2020届中考数学试题分类汇编:基本作图(含精析)

合集下载

2020届中考数学总复习(23)尺规作图-精练精析(2)及答案解析

2020届中考数学总复习(23)尺规作图-精练精析(2)及答案解析

图形的性质——尺规作图2一.选择题(共9小题)1.用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A.边边边B.边角边C.角边角D.角角边2.下列作图语句正确的是()A.延长线段AB到C,使AB=BC B.延长射线ABC.过点A作AB∥CD∥EF D.作∠AOB的平分线OC3.下列语句()正确.A.射线比直线短一半B.延长AB到CC.两点间的线叫做线段D.经过三点A,B,C不一定能画出直线来4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP 并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线②∠ADC=60°③点D在AB的垂直平分线上④AB=2AC.A.1 B.2 C.3 D.45.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据图形全等的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.ASA D.AAS6.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=x B.y=﹣2x﹣1 C.y=2x﹣1 D.y=1﹣2x7.如图,已知线段AB,分别以点A、点B为圆心,以大于AB的长为半径画弧,两弧交于点C和点D,作直线CD,在CD上取两点P、M,连接PA、PB、MA、MB,则下列结论一定正确的是()A.PA=MA B.MA=PE C.PE=BE D.PA=PB8.如图,已知∠AOB,按照以下步骤画图:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M、N为圆心,大于MN的长半径画弧,两弧在∠AOB内部相交于点C.(3)作射线OC.则判断△OMC≌△ONC的依据是()A.SAS B.SSS C.ASA D.AAS9.如图,七年级(下)教材第4页给出了利用三角尺和直尺画平行线的一种方法,能说明AB∥DE的条件是()A.∠CAB=∠FDE B.∠ACB=∠DFE C.∠ABC=∠DEF D.∠BCD=∠EFG二.填空题(共6小题)10.∠AOB如图所示,请用直尺和圆规作出∠AOB的平分线(要求保留作图痕迹,不写作法)._________11.如图,点A是直线l外一点,在l上取点B、C.按下列步骤作图:分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D.则四点A、B、C、D可组成的图形是_________ .12.如图,是格点(横、纵坐标都为整数的点)三角形,请在图中画出与全等的一个格点三角形.13.在如图所示的方格纸上过点P画直线AB的平行线.14.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出_________ 个.15.如图,网格中有△ABC和点D,请你找出另外两点E、F,在图中画出△DEF,使△ABC≌△DEF,且顶点A、B、C分别与D、E、F对应.三.解答题(共6小题)16.如图,△ABC中,AB=AC,∠A=36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC)(1)在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是_________ 度和_________ 度;(2)在图2中画2条线段,使图中有4个等腰三角形;(3)继续按以上操作发现:在△ABC中画n条线段,则图中有_________ 个等腰三角形,其中有_________ 个黄金等腰三角形.17.如图,Rt△ABC的直角边BC=8,AC=6(1)用尺规作图作AB的垂直平分线l,垂足为D,(保留作图痕迹,不要求写作法、证明);(2)连结D、C两点,求CD的长度.18.如图①,将一张直角三角形纸片△ABC折叠,使点A与点C重合,这时DE为折痕,△CBE 为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.(1)如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕;(2)如图③,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A 在格点上,且△ABC折成的“叠加矩形”为正方形;(3)若一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是什么?19.如图,在△ABC中,AB=AC,AD⊥BC,AE∥BC.(1)作∠ADC的平分线DF,与AE交于点F;(用尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=2,求DF的长.20.如图,已知矩形OABC的A点在x轴上,C点在y轴上,OC=6,OA=10.(1)在BC边上求作一点E,使OE=OA;(保留作图痕迹,不写画法)(2)求出点E的坐标.21.如图,在△ABC中,BC=AC,且CD∥AB,设△ABC的外心为O.(1)用尺规作出△ABC的外接圆O.(不写作法,保留痕迹)(2)在(1)中,连接OC,并证明OC是AB的中垂线;(3)直线CD与⊙O有何位置关系,试证明你的结论.图形的性质——尺规作图2参考答案与试题解析一.选择题(共9小题)1.用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A.边边边B边角边C角边角D.角角边考点:作图—基本作图;全等三角形的判定.专题:压轴题.分析:通过分析作图的步骤,发现△OCD与△O′C′D′的三条边分别对应相等,于是利用边边边,判定△OCD≌△O′C′D′,根据全等三角形对应角相等得出∠A′O′B′=∠AOB.解答:解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②作射线O′B′,以O′为圆心,OC长为半径画弧,交O′B′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′A′.所以∠A′O′B′就是与∠AOB相等的角.在△O′C′D′与△OCD中,,∴△O′C′D′≌△OCD(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是边边边.故选A.点评:此题是一道综合题,不但考查了学生对作图方法的掌握,也是对全等三角形的判定的方法的考查.2.下列作图语句正确的是()A.延长线段AB到C,使AB=BC B.延长射线ABC.过点A作AB∥CD∥EF D.作∠AOB的平分线OC考点:作图—尺规作图的定义.分析:根据基本作图的方法,逐项分析,从而得出正确的结论.解答:解:A、应为:延长线段AB到C,BC=AB,故本选项错误;B、射线本身是无限延伸的,不能延长,故本选项错误;C、过点A作只能作CD或EF的平行线,CD不一定平行于EF,故本选项错误;D、作∠AOB的平分线OC,正确.故选D.点评:此题主要考查图形中延长线、平行线、角平分线的画法,是基本题型,特别是A选项,应该是作出的等于原来的,顺序不能颠倒.3.下列语句()正确.A.射线比直线短一半B.延长AB到CC.两点间的线叫做线段D.经过三点A,B,C不一定能画出直线来考点:作图—尺规作图的定义.专题:推理填空题.分析:根据直线、射线、线段有关知识,对每个选项注意判断得出正确选项.解答:解:A、直线和射线都没有长短,所以射线比直线短一半错误,故本选项错误;B、延长AB到C,正确的说法是延长线段AB到C,故本选项错误;C、两点间的线叫做线段,不符合线段的定义,故本选项错误;D、若三点A,B,C在一条直线上,则经过三点A,B,C能画出直线来;若三点A,B,C不在一条直线上,则经过三点A,B,C不能画出直线来.所以说经过三点A,B,C不一定能画出直线来,故本选项正确.故选:D.点评:此题考查的知识点是作图﹣﹣尺规作图的定义,熟练掌握概念是解题的关键.4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP 并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线②∠ADC=60°③点D在AB的垂直平分线上④AB=2AC.A. 1 B.2 C.3 D.4考点:作图—基本作图.分析:根据角平分线的做法可得①正确,再根据三角形内角和定理和外角与内角的关系可得∠ADC=60°,再根据线段垂直平分线的性质逆定理可得③正确.根据直角三角形中30°角所对的直角边等于斜边的一半可得④正确.解答:解:①AD是∠BAC的平分线,说法正确;②∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠DAB=30°,∴∠ADC=30°+30°=60°,因此∠ADC=60°正确;③∵∠DAB=30°,∠B=30°,∴AD=BD,∴点D在AB的中垂线上,故③说法正确,④∵∠C=90°,∠B=30°,∴AB=2AC,故选:D.点评:此题主要考查了角平分线的做法以及垂直平分线的性质,熟练根据角平分线的性质得出∠ADC度数是解题关键.5.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据图形全等的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.ASA D.A AS考点:作图—基本作图;全等三角形的判定.分析:根据作图过程可知O′C′=OC,O′D′=OD,C′D′=CD,所以运用的是三边对应相等,两三角形全等作为依据.解答:解:根据作图过程可知O′C′=OC,O′D′=OD,C′D′=CD,在△OCD与△O′C′D′中,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB.故选:A.点评:本题考查基本作图“作一个角等于已知角”的相关知识,其理论依据是三角形全等的判定“边边边”定理和全等三角形对应角相等.从作法中找已知,根据已知条件选择判定方法.6.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=x B.y=﹣2x﹣1 C.y=2x﹣1 D.y=1﹣2x考点:作图—基本作图;坐标与图形性质.分析:根据角平分线的性质以及第二象限点的坐标特点,进而得出答案.解答:解:由题意可得出:P点在第二象限的角平分线上,∵点P的坐标为(2x,y+1),∴2x=﹣(y+1),∴y=﹣2x﹣1.故选:B.点评:此题主要考查了角平分线的性质以及坐标与图形的性质,得出P点位置是解题关键.7.如图,已知线段AB,分别以点A、点B为圆心,以大于AB的长为半径画弧,两弧交于点C和点D,作直线CD,在CD上取两点P、M,连接PA、PB、MA、MB,则下列结论一定正确的是()A.PA=MA B.MA=PE C.PE=BE D.P A=PB考点:作图—基本作图;线段垂直平分线的性质.分析:根据作图的过程可知PD是线段AB的垂直平分线,利用垂直平分线的性质即可得到问题的选项.解答:解:由题意可知:PD是线段AB的垂直平分线,所以PA=PB,故选D.点评:本题考查了基本作图﹣作已知线段的垂直平分线以及考查了线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离线段.8.如图,已知∠AOB,按照以下步骤画图:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M、N为圆心,大于MN的长半径画弧,两弧在∠AOB内部相交于点C.(3)作射线OC.则判断△OMC≌△ONC的依据是()A.SAS B.SSS C.ASA D.A AS考点:作图—基本作图;全等三角形的判定.分析:根据角平分线的作图方法解答.解答:解:根据角平分线的作法可知,OM=ON,CM=CN,又∵OC是公共边,∴△OMC≌△ONC的根据是“SSS”.故选:B.点评:本题考查了全等三角形的判定,熟悉角平分线的作法,找出相等的条件是解题的关键.9.如图,七年级(下)教材第4页给出了利用三角尺和直尺画平行线的一种方法,能说明AB∥DE的条件是()A.∠CAB=∠FDE B.∠ACB=∠DFE C.∠ABC=∠DEF D.∠BCD=∠EFG考点:作图—基本作图;平行线的判定.分析:根据同位角相等,两直线平行可得,∠CAB=∠FDE可以说明AB∥DE.解答:解:利用三角尺和直尺画平行线,实际就是画∠CAB=∠FDE,故答案为:A.点评:此题主要考查了画平行线的方法,关键是掌握平行线的判定定理:同位角相等,两直线平行.二.填空题(共6小题)10.∠AOB如图所示,请用直尺和圆规作出∠AOB的平分线(要求保留作图痕迹,不写作法).参见解答考点:作图—基本作图.分析:∵只要在OB上取C,以O为圆心,OC为半径画圆,交OA于点D,连接CD,再分别以大于CD为半径,C,D,为圆心画圆,两圆相交于P,D,连接OP,则OP即为∠AOB 的平分线.解答:解:作法如下:(1)在OB上取C,以O为圆心,OC为半径画圆,交OA于点D,连接CD;(2)再分别以大于CD为半径,C,D,为圆心画圆,两圆相交于P,D,连接OP,则OP即为∠AOB的平分线.点评:本题考查了运用三角形全等的判定与性质,结合圆的性质作等角的方法,需同学们熟练掌握.11.如图,点A是直线l外一点,在l上取点B、C.按下列步骤作图:分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D.则四点A、B、C、D可组成的图形是平行四边形或梯形.考点:作图—复杂作图.分析:根据题意画出图形,可得两弧有两个交点,连接可得答案.解答:解:如图所示:,四点A、B、C、D可组成的图形是平行四边形或梯形.故答案为:平行四边形或梯形.点评:此题主要考查了复杂作图,关键是根据题意画出图形,找到D点位置.12.如图,是格点(横、纵坐标都为整数的点)三角形,请在图中画出与全等的一个格点三角形.考点:作图—复杂作图.专题:作图题.分析:本题答案不唯一,最简单的方法就是从点B所以在的纵坐标找一点,作BC 的平行线,且长度相等,然后再作AB的平行线且长度相等,最后连接,构成三角形.解答:解:点评:本题主要考查了利用网格画图的能力.13.在如图所示的方格纸上过点P画直线AB的平行线.考点:作图—基本作图.专题:网格型.分析:由题意可知应根据小正方形的格数及勾股定理作图,只要在直线找点A,B,D,P使其连接起来构成平行四边形即可.解答:解:作图如下:(1)连接PA,假设图中每个小方格的边长为1,则AP==,AB==;(2)找点D,使得AP=BD,AP∥BD,连接DP,即可.点评:本题考查的是平行四边形的性质,勾股定理的运用,利用图中每个小格的边长相等作图.14.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出 4 个.考点:作图—复杂作图.分析:能画4个,分别是:以D为圆心,AB为半径画圆;以E为圆心,AC为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.因此最多能画出4个解答:解:如图,可以作出这样的三角形4个.点评:本题考查了学生利用基本作图来做三角形的能力.15.如图,网格中有△ABC和点D,请你找出另外两点E、F,在图中画出△DEF,使△ABC≌△DEF,且顶点A、B、C分别与D、E、F对应.考点:作图—复杂作图;全等三角形的性质;勾股定理.分析:若是三边对应相等的两个三角形互为全等三角形,根据此可画出图.解答:解:从图上可看出两个三角形的三条边对应相等.所以△DEF即为所求.点评:本题考查全等三角形的性质,三边对应相等,以及在表格中如何画出全等的三角形.三.解答题(共6小题)16.如图,△ABC中,AB=AC,∠A=36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC)(1)在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是108 度和36 度;(2)在图2中画2条线段,使图中有4个等腰三角形;(3)继续按以上操作发现:在△ABC中画n条线段,则图中有2n 个等腰三角形,其中有n 个黄金等腰三角形.考点:作图—应用与设计作图;黄金分割.专题:作图题;探究型.分析:(1)利用等腰三角形的性质以及∠A的度数,进而得出这2个等腰三角形的顶角度数;(2)利用(1)种思路进而得出符合题意的图形;(3)利用当1条直线可得到2个等腰三角形;当2条直线可得到4个等腰三角形;当3条直线可得到6个等腰三角形,进而得出规律求出答案.解答:解:(1)如图1所示:∵AB=AC,∠A=36°,∴当AE=BE,则∠A=∠ABE=36°,则∠AEB=108°,则∠EBC=36°,∴这2个等腰三角形的顶角度数分别是108度和36度;故答案为:108,36;(2)如图2所示:(3)如图3所示:当1条直线可得到2个等腰三角形;当2条直线可得到4个等腰三角形;当3条直线可得到6个等腰三角形;…∴在△ABC中画n条线段,则图中有2n个等腰三角形,其中有n个黄金等腰三角形.故答案为:2n,n.点评:此题主要考查了应用作图与设计以及等腰三角形的性质,得出分割图形的规律是解题关键.17.如图,Rt△ABC的直角边BC=8,AC=6(1)用尺规作图作AB的垂直平分线l,垂足为D,(保留作图痕迹,不要求写作法、证明);(2)连结D、C两点,求CD的长度.考点:作图—基本作图;线段垂直平分线的性质;直角三角形斜边上的中线.分析:(1)根据垂直平分线的作法得出答案即可;(2)根据垂直平分线的性质以及直角三角形的性质得出AB进而得出CD即可.解答:解;(1)如图.直线DE即为所求作的图形.(2)连接CD,∵DE是AB的垂直平分线,∠C=90°,∴AD=B D=CD,∵AC=6,BC=8,∴AB=10,∴CD是Rt△ABC斜边上的中线等于斜边的一半,∴CD=5.点评:此题主要考查了垂直平分线的作法以及直角三角形的性质,根据Rt△ABC斜边上的中线等于斜边的一半得出是解题关键.18.如图①,将一张直角三角形纸片△ABC折叠,使点A与点C重合,这时DE为折痕,△CBE 为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.(1)如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕;(2)如图③,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A 在格点上,且△ABC折成的“叠加矩形”为正方形;(3)若一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是什么?考点:作图—应用与设计作图.专题:新定义;开放型.分析:(1)应先在三角形的格点中找一个矩形,折叠即可;(2)根据正方形的边长应等于底边及底边上高的一半可得所求三角形的底边与高相等;(3)由(2)可得相应结论.解答:解:(1);(2);(3)由(2)可得,若一个三角形所折成的“叠加矩形”为正方形,那么三角形的一边长与该边上的高相等的直角三角形或锐角三角形.点评:解决本题的关键是得到相应矩形的边长等于所给三角形的底边与底边上的高的一半的关系.19.如图,在△ABC中,AB=AC,AD⊥BC,AE∥BC.(1)作∠ADC的平分线DF,与AE交于点F;(用尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=2,求DF的长.考点:作图—基本作图;等腰三角形的性质;勾股定理.分析:(1)利用角平分线的作法得出DF即可;(2)首先得出∠DAF=90°,即可得出∠ADF=45°,进而利用勾股定理求出即可.解答:解:(1)如图所示,DF就是所求作;(2)∵AD⊥BC,AE∥BC,∴∠DAF=90°,又∵DF平分∠ADC,∴∠ADF=45°,∴AD=AF,.点评:此题主要考查了基本作图以及等腰三角形的性质和勾股定理等知识,熟练掌握角平分线的做法是解题关键.20.如图,已知矩形OABC的A点在x轴上,C点在y轴上,OC=6,OA=10.(1)在BC边上求作一点E,使OE=OA;(保留作图痕迹,不写画法)(2)求出点E的坐标.考点:作图—复杂作图;坐标与图形性质;勾股定理;矩形的性质.分析:(1)利用EO=AO,以O为圆心AO为半径画弧得出E即可;(2)首先过点E作EF⊥OA,垂足为F,得出B点坐标,进而求出FO的长,即可得出E点坐标.解答:解:(1)如图所示:E点即为所求;(2)过点E作EF⊥OA,垂足为F.∵矩形OABC中OC=6,OA=10,∴B点坐标为(10,6).∴E F=6.又∵OE=OA,∴OF==8.∴点E的坐标为(8,6).点评:此题主要考查了基本作图以及勾股定理和矩形的性质,得出B点坐标是解题关键.21.(如图,在△ABC中,BC=AC,且CD∥AB,设△ABC的外心为O.(1)用尺规作出△ABC的外接圆O.(不写作法,保留痕迹)(2)在(1)中,连接OC,并证明OC是AB的中垂线;(3)直线CD与⊙O有何位置关系,试证明你的结论.考点:作图—复杂作图;线段垂直平分线的性质;直线与圆的位置关系.分析:(1)首先作出三角形两边的中垂线进而得出圆心求出△ABC的外接圆O;(2)利用等腰三角形的性质得出答案即可;(3)利用切线的判定方法求出∠OCG=90°,进而得出答案.解答:解:(1)如图所示:(2)方法一:连接BO、CO、OA,∵OB=OA,AC=BC,∴OC是AB的中垂线;方法二:在⊙O中,∵AC=BC,∴=,∴∠BOC=∠AOC,∵OB=OA,1 ∴OC是AB的中垂线;(3)直线CD与⊙O相切,证明:∵CD∥AB,CO是AB的垂线,∴∠OCG=90°,∴直线CD与⊙O相切.点评:此题主要考查了切线的判定与性质以及三角形外接圆的作法等知识,熟练掌握等腰三角形的性质是解题关键.2。

