ( x ) 为:⎪⎩⎪⎨⎧≤-=.2,02,1)(2x x xA x F ,>确定常数A 的值,计算{}40≤≤X P . 解 由F ( 2+0 )=F ( 2 ),可得4,041==-A A{}{})0()4(4X 040F F P X P -=≤=≤≤<=0.7528. 随机变量X ~f ( x ),f ( x )=,ee xx A-+确定A 的值;求分布函数F ( x ) .解 ⎰+=⎰+=∞∞-∞∞--x A x A xx x x d e 1e d e e 12A A x 2πe arctan ==∞∞-因此 A =π2,x txt t t x F ∞-∞--=+=⎰e arctan π2d )e e (π2)(x e arctan π2=29. 随机变量X ~f ( x ),⎪⎩⎪⎨⎧=.,00,π2)(2其他<<a x xx f确定a 的值并求分布函数F ( x ) .解 220222ππd π21a x x x a a ==⎰= 因此,a = π 当0<x <π时,⎰=x x t t x F 0222πd π2)(⎪⎪⎩⎪⎪⎨⎧≥≤=π1,π0,π0,0)(22x x xx x F << 30. 随机变量X 的分布函数为)0(0,e 22210,0)(22>>a x ax x a x x F ax⎪⎩⎪⎨⎧++-≤=-求X 的概率密度并计算⎭⎬⎫⎩⎨⎧a X P 10<<. 解 当x ≤ 0时,X 的概率密度f ( x ) =0;当x > 0时,f ( x ) =F′ ( x )⎪⎩⎪⎨⎧≤=-.0,e 2,0,0)(23> x x a x x f ax)0()1(1010F a F a x P a x P -=⎭⎬⎫⎩⎨⎧≤=⎭⎬⎫⎩⎨⎧<<<08.0e 2511≈-=- 31. 随机变量X 服从参数为0.7的0-1分布,求X 2,X 2-2X 的概率分布.解 X 2仍服从0-1分布,且P { X 2=0 } =P { X =0 } =0.3,P {X 2=1}=P {X=1}=0.7X 2-2X 的取值为-1与0 , P {X 2-2X =0}其他=P { X =0 } =0.3P { X 2-2X =-1 } =1-P { X =0 } =0.732. 已知P { X =10n} =P { X =10-n}=,,2,1,31=n n Y =l gX ,求Y 的概率分布.解 Y 的取值为±1, ±2 , …P { Y =n } =P { l gX =n } =P { X =10n } =31P { Y =-n } =P { l gX =-n } =P { x =10-n } =31 n =1 ,2 , …33. X 服从[a , b ]上的均匀分布,Y =ax +b (a ≠0),求证Y 也服从均匀分布.证 设Y 的概率密度为f Y ( y ) ,X 的概率密度为f X ( x ),只要a ≠ 0,y = ax + b 都是x 的单调函数. 当a > 0时,Y 的取值为[a 2+b , ab +b ],ax y h b y a y h x y1)(,)(1)(='='-== ],,[,)(1])([)()(2b ab b a y a b a y h f y h y f X Y ++∈-='=当],[2b ab b a y ++∈时,f Y ( y ) =0.类似地,若a <0,则Y 的取值为[ ab +b , a 2+b ]⎪⎩⎪⎨⎧+≤≤+--=.,0,,)(1)(2其他b a y b ab a b a y f Y因此,无论a >0还是a <0,ax +b 均服从均匀分布.34. 随机变量X 服从[0 , 2π]上的均匀分布Y =cos X , 求Y 的概率密度f Y ( y ).解 y =cos x 在[0, 2π]上单调,在(0 , 1)上,h ( y ) = x =arccos yh′ ( y ) = 211y -- , f x ( x ) = π2 , 0 ≤ x ≤ 2π. 因此⎪⎩⎪⎨⎧-=.0,10,1π2)(2其他,<<y yy f Y35. 随机变量X 服从(0 , 1)上的均匀分布,Y =e x, Z =|ln X |,分别求随机变量Y 与Z 的概率密度f Y ( y ) 及f Z ( z ) .解 y = e x在(0 , 1)内单调 , x =ln y 可导,且x′y = y1, f X ( x ) =1 0 < x < 1 , 因此有⎪⎩⎪⎨⎧.,0,e 1,1)(其他 <<y yy f Y在(0 , 1)内ln x < 0|ln x |=-ln x 单调,且x = e z -,x′z =-e z -,因此有⎩⎨⎧∞+=-.,0,0e )(其他<<,z z f z z36. 随机变量X ~f ( x ) ,⎩⎨⎧≤=-0,00,e )(x x xf x > Y =X , Z = X 2 , 分别计算随机变量Y 与Z 的概率密度f y ( y ) 与f Z ( z ) .解 当x > 0时,y =x 单调,其反函数为x = y 2 , x′y = 2y⎪⎩⎪⎨⎧≤=-.0,0,0,e 2)(2y y y y f y Y >当x > 0时z =x 2也是单调函数,其反函数为x =z , x′ z =z21⎪⎩⎪⎨⎧≤=-.0,00e 21)(z ,z zz f zz >37.随机变量X ~f ( x ),当x ≥ 0时,)1(2)(2x x f +=π, Y =arctan X ,Z =X1,分别计算随机变量Y 与Z 的概率密度f Y ( y ) 与fz ( z ) . 解 由于y = arctan x 是单调函数,其反函数x =tan y , x′ y =sec 2y 在⎪⎭⎫ ⎝⎛-2π,0内恒不为零,因此,当0 < y <π2时,π2)tan 1(π2sec )(22=+=y y y f Y 即Y 服从区间(0 , 2π)上的均匀分布.z = x 1在x >0时也是x 的单调函数,其反函数x =z 1, x′ z =21z-.因此当z >0时,)1(π2])1(1[π21)(222z zz z fz +=+-=⎪⎩⎪⎨⎧≤+=0,00,)1(π2)(2z z z z f z > 即Z =X1与X 同分布. 38. 一个质点在半径为R ,圆心在原点的圆的上半圆周上随机游动. 求该质点横坐标X 的密度函数f X ( x ) .解 如图,设质点在圆周位置为M ,弧MA 的长记为L ,显然L 是一个连续型随机变量,L 服从[0,πR ]上的均匀分布.⎪⎩⎪⎨⎧≤≤=.,0π0,π1)(其他,R l Rl f LM 点的横坐标X 也是一个随机变量,它是弧长L 的函数,且X = R cos θ = R cosRL函数x = R cos l / R 是l 的单调函数 ( 0< l < πR ) ,其反函数为l = R arccosRx 22xR R l x--='当-R < x < R 时,L′x ≠ 0,此时有2222π1π1)(x R R x R R x f X -=⋅--=当x ≤ -R 或x ≥ R 时,f X ( x ) =0 .39. 计算第2 , 3 , 5 , 6 , 11各题中的随机变量的期望. 解 根据第2题中所求出的X 概率分布,有2138223815138210=⨯+⨯+⨯=EX 亦可从X 服从超几何分布,直接计算2120521=⨯==N N nEX 在第3题中21161216611690=⨯+⨯+⨯=EX亦可从X 服从二项分布(2,41),直接用期望公式计算:21412=⨯==np EX在第5题中(1) 3.122014220934492431=⨯+⨯+⨯+⨯=EX (2) 3.022013220924491430=⨯+⨯+⨯+⨯=EY在第6题中,25.2220843220108222027122010=⨯+⨯+⨯+⨯=EX在第11题中,⎪⎭⎫⎝⎛+⨯+⨯+⎪⎭⎫ ⎝⎛-⨯=d 313312d 311EX图2-131|<d <|0 d 22+=40. P { X = n } =nc, n =1, 2, 3, 4, 5, 确定C 的值并计算EX .解 160137543251==++++=∑=c c c c c c n c n13760=C 137300551==∑⋅==C n c n EX n 41. 随机变量X 只取-1, 0, 1三个值,且相应概率的比为1 : 2 : 3,计算EX .解 设P { X =-1 } = a ,则P { X =0 } =2a , P { X =1 } =3a ( a >0 ) ,因a + 2a + 3a = 1 , 故a =1/631631620611=⨯+⨯+⨯-=EX 42. 随机变量X 服从参数为0.8的0-1分布,通过计算说明EX 2是否等于( EX )2? 解 EX =P { X =1 } =0.8,( EX )2=0.64EX 2=1×0.8=0.8>( EX )243. 随机变量X ~f ( x ) ,f ( x ) =0.5e - | x |,计算EX n,n 为正整数. 解 当n 为奇数时,)(x f x n是奇函数,且积分x x xn d e 0-∞⎰收敛,因此0d e5.0||=⎰=-∞+∞-x x EX x n n当n 为偶数时,x x x x EX x n x n n d e 5.02d e 5.00||-∞+-∞+∞-⎰=⎰=!)1(d e 0n n x x x n =+Γ=⎰=-∞+44. 随机变量X ~f ( x ) ,⎪⎩⎪⎨⎧-≤≤=.,0,21,2,10,)(其他<<x x x x x f 计算EX n(n 为正整数) . 解 x x x x x x x f x EXn n n nd )2(d d )(21101⎰-+⎰=⎰=+∞+∞-1)2(21)12(122121-+--+++=++n n n n n )2()1(222++-=+n n n45. 随机变量X ~f ( x ) ,⎩⎨⎧≤≤=.,0,10,)(x cx x f bb ,c 均大于0,问EX 可否等于1,为什么?解 11d d )(10=+=⎰=⎰∞+∞-b cx cx x x f b 而2d 101+=⎰=+b cx cx EX b 由于方程组⎪⎪⎩⎪⎪⎨⎧=+=+1211b c b c无解,因此EX 不能等于1. 46. 计算第6,40各题中X 的方差DX . 解 在第6题中,从第39题计算知EX =49, 22012152208492201084220272=⨯+⨯+=EX DX =EX 2-( EX )2≈0.46在第40题中,已计算出EX =137300, c cn n c n EX n n 15515122=∑=⨯∑=== =137900DX =EX 2-(EX )2≈1.7747. 计算第23,29各题中随机变量的期望和方差.其他其他解 在第23题中,由于f ( x ) =x21(0<x <1),因此31d 21=⎰=x xxEX51d 22102=⎰=x xx EXDX = EX 2- ( EX )2 =454 在第29题中,由于f ( x ) =2π2x( 0<x <π ) , 因此π32d π2π022=⎰=x xEX2πd π22π0232=⎰=x x EX DX =EX 2- ( EX )2=18π248. 计算第34题中随机变量Y 的期望和方差. 解 EY =π2d 1π2d )(12=⎰-=⎰∞+∞-y y y y y yf Y EY 2=21d 1π21022=⎰-y y y DY =222π28ππ421-=-49. 已知随机变量X 的分布函数F ( x ) 为:F ( x ) =⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≤-++-.1,11022101,2211,022x x ,x x x x x x ,<-,<,<计算EX 与DX .解 依题意,X 的密度函数f ( x ) 为:⎪⎩⎪⎨⎧≤-≤-+=.010,101,1)(其他,<,<,x x x x x f解 EX =0d )1(d )1(0101=-⎰++⎰--x x x x x xEX 2=61d )1(d )1(102012=-⎰++⎰-x x x x x x DX =61 50. 已知随机变量X 的期望E X =μ,方差DX =σ2,随机变量Y = σμ-X , 求EY 和DY .解 EY =σ1( EX -μ ) =0 DY =2σDX=151. 随机变量Y n ~B ( n , 41) ,分别就n =1, 2, 4, 8, 列出Y n 的概率分布表,并画出概率函数图 .其中a = 1/65536 . 图略 .52. 设每次试验的成功率为0.8,重复试验4次,失败次数记为X ,求X的概率分布 . 解 X 可以取值0, 1, 2, 3, 4 .相应概率为P ( X =m ) =m m mC 2.08.0444⨯⨯-- ( m=0, 1, 2, 3, 4 ) 计算结果列于下表53. 设每次投篮的命中率为0.7,求投篮10次恰有3次命中的概率 ;至少命中3次的概率 .解 记X 为10次投篮中命中的次数,则 X ~B ( 10 , 0.7 ) .