2020年中考数学试题分类汇编之十七 尺规作图 含解析

2020年中考数学试题分类汇编之十七 尺规作图 含解析

2020年中考数学试题分类汇编之十七尺规作图一、选择题1.(2020河北)如图1,已知ABC ∠,用尺规作它的角平分线.如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ; 第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ; 第三步:画射线BP .射线BP 即为所求.下列正确的是( )A. a ,b 均无限制B. 0a >,12b DE >的长 C. a 有最小限制,b 无限制D. 0a ≥,12b DE <的长 【答案】B 【详解】第一步:以B 为圆心,适当长为半径画弧,分别交射线BA ,BC 于点D ,E ; ∴0a >;第二步:分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在ABC ∠内部交于点P ; ∴12b DE >的长; 第三步:画射线BP .射线BP 即为所求.综上,答案为:0a >;12b DE >的长, 故选:B .2.(2020河南).如图,在ABC ∆中,30AB BC BAC ==∠=︒ ,分别以点,A C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接,,DA DC 则四边形ABCD 的面积为( )A. B. 9 C. 6 D.【答案】D【解析】【分析】 连接BD 交AC 于O ,由已知得△ACD 为等边三角形且BD 是AC 的垂直平分线,然后解直角三角形解得AC 、BO 、BD 的值,进而代入三角形面积公式即可求解.【详解】连接BD 交AC 于O ,由作图过程知,AD=AC=CD ,∴△ACD 为等边三角形,∴∠DAC=60º,∵AB=BC,AD=CD ,∴BD 垂直平分AC 即:BD ⊥AC ,AO=OC ,在Rt △AOB 中,30AB BAC =∠=︒∴BO=AB ·sin30º AO=AB ·cos30º=32,AC=2AO=3, 在Rt △AOD 中,AD=AC=3,∠DAC=60º,∴DO=AD ·sin60º,∴ABC ADC ABCD S S S ∆∆=+四边形=113322⨯⨯= 故选:D .3.(2020贵阳)如图,Rt ABC ∆中,90C ∠=︒,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE BD =;分别以D ,E 为圆心、以大于12DE 为长的半径作弧,两弧在CBA ∠内交于点F ;作射线BF 交AC 于点G ,若1CG =,P 为AB 上一动点,则GP 的最小值为( )A. 无法确定B. 12C. 1D. 2【答案】C【详解】解:由题意可知,当GP⊥AB时,GP的值最小,根据尺规作图的方法可知,GB是∠ABC的角平分线,∵∠C=90°,∴当GP⊥AB时,GP=CG=1,故答案为:C.4.(2020广西南宁)(3分)如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为()A.60°B.65°C.70°D.75°【分析】根据等腰三角形的性质可得∠ACB的度数,观察作图过程可得,进而可得∠DCE 的度数.【解答】解:∵BA=BC,∠B=80°,∴∠A=∠ACB=(180°﹣80°)=50°,∴∠ACD=180°﹣∠ACB=130°,观察作图过程可知:CE平分∠ACD,∴∠DCE=ACD=65°,∴∠DCE的度数为65°故选:B.二、填空题∆的顶点A,C均落在格5.(2020天津)如图,在每个小正方形的边长为1的网格中,ABC点上,点B在网格线上,且5AB=.3(I )线段AC 的长等于______;(II )以BC 为直径的半圆与边AC 相交于点D ,若P ,Q 分别为边AC ,BC 上的动点,当BP PQ +取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点P ,Q ,并简要说明点P ,Q 的位置是如何找到的(不要求证明)_______.答案)如图,取格点M ,N ,连接MN ,连接BD 并延长,与MN 相交于点B ';连接B C ',与半圆相交于点E ,连接BE ,与AC 相交于点P ,连接B P '并延长,与BC 相交于点Q ,则点P ,Q 即为所求.6.(2020苏州).如图,已知MON ∠是一个锐角,以点O 为圆心,任意长为半径画弧,分别交OM 、ON 于点A 、B ,再分别以点A 、B 为圆心,大于12AB 长为半径画弧,两弧交于点C ,画射线OC .过点A 作AD ON ,交射线OC 于点D ,过点D 作DE OC ⊥,交ON 于点E .设10OA =,12DE =,则sin MON ∠=________.【详解】连接AB 交OD 于点H ,过点A 作AG ⊥ON 于点G ,由尺规作图步骤,可得:OD 是∠MON 的平分线,OA=OB ,∴OH ⊥AB ,AH=BH ,∵DE OC ⊥,∴DE ∥AB ,∵AD ON ,∴四边形ABED 是平行四边形,∴AB=DE=12,∴AH=6,∴8==,∵OB ·AG=AB ·OH ,∴AG=AB OH OB ⋅=12810⨯=485, ∴sin MON ∠=AG OA =2425. 故答案是:2425.7.(2020新疆生产建设兵团)(5分)如图,在x 轴,y 轴上分别截取OA ,OB ,使OA =OB ,再分别以点A ,B 为圆心,以大于12AB 长为半径画弧,两弧交于点P .若点P 的坐标为(a ,2a ﹣3),则a 的值为 3 .【分析】根据作图方法可知点P在∠BOA的角平分线上,由角平分线的性质可知点P到x轴和y轴的距离相等,结合点P在第一象限,可得关于a的方程,求解即可.AB长为半径画弧,两弧交于【解答】解:∵OA=OB,分别以点A,B为圆心,以大于12点P,∴点P在∠BOA的角平分线上,∴点P到x轴和y轴的距离相等,又∵点P在第一象限,点P的坐标为(a,2a﹣3),∴a=2a﹣3,∴a=3.故答案为:3.8.(2020辽宁抚顺)(3分)如图,在Rt△ABC中,∠ACB=90°,AC=2BC,分别以点A 和B为圆心,以大于AB的长为半径作弧,两弧相交于点M和N,作直线MN,交AC 于点E,连接BE,若CE=3,则BE的长为 5 .9.(2020宁夏)(3分)如图,在△ABC中,∠C=84°,分别以点A、B为圆心,以大于AB的长为半径画弧,两弧分别交于点M、N,作直线MN交AC点D;以点B为圆心,适当长为半径画弧,分别交BA、BC于点E、F,再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线BP,此时射线BP恰好经过点D,则∠A=32 度.三、解答题10.(2020北京)已知:如图,△ABC为锐角三角形,AB=BC,CD∥AB.求作:线段BP,使得点P在直线CD上,且∠ABP=12BAC .作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP 就是所求作线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹)(2)完成下面的证明.证明:∵CD∥AB,∴∠ABP= .∵AB=AC,∴点B在⊙A上.又∵∠BPC=12∠BAC()(填推理依据)∴∠ABP=12∠BAC【解析】(1)如图所示(2)∠BPC ;在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半。

全国2020年中考数学试题精选50题图形的初步认识与三角形含解析

全国2020年中考数学试题精选50题图形的初步认识与三角形含解析
班C.2
D.2$
15.(2020•丹东)如图,C。是的角平分线,过点6作BDfLK:交CO延长线于点。,若ZJ = 45°, N/OD = 80。,则NC5D的度数为()
A.100°B.110°
C. 125°
D. 1350
4
16. (2020•朝阳)如图,在平而直角坐标系中,一次函数y=的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形且点C在反比例函数 片号。<0)的图象上,则k的值为( )
二、填空题
31.(2020•徐州)在中,若A5=6,^ACB =4-5°,则的面积的最大值为.
32.(2020•徐州)如图,在KJL4C中,NC = 90°,AC= 4,3c= 3,若以4C所在直线为轴, 把旋转一周,得到一个圆锥,则这个圆锥的侧面积等于.
33.(2020•徐州)如图,在 放」上5c中,NWffC = 90。,。、E、方分别为H5、BC、CM的 中点,若5广=5,则DE=.
7T
,3
71
生D至
3D.4
12.(2020•锦州)如图,在菱形中,P是对角线XC上一动点,过点P作尸巨_L 3c于点E.
尸产仍于点F.若菱形dBCD的周长为20,面积为24,则尸E +?F的值为( )
B.
C.
D.
ZJ = 3O°,/8=50。,8平分S则Z.WC
B.90°
C.100°
D.110°
14. (2020•丹东)如图,在四边形一通。>中,ABHCD, AB=CD,/汇=60。,,山=84.分别以5和。为圆心,以大于由3C的长为半径作弧,两弧相交于点P和Q,直线产。与8M延长线
2.【答案】B
【解析】【解答】解:长120cm的木条与三角形木架的最长边相等,则长120cm的木条不能作为一边, 设从120cm的木条上截下两段长分别为xcm, ycm (x+y<120),由于长60cm的木条不能与75cm的一边对应,否则x、y有大于120cm,

云南省2020年中考数学试题及详细解析

云南省2020年中考数学试题及详细解析

云南省2020年中考数学试题(答案及详细解析从第7页开始)一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为 吨.2.(3分)如图,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2= 度.3.(3分)要使有意义,则x的取值范围是 .4.(3分)已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(﹣1,m),则m= .5.(3分)若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为 .6.(3分)已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB =6,AC=2,则DE的长是 .二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分) 7.(4分)千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为( )A.15×106 B.1.5×105 C.1.5×106 D.1.5×1078.(4分)下列几何体中,主视图是长方形的是( )A. B.C. D.9.(4分)下列运算正确的是( )A.=±2 B.()﹣1=﹣2C.(﹣3a)3=﹣9a3 D.a6÷a3=a3(a≠0)10.(4分)下列说法正确的是( )A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s 甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定 D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖11.(4分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO与△BCD的面积的比等于( )A. B. C. D.12.(4分)按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是( )A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a13.(4分)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是( )A . B.1 C . D .14.(4分)若整数a使关于x 的不等式组,有且只有45个整数解,且使关于y 的方程+=1的解为非正数,则a的值为( )A.﹣61或﹣58 B.﹣61或﹣59C.﹣60或﹣59 D.﹣61或﹣60或﹣59三、解答题(本大题共9小题,共70分)15.(6分)先化简,再求值:÷,其中x =.16.(6分)如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.17.(8分)某公司员工的月工资如下:员工 经理 副经理 职员A职员B职员C职员D职员E职员F 杂工G 月工资/元7000 4400 2400 2000 1900 1800 1800 1800 1200经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k= ,m= ,n= ;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是 . 18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB. (1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB =,求AB的长.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:A地(元/辆) B地(元/辆)目的地车型大货车 900 1000小货车 500 700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,垂足为E,点F在AD的延长线上,CF⊥AD,重足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.23.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F 的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.云南省2020年中考数学试题答案及详细解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为 ﹣8吨.【分析】根据正负数的意义,直接写出答案即可.【解答】解:因为题目运进记为正,那么运出记为负.所以运出面粉8吨应记为﹣8吨.故答案为:﹣8.【点评】本题考查了正数和负数.根据互为相反意义的量,确定运出的符号是解决本题的关键.2.(3分)如图,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2= 54度.【分析】直接利用平行线的性质:两直线平行,同位角相等,即可得出答案.【解答】解:∵a∥b,∠1=54°,∴∠2=∠1=54°.故答案为:54.【点评】此题主要考查了平行线的性质,正确掌握平行线的基本性质是解题关键.3.(3分)要使有意义,则x的取值范围是 x≥2.【分析】根据二次根式有意义的条件得到x﹣2≥0,然后解不等式即可.【解答】解:∵有意义,∴x﹣2≥0,∴x≥2.故答案为x≥2.【点评】本题考查了二次根式有意义的条件:二次根式有意义的条件为被开方数为非负数,即当a≥0时有意义;若含分母,则分母不能为0.4.(3分)已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(﹣1,m),则m= ﹣3.【分析】设反比例函数的表达式为y=,依据反比例函数的图象经过点(3,1)和(﹣1,m),即可得到k=3×1=﹣m,进而得出m=﹣3.【解答】解:设反比例函数的表达式为y=,∵反比例函数的图象经过点(3,1)和(﹣1,m),∴k=3×1=﹣m,解得m=﹣3,故答案为:﹣3.【点评】本题主要考查了反比例函数图象上点的坐标特征,解题时注意:反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.5.(3分)若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为 1. 【分析】若一元二次方程有两个相等的实数根,则根的判别式△=b2﹣4ac=0,建立关于c的方程,求出c的值即可.【解答】解:∵关于x的一元二次方程x2+2x+c=0有两个相等的实数根,∴△=b2﹣4ac=22﹣4c=0,解得c=1.故答案为1.【点评】此题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.(3分)已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB =6,AC=2,则DE的长是 或.【分析】由勾股定理可求BC=2,分点E在CD上或在AB上两种情况讨论,由勾股定理可求解.【解答】解:如图,∵四边形ABCD是矩形,∴CD=AB=6,AD=BC,∠ABC=∠ADC=90°,∴BC===2,∴AD=2,当点E在CD上时,∵AE2=DE2+AD2=EC2,∴(6﹣DE)2=DE2+4,∴DE=;当点E在AB上时,∵CE2=BE2+BC2=EA2,∴AE2=(6﹣AE)2+4,∴AE=,∴DE===,综上所述:DE=或,故答案为:或.【点评】本题考查了矩形的性质,勾股定理,利用分类讨论思想解决问题是本题的关键. 二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分) 7.(4分)千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为( )A.15×106 B.1.5×105 C.1.5×106 D.1.5×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1500000=1.5×106,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(4分)下列几何体中,主视图是长方形的是( )A. B.C. D.【分析】根据各个几何体的主视图的形状进行判断即可.【解答】解:圆柱体的主视图是长方形,圆锥的主视图是等腰三角形,球的主视图是圆形,四面体的主视图是三角形,故选:A.【点评】本题考查简单几何体的三视图,主视图就是从正面看该物体所得到的图形. 9.(4分)下列运算正确的是( )A.=±2 B.()﹣1=﹣2C.(﹣3a)3=﹣9a3 D.a6÷a3=a3(a≠0)【分析】根据二次根式的性质,负整数指数幂法则,幂的性质进行解答便可.【解答】解:A.,选项错误;B.原式=2,选项错误;C.原式=﹣27a3,选项错误;D.原式=a6﹣3=a3,选项正确.故选:D.【点评】本题主要考查了二次根式的性质,负整数指数幂的运算法则,幂的运算法则,关键是熟记性质和法则.10.(4分)下列说法正确的是( )A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s 甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定 D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖【分析】根据普查、抽查,三角形的内角和,方差和概率的意义逐项判断即可.【解答】解:了解三名学生的视力情况,由于总体数量较少,且容易操作,因此宜采取普查,因此选项A不符合题意;任意画一个三角形,其内角和是360°是不可能事件,因此选项B不符合题意;根据平均数和方差的意义可得选项C符合题意;一个抽奖活动中,中奖概率为,表示中奖的可能性为,不代表抽奖20次就有1次中奖,因此选项D不符合题意;故选:C.【点评】本题考查普查、抽查,三角形的内角和,方差和概率的意义,理解各个概念的内涵是正确判断的前提.11.(4分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO与△BCD的面积的比等于( )A. B. C. D.【分析】利用平行四边形的性质可得出点O为线段BD的中点,结合点E是CD的中点可得出线段OE为△DBC的中位线,利用三角形中位线定理可得出OE∥BC,OE=BC,进而可得出△DOE∽△DBC,再利用相似三角形的面积比等于相似比的平方,即可求出△DEO与△BCD的面积的比.【解答】解:∵平行四边形ABCD的对角线AC,BD相交于点O,∴点O为线段BD的中点.又∵点E是CD的中点,∴线段OE为△DBC的中位线,∴OE∥BC,OE=BC,∴△DOE∽△DBC,∴=()2=.故选:B.【点评】本题考查了平行四边形的性质、三角形中位线定理以及相似三角形的判定与性质,利用平行四边形的性质及三角形中位线定理,找出OE∥BC且OE=BC是解题的关键.12.(4分)按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是( )A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a【分析】根据题意,找出规律:单项式的系数为(﹣2)的幂,其指数为比序号数少1,字母为a.【解答】解:∵a=(﹣2)1﹣1a,﹣2a=(﹣2)2﹣1a,4a=(﹣2)3﹣1a,﹣8a=(﹣2)4﹣1a,16a=(﹣2)5﹣1a,﹣32a=(﹣2)6﹣1a,…由上规律可知,第n个单项式为:(﹣2)n﹣1a.故选:A.【点评】本题主要考查了单项式的有关知识,在解题时要能通过观察得出规律是本题的关键.13.(4分)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是( )A. B.1 C. D.【分析】根据圆锥的底面周长与展开后所得扇形的弧长相等列式计算即可.【解答】解:设圆椎的底面圆的半径为r,根据题意可知:AD=AE=4,∠DAE=45°,∴2πr=,解得r=.答:该圆锥的底面圆的半径是.故选:D.【点评】本题考查了圆锥的计算,解决本题的关键是掌握圆锥的底面周长与展开后所得扇形的弧长相等.14.(4分)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为( )A.﹣61或﹣58 B.﹣61或﹣59C.﹣60或﹣59 D.﹣61或﹣60或﹣59【分析】解不等式组,得<x≤25,根据不等式组有且只有45个整数解,可得﹣61≤a<﹣58,根据关于y的方程+=1的解为非正数:解得a≥﹣61,又y+1不等于0,进而可得a的值.【解答】解:解不等式组,得<x≤25,∵不等式组有且只有45个整数解,∴﹣20≤<﹣19,解得﹣61≤a<﹣58,因为关于y的方程+=1的解为:y=﹣a﹣61,y≤0,∴﹣a﹣61≤0,解得a≥﹣61,∵y+1≠0,∴y≠﹣1,∴a≠﹣60则a的值为:﹣61或﹣59.故选:B.【点评】本题考查了分式方程的解、解一元一次不等式组、一元一次不等式组的整数解,解决本题的关键是确定一元一次不等式组的整数解.三、解答题(本大题共9小题,共70分)15.(6分)先化简,再求值:÷,其中x=.【分析】原式利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值. 【解答】解:原式=÷=•=,当x=时,原式=2.【点评】本题考查分式的化简求值,掌握分式的运算法则是解题的关键.16.(6分)如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.【分析】根据SSS推出△ADB和△BCA全等,再根据全等三角形的性质得出即可. 【解答】证明:在△ADB和△BCA中,,∴△ADB≌△BCA(SSS),∴∠ADB=∠BCA.【点评】本题考查了全等三角形的判定和性质.解题的关键是掌握全等三角形的性质和判定的运用,注意:全等三角形的对应边相等,对应角相等.17.(8分)某公司员工的月工资如下:员工 经理 副经理 职员A职员B职员C职员D职员E职员F 杂工G 7000 4400 2400 2000 1900 1800 1800 1800 1200 月工资/元经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k= 2700,m= 1900,n= 1800;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是 经理或副经理 .【分析】(1)求出9个数据之和再除以总个数即可;对于中位数,按从大到小的顺序排列,找出最中间的那个数即可;出现频数最多的数据即为众数;(2)根据剩下的8名员工的月工资数据的平均数比原9名员工的月工资数据的平均数减小,得出辞职的那名员工工资高于2700元,从而得出辞职的那名员工可能是经理或副经理.【解答】解:(1)平均数k=(7000+4400+2400+2000+1900+1800×3+1200)÷9=2700, 9个数据从大到小排列后,第5个数据是1900,所以中位数m=1900,1800出现了三次,次数最多,所以众数n=1800.故答案为:2700,1900,1800;(2)由题意可知,辞职的那名员工工资高于2700元,所以辞职的那名员工可能是经理或副经理.故答案为:经理或副经理.【点评】本题考查了确定一组数据的平均数、中位数和众数的能力.平均数是指在一组数据中所有数据之和再除以数据的个数.注意找中位数的时候一定要先排好顺序,然后根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两个数的平均数.一组数据中出现次数最多的数据叫做众数. 18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?【分析】设原计划每年绿化升级改造的面积是x万平方米,则实际每年绿化升级改造的面积是2x万平方米,根据“实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务”列出方程即可求解.【解答】解:设原计划每年绿化升级改造的面积是x万平方米,则实际每年绿化升级改造的面积是2x万平方米,根据题意,得:﹣=4,解得:x=45,经检验,x=45是原分式方程的解,则2x=2×45=90.答:实际平均每年绿化升级改造的面积是90万平方米.【点评】此题考查了分式方程的应用,解答本题的关键是读懂题意,根据题意设出适当的未知数,找出等量关系,列方程求解,注意检验.19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.【分析】(1)直接用概率公式求解可得;(2)记到大理、丽江、西双版纳三个城市旅游分别为A、B、C,列表得出所有等可能结果,从中找到甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的结果数,根据概率公式求解可得.【解答】解:(1)甲家庭选择到大理旅游的概率为;(2)记到大理、丽江、西双版纳三个城市旅游分别为A、B、C,列表得:A B CA (A,A) (A,B) (A,C)B (B,A) (B,B) (B,C)C (C,A) (C,B) (C,C)由表格可知,共有9种等可能性结果,其中甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的有3种结果,所以甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率P==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率. 20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB. (1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB=,求AB的长.【分析】(1)连接OC.只要证明OC⊥DE即可解决问题;(2)连接BC,根据圆周角定理得到∠ACB=90°,根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠CAD=∠CAB,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥DE,∴OC⊥DE,∴直线CE是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ADC=∠ACB,∵AC平分∠DAB,∴∠DAC=∠CAB,∴△DAC∽△CAB,∴=,∵cos∠CAB==,∴设AC=4x,AB=5x,∴=,∴x =,∴AB =.【点评】本题考查切线的判定和性质,相似三角形的判定和性质,平行线的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:A地(元/辆) B地(元/辆)目的地车型大货车 900 1000小货车 500 700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.【分析】(1)设大货车、小货车各有x与y辆,根据题意列出方程组即可求出答案. (2)根据题中给出的等量关系即可列出y与x的函数关系.(3)先求出x的范围,然后根据y与x的函数关系式即可求出y的最小值.【解答】解:(1)设大货车、小货车各有x与y辆,由题意可知:,解得:,答:大货车、小货车各有12与8辆(2)设到A地的大货车有x辆,则到A地的小货车有(10﹣x)辆,到B地的大货车有(12﹣x)辆,到B地的小货车有(x﹣2)辆,∴y=900x+500(10﹣x)+1000(12﹣x)+700(x﹣2)=100x+15600,其中2<x<10.(3)运往A地的物资共有[15x+10(10﹣x)]吨,15x+10(10﹣x)≥140,解得:x≥8,∴8≤x<10,当x=8时,y有最小值,此时y=100×8+15600=16400元,答:总运费最小值为16400元.【点评】本题考查一次函数,解题的关键是正确求出大货车、小货车各有12与8辆,并正确列出y与x的函数关系式,本题属于中等题型.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,垂足为E,点F在AD的延长线上,CF⊥AD,重足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.【分析】(1)根据菱形的性质得到∠ABC=∠ADC=120°,根据角平分线的性质得到CE=CF,根据直角三角形的性质得到EH=FH=AC,于是得到结论;(2)根据三角形的面积公式得到AE=8,根据勾股定理得到AC==4,连接BD,则BD⊥AC,AH=AC=2,根据相似三角形的性质得到BD=2BH=2,由菱形的面积公式即可得到结论.【解答】解:(1)∵四边形ABCD是菱形,∠BAD=60°,∴∠EAC=∠F AC=30°,又∵CE⊥AB,CF⊥AD,∴CE=CF=1/2AC,∵点H为对角线AC的中点,∴EH=FH=AC,∴CE=CF=EH=FH,∴四边形CEHF是菱形;(2)∵CE⊥AB,CE=4,△ACE的面积为16,∴AE=8,∴AC==4,连接BD,则BD⊥AC,AH=AC=2,∵∠AHB=∠AEC=90°,∠BAH=∠EAC,∴△ABH∽△ACE,∴=,∴=,∴BH=,∴BD=2BH=2,∴菱形ABCD的面积=AC•BD==20.【点评】本题考查了菱形的判定和性质,直角三角形的性质,角平分线的性质,勾股定理,相似三角形的判定和性质,正确的识别图形是解题的关键.23.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F 的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.【分析】(1)把A、C点的坐标代入抛物线的解析式列出b、c的方程组,解得b、c便可;(2)连接BC与对称轴交于点F,此时△ACF的周长最小,求得BC的解析式,再求得BC与对称轴的交点坐标便可;(3)设P(m,m2﹣2m﹣3)(m>3),根据相似三角形的比例式列出m的方程解答便可. 【解答】解:(1)把A、C点的坐标代入抛物线的解析式得,,解得,;(2)连接BC,与抛物线的对称轴交于点F,连接AF,如图1,此时,AF+CF=BF+CF=BC的值最小,∵AC为定值,∴此时△AFC的周长最小,由(1)知,b=﹣2,c=﹣3,∴抛物线的解析式为:y=x2﹣2x﹣3,∴对称轴为x=1,令y=0,得y=x2﹣2x﹣3=0,解得,x=﹣1,或x=3,∴B(3,0),令x=0,得y=x2﹣2x﹣3=﹣3,∴C(0,﹣3),设直线BC的解析式为:y=kx+b(k≠0),得,解得,,∴直线BC的解析式为:y=x﹣3,当x=1时,y=x﹣3=﹣2,∴F(1,﹣2);(3)设P(m,m2﹣2m﹣3)(m>3),过P作PH⊥BC于H,过D作DG⊥BC于G,如图2,则PH=5DG,E(m,m﹣3),∴PE=m2﹣3m,DE=m﹣3,∵∠PHE=∠DGE=90°,∠PEH=∠DEG,∴△PEH∽△DEG,∴,∴,∵m=3(舍),或m=5,∴点P的坐标为P(5,12).故存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍,其P点坐标为(5,12).【点评】本题是二次函数的综合题,主要考查了待定系数法,二次函数的图象与性质,相似三角形的性质与判定,轴对称的性质应用求线段的最值,第(2)题关键是确定F点的位置,第(3)题关键在于构建相似三角形.。

2020年全国各地中考数学解析汇编31 尺规作图.doc

2020年全国各地中考数学解析汇编31 尺规作图.doc

2020年全国各地中考数学解析汇编31 尺规作图1. (2020浙江省绍兴,7,3分)如图,AD 为⊙O 直径,作⊙O 的内接正三角形ABC ,甲、乙两人的作法分别如下:对于甲、乙两人的作法,可判断( ) A.甲、乙均正确 B.甲、乙均错误 C.甲正确,乙错误 D.甲错误,乙正确【解析】将圆三等分,依次连结各等分点,即可作出圆内接正三角形 . 【答案】A【点评】本题主要考查圆内接正三角形的作法和判定以及圆的有关知识.19.(2020山东德州中考,19,8,)有公路1l 同侧、2l 异侧的两个城镇A ,B ,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A ,B 的距离必须相等,到两条公路1l ,2l 的距离也必须相等,发射塔C 应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C 的位置.(保留作图痕迹,不要求写出画法)19.【解析】分析此题的条件可知,要想到A 、B 两点的距离相等,可知点C 必在AB 的垂直平分线上;要想到两公路的距离相等,必须在两公路夹角的角平分线上.作出二者的交点即为所求.注意两公路夹角的角平分线不止一条.解:根据题意知道,点C 应满足两个条件,一是在线段AB 的垂直平分线上;二是在两条公路夹角的平分线上,所以点C 应是它们的交点.2l1AB⑴ 作两条公路夹角的平分线OD 或OE ;⑵ 作线段AB 的垂直平分线FG ;则射线OD ,OE 与直线FG 的交点1C ,2C 就是所求的位置.…………………(8分)注:本题学生能正确得出一个点的位置得6分,得出两个点的位置得8分.【点评】此题综合考查了角平分线的性质和线段垂直平分线的性质,解答此类题不要漏电所有符合条件的点,要注意在角的外部也有符合条件的点.(2)(2020贵州铜仁,19(2),5分)某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M 到广场的两个入口A 、B 的距离相等,且到广场管理处C 的距离等于A 和B 之间距离的一半,A 、B 、C 的位置如图所示,请在原图上利用尺规作图作出音乐喷泉M 的位置,(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)【分析】根据垂直平分线上的点到两个端点的距离相等,连接AB 并作AB 的垂直平分线,然后以C 点为圆心,以AB 的长度一半为圆心画弧,与垂直平分线交于一点,即为所求的点M 位置 【解析】作图1、连结AB2、作出线段AB 的垂直平分线AB1C2CFGDO1l2lE19(2)题图3、以C 点为圆心,以AB 的长度一半为圆心画弧,与垂直平分线交于一点M4、 在矩形中标出点M 的位置【点评】此题看出来图形设计作图与实际应用,本题主要利用垂直平分线的作法,属于基本作图,应牢固掌握。