{}009.03.07.0373310≈==C X P{}{}{}{}21013=-=-=-=≥X P X P X P X P=1-0.310-10×0.7×0.39-45×0.72×0.38≈0.998454.掷四颗骰子,求“6点”出现的平均次数及“6点”出现的最可能(即概率最大)次数及相应概率.解 掷四颗骰子,记“6点”出现次数为X ,则X ~B (4,61).EX = np =32由于np + p = 65,其X 的最可能值为[ np + p ]=0{}1296625)65(04===X P 若计算{}12965001==X P ,显然{}{},3,2==x P x P{}4=x P 概率更小.55.已知随机变量X ~B (n , p ),并且EX =3,DX =2,写出X 的全部可能取值,并计算{}8≤X P .解 根据二项分布的期望与方差公式,有⎩⎨⎧==23npq np 解方程,得q =32,p =31,n =9 .X 的全部可能取值为0, 1, 2, 3, …, 9 .{}{}918=-=≤X P X P= 1-9)31(≈ 0.999956.随机变量X ~B (n ,p ),EX =0.8,EX 2=1.28,问X 取什么值的概率最大,其概率值为何? 解 由于DX = EX 2-(EX)2=0.64, EX =0.8, 即⎩⎨⎧==8.064.0np npq 解得 q = 0.8,p = 0.2,n = 4 .由于np +p =1,因此X 取0与取1的概率最大,其概率值为{}{}4096.08.0104=====X P X P57.随机变量X ~B (n , p ),Y =e aX,计算随机变量Y 的期望EY 和方差DY .解 随机变量Y 是X 的函数,由于X 是离散型随机变量,因此Y 也是离散型随机变量,根据随机变量函数的期望公式,有 }{ }{∑+==∑==∑+==∑∑====-==-==-ni n a i n i a in ni ai ni na i n i a i n ni ni in i i n ai ai q p q p C i X P EY q p q p C qp C i X P EY 022022000)e ()e ()e ()e ()e (e en ap n ap q q DY 22)e ()e (+-+=58. 从一副扑克牌(52张)中每次抽取一张,连续抽取四次,随机变量X ,Y 分别表示采用不放回抽样及有放回抽样取到的黑花色张数,分别求X ,Y 的概率分布以及期望和方差. 解 X 服从超几何分布,Y 服从二项分布B (4,21).)4,3,2,1,0(45242626===-m C C C m X P m m }{)4,3,2,1,0()21()21(44===-m C m Y P mm m }{具体计算结果列于下面两个表中.X 0 1 2 3 4 P46/833 208/833 325/833208/833 46/833Y 0 1 2 3 4 P1/164/166/164/161/161 2214171651485226522641252264211===⨯===⨯⨯⨯=--⋅⋅==⨯==npq DY np EY N n N N N N N n DX N N n EX 59. 随机变量X 服从参数为2的泊松分布,查表写出概率4,3,2,1,0,==m m X P }{并与上题中的概率分布进行比较.X0 1 2 3 4 P0.13530.27070.27070.18040.090260.从废品率是0.001的件产品中,一次随机抽取500件,求废品率不超过0.01的概率. 解 设500件中废品件数为X ,它是一个随机变量且X 服从N=,1N =100,n =500的超几何分布.由于n 相对于N 较小,因此它可以用二项分布B (500,0.001)近似.又因在二项分布B (500,0.001)中,n =500比较大,而p =0.001非常小,因此该二项分布又可用泊松分布近似,其分布参数λ=np =0.5.}∑=≈≤=≤⎩⎨⎧=-505.0999986.0e !5.05X 001.0500m m m P XP }{ 61.某种产品每件表面上的疵点数服从泊松分布,平均每件上有0.8个疵点,若规定疵点数不超过1个为一等品,价值10元;疵点数大于1不多于4为二等品,价值8元;4个以上者为废品,求: (1)产品的废品率; (2)产品价值的平均值解 设X 为一件产品表面上的疵点数目,(1)}{}>{314≤-=X P X P ∑==-==30014.01m m X P }{(2)设一件产品的产值为Y 元,它可以取值为0,8,10.)(61.98088.0101898.08 110418 10108800元}{}<{}{}{}{≈⨯+⨯=≤+≤==⨯+=⨯+=⨯=X P X P Y P Y P Y P EY62.设书籍中每页的印刷错误服从泊松分布,经统计发现在某本书上,有一个印刷错误的页数与有2个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解 设一页书上印刷错误为X ,4页中没有印刷错误的页数为Y ,依题意,}{}{21===X P X P 即 λλλλ--=e !2e2解得λ=2,即X 服从λ=2的泊松分布.2e 0-===}{X P p显然Y ~B )e ,4(2-84e 4-===p Y P }{63.每个粮仓内老鼠数目服从泊松分布,若已知一个粮仓内,有一只老鼠的概率为有两只老鼠概率的两倍,求粮仓内无鼠的概率. 解 设X 为粮仓内老鼠数目,依题意λλλλ--⨯====e !22e2212}{}{X P X P解得λ=1.1e 0-==}{X P。
《经济数学基础12》形考作业1参考答案
经济数学基础形考作业1参考答案单项选择题(每题4分,共100分)1、1.函数1()ln(1)f x x =-的定义域为( ).A .()(]1,22,5B .[]1,5C .[)(]1,22,5D .()1,2(2,5)⋃答案:A1、2.函数1()ln(1)=++f x x 的定义域为( ).A .()(]1,00,4-B .[]1,0)(0,4-⋃C .[)1,0(0,4)-D .()1,4-答案:A 1、3.函数4)(+-=x x f ).A .()(]1,22,4B .[]1,4C .[)(]1,22,4D .()1,4答案:A2、1.下列函数在指定区间(,)-∞+∞上单调增加的是( ). A .sin x B .2x C .2xD .5x - 答案:C2、2.下列函数在指定区间(,)-∞+∞上单调减少的是( ). A .sin x B .2x C .e x D .3x - 答案:D2、3.下列函数在指定区间(,)-∞+∞上单调增加的是( ).A .sin xB .2x C .e xD .3x - 答案:C3、1.设11)(+=xx f ,则))((x f f =( ). A .11++x x B .x x +1 C .111++x D .x+11 答案:A 3、2.设1()x f x x-=,则=))((x f f ( ). A .11x - B .11x -- C .1x - D .2(1)x - 答案:B 3、3.设xx f 1)(=,则=))((x f f ( ). A .1x B .21xC .xD .2x 答案:C4、1.当+∞→x 时,下列变量为无穷小量的是( ).A .x x sinB .)1ln(x +C .1e xD .1sin x x答案:B4、2.当0x →时,下列变量为无穷小量的是( ).A .xx sin B .ln x C .e -x D .1sin x x答案:D4、3.当+∞→x 时,下列变量为无穷小量的是( ).A .xx sin B .)1ln(x + C .21e x - D .12+x x答案:A5、1.下列极限计算正确的是( ).A.1lim sin1x x x →∞= B. 1lim sin 0x x x→∞=C. sin lim1x x x →∞= D.0sin lim 0x xx→=答案:A5、2.下列极限计算正确的是( ).A .1lim 0=→x xx B .0lim 1-→=-x xxC .1lim sin 0→∞=x x xD .0sin lim0→=x xx答案:B5、3.下列极限计算正确的是( ).A .1lim=→xx x B .1lim 0=+→xxxC .11sin lim 0=→x x xD .1sin lim=∞→xxx 答案:B 6、1.sin lim→∞-=x x xx( ).A .1-B .0C .1D .2答案:C 6、2.02sin limx x xx→-=( ). A .1- B .0 C .1 D .2答案:A 6、3.0sin limx x xx→-=( ). A .1- B .0 C .1 D .2答案:B7、1.22132lim 76x x x x x →-+=-+( ). A .15 B .15-C .5D .5- 答案:A7、2.22256lim32→-+=-+xx xx x().A.1B.1-C.2D.2-答案:B7、3.22256lim68xx xx x→-+=-+().A.12B.12-C.2D.2-答案:A8、1.2231lim424xx xx x→∞-+=++().A.14B.34C.0D.1 4 -答案:B8、2.22432lim523xx xx x→∞-+=++().A.45B.23C.45-D.23-答案:B8、3.22235lim324xx xx x→∞-+=++().A.54B.23C.0D.3 2 -答案:B9、1.224limsin(2)xxx→--=+().A.1B.0C .4-D .4 答案:C9、2.211limsin(1)x x x →-=-( ). A .1 B .0 C .2- D .2 答案:D9、3.224limsin(2)x x x →-=-( ). A .1 B .0 C .4 D .2 答案:C10、1.设22,0(),0x x f x k x ⎧+≠=⎨=⎩在0=x 处连续,则k =( ).A .2-B .0C .2D .1 答案:C10、2.设2,0()1,0x k x f x x ⎧+≠=⎨=⎩在0=x 处连续,则k =( ).A .1-B .0C .12D .1 答案:D10、3.设21,0(),0x x f x k x ⎧+≠=⎨=⎩在0=x 处连续,则k =( ).A .1-B .0C .12D .1 答案:D11、1.当a =( ),b =( )时,函数1sin ,0(),0sin 2,0x b x x f x a x x x x ⎧+<⎪⎪==⎨⎪⎪>⎩在0=x处连续.A .0,0a b ==B .0,2a b ==C .1,2a b ==D .2,2a b ==答案:D11、2.当a =( ),b =( )时,函数1sin ,0(),0sin ,0x x x f x a x x b x x⎧<⎪⎪==⎨⎪⎪+>⎩在0=x 处连续.A .0,0a b ==B .0,1a b ==-C .1,1a b ==-D .1,0a b =-=答案:D11、3.当a =( ),b =( )时,函数1sin ,0(),0sin ,0x b x x f x a x x x x ⎧+<⎪⎪==⎨⎪⎪>⎩在0=x 处连续.A .0,0a b ==B .0,1a b ==C .1,0a b ==D .1,1a b ==答案:D 12、1.曲线y =(1,1)的切线方程是( ).A .1122y x =+ B .1122y x =- C .112y x =+ D .112y x =-答案:A 12、2.曲线1y =在点(1,0)的切线方程是( ).A .1122y x =- B .1122y x =+C .12y x =D .112y x =+ 答案:A 12、3.曲线1+=x y 在点(1,2)的切线方程是( ).A .1322y x =+ B .1122y x =+ C .2y x = D .1y x =+ 答案:A13、1.若函数()f x 在点0x 处可微,则( )是错误的.A .函数()f x 在点0x 处有定义B .函数()f x 在点0x 处连续C .A x f x x =→)(lim 0,但)(0x f A ≠ D .函数()f x 在点0x 处可导答案:C13、2.若函数()f x 在点0x 处连续,则( )是正确的.A .函数()f x 在点0x 处有定义B .函数()f x 在点0x 处可导C .A x f x x =→)(lim 0,但)(0x f A ≠ D .函数()f x 在点0x 处可微答案:A13、3.若函数()f x 在点0x 处可导,则( )是错误的.A .函数()f x 在点0x 处有定义B .函数()f x 在点0x 处连续C .A x f x x =→)(lim 0,但)(0x f A ≠ D .函数()f x 在点0x 处可微答案:C14、1.若x xf =)1(,则d ()f x =( ).A .1d x x B .1d x x - C .21d x x D .21d x x- 答案:D14、2.