2020年中考数学试题分类:尺规作图 含解析

2020年中考数学试题分类:尺规作图 含解析

2020年中考数学试题分类汇编之十七尺规作图一、选择题1.(2020河北)如图1,已知ABC ∠,用尺规作它的角平分线. 如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ; 第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ; 第三步:画射线BP .射线BP 即为所求. 下列正确的是( )A. a ,b 均无限制B. 0a >,12b DE >的长 C. a 有最小限制,b 无限制 D. 0a ≥,12b DE <的长 【答案】B【详解】第一步:以B 为圆心,适当长为半径画弧,分别交射线BA ,BC 于点D ,E ; ∴0a >;第二步:分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在ABC ∠内部交于点P ; ∴12b DE >的长; 第三步:画射线BP .射线BP 即为所求. 综上,答案为:0a >;12b DE >的长, 故选:B .2.(2020河南).如图,在ABC ∆中,30AB BC BAC ==∠=︒ ,分别以点,A C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接,,DA DC 则四边形ABCD 的面积为( )A. B. 9 C. 6D. 【答案】D 【解析】 【分析】连接BD 交AC 于O ,由已知得△ACD 为等边三角形且BD 是AC 的垂直平分线,然后解直角三角形解得AC 、BO 、BD 的值,进而代入三角形面积公式即可求解. 【详解】连接BD 交AC 于O , 由作图过程知,AD=AC=CD , ∴△ACD 为等边三角形, ∴∠DAC=60º, ∵AB=BC,AD=CD ,∴BD 垂直平分AC 即:BD ⊥AC ,AO=OC ,在Rt △AOB 中,30AB BAC =∠=︒∴BO=AB ·sin30º AO=AB ·cos30º=32,AC=2AO=3, 在Rt △AOD 中,AD=AC=3,∠DAC=60º,∴DO=AD ·sin60º=2,∴ABC ADC ABCD S S S ∆∆=+四边形=11332222⨯⨯+⨯⨯=故选:D .3.(2020贵阳)如图,Rt ABC ∆中,90C ∠=︒,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE BD =;分别以D ,E 为圆心、以大于12DE 为长的半径作弧,两弧在CBA∠内交于点F ;作射线BF 交AC 于点G ,若1CG =,P 为AB 上一动点,则GP 的最小值为( )A. 无法确定B.12C. 1D. 2【答案】C【详解】解:由题意可知,当GP∴AB 时,GP 的值最小, 根据尺规作图的方法可知,GB 是∴ABC 的角平分线, ∴∴C=90°, ∴当GP∴AB 时,GP=CG=1, 故答案为:C .4.(2020广西南宁)(3分)如图,在△ABC 中,BA =BC ,∠B =80°,观察图中尺规作图的痕迹,则∠DCE 的度数为( )A .60°B .65°C .70°D .75°【分析】根据等腰三角形的性质可得∠ACB的度数,观察作图过程可得,进而可得∠DCE 的度数.【解答】解:∵BA=BC,∠B=80°,∴∠A=∠ACB=(180°﹣80°)=50°,∴∠ACD=180°﹣∠ACB=130°,观察作图过程可知:CE平分∠ACD,∴∠DCE=ACD=65°,∴∠DCE的度数为65°故选:B.二、填空题5.(2020天津)如图,在每个小正方形的边长为1的网格中,ABC∆的顶点A,C均落在格点上,点B在网格线上,且53 AB=.(I)线段AC的长等于______;(II)以BC为直径的半圆与边AC相交于点D,若P,Q分别为边AC,BC上的动点,当BP PQ+取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点P,Q,并简要说明点P,Q的位置是如何找到的(不要求证明)_______.答案)如图,取格点M,N,连接MN,连接BD并延长,与MN相交于点B';连接B C',与半圆相交于点E,连接BE,与AC相交于点P,连接B P'并延长,与BC相交于点Q,则点P,Q即为所求.6.(2020苏州).如图,已知MON ∠是一个锐角,以点O 为圆心,任意长为半径画弧,分别交OM 、ON 于点A 、B ,再分别以点A 、B 为圆心,大于12AB 长为半径画弧,两弧交于点C ,画射线OC .过点A 作ADON ,交射线OC 于点D ,过点D 作DE OC ⊥,交ON 于点E .设10OA =,12DE =,则sin MON ∠=________.【详解】连接AB 交OD 于点H ,过点A 作AG∴ON 于点G , 由尺规作图步骤,可得:OD 是∴MON 的平分线,OA=OB , ∴OH∴AB ,AH=BH , ∴DE OC ⊥, ∴DE∴AB , ∴ADON ,∴四边形ABED 是平行四边形, ∴AB=DE=12, ∴AH=6,8==,∴OB∙AG=AB∙OH , ∴AG=AB OH OB ⋅=12810⨯=485, ∴sin MON ∠=AG OA =2425. 故答案是:2425.7.(2020新疆生产建设兵团)(5分)如图,在x 轴,y 轴上分别截取OA ,OB ,使OA =OB ,再分别以点A ,B 为圆心,以大于12AB 长为半径画弧,两弧交于点P .若点P 的坐标为(a ,2a ﹣3),则a 的值为 3 .【分析】根据作图方法可知点P 在∠BOA 的角平分线上,由角平分线的性质可知点P 到x 轴和y 轴的距离相等,结合点P 在第一象限,可得关于a 的方程,求解即可. 【解答】解:∵OA =OB ,分别以点A ,B 为圆心,以大于12AB 长为半径画弧,两弧交于点P ,∴点P 在∠BOA 的角平分线上, ∴点P 到x 轴和y 轴的距离相等,又∵点P 在第一象限,点P 的坐标为(a ,2a ﹣3), ∴a =2a ﹣3, ∴a =3. 故答案为:3.8.(2020辽宁抚顺)(3分)如图,在Rt △ABC 中,∠ACB =90°,AC =2BC ,分别以点A 和B 为圆心,以大于AB 的长为半径作弧,两弧相交于点M 和N ,作直线MN ,交AC 于点E ,连接BE ,若CE =3,则BE 的长为 5 .9.(2020宁夏)(3分)如图,在△ABC中,∠C=84°,分别以点A、B为圆心,以大于AB的长为半径画弧,两弧分别交于点M、N,作直线MN交AC点D;以点B为圆心,适当长为半径画弧,分别交BA、BC于点E、F,再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线BP,此时射线BP恰好经过点D,则∠A=32度.三、解答题10.(2020北京)已知:如图,∴ABC为锐角三角形,AB=BC,CD∴AB.求作:线段BP,使得点P在直线CD上,且∴ABP=12BAC .作法:∴以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;∴连接BP.线段BP 就是所求作线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹)(2)完成下面的证明.证明:∴CD∴AB,∴∴ABP= .∴AB=AC,∴点B在∴A上.又∴∴BPC=12∴BAC ()(填推理依据)∴∴ABP=12∴BAC【解析】(1)如图所示(2)∠BPC;在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半。

【2020版中考12年】浙江省杭州市2020年中考数学试题分类解析专题8平面几何基础

【2020版中考12年】浙江省杭州市2020年中考数学试题分类解析专题8平面几何基础

【2020版中考12年】浙江省杭州市2020年中考数学试题分类解析专题8平⾯⼏何基础【2020版中考12年】浙江省杭州市2020年中考数学试题分类解析专题8 平⾯⼏何基础⼀、选择题1. (2020年浙江杭州3分)⽤反证法证明:“三⾓形中必有⼀个内⾓不⼩于60°”,先应当假设这个三⾓形中【】.(A)有⼀个内⾓⼩于60°(B)每⼀个内⾓都⼩于60°(C)有⼀个内⾓⼤于60°(D)每⼀个内⾓都⼤于60°【答案】D。

【考点】反证法,逆命题。

【分析】⽤反证法证明:“三⾓形中必有⼀个内⾓不⼩于60°”,即要证明它的逆命题不成⽴。

“三⾓形中必有⼀个内⾓不⼩于60°”的逆命题是“每⼀个内⾓都⼤于60°”。

故选D。

2. (2020年浙江杭州3分)如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于【】.(A)4 (B)3 (C)2 (D)1【答案】C。

【考点】平⾏的性质,三⾓形外⾓性质,含30度⾓直⾓三⾓形的性质,⾓平分线的性质。

【分析】如图,过点P作PM⊥OB于M 。

∵PC∥OA,∠AOP =15°,∴∠COP= AOP =15°。

⼜∵∠BOP=15°,∴∠BCP=30°。

∵PC=4,∴PM=12PC=2。

∵P D=PM,∴PD=2。

故选C。

3. (2020年浙江杭州3分)如图所⽰⽴⽅体中,过棱BB1和平⾯CD1垂直的平⾯有【】(A)1个(B)2个(C)3个(D)4个【答案】A。

【考点】认识⽴体图形。

【分析】在⽴⽅体中,棱与⾯,⾯与⾯之间的关系有平⾏和垂直两种,过棱BB1平⾯CD1垂直的平⾯有CBB1C1,所以只有1个。

故选A。

4. (2020年浙江杭州3分)天安门⼴场的⾯积约为44万平⽅⽶,请你估计⼀下,它的百万分之⼀⼤约相当于【】(A)教室地⾯的⾯积(B)⿊板⾯的⾯积(C)课桌⾯的⾯积(D)铅笔盒盒⾯的⾯积5.(2020年浙江杭州3分)对于以下四个命题:①若直⾓三⾓形的两条边长为3与4,则第三边长是5;②2=;③若点P(a,b)在第三象限,则点Q(a-,b-)在第⼀象限;④两(a)a边及其第三边上的中线对应相等的两个三⾓形全等。

2020年中考数学人教版专题复习:尺规作图

2020年中考数学人教版专题复习:尺规作图

2020年中考数学人教版专题复习:尺规作图基本作图1.最基本、最常用的尺规作图,通常称为基本作图.2.基本作图有五种:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)作一条线段的垂直平分线;(5)过一点作已知直线的垂线.典例精析典例1如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是A.AD=BD B.BD=CDC.∠A=∠BED D.∠ECD=∠EDC【答案】D【解析】∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°,∵∠ACB=90°,∴CD=BD,∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED,∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.典例2如图,已知∠MAN,点B在射线AM上.(1)尺规作图:①在AN上取一点C,使BC=BA;②作∠MBC的平分线BD,(保留作图痕迹,不写作法)(2)在(1)的条件下,求证:BD∥AN.1 2【解析】(1)①以B点为圆心,BA长为半径画弧交AN于C点;如图,点C即为所求作;②利用基本作图作BD平分∠MBC;如图,BD即为所求作;(2)先利用等腰三角形的性质得∠A=∠BCA,再利用角平分线的定义得到∠MBD=∠CBD,然后根据三角形外角性质可得∠MBD=∠A,最后利用平行线的判定得到结论.∵AB=AC,∴∠A=∠BCA,∵BD平分∠MBC,∴∠MBD=∠CBD,∵∠MBC=∠A+∠BCA,即∠MBD+∠CBD=∠A+∠BCA,∴∠MBD=∠A,∴BD∥AN.拓展1.根据下图中尺规作图的痕迹,可判断AD一定为三角形的A.角平分线B.中线C.高线D.都有可能2.(1)请你用尺规作图,作AD平分∠BAC,交BC于点D(要求:保留作图痕迹);(2)∠ADC的度数.复杂作图利用五种基本作图作较复杂图形.典例精析典例2如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC–BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是__________.【答案】见解析.【解析】(1)①如图所示,射线AC即为所求;②如图所示,线段AB,BC,BD即为所求;③如图所示,线段CF即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为:两点之间,线段最短.拓展3.作图题:学过用尺规作线段与角后,就可以用尺规画出一个与已知三角形一模一样的三角形来.比如给定一个△ABC,可以这样来画:先作一条与AB相等的线段A′B′,然后作∠B′A′C′=∠BAC,再作线段A′C′=AC,最后连接B′C′,这样△A′B′C′就和已知的△ABC一模一样了.请你根据上面的作法画一个与给定的三角形一模一样的三角形来.(请保留作图痕迹)同步测试1.根据已知条件作符合条件的三角形,在作图过程中主要依据是A.用尺规作一条线段等于已知线段B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角D.不能确定2.下列作图属于尺规作图的是A.画线段MN=3 cmB.用量角器画出∠AOB的平分线C.用三角尺作过点A垂直于直线l的直线D.已知∠α,用没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠α3.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是A .BH 垂直平分线段ADB .AC 平分∠BAD C .S △ABC =BC ·AHD .AB =AD4.如图,点C 在∠AOB 的OB 边上,用尺规作出了∠AOB =∠NCB ,作图痕迹中,弧FG 是A .以点C为圆心,OD 为半径的弧 B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧 D .以点E 为圆心,DM 为半径的弧5.如图,△ABC 中,∠C =90°,∠CAB =50°.按以下步骤作图:①以点A 为圆心,小于AC 长为半径画弧,分别交AB 、AC 于点E 、F ; ②分别以点E 、F 为圆心,大于EF 长为半径画弧,两弧相交于点G ; ③作射线AG 交BC 边于点D . 则∠ADC 的度数为A .65°B .60°C .55°D .45°6.如图,△ABC 为等边三角形,要在△ABC 外部取一点D ,使得△ABC 和△DBC 全等,下面是两名同学做法: 甲:①作∠A 的角平分线l ;②以B 为圆心,BC 长为半径画弧,交l 于点D ,点D 即为所求;12乙:①过点B作平行于AC的直线l;②过点C作平行于AB的直线m,交l于点D,点D即为所求.A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=__________.8.如图,在△ABC中,AB=A C.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连接BD.若∠A=32°,则∠CDB的大小为__________度.9.按要求用尺规作图(要求:不写作法,但要保留作图痕迹,并写出结论)已知:线段AB;求作:线段AB的垂直平分线MN.10.如图,已知△ABC,∠BAC=90°,(1)尺规作图:作∠ABC的平分线交AC于D点(保留作图痕迹,不写作法)(2)若∠C=30°,求证:DC=DB.。

2020年全国中考数学试卷分类汇编(一)专题35 尺规作图(含解析)

2020年全国中考数学试卷分类汇编(一)专题35 尺规作图(含解析)

尺规作图一.选择题1.(2020年内蒙古通辽市3分)6.根据圆规作图的痕迹,可用直尺成功地找到三角形内心的是()A. B.C. D.【答案】B【解析】【分析】根据三角形内心的定义,三角形内心为三边的垂直平分线的交点,然后利用基本作图和选项进行判断.【详解】解:三角形内心为三个角的角平分线的交点,由基本作图得到B选项作了两个角的角平分线,而三角形三条角平分线交于一点,从而可用直尺成功找到三角形内心.故选:B.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的内心.2. (2020•湖北襄阳•3分)如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是()A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C 【分析】证明△ADE≌△ADB即可判断A,B正确,再根据同角的补角相等,证明∠EDC =∠BAC即可.【解答】解:由作图可知,∠DAE=∠DAB,∠DEA=∠B=90°,∵AD=AD,∴△ADE≌△ADB(AAS),∴DB=DE,AB=AE,∵∠AED+∠B=180°∴∠BAC+∠BDE=180°,∵∠EDC+∠BDE=180°,∴∠EDC=∠BAC,故A,B,C正确,故选:D.【点评】本题考查作图﹣基本作图,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3(2020•贵州省贵阳市•3分)如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A.无法确定B.C.1 D.2【分析】如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.【解答】解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.【点评】本题考查作图﹣基本作图,垂线段最短,角平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4(2020•河北省•3分)如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,b>DE的长C.a有最小限制,b无限制D.a≥0,b<DE的长【分析】根据角平分线的画法判断即可.【解答】解:以B 为圆心画弧时,半径a 必须大于0,分别以D ,E 为圆心,以b 为半径画弧时,b 必须大于DE ,否则没有交点,故选:B .【点评】本题考查作图﹣基本作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.5.6.7.8.9.10.二.填空题1. (2020•江苏省苏州市•3分)如图,已知MON ∠是一个锐角,以点O 为圆心,任意长为半径画弧,分别交OM 、ON 于点A 、B ,再分别以点A 、B 为圆心,大于12AB 长为半径画弧,两弧交于点C ,画射线OC .过点A 作AD ON ,交射线OC 于点D ,过点D 作DE OC ⊥,交ON 于点E .设10OA =,12DE =,则sin MON ∠=________.【答案】2425【解析】【分析】 连接AB 交OD 于点H ,过点A 作AG ⊥ON 于点G ,根据等腰三角形的性质得OH ⊥AB ,AH =BH ,从而得四边形ABED 是平行四边形,利用勾股定理和三角形的面积法,求得AG 的值,进而即可求解.【详解】连接AB 交OD 于点H ,过点A 作AG ⊥ON 于点G ,由尺规作图步骤,可得:OD 是∠MON 的平分线,OA =OB ,∴OH ⊥AB ,AH =BH ,∵DE OC ⊥,∴DE ∥AB ,∵AD ON ,∴四边形ABED 是平行四边形,∴AB =DE =12,∴AH =6,∴OH =22221068AO AH -=-=,∵OB ∙AG =AB ∙OH ,∴AG =AB OH OB ⋅=12810⨯=485, ∴sin MON ∠=AG OA =2425. 故答案是:2425.【点睛】本题主要考查等腰三角形的性质,平行四边形的判定和性质定理,勾股定理,锐角三角函数的定义,添加合适的辅助线,构造直角三角形是解题的关键.2.(2020•湖南省郴州•3分)如图,在矩形ABCD 中,4,8AD AB ==.分别以点,B D 为圆心,以大于12BD 的长为半径画弧,两弧相交于点E 和F .作直线EF 分别与,,DC DB AB 交于点,,M O N ,则MN =__________.【答案】25.【解析】【分析】连接DN,在矩形ABCD中,AD=4,AB=8,根据勾股定理可得BD的长,根据作图过程可得,MN是BD的垂直平分线,所以DN=BN,在Rt△ADN中,根据勾股定理得DN的长,在Rt△DON中,根据勾股定理得ON的长,进而可得MN的长.【详解】如图,连接DN,在矩形ABCD中,AD=4,AB=8,∴BD2245+=,AB AD根据作图过程可知:MN是BD的垂直平分线,∴DN=BN,OB=OD5∴AN=AB-BN=AB-DN=8-DN,在Rt△ADN中,根据勾股定理,得DN2=AN2+AD2,∴DN2=(8-DN)2+42,解得DN=5,在Rt△DON中,根据勾股定理,得ON225DN OD-=,∵CD∥AB,∴∠MDO=∠NBO,∠DMO=∠BNO,∵OD=OB,∴△DMO≌△BNO(AAS),∴OM=ON=5,∴MN=25.故答案为:25.【点睛】本题考查了作图-基本作图、线段垂直平分线的性质、勾股定理、矩形的性质,解决本题的关键是掌握线段垂直平分线的性质.3(2020•江苏省扬州市•3分)如图,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB,BC于点D,E.②分别以点D,E为圆心,大于DE的同样长为半径作弧,两弧交于点F.③作射线BF交AC于点G.如果AB=8,BC=12,△ABG的面积为18,则△CBG的面积为27.【分析】过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可得AG是∠ABC的平分线,根据角平分线的性质可得GM=GN,再根据△ABG的面积为18,求出GM的长,进而可得△CBG的面积.【解答】解:如图,过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可知:BG是∠ABC的平分线,∴GM=GN,∵△ABG的面积为18,∴AB×GM=18,∴4GM=18,∴GM=,∴△CBG的面积为:BC×GN=12×=27.故答案为27.【点评】本题考查了作图-基本作图、角平分线的性质,解决本题的关键是掌握角平分线的性质.4(2020年辽宁省辽阳市)16.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=2BC,分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点M和N,作直线MN,交AC于点E,连接BE,若CE=3,则BE的长为5.【分析】设BE=AE=x,在Rt△BEC中,利用勾股定理构建方程即可解决问题.【解答】解:由作图可知,MN垂直平分线段AB,∴AE=EB,设AE=EB=x,∵EC=3,AC=2BC,∴BC=(x+3),在Rt△BCE中,∵BE2=BC2+EC2,∴x2=32+[(x+3)]2,解得,x=5或﹣3(舍弃),∴BE=5,故答案为5.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5.6.7.8.9.10.三.解答题1.(2020•黑龙江省哈尔滨市•7分)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG 的周长为10+.连接EG,请直接写出线段EG的长.【分析】(1)画出边长为的正方形即可.(2)画出两腰为10,底为的等腰三角形即可.【解答】解:(1)如图,正方形ABEF即为所求.(2)如图,△CDG即为所求.【点评】本题考查作图﹣应用与设计,等腰三角形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.2. (2020•湖北武汉•8分)在8×5的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.【分析】(1)利用网格特点和旋转的性质画出B点的对称点D即可;(2)作出BC为边的正方形,找到以C点为一个顶点的对角线与AB的交点E即为所求;(3)利用网格特点,作出E点关于直线AC的对称点F即可.【解答】解:(1)如图所示:线段CD即为所求;(2)如图所示:∠BCE即为所求;(3)连接(5,0),(0,5),可得与AC的交点F,点F即为所求,如图所示:【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.3 (2020•湖南省长沙市·6分)人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:已知:∠AO B.求作:∠AOB的平分线.作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC,射线OC即为所求(如图).请你根据提供的材料完成下面问题.(1)这种作已知角的平分线的方法的依据是①.(填序号)①SSS②SAS③AAS④ASA(2)请你证明OC为∠AOB的平分线.【分析】(1)直接利用角平分线的作法得出基本依据;(2)直接利用全等三角形的判定与与性质得出答案.【解答】解:(1)这种作已知角的平分线的方法的依据是①SSS.故答案为:①(2)由基本作图方法可得:OM=ON,OC=OC,MC=NC,则在△OMC和△ONC中,,∴△OMC≌△ONC(SSS),∴∠AOC=∠BOC,即OC为∠AOB的平分线.【点评】此题主要考查了应用设计与作图,正确掌握全等三角形的判定方法是解题关键.4.(2020•湖北孝感•8分)如图,在平面直角坐标系中,已知点A(﹣1,5),B(﹣3,1)和C(4,0),请按下列要求画图并填空.(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标为(2,﹣4);(2)将线段AB绕点A逆时针旋转90°,画出旋转后所得的线段AE,并直接写出cos ∠BCE的值为;(3)在y轴上找出点F,使△ABF的周长最小,并直接写出点F的坐标为(0,4).【分析】(1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;(2)根据线段AB绕点A逆时针旋转90°,即可画出旋转后所得的线段AE;(3)先作出点A关于y轴的对称点A',连接A'B交y轴于点F,依据两点之间,线段最短,即可得到此时△ABF的周长最小,根据待定系数法即可得出直线A'B的解析式,令x =0,进而得到点F的坐标.【解答】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,﹣4);(2)如图所示,线段AE即为所求,cos∠BCE===;(3)如图所示,点F即为所求,点F的坐标为(0,4).故答案为:(2,﹣4);;(0,4).【点评】本题主要考查了利用平移变换和旋转变换作图,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.5 (2020•江苏省泰州市•10分)如图,已知线段a,点A在平面直角坐标系xOy内.(1)用直尺和圆规在第一象限内作出点P,使点P到两坐标轴的距离相等,且与点A的距离等于a.(保留作图痕迹,不写作法)(2)在(1)的条件下,若a≈2,A点的坐标为(3,1),求P点的坐标.【分析】(1)根据角平分线的性质即可用直尺和圆规在第一象限内作出点P,使点P到两坐标轴的距离相等,且与点A的距离等于a;(2)在(1)的条件下,根据a≈2,A点的坐标为(3,1),利用勾股定理即可求P点的坐标.【解答】解:(1)如图,点P即为所求;(2)由(1)可得OP是角平分线,设点P(x,x),过点P作PE⊥x轴于点E,过点A作AF⊥x 轴于点F,AD⊥PE于点D,∵P A=a≈2,A点的坐标为(3,1),∴PD=x-1,AD=x-3,根据勾股定理,得P A2=PD2+AD2,∴(2)2=(x-1)2+(x-3)2,解得x1=5,x2=-1(舍去).所以P点的坐标为(5,5).【点评】本题考查了作图-复杂作图、坐标与图形的性质、角平分线的性质、勾股定理,解决本题的关键是掌握角平分线的性质.6(2020•江苏省无锡市•8分)如图,已知△ABC是锐角三角形(AC<AB).(1)请在图1中用无刻度的直尺和圆规作图:作直线l,使l上的各点到B.C两点的距离相等;设直线l与A B.BC分别交于点M、N,作一个圆,使得圆心O在线段MN上,且与边A B.BC相切;(不写作法,保留作图痕迹)(2)在(1)的条件下,若BM=,BC=2,则⊙O的半径为.【分析】(1)作线段BC的垂直平分线交AB于M,交BC于N,作∠ABC的角平分线交MN 于点O,以O为圆心,ON为半径作⊙O即可.(2)过点O作OE⊥AB于E.设OE=ON=r,利用面积法构建方程求解即可.【解答】解:(1)如图直线l,⊙O即为所求.(2)过点O作OE⊥AB于E.设OE=ON=r,∵BM=,BC=2,MN垂直平分线段BC,∴BN=CN=1,∴MN===,∵S△BNM=S△BNO+S△BOM,∴×1×=×1×r+××r,解得r=.故答案为.【点评】本题考查作图-复杂作图,角平分线的性质,线段的垂直平分线的性质,切线的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.7(2020•江苏省盐城市•8分)如图,点O是正方形ABCD的中心.(1)用直尺和圆规在正方形内部作一点E(异于点O),使得EB=EC;(保留作图痕迹,不写作法)(2)连接E B.E C.EO,求证:∠BEO=∠CEO.【分析】(1)作BC的垂直平分线,在BC的垂直平分线上(正方形内部异于点O)的点E即为所求;(2)根据等腰三角形的性质和角的和差关系即可求解.【解答】解:(1)如图所示,点E即为所求(2)证明:连结OB,OC,∵点O是正方形ABCD的中心,∴OB=OC,∴∠OBC=∠OCB,∵EB=EC,∴∠EBC=∠ECB,∴∠BEO=∠CEO.【点评】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.8.9.10.。

专题13几何图形初步与基本作图(共50题)-2020年中考数学真题分专题训练(学生版)【全国通用】

专题13几何图形初步与基本作图(共50题)-2020年中考数学真题分专题训练(学生版)【全国通用】

2020年中考数学真题分项汇编(全国通用)专题13几何图形初步与基本作图(共50题)一.选择题(共25小题)1.(2020•武威)若α=70°,则α的补角的度数是()A.130°B.110°C.30°D.20°2.(2020•衡阳)下列不是三棱柱展开图的是()A.B.C.D.3.(2020•泰州)把如图所示的纸片沿着虚线折叠,可以得到的几何体是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥4.(2020•凉山州)点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A.10cm B.8cm C.10cm或8cm D.2cm或4cm5.(2020•自贡)如果一个角的度数比它补角的2倍多30°,那么这个角的度数是() A.50°B.70°C.130°D.160°6.(2020•重庆)围成下列立体图形的各个面中,每个面都是平的是()A.长方体B.圆柱体C.球体D.圆锥体7.(2020•广元)如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.360°C.270°D.540°8.(2020•长沙)如图:一块直角三角板的60°角的顶点A与直角顶点C分别在两平行线FD、GH上,斜边AB平分∠CAD,交直线GH于点E,则∠ECB的大小为()A.60°B.45°C.30°D.25°9.(2020•北京)如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠1>∠4+∠5D.∠2<∠510.(2020•滨州)如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A.60°B.70°C.80°D.100°11.(2020•襄阳)如图,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=64°,则∠EGD的大小是()A.132°B.128°C.122°D.112°12.(2020•乐山)如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB=()A.10°B.20°C.30°D.40°13.(2020•自贡)如图,直线a∥b,∠1=50°,则∠2的度数为()A.40°B.50°C.55°D.60°14.(2020•常德)如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为()A.70°B.65°C.35°D.5°15.(2020•铜仁市)如图,直线AB∥CD,∠3=70°,则∠1=()A.70°B.100°C.110°D.120°16.(2020•遵义)一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为()A.30°B.45°C.55°D.60°17.(2020•黔西南州)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=37°时,∠1的度数为()A.37°B.43°C.53°D.54°18.(2020•枣庄)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°19.(2020•河北)如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,b>12DE的长C.a有最小限制,b无限制D.a≥0,b<12DE的长20.(2020•襄阳)如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是()A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C21.(2020•贵阳)如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于12DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A .无法确定B .12C .1D .222.(2020•成都)如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交AC 于点D ,连接BD .若AC =6,AD =2,则BD 的长为( )A .2B .3C .4D .623.(2020•衢州)过直线l 外一点P 作直线l 的平行线,下列尺规作图中错误的是( )A .B .C .D .24.(2020•台州)如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 同样长为半径画弧,两弧交于点C ,D ,连接AC ,AD ,BC ,BD ,CD ,则下列说法错误的是( )A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD25.(2020•金华)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行二.填空题(共9小题)26.(2020•衢州)小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形ABCD的边长为4dm,则图2中h的值为dm.27.(2020•衡阳)一副三角板如图摆放,且AB∥CD,则∠1的度数为.28.(2020•南充)如图,两直线交于点O ,若∠1+∠2=76°,则∠1= 度.29.(2020•铜仁市)设AB ,CD ,EF 是同一平面内三条互相平行的直线,已知AB 与CD 的距离是12cm ,EF 与CD 的距离是5cm ,则AB 与EF 的距离等于 cm .30.(2020•杭州)如图,AB ∥CD ,EF 分别与AB ,CD 交于点B ,F .若∠E =30°,∠EFC =130°,则∠A = .31.(2020•新疆)如图,若AB ∥CD ,∠A =110°,则∠1= °.32.(2020•扬州)如图,在△ABC 中,按以下步骤作图:①以点B 为圆心,任意长为半径作弧,分别交AB 、BC 于点D 、E . ②分别以点D 、E 为圆心,大于12DE 的同样长为半径作弧,两弧交于点F .③作射线BF 交AC 于点G .如果AB =8,BC =12,△ABG 的面积为18,则△CBG 的面积为 .33.(2020•辽阳)如图,在Rt △ABC 中,∠ACB =90°,AC =2BC ,分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点M 和N ,作直线MN ,交AC 于点E ,连接BE ,若CE =3,则BE 的长为 .34.(2020•苏州)如图,已知∠MON 是一个锐角,以点O 为圆心,任意长为半径画弧,分别交OM 、ON 于点A 、B ,再分别以点A 、B 为圆心,大于12AB 长为半径画弧,两弧交于点C ,画射线OC .过点A 作AD∥ON ,交射线OC 于点D ,过点D 作DE ⊥OC ,交ON 于点E .设OA =10,DE =12,则sin ∠MON = .三.解答题(共16小题)35.(2020•枣庄)欧拉(Euler ,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V (Vertex )、棱数E (Edge )、面数F (Flatsurface )之间存在一定的数量关系,给出了著名的欧拉公式. (1)观察下列多面体,并把下表补充完整:名称 三棱锥三棱柱正方体正八面体图形顶点数V 4 6 8 棱数E 6 12面数F458(2)分析表中的数据,你能发现V 、E 、F 之间有什么关系吗?请写出关系式: .36.(2020•武汉)如图直线EF 分别与直线AB ,CD 交于点E ,F .EM 平分∠BEF ,FN 平分∠CFE ,且EM ∥FN .求证:AB ∥CD .37.(2020•武威)如图,在△ABC 中,D 是BC 边上一点,且BD =BA . (1)尺规作图(保留作图痕迹,不写作法): ①作∠ABC 的角平分线交AD 于点E ; ②作线段DC 的垂直平分线交DC 于点F .(2)连接EF ,直接写出线段EF 和AC 的数量关系及位置关系.38.(2020•陕西)如图,已知△ABC ,AC >AB ,∠C =45°.请用尺规作图法,在AC 边上求作一点P ,使∠PBC =45°.(保留作图痕迹.不写作法)39.(2020•长沙)人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法: 已知:∠AOB .求作:∠AOB 的平分线.作法:(1)以点O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N .(2)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠AOB 的内部相交于点C .(3)画射线OC ,射线OC 即为所求(如图). 请你根据提供的材料完成下面问题.(1)这种作已知角的平分线的方法的依据是 .(填序号) ①SSS ②SAS ③AAS ④ASA(2)请你证明OC 为∠AOB 的平分线.40.(2020•福建)如图,C为线段AB外一点.(1)求作四边形ABCD,使得CD∥AB,且CD=2AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD中,AC,BD相交于点P,AB,CD的中点分别为M,N,求证:M,P,N三点在同一条直线上.41.(2020•北京)已知:如图,△ABC为锐角三角形,AB=AC,CD∥AB.求作:线段BP,使得点P在直线CD上,且∠ABP=12∠BAC.作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵CD∥AB,∴∠ABP=.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=12∠BAC()(填推理的依据).∴∠ABP=12∠BAC.42.(2020•青岛)已知:△ABC.求作:⊙O,使它经过点B和点C,并且圆心O在∠A的平分线上.43.(2020•绥化)(1)如图,已知线段AB和点O,利用直尺和圆规作△ABC,使点O是△ABC的内心(不写作法,保留作图痕迹);(2)在所画的△ABC中,若∠C=90°,AC=6,BC=8,则△ABC的内切圆半径是.44.(2020•泰州)如图,已知线段a,点A在平面直角坐标系xOy内.(1)用直尺和圆规在第一象限内作出点P,使点P到两坐标轴的距离相等,且与点A的距离等于a.(保留作图痕迹,不写作法)(2)在(1)的条件下,若a≈2√5,A点的坐标为(3,1),求P点的坐标.45.(2020•无锡)如图,已知△ABC是锐角三角形(AC<AB).(1)请在图1中用无刻度的直尺和圆规作图:作直线l,使l上的各点到B、C两点的距离相等;设直线l与AB、BC分别交于点M、N,作一个圆,使得圆心O在线段MN上,且与边AB、BC相切;(不写作法,保留作图痕迹)(2)在(1)的条件下,若BM=53,BC=2,则⊙O的半径为.46.(2020•哈尔滨)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG的周长为10+√10.连接EG,请直接写出线段EG的长.47.(2020•衢州)如图,在5×5的网格中,△ABC的三个顶点都在格点上.(1)在图1中画出一个以AB为边的▱ABDE,使顶点D,E在格点上.(2)在图2中画出一条恰好平分△ABC周长的直线l(至少经过两个格点).48.(2020•温州)如图,在6×4的方格纸ABCD中,请按要求画格点线段(端点在格点上),且线段的端点均不与点A,B,C,D重合.(1)在图1中画格点线段EF,GH各一条,使点E,F,G,H分别落在边AB,BC,CD,DA上,且EF=GH,EF不平行GH.(2)在图2中画格点线段MN,PQ各一条,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且PQ=√5MN.49.(2020•达州)如图,点O在∠ABC的边BC上,以OB为半径作⊙O,∠ABC的平分线BM交⊙O于点D,过点D作DE⊥BA于点E.(1)尺规作图(不写作法,保留作图痕迹),补全图形;(2)判断⊙O与DE交点的个数,并说明理由.50.(2020•安顺)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.。