若(1)f x x +=,则=')(x f ( ).A .1x -B .1x -C .1D .1- 答案:C14、3.若x xf =)1(,则=')(x f ( ).A .1x B .1x - C .21x D .21x-答案:D15、1.设y x =lg2,则y '=( ).A .12xB .1ln10xC .ln10xD .1x答案:B15、2.设lg5y x =,则d y =( ).A .1d 5x x B .1d x x ln10 C .ln10x x d D .5d x x答案:B15、3.设y x =lg2,则d A .12d x x B C .ln10x x d D .1d xx 答案:B16、1.设函数2(2)45f x x x +=++,则()f x '=( ).A .21x +B .21x + C .2x D .25x + 答案:C16、2.设函数2(1)25f x x x +=+-,则()f x '=( ).A .26x -B .24x + C .2x D .26x + 答案:C16、3.设函数52)1(2++=+x x x f ,则()f x '=( ).A .22x +B .24x +C .2xD .24x + 答案:C17、1.设3322log 2x y x x =+--,则y '=( ).A .3132xx x +-B .2132ln 28ln 2xx x +-- C .2132ln 2x x x +- D .2132ln 2ln 2xx x +-答案:D17、2.设3233log 3x y x x =++-,则y '=( ).A .133ln 3xx x ++B .22133ln 33ln 3xx x ++- C .2133ln 3x x x ++ D .2133ln 3ln 3xx x ++答案:D17、3.设2222log 2-++=x x y x,则y '=( ).A .122xx x ++B .21222x x x ++-C .122ln 2x x x ++D .122ln 2ln 2xx x ++答案:D 18、1.设232x y x -=-,则y '=( ). A .()212x - B .12x - C .()212x -- D .12x -- 答案:C 18、2.设2332x y x -=-,则y '=( ).A .()2532x - B .()2532x --C .()2432x -- D .()2432x -答案:A 18、3.设232x y x +=+,则y '=( ). A .()212x + B .2C .()212x -+ D .22x + 答案:A 19、1.设y =y '=( ). A .()321212x --- B .()3221x ---C .()121212x -- D .()1221x --答案:B 19、2.设y =y '=( ). A .()321532x --- B .()325532x ---C .()125532x --D .()125532x ---答案:B 19、3.设531-=x y ,则y '=( ).A .()321352x ---B .()323352x ---C .()121352x --D .()123352x --答案:B20、1.设3e sin 2xy x =,则d y =( ).A .36e cos2d xx x B .()33e 2cos 2d xx x +C .33(3e sin 22e cos 2)d xxx x x + D .33(3e sin 22e cos 2)d xxx x x - 答案:C 20、2.设2ecos3xy x =,则d y =( ).A .26e sin3d xx x - B .()22e3sin3d xx x -C .22(2e cos33e sin 3)d xxx x x - D .22(2e cos33e sin 3)d xxx x x + 答案:C20、3.设2e sin 3xy x =,则d y =( ).A .26e cos3d xx x B .()22e3cos3d xx x +C .22(2e sin 33e cos3)d xxx x x + D .22(2e sin 33e cos3)d xxx x x - 答案:C21、1.设2x y =,则d y =( ).A .2ln 2)dx x B .2ln 2)d x xC .2)dx x D .2ln 2)d x x -+ 答案:A21、2.设3x y =,则d y =( ).A .3ln3)dx x - B .3ln 3)d x x -C .3)d x x -D .3)dx x -+ 答案:A21、3.设2xy =,则d y =( ).A .2ln2)dx x -+ B .2ln 2)d xx -C .2)d x x -D .2)dx x -+ 答案:A22、1.设sin(2)3x y x +=,方程两边对x 求导,可得( ). A .cos(2)3x y += B .()cos 123y '+= C .()()cos 2123x y y '++= D .cos(2)23x y y '+= 答案:C22、2.设cos()4x y x +=,方程两边对x 求导,可得( ). A .sin()4x y -+= B .()sin 14y '-+= C .()()sin 14x y y '-++= D .sin()4x y y '-+= 答案:C22、3.设sin()4x y x +=,方程两边对x 求导,可得( ). A .cos()4x y += B .()cos 14y '+= C .()()cos 14x y y '++= D .cos()(1)4x y y ++= 答案:C23、1.设2()ln(1)f x x =+,则()f x ''=( ).A .22(1)xx -+ B .22222(1)x x -+C .22(1)xx + D .22222(1)x x ++ 答案:B23、2.设()cos f x x x =,则π()2f ''=( ). A .2π B .π- C .2- D .1-答案:C23、3.设x x x f sin )(=,则π()2f ''=( ). A .1 B .π2- C .π2D .1- 答案:B24、1.函数23(1)y x =+的驻点是( ). A .0x = B. 1x = C .1x =- D .1x =± 答案: C24、2.函数23(2)y x =-的驻点是( ). A .0x = B. 2x = C .2x =- D .2x =± 答案:B24、3.函数2)1(3-=x y 的驻点是( ). A .0x = B. 1x = C .1x =- D .1x =± 答案:B25、1.设某商品的需求函数为3()10e p q p -=,则需求弹性=p E ( ).A .3p -B .13-C .31e 3p-- D .3p答案:A25、2.设某商品的需求函数为2()50e pq p -=,则需求弹性=p E ( ).A .2p -B .12-C .25ep -- D .2p 答案:A25、3.设某商品的需求函数为2e 10)(p p q -=,则需求弹性=p E ( ).A .2p -B .12- C .25ep-- D .2p 答案:A。
【经济数学基础】答案(完整版)
一、填空题 1.___________________sin lim=-→xxx x .答案:02.设⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案1 3.曲线x y =+1在)1,1(的切线方程是. 答案:y=1/2X+3/24.设函数52)1(2++=+x x x f ,则____________)(='x f .答案x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π-二、单项选择题 1. 当+∞→x 时,下列变量为无穷小量的是( D ) D .xxsin 2. 下列极限计算正确的是( B ) B.1lim0=+→xx x3. 设y x =l g 2,则d y =( B ). B .1d x x ln104. 若函数f (x )在点x 0处可导,则( B )是错误的. B .A x f x x =→)(lim 0,但)(0x f A ≠5.若x x f =)1(,则=')(x f ( B ). B .21x-三、解答题(1)123lim 221-+-→x x x x 解:原式=)1)(1()2)(1(lim 1-+--→x x x x x =12lim 1+-→x x x =211121-=+-\(2)8665lim 222+-+-→x x x x x 解:原式=)4)(2()3)(2(lim 2----→x x x x x =21423243lim2=--=--→x x x (3)x x x 11lim--→解:原式=)11()11)(11(lim 0+-+---→x x x x x =)11(11lim 0+---→x x x x =111lim 0+--→x x =21-(4)423532lim 22+++-∞→x x x x x 解:原式=32003002423532lim22=+++-=+++-∞→xx x x x(5)x x x 5sin 3sin lim 0→解:原式=53115355sin lim 33sin lim535355sin 33sin lim000=⨯=⨯=⨯→→→xx x xx x x x x x x(6))2sin(4lim 22--→x x x 解:原式=414)2sin(2lim )2(lim )2sin()2)(2(lim222=⨯=--⨯+=--+→→→x x x x x x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f , 问:(1)当b a ,为何值时,)(x f 在0=x 处极限存在?(2)当b a ,为何值时,)(x f 在0=x 处连续.(3)解:(1)因为)(x f 在0=x 处有极限存在,则有)(lim )(lim 0x f x f x x +-→→=又 b b x x x f x x =+=--→→)1sin (lim )(lim 001sin lim )(lim 00==++→→xxx f x x即 1=b所以当a 为实数、1=b时,)(x f 在0=x 处极限存在.(2)因为)(x f 在0=x 处连续,则有 )0()(lim )(lim 0f x f x f x x ==+-→→又 a f =)0(,结合(1)可知1==b a 所以当1==b a 时,)(x f 在0=x 处连续.3.计算下列函数的导数或微分: (1)2222log 2-++=x x y x ,求y '解:2ln 12ln 22x x y x ++='(2)d cx b ax y ++=,求y '解:2)())(()()(d cx d cx b ax d cx b ax y +'++-+'+='=2)()()(d cx c b ax d cx a ++-+ =2)(d cx bcad +-(3)531-=x y ,求y '解:2312121)53(23)53()53(21])53[(------='---='-='x x x x y(4)xx x y e -=,求y '解:xx xxe e x xe x y --='-'='-212121)()((5)bx y ax sin e =,求y d解:)(cos sin )()(sin sin )('-'='-'='bx bx e bx ax e bx e bx e y ax ax ax ax =bx be bx ae ax ax cos sin - dx bx be bx ae dx y dy ax ax )cos sin (-='=(6)x x y x+=1e ,求y d解:212112312312323)1()()(x x e x x e x e y xxx+-=+'='+'='-dx x xe dx y y x)23(d 2121+-='=(7)2ecos x x y --=,求y d解:222e 22sin )(e )(sin )e ()(cos 2xx x x xx x x x x y ---+-='--'-='-'='(8)nx x y n sin sin +=,求y '解:)(cos )(sin )(sin )(sin ])[(sin 1'+'='+'='-nx nx x x n nx x y n n nx n x x n n cos cos )(sin 1+=-(9))1ln(2x x y ++=,求y '解:)))1((1(11)1(11212222'++++='++++='x xx x x xx y=222212122111111)2)1(211(11x x x x x x x x x x +=+++⨯++=⨯++++-(10)xxx y x212321cot-++=,求y '解:)2()()()2(61211sin'-'+'+'='-x x y x06121)1(sin 2ln 265231sin -+-'=--x x x x65231sin 6121)1)(cos 1(2ln 2--+-'=x xx x x652321sin6121cos 2ln 2--+-=x x x x x4.