2020年新疆中考数学试卷(含答案和解析)

2020年新疆中考数学试卷(含答案和解析)

鬻需蠶蠶202。

年初中学业水平考试数学试题卷君生須知:1 •木试卷分为认總卷和冬趁卷西部分•试&4共4瓦■杂題耳共2更。

2■満分150分•才试廿间120分忡, 3 一不毎使用计算器。

一、草顼透择題(本尢題共9小"■碎小題5分■具45版请鹿务冬召申旳晏束作筌) L •下列各效中■是负数的为'2(‘・2)W2 ■“ x+2 x+3的解靈是A.0<x^2B.0<x«6 7•四张看上去无基别的卡片上分别印有正方形、正五边形.正六边形和凯.现梅印有圈形的一 面朝尸•混合均匀后从中隔机抽取蘭张,则袖到的卡片上印有的图形都绘中心对廉图形的概 率为BT2020<Fft»E^MlTJ 中*並水平步滾 * I » 井4 貞A.a'bB. Ial>l6lC. -0<A 5•下列一元二次方程中■有两个不相等实数根的是D.B ・ r 2*2x^4 = 0C.x a -r*2 = 0D. ?-2x = 0D ・rW2C ・戈>0 B.0A.-2・如图所示•该几何体的殆视图是3•下列运算正确的址 A.J WB.4•实数亠6衽数轴上的位皙如图所示小列结论中正确的是8•二次函数尸/仏+的图象如图所示,则一次函数yg"和反比例函数尸三在同一平 面直角坐标系中的图象可能是9.如图,在/MPC 中,乙"90"是M 的中点•过点。

作EC 的平行线交八C 于点E,作BC 的 垂线交BC 干点八若A8=CE,且的面积为I ■则〃C 的长为A.2衣B.5C.475二.填空逆(末大題共6小題■每小越5分,共30分)10. 如图,若 AB//CD ■乙A" 10。

,则乙 1= ______ 11. _____________________ 分解因式:a/n?-ad = - 12. 表中记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵•数n 200 500 800 2000 12000 成活的操救皿 187446 730 1790 10836 成活的频率巴n0. 9350.8920.9130. 8950.903由此估计这种苹果树苗移植成活的概率约为 _________ .(精确到0・I )13. 如图,在上轴』轴上分别截取OA,OBM 04=0B.再分别以点仏8为圆心,以大于*1〃长 为半径画弧.两孤交于点P.若点P 的坐标为(a,2a-3),则a 的值为.14•如图QO 的半径是2厨形BAC 的圆心角为60>■若将扇形BAC 剪下围成一个圆锥■则此 圆锥的底面圆的半径为 ____________ ,15・如图、在A ABC 中,Z.X90。

2020年全国中考数学试题精选分类(8)——三角形(含解析)

2020年全国中考数学试题精选分类(8)——三角形(含解析)

2020年全国中考数学试题精选分类(8)——三角形一.选择题(共35小题)1.(2020•朝阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E在BC边上,且CE=2BE,连接AE交BD于点G,过点B作BF⊥AE于点F,连接OF并延长,交BC于点M,过点O作OP⊥OF交DC于点N,S四边形MONC=,现给出下列结论:①;②sin∠BOF=;③OF=;④OG=BG;其中正确的结论有()A.①②③B.②③④C.①②④D.①③④2.(2020•盘锦)我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为()A.x2+102=(x+1)2B.(x﹣1)2+52=x2C.x2+52=(x+1)2D.(x﹣1)2+102=x23.(2020•大连)如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°4.(2020•呼伦贝尔)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD⊥CE 于点O,点M,N分别OB,OC的中点,若OB=8,OC=6,则四边形DEMN的周长是()A.14B.20C.22D.28 5.(2020•呼伦贝尔)如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°6.(2020•南通)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3 7.(2020•河池)如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若FB=FE=2,FC=1,则AC的长是()A.B.C.D.8.(2020•宿迁)在△ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是()A.2B.4C.5D.6 9.(2020•湖北)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个10.(2020•吉林)将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°11.(2020•绵阳)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A.16°B.28°C.44°D.45°12.(2020•毕节市)如图,在一个宽度为AB长的小巷内,一个梯子的长为a,梯子的底端位于AB上的点P,将该梯子的顶端放于巷子一侧墙上的点C处,点C到AB的距离BC 为b,梯子的倾斜角∠BPC为45°;将该梯子的顶端放于另一侧墙上的点D处,点D到AB的距离AD为c,且此时梯子的倾斜角∠APD为75°,则AB的长等于()A.a B.b C.D.c 13.(2020•广西)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸14.(2020•玉林)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形15.(2020•包头)如图,∠ACD是△ABC的外角,CE∥AB.若∠ACB=75°,∠ECD=50°,则∠A的度数为()A.50°B.55°C.70°D.75°16.(2020•淄博)如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A.a2+b2=5c2B.a2+b2=4c2C.a2+b2=3c2D.a2+b2=2c2 17.(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()A.25cm2B.cm2C.50cm2D.75cm218.(2020•宜昌)如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线19.(2020•青海)等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°20.(2020•常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.6 21.(2020•烟台)如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A.1.7B.1.8C.2.2D.2.4 22.(2020•湘潭)如图,∠ACD是△ABC的外角,若∠ACD=110°,∠B=50°,则∠A =()A.40°B.50°C.55°D.60°23.(2020•烟台)如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()n B.()n﹣1C.()n D.()n﹣1 24.(2020•河北)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4 25.(2020•陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.26.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.1 27.(2020•河北)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l28.(2020•福建)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.29.(2020•聊城)如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是()A.120°B.130°C.145°D.150°30.(2020•河南)如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6B.9C.6D.3 31.(2020•自贡)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC 长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°32.(2020•南充)如图,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC =a,BC=b,则CD=()A.B.C.a﹣b D.b﹣a 33.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.34.(2020•宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长35.(2020•新疆)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC 的长为()A.2B.5C.4D.10二.填空题(共5小题)36.(2020•阜新)如图,把△ABC沿AB边平移到△A1B1C1的位置,图中所示的三角形的面积S1与四边形的面积S2之比为4:5,若AB=4,则此三角形移动的距离AA1是.37.(2020•葫芦岛)如图,∠MON=45°,正方形ABB1C,正方形A1B1B2C1,正方形A2B2B3C2,正方形A3B3B4C3,…,的顶点A,A1,A2,A3,…,在射线OM上,顶点B,B1,B2,B3,B4,…,在射线ON上,连接AB2交A1B1于点D,连接A1B3交A2B2于点D1,连接A2B4交A3B3于点D2,…,连接B1D1交AB2于点E,连接B2D2交A1B3于点E1,…,按照这个规律进行下去,设△ACD与△B1DE的面积之和为S1,△A1C1D1与△B2D1E1的面积之和为S2,△A2C2D2与△B3D2E2的面积之和为S3,…,若AB=2,则S n等于.(用含有正整数n的式子表示)38.(2020•丹东)如图,在矩形OAA1B中,OA=3,AA1=2,连接OA1,以OA1为边,作矩形OA1A2B1使A1A2=OA1,连接OA2交A1B于点C;以OA2为边,作矩形OA2A3B2,使A2A3=OA2,连接OA3交A2B1于点C1;以OA3为边,作矩形OA3A4B3,使A3A4=OA3,连接OA4交A3B2于点C2;…按照这个规律进行下去,则△C2019C2020A2022的面积为.39.(2020•绵阳)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为.40.(2020•雅安)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2=.三.解答题(共10小题)41.(2020•西藏)如图,△ABC中,D为BC边上的一点,AD=AC,以线段AD为边作△ADE,使得AE=AB,∠BAE=∠CAD.求证:DE=CB.42.(2020•大连)如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求的值.43.(2020•鞍山)如图,在四边形ABCD中,∠B=∠D=90°,点E,F分别在AB,AD 上,AE=AF,CE=CF,求证:CB=CD.44.(2020•山西)阅读与思考如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB,现根据木板的情况,要过AB上的一点C,作出AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB上量出CD=30cm,然后分别以D,C为圆心,以50cm与40cm为半径画圆弧,两弧相交于点E,作直线CE,则∠DCE必为90°.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS=MN,得到点S,作直线SC,则∠RCS=90°.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空:“办法一”依据的一个数学定理是;(2)根据“办法二”的操作过程,证明∠RCS=90°;(3)①尺规作图:请在图③的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);②说明你的作法所依据的数学定理或基本事实(写出一个即可).45.(2020•沈阳)如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0<t<4),过点P作PN∥x轴,分别交AO,AB于点M,N.(1)填空:AO的长为,AB的长为;(2)当t=1时,求点N的坐标;(3)请直接写出MN的长为(用含t的代数式表示);(4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=时,请直接写出S1•S2(即S1与S2的积)的最大值为.46.(2020•毕节市)如图(1),大正方形的面积可以表示为(a+b)2,同时大正方形的面积也可以表示成两个小正方形面积与两个长方形的面积之和,即a2+2ab+b2.同一图形(大正方形)的面积,用两种不同的方法求得的结果应该相等,从而验证了完全平方公式:(a+b)2=a2+2ab+b2.把这种“同一图形的面积,用两种不同的方法求出的结果相等,从而构建等式,根据等式解决相关问题”的方法称为“面积法”.(1)用上述“面积法”,通过如图(2)中图形的面积关系,直接写出一个多项式进行因式分解的等式:.(2)如图(3),Rt△ABC中,∠C=90°,CA=3,CB=4,CH是斜边AB边上的高.用上述“面积法”求CH的长;(3)如图(4),等腰△ABC中,AB=AC,点O为底边BC上任意一点,OM⊥AB,ON ⊥AC,CH⊥AB,垂足分别为点M,N,H,连接AO,用上述“面积法”求证:OM+ON =CH.47.(2020•河池)(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证:△ACE≌△BCE.(2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE 的数量关系,并说明理由.48.(2020•吉林)如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s 的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.49.(2020•随州)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(以下图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,请判断S1,S2,S3的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m的式子表示)①a2+b2+c2+d2=;②b与c的关系为,a与d的关系为.50.(2020•烟台)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC 上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.2020年全国中考数学试题精选分类(8)——三角形参考答案与试题解析一.选择题(共35小题)1.(2020•朝阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E在BC边上,且CE=2BE,连接AE交BD于点G,过点B作BF⊥AE于点F,连接OF并延长,交BC于点M,过点O作OP⊥OF交DC于点N,S四边形MONC=,现给出下列结论:①;②sin∠BOF=;③OF=;④OG=BG;其中正确的结论有()A.①②③B.②③④C.①②④D.①③④【答案】D【解答】解:如图,过点O作OH∥BC交AE于点H,过点O作OQ⊥BC交BC于点Q,过点B作BK⊥OM交OM的延长线于点K,∵四边形ABCD是正方形,∴,∴OB=OC,∠BOC=90°,∴∠BOM+∠MOC=90°.∵OP⊥OF,∴∠MON=90°,∴∠CON+∠MOC=90°,∴∠BOM=∠CON,∴△BOM≌△CON(ASA),∴S△BOM=S△CON,∴,∴,∴.∵CE=2BE,∴,∴.∵BF⊥AE,∴,∴,∴,∴,∴,∴,∴.∵AD∥BC,∴,故①正确;∵OH∥BC,∴,∴.∵∠HGO=∠EGB,∴△HOG≌△EBG(AAS),∴OG=BG,故④正确;∵OQ2+MQ2=OM2,∴,∴,故③正确;∵,即,∴,∴,故②错误;∴正确的有①③④.故选:D.2.(2020•盘锦)我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为()A.x2+102=(x+1)2B.(x﹣1)2+52=x2C.x2+52=(x+1)2D.(x﹣1)2+102=x2【答案】B【解答】解:设芦苇长x尺,由题意得:(x﹣1)2+52=x2,故选:B.3.(2020•大连)如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°【答案】D【解答】解:∵∠C=180°﹣∠A﹣∠B,∠A=60°,∠B=40°,∴∠C=80°,∵DE∥BC,∴∠AED=∠C=80°,故选:D.4.(2020•呼伦贝尔)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD⊥CE 于点O,点M,N分别OB,OC的中点,若OB=8,OC=6,则四边形DEMN的周长是()A.14B.20C.22D.28【答案】B【解答】解:∵BD和CE分别是△ABC的中线,∴DE=BC,DE∥BC,∵M和N分别是OB和OC的中点,OB=8,OC=6,∴MN=BC,MN∥BC,OM=OB=4,ON=OC=3,∴四边形MNDE为平行四边形,∵BD⊥CE,∴平行四边形MNDE为菱形,∴BC==10,∴DE=MN=EM=DN=5,∴四边形MNDE的周长为20,故选:B.5.(2020•呼伦贝尔)如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°【答案】D【解答】解:∵AB=AC,∠C=∠ABC=65°,∴∠A=180°﹣65°×2=50°,∵MN垂直平分AB,∴AD=BD,∴∠A=∠ABD=50°,∴∠DBC=∠ABC﹣∠ABD=15°,故选:D.6.(2020•南通)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3【答案】A【解答】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC===,∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC时,最大值为,综上所述,AE+BF的最大值为.故选:A.7.(2020•河池)如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若FB=FE=2,FC=1,则AC的长是()A.B.C.D.【答案】B【解答】解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE+∠BCF=90°,∵BF⊥CD,∴∠CFB=90°,∴∠CBF+∠BCF=90°,∴∠ACE=∠CBF,∵AE⊥CD,∴∠AEC=∠CFB=90°,∴△ACE∽△CBF,∴,∵FB=FE=2,FC=1,∴CE=CF+EF=3,BC===,∴=,∴AC=,故选:B.8.(2020•宿迁)在△ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是()A.2B.4C.5D.6【答案】A【解答】解:∵在△ABC中,AB=1,BC=,∴﹣1<AC<+1,∵﹣1<2<+1,4>+1,5>+1,6>+1,∴AC的长度可以是2,故选项A正确,选项B、C、D不正确;故选:A.9.(2020•湖北)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:如图,作AM⊥BD于M,AN⊥EC于N,设AD交EF于O.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴EC=BD,∠BDA=∠AEC,故①正确∵∠DOF=∠AOE,∠DFO=∠EAO=90°,∴BD⊥EC,故②正确,∵△BAD≌△CAE,AM⊥BD,AN⊥EC,∴AM=AN,∴F A平分∠EFB,∴∠AFE=45°,故④正确,若③成立,则∠AEF=∠ABD=∠ADB,推出AB=AD,由题意知,AB不一定等于AD,所以AF不一定平分∠CAD,故③错误,故选:C.10.(2020•吉林)将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°【答案】B【解答】解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD﹣∠BCA=60°﹣45°=15°,∠α=180°﹣∠D﹣∠ACD=180°﹣90°﹣15°=75°,故选:B.11.(2020•绵阳)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A.16°B.28°C.44°D.45°【答案】C【解答】解:延长ED,交AC于F,∵△ABC是等腰三角形,∠ABC=124°,∴∠A=∠ACB=28°,∵AB∥DE,∴∠CFD=∠A=28°,∵∠CDE=∠CFD+∠ACD=72°,∴∠ACD=72°﹣28°=44°,故选:C.12.(2020•毕节市)如图,在一个宽度为AB长的小巷内,一个梯子的长为a,梯子的底端位于AB上的点P,将该梯子的顶端放于巷子一侧墙上的点C处,点C到AB的距离BC 为b,梯子的倾斜角∠BPC为45°;将该梯子的顶端放于另一侧墙上的点D处,点D到AB的距离AD为c,且此时梯子的倾斜角∠APD为75°,则AB的长等于()A.a B.b C.D.c 【答案】D【解答】解:过点C作CE⊥AD于E,如图所示:则四边形ABCE是矩形,∴AB=CE,∠CED=∠DAP=90°,∵∠BPC=45°,∠APD=75°,∴∠CPD=180°﹣45°﹣75°=60°,∵CP=DP=a,∴△CPD是等边三角形,∴CD=DP,∠PDC=60°,∵∠ADP=90°﹣75°=15°,∴∠EDC=15°+60°=75°,∴∠EDC=∠APD,在△EDC和△APD中,,∴△EDC≌△APD(AAS),∴CE=AD,∴AB=AD=c,故选:D.13.(2020•广西)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸【答案】C【解答】解:如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,则AB=2r,DE=10,OE=CD=1,AE=r﹣1,在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故选:C.14.(2020•玉林)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形【答案】A【解答】解:如图,过点C作CD∥AE交AB于点D,∴∠DCA=∠EAC=35°,∵AE∥BF,∴CD∥BF,∴∠BCD=∠CBF=55°,∴∠ACB=∠ACD+∠BCD=35°+55°=90°,∴△ABC是直角三角形.∵∠CAD=∠EAD﹣∠CAE=80°﹣35°=45°,∴∠ABC=180°﹣∠ACB﹣∠CAD=45°,∴CA=CB,∴△ABC是等腰直角三角形.故选:A.15.(2020•包头)如图,∠ACD是△ABC的外角,CE∥AB.若∠ACB=75°,∠ECD=50°,则∠A的度数为()A.50°B.55°C.70°D.75°【解答】解:∵∠ACB=75°,∠ECD=50°,∴∠ACE=180°﹣∠ACB﹣∠ECD=55°,∵AB∥CE,∴∠A=∠ACE=55°,故选:B.16.(2020•淄博)如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A.a2+b2=5c2B.a2+b2=4c2C.a2+b2=3c2D.a2+b2=2c2【答案】A【解答】解:设EF=x,DF=y,∵AD,BE分别是BC,AC边上的中线,∴点F为△ABC的重心,AE=AC=b,BD=a,∴AF=2DF=2y,BF=2EF=2x,∵AD⊥BE,∴∠AFB=∠AFE=∠BFD=90°,在Rt△AFB中,4x2+4y2=c2,①在Rt△AEF中,x2+4y2=b2,②在Rt△BFD中,4x2+y2=a2,③②+③得5x2+5y2=(a2+b2),∴4x2+4y2=(a2+b2),④①﹣④得c2﹣(a2+b2)=0,即a2+b2=5c2.17.(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()A.25cm2B.cm2C.50cm2D.75cm2【答案】C【解答】解:如图:设OF=EF=FG=x(cm),∴OE=OH=2x,在Rt△EOH中,EH=2x,由题意EH=20cm,∴20=2x,∴x=5,∴阴影部分的面积=(5)2=50(cm2)故选:C.18.(2020•宜昌)如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线【答案】A【解答】解:如图:A.∵直线l为线段FG的垂直平分线,∴FO=GO,l⊥FG,∵EF=GH,∴EF+FO=OG+GH,即EO=OH,∴l为线段EH的垂直平分线,故此选项正确;B.∵EO≠OQ,∴l不是线段EQ的垂直平分线,故此选项错误;C.∵FO≠OH,∴l不是线段FH的垂直平分线,故此选项错误;D.∵l为直线,EH不能平分直线l,∴EH不是l的垂直平分线,故此选项错误;故选:A.19.(2020•青海)等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°【答案】D【解答】解:分情况讨论:(1)若等腰三角形的顶角为70°时,底角=(180°﹣70°)÷2=55°;(2)若等腰三角形的底角为70°时,它的另外一个底角为70°,顶角为180°﹣70°﹣70°=40°.故选:D.20.(2020•常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.6【答案】A【解答】解:∵CH⊥AB,垂足为H,∴∠CHB=90°,∵点M是BC的中点.∴MH=BC,∵BC的最大值是直径的长,⊙O的半径是3,∴MH的最大值为3,故选:A.21.(2020•烟台)如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A.1.7B.1.8C.2.2D.2.4【答案】A【解答】解:∵点G为△ABC的重心,∴AE=BE,BF=CF,∴EF==1.7,故选:A.22.(2020•湘潭)如图,∠ACD是△ABC的外角,若∠ACD=110°,∠B=50°,则∠A =()A.40°B.50°C.55°D.60°【答案】D【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B,∵∠ACD=110°,∠B=50°,∴∠A=60°,故选:D.23.(2020•烟台)如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()n B.()n﹣1C.()n D.()n﹣1【答案】B【解答】解:∵△OA1A2为等腰直角三角形,OA1=1,∴OA2=;∵△OA2A3为等腰直角三角形,∴OA3=2=;∵△OA3A4为等腰直角三角形,∴OA4=2=.∵△OA4A5为等腰直角三角形,∴OA5=4=,……∴OA n的长度为()n﹣1.故选:B.24.(2020•河北)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4【答案】B【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是=,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是=;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是=,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.25.(2020•陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.【答案】D【解答】解:由勾股定理得:AC==,∵S△ABC=3×3﹣=3.5,∴,∴,∴BD=,故选:D.26.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.1【答案】B【解答】解:∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故②正确;∵∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OBD=∠OAC+∠AOB,∴∠AMB=∠AOB=36°,故①正确;作OG⊥AM于G,OH⊥DM于H,如图所示,则∠OGA=∠OHB=90°,∵△AOC≌△BOD,∴OG=OH,∴MO平分∠AMD,故④正确;假设OM平分∠AOD,则∠DOM=∠AOM,在△AMO与△DMO中,,∴△AMO≌△DMO(ASA),∴AO=OD,∵OC=OD,∴OA=OC,而OA<OC,故③错误;正确的个数有3个;故选:B.27.(2020•河北)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l【答案】A【解答】解:如图,由题意可得△P AB是腰长6km的等腰直角三角形,则AB=6km,如图所示,过P点作AB的垂线PC,则PC=3km,则从点P向北偏西45°走3km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后到达BP中点D,此时CD为△P AB的中位线,故CD=AP=3,故再向西走3km到达l,选项D正确.故选:A.28.(2020•福建)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.【答案】D【解答】解:∵D,E,F分别是AB,BC,CA的中点,∴DE=AC,DF=BC,EF=AB,∴=,∴△DEF∽△ABC,∴=()2=()2=,∵等边三角形ABC的面积为1,∴△DEF的面积是,故选:D.29.(2020•聊城)如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是()A.120°B.130°C.145°D.150°【答案】B【解答】解:∵AB=AC,∠C=65°,∴∠B=∠C=65°,∵DF∥AB,∴∠CDE=∠B=65°,∴∠FEC=∠CDE+∠C=65°+65°=130°;故选:B.30.(2020•河南)如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6B.9C.6D.3【答案】D【解答】解:连接BD交AC于O,∵AD=CD,AB=BC,∴BD垂直平分AC,∴BD⊥AC,AO=CO,∵AB=BC,∴∠ACB=∠BAC=30°,∵AC=AD=CD,∴△ACD是等边三角形,∴∠DAC=∠DCA=60°,∴∠BAD=∠BCD=90°,∠ADB=∠CDB=30°,∵AB=BC=,∴AD=CD=AB=3,∴四边形ABCD的面积=2×=3,故选:D.31.(2020•自贡)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC 长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°【答案】D【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°,∵BC=BD,∴∠BCD=∠BDC=(180°﹣40°)=70°,∴∠ACD=90°﹣70°=20°,故选:D.32.(2020•南充)如图,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC =a,BC=b,则CD=()A.B.C.a﹣b D.b﹣a【答案】C【解答】解:∵在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,∴∠ABC=∠C=2∠ABD=72°,∴∠ABD=36°=∠A,∴BD=AD,∴∠BDC=∠A+∠ABD=72°=∠C,∴BD=BC,∵AB=AC=a,BC=b,∴CD=AC﹣AD=a﹣b,故选:C.33.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.【答案】B【解答】解:∵四边形EFGH为正方形,∴∠EGH=45°,∠FGH=90°,∵OG=GP,∴∠GOP=∠OPG=67.5°,∴∠PBG=22.5°,又∵∠DBC=45°,∴∠GBC=22.5°,∴∠PBG=∠GBC,∵∠BGP=∠BGC=90°,BG=BG,∴△BPG≌△BCG(ASA),∴PG=CG.设OG=PG=CG=x,∵O为EG,BD的交点,∴EG=2x,FG=x,∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x+x,∴BC2=BG2+CG2==,∴=.故选:B.34.(2020•宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长【答案】A【解答】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.35.(2020•新疆)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC 的长为()A.2B.5C.4D.10【答案】A【解答】解:过A作AH⊥BC于H,∵D是AB的中点,∴AD=BD,∵DE∥BC,∴AE=CE,∴DE=BC,∵DF⊥BC,∴DF∥AH,DF⊥DE,∴BF=HF,∴DF=AH,∵△DFE的面积为1,∴DE•DF=1,∴DE•DF=2,∴BC•AH=2DE•2DF=4×2=8,∴AB•AC=8,∵AB=CE,∴AB=AE=CE=AC,∴AB•2AB=8,∴AB=2(负值舍去),∴AC=4,∴BC==2.故选:A.二.填空题(共5小题)36.(2020•阜新)如图,把△ABC沿AB边平移到△A1B1C1的位置,图中所示的三角形的面积S1与四边形的面积S2之比为4:5,若AB=4,则此三角形移动的距离AA1是.【答案】.【解答】解:∵把△ABC沿AB边平移到△A1B1C1的位置,∴AC∥A1C1,∴△ABC∽△A1BD,∵S△A1BD:S四边形ACDA1=4:5,∴S:S△ABC=4:9,∴A1B:AB=2:3,∵AB=4,∴A1B=,∴AA1=4﹣=.故答案为:.37.(2020•葫芦岛)如图,∠MON=45°,正方形ABB1C,正方形A1B1B2C1,正方形A2B2B3C2,正方形A3B3B4C3,…,的顶点A,A1,A2,A3,…,在射线OM上,顶点B,B1,B2,B3,B4,…,在射线ON上,连接AB2交A1B1于点D,连接A1B3交A2B2于点D1,连接A2B4交A3B3于点D2,…,连接B1D1交AB2于点E,连接B2D2交A1B3于点E1,…,按照这个规律进行下去,设△ACD与△B1DE的面积之和为S1,△A1C1D1与△B2D1E1的面积之和为S2,△A2C2D2与△B3D2E2的面积之和为S3,…,若AB=2,则S n等于×4n﹣1.(用含有正整数n的式子表示)【答案】.【解答】解:设△ADC的面积为S,。

2020年云南省中考数学试卷(有详细解析)

2020年云南省中考数学试卷(有详细解析)

2020年云南省中考数学试卷班级:姓名:得分:一、选择题(本大题共8小题,共32.0分)1.千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90% 的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020 年5月11日云南日报).1500000这个数用科学记数法表示为()A. 15 x 106B. 1.5 x 105C. 1.5 x 106D. 1.5 x 1072.下列几何体中,主视图是长方形的是()4.下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360。

是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为%%、;乙,方差分别为s) S)若。

=邑,s3=0.4, s: = 2,则甲的成绩比乙的稳定D. 一个抽奖活动中,中奖概率为点,表示抽奖20次就有1次中奖5.如图,平行四边形A8CD的对角线AC, 8。

相交于点。

, E是CO 的中点.则aDEO与△BCD的而积的比等于()B.i C46.按一定规律排列的单项式:“,-2a, 4a, -8。

,16a, -32a,…,第〃个单项式是()A. (一2)“-% B. (-2)% C. 2"-% D. 27.如图,正方形ABC。

的边长为4,以点A为圆心,AQ为半径,A 画圆弧OE得到扇形0/E(阴影部分,点石在对角线AC上).若扇形D4E正好是一个圆锥的侧面展开图,则该圆锥的底而圆的半径是()BA. V2B. 1C.噂D. I(x-111+x8.若整数“使关于x的不等式组,有且只有45个整数解,且使关于y的Ax - a > x + 1方程端上+鼻=1的解为非正数,则a的值为()A. -61 或-58B. -61 或一59D. -61 或-60或一59C. 一60或一59二、填空题(本大题共6小题,共1&0分)9.中国是最早采用正负数表示相反意义的量的国家.某仓库运进而粉7吨,记为+7吨,那么运出面粉8吨应记为吨.10.如图,直线C与直线〃、。