下列各方程中y 是x 的隐函数,试求y '或y d(1)1322=+-+x xy y x ,求y d 解:方程两边同时对x 求导得: )1()3()()()(22'='+'-'+'x xy y x0322=+'--'+y x y y y x xy x y y ---='232dx xy x y dx y y ---='=232d(2)x e y x xy 4)sin(=++,求y '解:方程两边同时对x 求导得:4)()()cos(='⨯+'+⨯+xy e y x y x xy 4)()1()cos(='+⨯+'+⨯+y x y e y y x xyxyxyye y x xe y x y -+-=++')cos(4))(cos(xyxyxe y x ye y x y ++-+-=')cos()cos(45.求下列函数的二阶导数: (1))1ln(2x y +=,求y ''解:22212)1(11x x x x y +='++='2222222)1(22)1()20(2)1(2)12(x x x x x x x x y +-=++-+='+=''(2)xx y -=1,求y ''及)1(y ''解:212321212121)()()1(-----='-'='-='x x x x xx y2325232521234143)21(21)23(21)2121(------+=-⨯--⨯-='--=''x x x x x x y =1(一)填空题 1.若c x x x f x++=⎰22d )(,则22ln 2)(+=x x f .2.⎰'x x d )sin (c x +sin . 3.若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2c x F +--)1(212 4.设函数0d )1ln(d d e 12=+⎰x x x5.若t tx P xd 11)(02⎰+=,则211)(xx P +-='.(二)单项选择题1. 下列函数中,(D )是x sin x 2的原函数. D .-21cos x 22. 下列等式成立的是( C ). C .)d(22ln 1d 2x xx = 3. 下列不定积分中,常用分部积分法计算的是( C ). C .⎰x x x d 2sin4. 下列定积分中积分值为0的是(D ). D .0d sin =⎰-x x ππ5. 下列无穷积分中收敛的是( B ). B .⎰∞+12d 1x x(三)解答题1.计算下列不定积分(1)⎰x x x d e 3 (2)⎰+x x x d )1(2解:原式 c e x x +-==⎰)3(13ln 1d )e 3(x 解:原式⎰++=x xx x d 212cx x x x +++=++=⎰252321232121-52342)d x 2x (x(3)⎰+-x x x d 242 (4)⎰-x x d 211 解:原式c x x x x x x +-=+-+=⎰221d 2)2)(2(2解:原式⎰--=)2-d(121121x x c x +--=21ln 21(5)⎰+x x x d 22(6)⎰x xx d sin解:原式⎰++=)d(222122x x 解:原式 ⎰=x d x sin 2 c x ++=232)2(31c x +-=cos 2 (7)⎰x xx d 2sin(8)⎰+x x 1)d ln(解:原式⎰-=2cos2x xd 解:原式⎰+-+=x x x d 1x x )1ln( cxx xd x x x ++-=+-=⎰2sin 42cos 2)2(2cos 42cos 2c x x x x dx x x x +++-+=+--+=⎰)1ln()1ln()111()1ln(2.计算下列定积分(1)xx d 121⎰-- (2)x xxd e2121⎰解:原式⎰⎰-+-=-2111)1(d )1(dx x x x 解:原式)1d(211xe x⎰-=25212)1(21)1(21212112=+=-+--=-x x 21211ee ex -=-=(3)x xx d ln 113e 1⎰+ (4)x x x d 2cos 20⎰π解:原式)1d(ln ln 12123e 1++=⎰x x解:原式x x dsin22120⎰=π224ln 1231=-=+=e x 212cos 41)2(2sin 412sin 21202020-==-=⎰πππx x xd x x(5)x x x d ln e1⎰(6)x x x d )e 1(4⎰-+解:原式2e 1d ln 21x x ⎰=解:原式xe x dx -⎰⎰-=d 4040 )1(4141412121ln 21222112+=+-=-=⎰e e e xdx x x e e444404055144)(4------=+--=---=⎰e e e x d e xe x x (一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:3 2.设B A ,均为3阶矩阵,且3-==B A ,则TAB 2-=________. 答案:72-3.设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是.答案:BA AB = 4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵X BX A =+的解______________=X .答案:A B I 1)(--5.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-31000210001(二)单项选择题1. 以下结论或等式正确的是( C ). C .对角矩阵是对称矩阵2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( A )矩阵. A .42⨯3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是(C ). `C .BA AB =4. 下列矩阵可逆的是(A ). A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡3003203215. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( B ). B .1 三、解答题 1.计算(1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321(2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000 (3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]0 2.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---142301112155 3.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。
2022年经济数学基础综合练习及参考答案
第一部分 微分学一、单选题 1.函数()1lg +=x xy 旳定义域是( D ). A .1->x B .0≠x C .0>x D .1->x 且0≠x 2.下列各函数对中,( D )中旳两个函数相等.A .2)()(x x f =,x x g =)( B .11)(2--=x x x f ,x x g =)(+ 1C .2ln x y =,x x g ln 2)(=D .x x x f 22cos sin )(+=,1)(=x g3.设xx f 1)(=,则=))((x f f ( C ). A .x 1 B .21xC .xD .2x4.下列函数中为奇函数旳是( C ). A .x x y -=2B . xxy -+=e e C .11ln+-=x x y D .x x y sin = 5.已知1tan )(-=xxx f ,当( A )时,)(x f 为无穷小量. A. x →0 B. 1→x C. -∞→x D. +∞→x6.当+∞→x 时,下列变量为无穷小量旳是( D )A .12+x xB .)1ln(x +C .21e x - D .xx sin7.函数sin ,0(),0xx f x x k x ⎧≠⎪=⎨⎪=⎩ 在x = 0处持续,则k = (C ).A .-2B .-1C .1D .2 8.曲线11+=x y 在点(0, 1)处旳切线斜率为( A ). A .21-B .21C .3)1(21+xD .3)1(21+-x9.曲线x y sin =在点(0, 0)处旳切线方程为( A ). A. y = x B. y = 2x C. y =21x D. y = -x 10.设y x =l g 2,则d y =( B ).A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 11.下列函数在指定区间(,)-∞+∞上单调增长旳是( B ). A .sin x B .e x C .x 2 D .3 – x12.设需求量q 对价格p 旳函数为p p q 23)(-=,则需求弹性为E p =( B ).A .p p32- B .--pp32 C .32-ppD .--32pp二、填空题 1.函数⎩⎨⎧<≤-<≤-+=20,105,2)(2x x x x x f 旳定义域是 [-5,2] .2.函数xx x f --+=21)5ln()(旳定义域是 (-5, 2 ) .3.若函数52)1(2-+=+x x x f ,则=)(x f62-x.4.设21010)(x x x f -+=,则函数旳图形有关 y 轴 对称.5.已知生产某种产品旳成本函数为C (q ) = 80 + 2q ,则当产量q = 50时,该产品旳平均成本为3.6. 6.已知某商品旳需求函数为q = 180 – 4p ,其中p 为该商品旳价格,则该商品旳收入函数R (q ) =45q – 0.25q 2 .7. =+∞→xxx x sin lim1 .8.已知xxx f sin 1)(-=,当 0→x 时,)(x f 为无穷小量.9. 已知⎪⎩⎪⎨⎧=≠--=1111)(2x a x x x x f ,若f x ()在),(∞+-∞内持续,则=a 2 .10.曲线y =)1,1(处旳切线斜率是(1)0.5y '=.11.函数y x =-312()旳驻点是 x =1 .12.需求量q 对价格p 旳函数为2e 100)(pp q -⨯=,则需求弹性为E p = 2p -.三、计算题 1.已知y xxxcos 2-=,求)(x y ' .解: 2cos sin cos ()(2)2ln 2x x x x x x y x x x --''=-=- 2sin cos 2ln 2xx x x x +=+2.已知()2sin ln xf x x x =+,求)(x f ' . 解 xx x x f xx 1cos 2sin 2ln 2)(++⋅=' 3.已知2sin 2cos x y x-=,求)(x y ' .解 )(cos )2(2sin )(22'-'-='x x x y xx2cos 22ln 2sin 2x x x x --=4.已知x x y 53eln -+=,求)(x y '解:)5(e )(ln ln 3)(52'-+'='-x x x x y xx xx525e ln 3--=5.已知xy cos 25=,求)2π(y ';解:由于 5ln 5sin 2)cos 2(5ln 5)5(cos 2cos 2cos 2x x xx x y -='='='因此 5ln 25ln 52πsin 2)2π(2πcos2-=⋅-='y6.设x x y x+=2cos e,求y d 解:由于212cos 23)2sin (e 2x x y x+-=' 因此x x x y x d ]23)2sin (e 2[d 212cos +-=7.设x y x5sin cos e+=,求y d .解:由于 )(cos cos 5)(sin e 4sin '+'='x x x y xx x x x sin cos 5cos e 4sin -=因此 x x x x y xd )sin cos 5cose (d 4sin -=8.设xx y -+=2tan 3,求y d .解:由于 )(2ln 2)(cos 1332'-+'='-x x x y x2ln 2cos 3322x x x --= 因此 x xx y xd )2ln 2cos 3(d 322--= 四、应用题1. 设生产某种产品x 个单位时旳成本函数为:x x x C 625.0100)(2++=(万元), 解(1)由于总成本、平均成本和边际成本分别为:x x x C 625.0100)(2++= 625.0100)(++=x xx C ,65.0)(+='x x C因此,1851061025.0100)10(2=⨯+⨯+=C 5.1861025.010100)10(=+⨯+=C , 116105.0)10(=+⨯='C(2)令 025.0100)(2=+-='xx C ,得20=x (20-=x 舍去) 由于20=x 是其在定义域内唯一驻点,且该问题旳确存在最小值,因此当=x 20时,平均成本最小. 求:(1)当10=x 时旳总成本、平均成本和边际成本;(2)当产量x 为多少时,平均成本最小? 2.某厂生产一批产品,其固定成本为元,每生产一吨产品旳成本为60元,对这种产品旳市场需求规律为q p=-100010(q 为需求量,p 为价格). 试求:(1)成本函数,收入函数; (2)产量为多少吨时利润最大? 解(1)成本函数C q ()= 60q +.由于 q p=-100010,即p q =-100110, 因此 收入函数R q ()=p ⨯q =(100110-q )q =1001102q q -.(2)由于利润函数L q ()=R q ()-C q () =1001102q q --(60q +) = 40q -1102q -且'L q ()=(40q -1102q -')=40- 0.2q 令'L q ()= 0,即40- 0.2q = 0,得q = 200,它是L q ()在其定义域内旳唯一驻点. 因此,q = 200是利润函数L q ()旳最大值点,即当产量为200吨时利润最大.3.某厂生产某种产品q 件时旳总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件).试求:(1)产量为多少时可使利润达到最大? (2)最大利润是多少? 解(1)由已知201.014)01.014(q q q q qp R -=-==利润函数22202.0201001.042001.014q q q q q q C R L --=----=-= 则q L 04.010-=',令004.010=-='q L ,解出唯一驻点250=q .由于利润函数存在着最大值,因此当产量为250件时可使利润达到最大,(2)最大利润为 1230125020250025002.02025010)250(2=--=⨯--⨯=L (元) 4.某厂每天生产某种产品q 件旳成本函数为9800365.0)(2++=q q q C (元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少?解 由于 ()9800()0.536C q C q q q q==++ (0)q > 298009800()(0.536)0.5C q q q q ''=++=- 令()0C q '=,即0598002.-q =0,得q 1=140,q 2= -140(舍去). q 1=140是C q ()在其定义域内旳唯一驻点,且该问题旳确存在最小值.因此q 1=140是平均成本函数C q ()旳最小值点,即为使平均成本最低,每天产量应为140件. 此时旳平均成本为9800(140)0.514036176140C =⨯++= (元/件) 5.已知某厂生产q 件产品旳成本为C q q q()=++25020102(万元).问:要使平均成本至少,应生产多少件产品?解 由于 C q ()=C q q ()=2502010q q++ 'C q ()=()2502010q q ++'=-+2501102q 令'C q ()=0,即-+=25011002q ,得150q =,q 2=-50(舍去), q 1=50是C q ()在其定义域内旳唯一驻点.因此,q 1=50是C q ()旳最小值点,即要使平均成本至少,应生产50件产品第二部分 积分学一、单选题1.在切线斜率为2x 旳积分曲线族中,通过点(1, 4)旳曲线为( A ). A .y = x 2 + 3 B .y = x 2 + 4 C .y = 2x + 2 D .y = 4x 2.下列等式不成立旳是( A ).A .)d(e d e xxx = B .)d(cos d sin x x x =-C .x x xd d 21= D .)1d(d ln x x x =3.若c x x f x+-=-⎰2ed )(,则)(x f '=( D ).A . 2ex-- B . 2e 21x- C . 2e 41x- D . 2e 41x--4.下列不定积分中,常用分部积分法计算旳是( C ).A .⎰+x x c 1)d os(2B .⎰-x x x d 12C .⎰x x x d 2sin D .⎰+x x xd 125. 若c x x f xx+-=⎰11e d e)(,则f (x ) =( C ). A .x 1 B .-x 1 C .21x D .-21x6. 若)(x F 是)(x f 旳一种原函数,则下列等式成立旳是( B ).A .)(d )(x F x x f xa =⎰ B .)()(d )(a F x F x x f xa-=⎰C .)()(d )(a f b f x x F ba-=⎰D .)()(d )(a F b F x x f ba-='⎰7.下列定积分中积分值为0旳是( A ).A .x xx d 2e e 11⎰--- B .x xx d 2e e 11⎰--+ C .x x x d )cos (3⎰-+ππ D .x x x d )sin (2⎰-+ππ 8.下列定积分计算对旳旳是( D ). A .2d 211=⎰-x x B .15d 161=⎰-x C .0d sin 22=⎰-x x ππ D .0d sin =⎰-x x ππ9.下列无穷积分中收敛旳是( C ).A .⎰∞+1d ln x x B .⎰∞+0d e x xC .⎰∞+12d 1x x D .⎰∞+13d 1x x10.无穷限积分 ⎰∞+13d 1x x =( C ). A .0 B .21- C .21 D. ∞二、填空题 1.=⎰-x x d ed 2x x d e 2- .2.函数x x f 2sin )(=旳原函数是 -21cos2x + c (c 是任意常数) . 3.若)(x f '存在且持续,则='⎰])(d [x f )(x f ' . 4.若c x x x f ++=⎰2)1(d )(,则=)(x f )1(2+x . 5.若c x F x x f +=⎰)(d )(,则x f x x )d e (e --⎰= c F x +--)e ( .6.=+⎰e 12dx )1ln(d d x x 0 . 7.积分=+⎰-1122d )1(x x x0 .8.无穷积分⎰∞++02d )1(1x x 是收敛旳 .(鉴别其敛散性)9.设边际收入函数为R '(q ) = 2 + 3q ,且R (0) = 0,则平均收入函数为:2 + q 23三、计算题1.⎰+-x x x d 242解 ⎰+-x x x d 242=(2)d x x -⎰=2122x x c -+ 2.计算⎰x x x d 1sin2解 c x x x x x x +=-=⎰⎰1cos )1(d 1sin d 1sin23.计算⎰xx x d 2 解c x xx xx x +==⎰⎰22ln 2)(d 22d 24.计算⎰x x x d sin 解 c x x x x x x x x x x ++-=+-=⎰⎰sin cos d cos cos d sin5.计算⎰+x x x d 1)ln (解 ⎰+x x x d 1)ln (=⎰+-+x x x x x d 1)(21ln 1)(2122=c x x x x x +--+4)ln 2(2122 6.计算x x x d e 2121⎰解 x xxd e 2121⎰=21211211e e e )1(d e -=-=-⎰x xx7.2e 1x ⎰解x xx d ln 112e 1⎰+=)ln d(1ln 112e 1x x++⎰=2e 1ln 12x+=)13(2-8.x x x d 2cos 2π0⎰解:x x x d 2cos 20⎰π=202sin 21πx x -x x d 2sin 2120⎰π=22cos 41πx =21-9.x x d )1ln(1e 0⎰-+解x x x x x x x d 1)1ln(d )1ln(1e 01e 01e 0⎰⎰---+-+=+ =x x d )111(1e 1e 0⎰-+--- =1e 0)]1ln([1e -+---x x =e ln =1 四、应用题1.投产某产品旳固定成本为36(万元),且边际成本为)(x C '=2x + 40(万元/百台). 试求产量由4百台增至6百台时总成本旳增量,及产量为多少时,可使平均成本达到最低.解 当产量由4百台增至6百台时,总成本旳增量为⎰+=∆64d )402(x x C =642)40(x x += 100(万元)又xc x x C x C x⎰+'=d )()(=x x x 36402++ =xx 3640++令 0361)(2=-='xx C , 解得6=x .x = 6是惟一旳驻点,而该问题旳确存在使平均成本达到最小旳值. 因此产量为6百台时可使平均成本达到最小.2.已知某产品旳边际成本C '(x )=2(元/件),固定成本为0,边际收益R '(x )=12-0.02x ,问产量为多少时利润最大?在最大利润产量旳基本上再生产50件,利润将会发生什么变化?解 由于边际利润)()()(x C x R x L '-'='=12-0.02x –2 = 10-0.02x令)(x L '= 0,得x = 500x = 500是惟一驻点,而该问题旳确存在最大值. 因此,当产量为500件时,利润最大. 当产量由500件增长至550件时,利润变化量为5505002550500)01.010(d )02.010(x x x x L -=-=∆⎰ =500 - 525 = - 25 (元)即利润将减少25元.3.生产某产品旳边际成本为C '(x )=8x (万元/百台),边际收入为R '(x )=100-2x (万元/百台),其中x 为产量,问产量为多少时,利润最大?从利润最大时旳产量再生产2百台,利润有什么变化?解 L '(x ) =R '(x ) -C '(x ) = (100 – 2x ) – 8x =100 – 10x 令L '(x )=0, 得 x = 10(百台)又x = 10是L (x )旳唯一驻点,该问题旳确存在最大值,故x = 10是L (x )旳最大值点,即当产量为10(百台)时,利润最大.又 x x x x L L d )10100(d )(12101210⎰⎰-='=20)5100(12102-=-=x x即从利润最大时旳产量再生产2百台,利润将减少20万元.4.已知某产品旳边际成本为34)(-='q q C (万元/百台),q 为产量(百台),固定成本为18(万元),求最低平均成本.解:由于总成本函数为⎰-=q q q C d )34()(=c q q +-322当q = 0时,C (0) = 18,得 c =18即 C (q )=18322+-q q 又平均成本函数为qq q q C q A 1832)()(+-==令 0182)(2=-='qq A , 解得q = 3 (百台) 该题旳确存在使平均成本最低旳产量. 因此当q = 3时,平均成本最低. 最底平均成本为9318332)3(=+-⨯=A (万元/百台) 5.设生产某产品旳总成本函数为 x x C +=3)((万元),其中x 为产量,单位:百吨.销售x 百吨时旳边际收入为x x R 215)(-='(万元/百吨),求:(1) 利润最大时旳产量;(2) 在利润最大时旳产量旳基本上再生产1百吨,利润会发生什么变化?解:(1) 由于边际成本为 1)(='x C ,边际利润)()()(x C x R x L '-'=' = 14 – 2x 令0)(='x L ,得x = 7由该题实际意义可知,x = 7为利润函数L (x )旳极大值点,也是最大值点. 因此,当产量为7百吨时利润最大.(2) 当产量由7百吨增长至8百吨时,利润变化量为87287)14(d )214(x x x x L -=-=∆⎰ =112 – 64 – 98 + 49 = - 1 (万元)即利润将减少1万元.第三部分 线性代数一、单选题1.设A 为23⨯矩阵,B 为32⨯矩阵,则下列运算中( A )可以进行. A .AB B .AB T C .A +B D .BA T 2.设B A ,为同阶可逆矩阵,则下列等式成立旳是( B )A . TT T )(BA AB = B . TT T )(AB AB =C . 1T 11T )()(---=B A AB D .T 111T )()(---=B A AB3.如下结论或等式对旳旳是( C ).A .若B A ,均为零矩阵,则有B A = B .若AC AB =,且O A ≠,则C B = C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠ 4.设A 是可逆矩阵,且A A B I +=,则A -=1( C ). A . B B . 1+B C . I B+ D . ()I A B --15.设)21(=A ,)31(-=B ,I 是单位矩阵,则I B A -T=( D ).A .⎥⎦⎤⎢⎣⎡--6231 B .⎥⎦⎤⎢⎣⎡--6321 C .⎥⎦⎤⎢⎣⎡--5322 D .⎥⎦⎤⎢⎣⎡--5232 6.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=314231003021A ,则r (A ) =( C ). A .4 B .3 C .2 D .17.设线性方程组b AX =旳增广矩阵通过初等行变换化为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--00000120004131062131,则此线性方程组旳一般解中自由未知量旳个数为( A ).A .1B .2C .3D .4 8.线性方程组⎩⎨⎧=+=+012121x x x x 解旳状况是( A ).A . 无解B . 只有0解C . 有唯一解D . 有无穷多解 9.若线性方程组旳增广矩阵为⎥⎦⎤⎢⎣⎡=01221λA ,则当λ=( B )时线性方程组无解. A .0 B .12C .1D .2 10. 设线性方程组b X A n m =⨯有无穷多解旳充足必要条件是( D ).A .m A r A r <=)()(B .n A r <)(C .n m <D .n A r A r <=)()( 11.设线性方程组AX=b 中,若r (A , b ) = 4,r (A ) = 3,则该线性方程组( B ).A .有唯一解B .无解C .有非零解D .有无穷多解 12.设线性方程组b AX =有唯一解,则相应旳齐次方程组O AX =( C ). A .无解 B .有非零解 C .只有零解 D .解不能拟定 二、填空题1.若矩阵A = []21-,B = []132-,则A T B= ⎥⎦⎤⎢⎣⎡---264132 .2.设矩阵⎥⎦⎤⎢⎣⎡-=3421A ,I 为单位矩阵,则T)(A I -= ⎥⎦⎤⎢⎣⎡--2240 . 3.设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立旳充足必要条件是B A ,是可互换矩阵4.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=13230201a A ,当a = 0 时,A 是对称矩阵. 5.设B A ,均为n 阶矩阵,且)(B I -可逆,则矩阵X BX A =+旳解X = A B I 1)(-- . 6.设A 为n 阶可逆矩阵,则r (A )= n . 7.若r (A , b ) = 4,r (A ) = 3,则线性方程组AX = b无解.8.若线性方程组⎩⎨⎧=+=-002121x x x x λ有非零解,则=λ-1 .9.设齐次线性方程组01=⨯⨯n n m X A ,且秩(A ) = r < n ,则其一般解中旳自由未知量旳个数等于n – r 10. 已知齐次线性方程组O AX =中A 为53⨯矩阵,且该方程组有非0解,则≤)(A r 3 .11.齐次线性方程组0=AX 旳系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=000020103211A 则此方程组旳一般解为 ⎩⎨⎧=--=4243122x x x x x (其中43,x x 是自由未知量) . 12.设线性方程组b AX =,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→010********1t A ,则1-≠时,方程组有唯一解.三、计算题1.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012411210,求逆矩阵1-A .解 由于(AI )=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-120001010830210411100010001012411210102110012100002321-⎡⎤⎢⎥→⎢⎥⎢⎥--⎣⎦100211010421002321-⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→21123124112100010001 因此 A -1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----211231241122.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121511311,求逆矩阵1)(-+A I .解由于 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+021501310A I 且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-110520001310010501100021010501001310⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→112100001310010501⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→1121003350105610001 因此 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=+-1123355610)(1A I3.设矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011,B =⎥⎦⎤⎢⎣⎡--210321,计算(BA )-1. 解 由于BA =⎥⎦⎤⎢⎣⎡--210321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011=⎥⎦⎤⎢⎣⎡--2435(BAI )=⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡--1024111110240135 ⎥⎦⎤⎢⎣⎡---→54201111⎥⎥⎦⎤⎢⎢⎣⎡--→2521023101 因此 (BA )-1=⎥⎥⎦⎤⎢⎢⎣⎡--2522314.设矩阵⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=3221,5321B A ,求解矩阵方程B XA =. 解:由于⎥⎦⎤⎢⎣⎡10530121⎥⎦⎤⎢⎣⎡--→13100121 ⎥⎦⎤⎢⎣⎡--→13102501 即⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-132553211因此,X =153213221-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡13253221=⎥⎦⎤⎢⎣⎡-1101 5.设线性方程组 ⎪⎩⎪⎨⎧=+-=-+--=+052231232132131x x x x x x x x ,求其系数矩阵和增广矩阵旳秩,并判断其解旳状况.解 由于⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=211011101201051223111201A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→300011101201因此 r (A ) = 2,r (A ) = 3. 又由于r (A ) ≠ r (A ),因此方程组无解6.求线性方程组⎪⎩⎪⎨⎧=-+-=+-+-=-+03520230243214321431x x x x x x x x x x x 旳一般解.解 由于系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=111011101201351223111201A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000011101201 因此一般解为⎩⎨⎧-=+-=4324312x x x x x x (其中3x ,4x 是自由未知量)7.求线性方程组⎪⎩⎪⎨⎧=-+-=-+-=+-126142323252321321321x x x x x x x x x 旳一般解.解 由于增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=1881809490312112614231213252A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→0000141019101因此一般解为 ⎪⎪⎩⎪⎪⎨⎧+=+=1941913231x x x x (其中3x 是自由未知量)8.设齐次线性方程组⎪⎩⎪⎨⎧=+-=+-=+-0830352023321321321x x x x x x x x x λ问λ取何值时方程组有非零解,并求一般解.解 由于系数矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---61011023183352231λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→500110101λ因此当λ = 5时,方程组有非零解. 且一般解为⎩⎨⎧==3231x x x x (其中3x 是自由未知量) 9.当λ取何值时,线性方程组⎪⎩⎪⎨⎧=+-=-+=++1542131321321x x x x x x x x λ 有解?并求一般解.解 由于增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=26102610111115014121111λλA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→λ00026101501 因此当λ=0时,线性方程组有无穷多解,且一般解为:⎩⎨⎧+-=-=26153231x x x x (x 3是自由未知量〕。
《经济数学基础12》综合练习及参考答案
《经济数学基础12》综合练习及参考答案第一部分 微分学一、单项选择题1.函数()1lg +=x xy 的定义域是( ).A .1->xB .0≠xC .0>xD .1->x 且0≠x2.若函数)(x f 的定义域是[0,1],则函数)2(x f 的定义域是( ). A .1],0[ B .)1,(-∞ C .]0,(-∞ D )0,(-∞3.下列各函数对中,()中的两个函数相等.A .2)()(x x f =,x x g =)( B .11)(2--=x x x f ,x x g =)(+ 1C .2ln x y =,x x g ln 2)(= D .x x x f 22cos sin )(+=,1)(=x g4.设11)(+=xx f ,则))((x f f =( ).A .11++x xB .x x +1C .111++xD .x+115.下列函数中为奇函数的是( ).A .x x y -=2B .xxy -+=ee C .11ln+-=x x y D .x x y sin = 6.下列函数中,()不是基本初等函数.A .102=y B .xy )21(= C .)1ln(-=x y D .31xy = 7.下列结论中,( )是正确的. A .基本初等函数都是单调函数 B .偶函数的图形关于坐标原点对称 C .奇函数的图形关于坐标原点对称 D .周期函数都是有界函数8. 当x →0时,下列变量中( )是无穷大量.A .001.0x B . x x 21+ C . x D . x-29. 已知1tan )(-=xxx f ,当( )时,)(x f 为无穷小量.A . x →0B . 1→xC . -∞→xD . +∞→x10.函数sin ,0(),0xx f x x k x ⎧≠⎪=⎨⎪=⎩ 在x = 0处连续,则k = ( ).A .-2B .-1C .1D .211. 函数⎩⎨⎧<-≥=0,10,1)(x x x f 在x = 0处( ).A . 左连续B . 右连续C . 连续D . 左右皆不连续 12.曲线11+=x y 在点(0, 1)处的切线斜率为( ).A .21-B .21C .3)1(21+x D .3)1(21+-x13. 曲线y = sin x 在点(0, 0)处的切线方程为( ). A . y = x B . y = 2x C . y = 21x D . y = -x 14.若函数x xf =)1(,则)(x f '=( ).A .21x B .-21x C .x 1 D .-x 115.若x x x f cos )(=,则='')(x f ( ).A .x x x sin cos +B .x x x sin cos -C .x x x cos sin 2+D .x x x cos sin 2-- 16.下列函数在指定区间(,)-∞+∞上单调增加的是( ).A .sin xB .e xC .x 2D .3 - x 17.下列结论正确的有( ).A .x 0是f (x )的极值点,且f '(x 0)存在,则必有f '(x 0) = 0B .x 0是f (x )的极值点,则x 0必是f (x )的驻点C .若f '(x 0) = 0,则x 0必是f (x )的极值点D .使)(x f '不存在的点x 0,一定是f (x )的极值点18. 设需求量q 对价格p 的函数为p p q 23)(-=,则需求弹性为E p =( ).A .p p32- B .--pp32 C .32-ppD .--32pp二、填空题1.函数⎩⎨⎧<≤-<≤-+=20,105,2)(2x x x x x f 的定义域是. 2.函数x x x f --+=21)5ln()(的定义域是.3.若函数52)1(2-+=+x x x f ,则=)(x f. 4.设函数1)(2-=u u f ,xx u 1)(=,则=))2((u f.5.设21010)(xx x f -+=,则函数的图形关于对称.6.已知生产某种产品的成本函数为C (q ) = 80 + 2q ,则当产量q = 50时,该产品的平均成本为 .7.已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) = .8. =+∞→xxx x sin lim.9.已知xxx f sin 1)(-=,当 时,)(x f 为无穷小量.10. 已知⎪⎩⎪⎨⎧=≠--=1111)(2x a x x x x f ,若f x ()在),(∞+-∞内连续,则=a .11. 函数1()1exf x =-的间断点是 . 12.函数)2)(1(1)(-+=x x x f 的连续区间是 .13.曲线y =)1,1(处的切线斜率是.14.函数y = x 2 + 1的单调增加区间为.15.已知x x f 2ln )(=,则])2(['f = . 16.函数y x =-312()的驻点是 . 17.需求量q 对价格p 的函数为2e 100)(p p q -⨯=,则需求弹性为E p =.18.已知需求函数为p q 32320-=,其中p 为价格,则需求弹性E p= .三、计算题1.423lim 222-+-→x x x x 2.231lim 21+--→x x x x 3.0x → 4.2343lim sin(3)x x x x →-+-5.113lim21-+--→x x x x 6.2)1tan(lim21-+-→x x x x ; 7. ))32)(1()23()21(lim 625--++-∞→x x x x x x 8.20sin e lim()1x x x x x →++ 9.已知y xx x--=1cos 2,求)(x y ' .10.已知)(x f xx x x+-+=11ln sin 2,求)(x f ' .11.已知2cos ln x y =,求)4(πy ';12.已知y =32ln 1x +,求d y . 13.设 y x x x x ln +=,求d y .14.设x x y 22e 2cos -+=,求y d . 15.由方程2e e )1ln(=++xy x y 确定y 是x 的隐函数,求)(x y '.16.由方程0e sin =+yx y 确定y 是x 的隐函数,求)(x y '.17.设函数)(x y y =由方程y x y e 1+=确定,求0d d =x x y.18.由方程x y x y=++e )cos(确定y 是x 的隐函数,求y d .四、应用题1.设生产某种产品x 个单位时的成本函数为:x x x C 625.0100)(2++=(万元), 求:(1)当10=x 时的总成本、平均成本和边际成本; (2)当产量x 为多少时,平均成本最小?2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q p =-100010(q 为需求量,p 为价格).试求:(1)成本函数,收入函数; (2)产量为多少吨时利润最大?3.设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元.又已知需求函数p q 42000-=,其中p 为价格,q 为产量,这种产品在市场上是畅销的,问价格为多少时利润最大?并求最大利润.4.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),问产量为多少时可使利润达到最大?最大利润是多少.5.某厂每天生产某种产品q 件的成本函数为9800365.0)(2++=q q q C (元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少?6.已知某厂生产q 件产品的成本为C q q q ()=++25020102(万元).问:要使平均成本最少,应生产多少件产品?试题答案一、 单项选择题1.D 2.C 3.D 4.A 5.C 6.C 7.C 8. B 9. A 10. C 11. B 12.A 13. A 14. B 15. D 16. B 17. A 18. B 二、填空题1.[-5,2]2. (-5, 2 )3. 62-x 4.43-5. y 轴6.3.67. 45q – 0.25q 28. 19. 0→x 10. 2 11.0x = 12.)1,(--∞,)2,1(-,),2(∞+ 13.(1)0.5y '= 14.(0, +∞) 15. 0 16.x =1 17.2p- 18.10-p p三、极限与微分计算题1.解 423lim 222-+-→x x x x =)2)(2()1)(2(lim 2+---→x x x x x = )2(1lim 2+-→x x x = 412.解:231lim21+--→x x x x =)1)(2)(1(1lim 1+---→x x x x x =21)1)(2(1lim1-=+-→x x x3.解0x →x →=xxx x x 2sin lim )11(lim 00→→++=2⨯2 = 44.解 2343lim sin(3)x x x x →-+-=3(3)(1)lim sin(3)x x x x →---= 333limlim(1)sin(3)x x x x x →→-⨯--= 2 5.解 )13)(1()13)(13(lim113lim2121x x x x x x x x x x x x ++--++-+--=-+--→→ )13)(1()1(2lim )13)(1())1(3(lim 2121x x x x x x x x x x x ++----=++--+--=→→)13)(1(2lim 1x x x x ++-+-=→221-=6.解 )1)(2()1tan(lim 2)1tan(lim 121-+-=-+-→→x x x x x x x x1)1tan(lim 21lim 11--⋅+=→→x x x x x 31131=⨯=7.解:))32)(1()23()21(lim 625--++-∞→x x x x x x =))32)(11()213()21(lim 625xx x x x x --++-∞→ =2323)2(65-=⨯-8.解 20sin e lim()1x x x x x →++=000sin e lim limsin lim 1xx x x x x x x →→→++ =0+ 1 = 19.解 y '(x )=)1cos 2('--xx x=2)1(cos )1(sin )1(2ln 2x x x x x ------=2)1(sin )1(cos 2ln 2x x x x x----10.解 因为)1ln()1ln(sin 2)(x x x x f x+--+= 所以 x x x x x f xx+---+⋅='1111cos 2sin 2ln 2)( 212]cos sin 2[ln 2xx x x --+⋅= 11.解 因为 2222tan 22)sin (cos 1)cos (ln x x x x xx y -=-='=' 所以 )4(πy '=ππππ-=⨯-=-1)4tan(42212.解 因为 )ln 1()ln 1(312322'++='-x x y=x x x ln 2)ln 1(31322-+ =x x x ln )ln 1(32322-+ 所以 x x x xy d ln )ln 1(32d 322-+= 13.解 因为 y x x ln 47+=xx y 14743-='所以 d y = (xx 14743-)d x14.解:因为 xx x y 222e 2)2(2sin--'-='x x x 22e 22sin ---= 所以 y d x x x x d )e 22sin (22---= 15.解 在方程等号两边对x 求导,得 )e ()e (])1ln([2'='+'+xyx y 0)(e 1)1ln(='+++++'y x y xyx y xy xy xyy xyy x x e 1]e )1[ln(-+-='++ 故 ]e )1)[ln(1(e )1(xy xyx x x y x y y +++++-='16.解 对方程两边同时求导,得 0e e cos ='++'y x y y yyyyy x y e )e (cos -='+)(x y '=yyx y ecos e +-. 17.解:方程两边对x 求导,得 y x y y y '+='e e yy x y e 1e -='当0=x 时,1=y所以,d d =x xye e01e 11=⨯-=18.解 在方程等号两边对x 求导,得 )()e (])[cos('='+'+x y x y1e ]1)[sin(='+'++-y y y x y)sin(1)]sin(e [y x y y x y++='+- )sin(e )sin(1y x y x y y +-++='故 x y x y x y yd )sin(e )sin(1d +-++=四、应用题1.解(1)因为总成本、平均成本和边际成本分别为:x x x C 625.0100)(2++=625.0100)(++=x xx C ,65.0)(+='x x C所以,1851061025.0100)10(2=⨯+⨯+=C5.1861025.010100)10(=+⨯+=C ,116105.0)10(=+⨯='C(2)令 025.0100)(2=+-='xx C ,得20=x (20-=x 舍去)因为20=x 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当=x 20时,平均成本最小.2.解 (1)成本函数C q ()= 60q +2000.因为 q p =-100010,即p q =-100110, 所以 收入函数R q ()=p ⨯q =(100110-q )q =1001102q q -.(2)因为利润函数L q ()=R q ()-C q () =1001102q q --(60q +2000)= 40q -1102q -2000 且 'L q ()=(40q -1102q -2000')=40- 0.2q 令'L q ()= 0,即40- 0.2q = 0,得q = 200,它是L q ()在其定义域内的唯一驻点. 所以,q = 200是利润函数L q ()的最大值点,即当产量为200吨时利润最大.3.解 C (p ) = 50000+100q = 50000+100(2000-4p ) =250000-400pR (p ) =pq = p (2000-4p )= 2000p -4p 2 利润函数L (p ) = R (p ) - C (p ) =2400p -4p 2 -250000,且令 )(p L '=2400 – 8p = 0得p =300,该问题确实存在最大值. 所以,当价格为p =300元时,利润最大. 最大利润 1100025000030043002400)300(2=-⨯-⨯=L (元). 4.解 由已知201.014)01.014(q q q q qp R -=-==利润函数22202.0201001.042001.014q q q q q q C R L --=----=-=则q L 04.010-=',令004.010=-='q L ,解出唯一驻点250=q . 因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大, 且最大利润为1230125020250025002.02025010)250(2=--=⨯--⨯=L (元) 5. 解 因为 C q ()=C q q ()=05369800.q q++ (q >0) 'C q ()=(.)05369800q q ++'=0598002.-q令'C q ()=0,即0598002.-q =0,得q 1=140,q 2= -140(舍去). q 1=140是C q ()在其定义域内的唯一驻点,且该问题确实存在最小值.所以q 1=140是平均成本函数C q ()的最小值点,即为使平均成本最低,每天产量应为140件. 此时的平均成本为C ()140=0514*******140.⨯++=176 (元/件) 6.解 (1) 因为 C q ()=C q q ()=2502010q q++ 'C q ()=()2502010q q ++'=-+2501102q 令'C q ()=0,即-+=25011002q ,得q 1=50,q 2=-50(舍去),q 1=50是C q ()在其定义域内的唯一驻点.所以,q 1=50是C q ()的最小值点,即要使平均成本最少,应生产50件产品.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《经济数学基础》作业册及参考答案(有些习题仅给答案没附解答过程)作业(一)(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =+1在)2,1(的切线方程是 .答案:2321+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π-(二)单项选择题1.当x →+∞时,下列变量为无穷小量的是( )答案:Dxx D C x B x A exx sin ..1.)1ln(.212-++ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =lg2,则d y =( ).答案:B A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.若f (x 1)=x,则f ’(x)=( ). 答案:B A .21x B .—21xC .x 1D .—x 1(三)解答题1.计算极限(1)=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = )1(2lim 1+-→x x x = 21-(2)8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = )4(3lim 2--→x x x = 21(3)x x x 11lim--→=)11()11)(11(lim 0+-+---→x x x x x =)11(lim+--→x x x x =21)11(1lim 0-=+--→x x(4)=+++-∞→423532lim22x x x x x 32423532lim 22=+++-∞→x xx x x (5)=→x xx 5sin 3sin lim0535sin 33sin 5lim 0x x x x x →=53 (6)=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)1sin 0lim )(0lim )1sin (0lim )(0lim ===+=++--→→→→xxx f b b xx x f x x x x当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)f(0)= a =1)0(lim 0==→b f x当1==b a 时,)(x f 在0=x 处连续。
3.计算下列函数的导数或微分: (1)2222log 2-++=x x y x,求y '答案:2ln 12ln 22x x y x++=' (2)dcx bax y ++=,求y '答案:y '=2)()()(d cx b ax c d cx a ++-+2)(d cx cbad +-= (3)531-=x y ,求y '答案:531-=x y =21)53(--x 3)53(23--='x y(4)x x x y e -=,求y '答案:x x xy e )1(21+-='(5)bx y axsin e =,求y d答案:)(sin e sin )e ('+'='bx bx y axaxb bx bx a ax ax ⋅+=cos e sin e)cos sin (e bx b bx a ax += dx bx b bx a dy ax )cos sin (e +=(6)x x y x+=1e ,求y d答案:y d x xx x d e )123(12-= (7)2ecos x x y --=,求y d答案:y d x xx x x d )2sin e 2(2-=-(8)nx x y nsin sin +=,求y ' 答案:y '=x x n n cos sin1-+nxn cos =)cos cos (sin 1nx x x n n +-(9))1ln(2x x y ++=,求y '答案:y ')1(1122'++++=x x x x )2)1(211(112122x x x x -++++=)11(1122xx x x ++++=211x+=(10)xxx y x212321sin -++=,求y '答案:6523121sin6121cos 2ln 2---+-='x x x x y x-4.下列各方程中y 是x 的隐函数,试求y '或y d (1)1322=+-+x xy y x ,求y d 答案:解:方程两边关于X 求导:0322=+'--'+y x y y y x32)2(--='-x y y x y , x xy xy y d 223d ---=(2)x ey x xy4)sin(=++,求y '答案:解:方程两边关于X 求导4)()1)(cos(='++'++y x y e y y x xy)cos(4))(cos(y x ye y x e y x xy xy +--='++)cos(e )cos(e 4y x x y x y y xyxy +++--=' 5.求下列函数的二阶导数: (1))1ln(2x y +=,求y ''答案:222)1(22x x y +-='' (2)xx y -=1,求y ''及)1(y ''答案:23254143--+=''x x y ,1)1(=''y作业(二)(一)填空题 1.若c x x x f x ++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2.⎰='x x d )sin (________.答案:c x +sin 3. 若c x F x x f +=⎰)(d )(,则⎰=--x f e e xxd )( .答案:c Fe x+--)( 4.设函数___________d )1ln(d d e 12=+⎰x x x.答案:0 5. 若t tx P xd 11)(02⎰+=,则__________)(='x P .答案:211x+-(二)单项选择题1. 下列函数中,( )是x sin x 2的原函数. A .21cos x 2 B .2cos x 2 C .-2cos x 2 D .-21cos x 2 答案:D2. 下列等式成立的是( ).A .)d(cos d sin x x x =B .)1d(d ln xx x =C .)d(22ln 1d 2x xx =D .x x xd d 1=答案:C3. 下列不定积分中,常用分部积分法计算的是( ). A .⎰+x x c 1)d os(2, B .⎰-x x x d 12C .⎰x x x d 2sin D .⎰+x x xd 12答案:C4. 下列定积分计算正确的是( ). A .2d 211=⎰-x x B .15d 161=⎰-xC .0)d (32=+⎰-x x xππ D .0d sin =⎰-x x ππ答案:D5. 下列无穷积分中收敛的是( ).A .⎰∞+1d 1x x B .⎰∞+12d 1x xC .⎰∞+0d e x xD .⎰∞+1d sin x x 答案:B(三)解答题1.计算下列不定积分(1)⎰x x xd e3答案:⎰x x xd e 3=⎰x d )e 3x (=c x x +e3ln e 3(2)⎰+x xx d )1(2答案:⎰+x xx d 2)1(=⎰++x x x x d )21(2=⎰++-x )d x 2x (x 232121=c x x x +++252352342(3)⎰+-x x x d 242 答案:⎰+-x x x d 242=⎰x 2)d -(x =c x x +-2212 (4)⎰-x x d 211答案:⎰-x x d 211=)21121⎰--x x2-d(1=c x +--21ln 21(5)⎰+x x x d 22答案:⎰+x x x d 22=)212⎰++x x d(222=c x ++232)2(31(6)⎰x xx d sin答案:⎰x xx d sin =⎰x d x sin 2=c x +-cos 2(7)⎰x xx d 2sin答案:⎰x xx d 2sin=⎰-x x xdco d 2s 2 =+-2cos2x x ⎰x x co d 2s 2=c xx x ++-2sin 42cos 2(8)⎰+x x 1)d ln( 答案:⎰+x x 1)d ln(=⎰++)1x x 1)d(ln(=-++)1ln()1(x x ⎰++1)1)dln((x x =c x x x +-++)1ln()1(2.计算下列定积分 (1)x x d 121⎰-- 答案:x x d 121⎰--=x x d ⎰--11)1(+x x d ⎰-21)1(=212112)21()21(x x x x -+--=25(2)x x xd e2121⎰答案:x x xd e 2121⎰=xe x 1211d ⎰-=211x e -=e e -(3)x xx d ln 113e 1⎰+答案:x xx d ln 113e 1⎰+=)ln 1131x xln d(1e ++⎰=2(3121)ln 1e x +=2(4)x x x d 2cos 20⎰π答案:x x x d 2cos 20⎰π=⎰202sin 21πx xd =⎰-20202sin 212sin 21ππxdx x x =21- (5)x x x d ln e1⎰答案:x x x d ln e1⎰=21ln 21x x d e ⎰=⎰-e 1212ln ln 21x d x x x e=)1e (412+ (6)x x x d )e 1(4⎰-+ 提示:课堂已讲评答案:5—5e —4作业三(一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:3 2.设B A ,均为3阶矩阵,且3-==B A ,则T AB 2-=________. 答案:72-3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 .答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵X BX A =+的解______________=X . 答案:A B I 1)(--5. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( ).A .若B A ,均为零矩阵,则有B A =B .若AC AB =,且O A ≠,则C B =C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠答案C2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( )矩阵. A .42⨯ B .24⨯C .53⨯D .35⨯ 答案A3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ). ` A .111)(---+=+B A B A , B .111)(---⋅=⋅B A B AC .BA AB =D .BA AB = 答案C 4. 下列矩阵可逆的是( ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101C .⎥⎦⎤⎢⎣⎡0011D .⎥⎦⎤⎢⎣⎡2211 答案A5. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=431102111A 的秩是( ). A .0 B .1 C .2 D .3 答案C三、解答题 1.计算 (1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321 (2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000 (3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321 解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。