2020年全国中考数学试题分类—图形的相似

2020年全国中考数学试题分类—图形的相似

2020年全国中考数学试题分类(14)——图形的相似一.黄金分割(共1小题) 1.(2020•泸州)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MM MM=MM MM=√5−12,后人把√5−12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( )A .10﹣4√5B .3√5−5C .5−2√52D .20﹣8√5 二.平行线分线段成比例(共4小题)2.(2020•营口)如图,在△ABC 中,DE ∥AB ,且MM MM=32,则MM MM的值为( )A .35B .23C .45D .323.(2020•成都)如图,直线l 1∥l 2∥l 3,直线AC 和DF 被l 1,l 2,l 3所截,AB =5,BC =6,EF =4,则DE的长为( )A .2B .3C .4D .1034.(2020•宜宾)在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,BE 平分∠ABC 交AC 于点E ,连结CD 交BE 于点O .若AC =8,BC =6,则OE 的长是 .5.(2020•无锡)如图,在Rt △ABC 中,∠ACB =90°,AB =4,点D ,E 分别在边AB ,AC 上,且DB =2AD ,AE =3EC ,连接BE ,CD ,相交于点O ,则△ABO 面积最大值为 .三.相似三角形的判定(共3小题)6.(2020•昆明)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()A.4个B.5个C.6个D.7个7.(2020•攀枝花)如图,在边长为4的正方形ABCD中,点E、F分别是BC、CD的中点,DE、AF交于点G,AF的中点为H,连接BG、DH.给出下列结论:①AF⊥DE;①DG=85;①HD∥BG;①△ABG∽△DHF.其中正确的结论有.(请填上所有正确结论的序号)8.(2020•南京)如图,在△ABC和△A'B'C'中,D、D'分别是AB、A'B'上一点,MMMM=M′M′M′M′.(1)当MMM′M′=MMM′M′=MMM′M′时,求证△ABC∽△A'B'C'.证明的途径可以用下面的框图表示,请填写其中的空格.(2)当MMM′M′=MM M′M′=MMM′M′时,判断△ABC 与△A 'B 'C ′是否相似,并说明理由.四.相似三角形的判定与性质(共29小题) 9.(2020•贵港)如图,在△ABC 中,点D 在AB 边上,若BC =3,BD =2,且∠BCD =∠A ,则线段AD 的长为( )A .2B .52C .3D .9210.(2020•海南)如图,在①ABCD 中,AB =10,AD =15,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE 于点G ,若BG =8,则△CEF 的周长为( )A .16B .17C .24D .25 11.(2020•牡丹江)如图,在矩形ABCD 中,AB =3,BC =10,点E 在BC 边上,DF ⊥AE ,垂足为F .若DF =6,则线段EF 的长为( )A .2B .3C .4D .5 12.(2020•遂宁)如图,在正方形ABCD 中,点E 是边BC 的中点,连接AE 、DE ,分别交BD 、AC 于点P 、Q ,过点P 作PF ⊥AE 交CB 的延长线于F ,下列结论: ①∠AED +∠EAC +∠EDB =90°, ①AP =FP , ①AE =√102AO ,①若四边形OPEQ 的面积为4,则该正方形ABCD 的面积为36, ①CE •EF =EQ •DE .其中正确的结论有( )A .5个B .4个C .3个D .2个13.(2020•遵义)如图,△ABO的顶点A在函数y=M M(x>0)的图象上,∠ABO=90°,过AO边的三等分点M、N分别作x轴的平行线交AB于点P、Q.若四边形MNQP的面积为3,则k的值为()A.9B.12C.15D.1814.(2020•眉山)如图,正方形ABCD中,点F是BC边上一点,连接AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连接DG.以下四个结论:①∠EAB=∠GAD;①△AFC∽△AGD;①2AE2=AH•AC;①DG⊥AC.其中正确的个数为()A.1个B.2个C.3个D.4个15.(2020•海南)如图,在矩形ABCD中,AB=6,BC=10,点E、F在AD边上,BF和CE交于点G,若EF=12AD,则图中阴影部分的面积为()A.25B.30C.35D.4016.(2020•益阳)如图,在矩形ABCD中,E是DC上的一点,△ABE是等边三角形,AC交BE于点F,则下列结论不成立的是()A .∠DAE =30°B .∠BAC =45° C .MM MM=12D .MM MM=√3217.(2020•云南)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E 是CD 的中点.则△DEO 与△BCD 的面积的比等于( )A .12B .14C .16D .1818.(2020•潍坊)如图,点E 是①ABCD 的边AD 上的一点,且MM MM=12,连接BE 并延长交CD 的延长线于点F ,若DE =3,DF =4,则①ABCD 的周长为( )A .21B .28C .34D .42 19.(2020•哈尔滨)如图,在△ABC 中,点D 在BC 边上,连接AD ,点E 在AC 边上,过点E 作EF ∥BC ,交AD 于点F ,过点E 作EG ∥AB ,交BC 于点G ,则下列式子一定正确的是( )A .MM MM=MM MMB .MM MM=MM MMC .MM MM=MM MMD .MM MM=MM MM20.(2020•柳州)如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰好落在边AD 上的点F 处,点G 在AF 上,将△ABG 沿BG 折叠,点A 恰好落在线段BF 上的H 处,有下列结论:①∠EBG =45°;①2S △BFG =5S △FGH ;①△DEF ∽△ABG ;①4CE =5ED .其中正确的是 .(填写所有正确结论的序号)21.(2020•锦州)如图,在△ABC 中,D 是AB 中点,DE ∥BC ,若△ADE 的周长为6,则△ABC 的周长为 .22.(2020•鞍山)如图,在菱形ABCD 中,∠ADC =60°,点E ,F 分别在AD ,CD 上,且AE =DF ,AF 与CE 相交于点G ,BG 与AC 相交于点H .下列结论:①△ACF ≌△CDE ;①CG 2=GH •BG ;①若DF =2CF ,则CE =7GF ;①S 四边形ABCG =√34BG 2.其中正确的结论有 .(只填序号即可)23.(2020•东营)如图,P 为平行四边形ABCD 边BC 上一点,E 、F 分别为P A 、PD 上的点,且P A =3PE ,PD =3PF ,△PEF 、△PDC 、△P AB 的面积分别记为S 、S 1、S 2.若S =2,则S 1+S 2= .24.(2020•随州)如图,已知矩形ABCD 中,AB =3,BC =4,点M ,N 分别在边AD ,BC 上,沿着MN 折叠矩形ABCD ,使点A ,B 分别落在E ,F 处,且点F 在线段CD 上(不与两端点重合),过点M 作MH ⊥BC 于点H ,连接BF ,给出下列判断: ①△MHN ∽△BCF ; ①折痕MN 的长度的取值范围为3<MN <154; ①当四边形CDMH 为正方形时,N 为HC 的中点; ①若DF =13DC ,则折叠后重叠部分的面积为5512. 其中正确的是 .(写出所有正确判断的序号)25.(2020•牡丹江)如图,在Rt △ABC 中,CA =CB ,M 是AB 的中点,点D 在BM 上,AE ⊥CD ,BF ⊥CD ,垂足分别为E ,F ,连接EM .则下列结论中: ①BF =CE ;①∠AEM =∠DEM ; ①AE ﹣CE =√2ME ; ①DE 2+DF 2=2DM 2;①若AE 平分∠BAC ,则EF :BF =√2:1; ①CF •DM =BM •DE , 正确的有 .(只填序号)26.(2020•黑龙江)如图,直线AM 的解析式为y =x +1与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为(1,1).过点B 作EO 1⊥MA 交MA 于点E ,交x 轴于点O 1,过点O 1作x 轴的垂线交MA 于点A 1,以O 1A 1为边作正方形O 1A 1B 1C 1,点B 1的坐标为(5,3).过点B 1作E 1O 2⊥MA 交MA 于E 1,交x 轴于点O 2,过点O 2作x 轴的垂线交MA 于点A 2.以O 2A 2为边作正方形O 2A 2B 2C 2.….则点B 2020的坐标 .27.(2020•长沙)如图,点P 在以MN 为直径的半圆上运动(点P 不与M ,N 重合),PQ ⊥MN ,NE 平分∠MNP ,交PM 于点E ,交PQ 于点F . (1)MM MM+MM MM= .(2)若PN 2=PM •MN ,则MM MM= .28.(2020•临沂)如图,在△ABC 中,D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,H 为AF 与DG 的交点.若AC =6,则DH = .29.(2020•咸宁)如图,四边形ABCD 是边长为2的正方形,点E 是边BC 上一动点(不与点B ,C 重合),∠AEF =90°,且EF 交正方形外角的平分线CF 于点F ,交CD 于点G ,连接AF ,有下列结论: ①△ABE ∽△ECG ; ①AE =EF ;①∠DAF =∠CFE ;①△CEF 的面积的最大值为1. 其中正确结论的序号是 .(把正确结论的序号都填上)30.(2020•泸州)如图,在矩形ABCD中,E,F分别为边AB,AD的中点,BF与EC、ED分别交于点M,N.已知AB=4,BC=6,则MN的长为.31.(2020•黑龙江)如图,直线AM的解析式为y=x+1与x轴交于点M,与y轴交于点A,以OA为边作正方形ABCO,点B坐标为(1,1).过B点作直线EO1⊥MA交MA于点E,交x轴于点O1,过点O1作x 轴的垂线交MA于点A1.以O1A1为边作正方形O1A1B1C1,点B1的坐标为(5,3).过点B1作直线E1O2⊥MA交MA于E1,交x轴于点O2,过点O2作x轴的垂线交MA于点A2.以O2A2为边作正方形O2A2B2C2,…,则点B2020的坐标.32.(2020•兰州)如图,在正方形ABCD中,对角线AC与BD相交于点O,AB=2,点E在AB的延长线上,且AE=AC,EF⊥AC于点F,连接BF并延长交CD于点G,则DG=.33.(2020•西宁)如图,在△ABC中,AB=AC,以AB为直径的①O交AC于点D,交BC于点E,延长AE 至点F,使EF=AE,连接FB,FC和DE.(1)求证:四边形ABFC是菱形;(2)若CD=1,BE=2,求①O的半径.34.(2020•朝阳)如图,以AB为直径的①O经过△ABC的顶点C,过点O作OD∥BC交①O于点D,交AC于点F,连接BD交AC于点G,连接CD,在OD的延长线上取一点E,连接CE,使∠DEC=∠BDC.(1)求证:EC 是①O 的切线;(2)若①O 的半径是3,DG •DB =9,求CE 的长.35.(2020•黄冈)已知:如图,AB 是①O 的直径,点E 为①O 上一点,点D 是MM̂上一点,连接AE 并延长至点C ,使∠CBE =∠BDE ,BD 与AE 交于点F . (1)求证:BC 是①O 的切线;(2)若BD 平分∠ABE ,求证:AD 2=DF •DB .36.(2020•杭州)如图,在△ABC 中,点D ,E ,F 分别在AB ,BC ,AC 边上,DE ∥AC ,EF ∥AB . (1)求证:△BDE ∽△EFC . (2)设MM MM=12,①若BC =12,求线段BE 的长;①若△EFC 的面积是20,求△ABC 的面积.37.(2020•杭州)如图,在正方形ABCD 中,点E 在BC 边上,连接AE ,∠DAE 的平分线AG 与CD 边交于点G ,与BC 的延长线交于点F .设MM MM=λ(λ>0).(1)若AB =2,λ=1,求线段CF 的长. (2)连接EG ,若EG ⊥AF , ①求证:点G 为CD 边的中点. ①求λ的值.五.相似三角形的应用(共4小题) 38.(2020•玉林)一个三角形木架三边长分别是75cm ,100cm ,120cm ,现要再做一个与其相似的三角形木架,而只有长为60cm 和120cm 的两根木条.要求以其中一根为一边,从另一根截下两段作为另两边(允许有余料),则不同的截法有()A.一种B.两种C.三种D.四种39.(2020•山西)泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的()A.图形的平移B.图形的旋转C.图形的轴对称D.图形的相似40.(2020•绍兴)如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm.则投影三角板的对应边长为()A.20cm B.10cm C.8cm D.3.2cm41.(2020•温州)如图,在河对岸有一矩形场地ABCD,为了估测场地大小,在笔直的河岸l上依次取点E,F,N,使AE⊥l,BF⊥l,点N,A,B在同一直线上.在F点观测A点后,沿FN方向走到M点,观测C 点发现∠1=∠2.测得EF=15米,FM=2米,MN=8米,∠ANE=45°,则场地的边AB为米,BC为米.六.作图-相似变换(共1小题)42.(2020•济宁)如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC.求证:PD∥AB.七.位似变换(共4小题)43.(2020•重庆)如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()A .1:2B .1:3C .1:4D .1:544.(2020•重庆)如图,在平面直角坐标系中,△ABC 的顶点坐标分别是A (1,2),B (1,1),C (3,1),以原点为位似中心,在原点的同侧画△DEF ,使△DEF 与△ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )A .√5B .2C .4D .2√545.(2020•兰州)如图,四边形ABCD 与四边形A ′B ′C ′D ′位似,位似中心为点O ,OC =6,CC ′=4,AB =3,则A ′B ′= .46.(2020•盘锦)如图,△AOB 三个顶点的坐标分别为A (5,0),O (0,0),B (3,6),以点O 为位似中心,相似比为23,将△AOB 缩小,则点B 的对应点B '的坐标是 . 八.作图-位似变换(共2小题)47.(2020•朝阳)如图所示的平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣3,2),B (﹣1,3),C (﹣1,1),请按如下要求画图:(1)以坐标原点O 为旋转中心,将△ABC 顺时针旋转90°,得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)以坐标原点O 为位似中心,在x 轴下方,画出△ABC 的位似图形△A 2B 2C 2,使它与△ABC 的位似比为2:1.48.(2020•宁夏)在平面直角坐标系中,△ABC 的三个顶点的坐标分别是A (1,3),B (4,1),C (1,1).(1)画出△ABC 关于x 轴成轴对称的△A 1B 1C 1;(2)画出△ABC 以点O 为位似中心,位似比为1:2的△A 2B 2C 2.九.相似形综合题(共2小题)49.(2020•荆州)如图,在矩形ABCD 中,AB =20,点E 是BC 边上的一点,将△ABE 沿着AE 折叠,点B 刚好落在CD 边上点G 处;点F 在DG 上,将△ADF 沿着AF 折叠,点D 刚好落在AG 上点H 处,此时S △GFH :S △AFH =2:3,(1)求证:△EGC ∽△GFH ;(2)求AD 的长;(3)求tan ∠GFH 的值.50.(2020•福建)如图,△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P .(1)求∠BDE 的度数;(2)F 是EC 延长线上的点,且∠CDF =∠DAC .①判断DF 和PF 的数量关系,并证明;①求证:MM MM =MM MM .2020年全国中考数学试题分类(14)——图形的相似参考答案与试题解析一.黄金分割(共1小题)1.【解答】解:作AH ⊥BC 于H ,如图,∵AB =AC ,∴BH =CH =12BC =2,在Rt △ABH 中,AH =√32−22=√5,∵D ,E 是边BC 的两个“黄金分割”点,∴BE =√5−12BC =2(√5−1)=2√5−2,∴HE =BE ﹣BH =2√5−2﹣2=2√5−4,∴DE =2HE =4√5−8∴S △ADE =12×(4√5−8)×√5=10﹣4√5.故选:A .二.平行线分线段成比例(共4小题)2.【解答】解:∵DE ∥AB ,∴MM MM =MM MM =32, ∴MM MM 的值为35,故选:A .3.【解答】解:∵直线l 1∥l 2∥l 3,∴MM MM=MM MM , ∵AB =5,BC =6,EF =4, ∴56=MM 4, ∴DE =103, 故选:D .4.【解答】解:在Rt △ACB 中,∠ACB =90°,AC =8,BC =6,由勾股定理得:AB =10, 过A 作AF ∥BC ,交BE 延长线于F ,∵AF ∥BC ,∴∠F =∠CBE ,∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∴∠F =∠ABE ,∴AB =AF =10,∵AF ∥BC ,∴△AEF ∽△CEB ,∴MM MM =MM MM , ∴106=MM 8−MM,解得:AE =5,CE =8﹣5=3,在Rt △ECB 中,由勾股定理得:BE =√62+32=3√5,过D 作DM ∥AC ,交BC 于M ,交BE 于N ,∵D 为AB 的中点,DM ∥AC ,∴M 为BC 的中点,N 为BE 的中点,∴DN =12AE =12×5=2.5,BN =NE =12BE =3√52, ∵DM ∥AC ,∴△DNO ∽△CEO ,∴MM MM =MM MM , ∴2.53=3√52−MM MM , 解得:OE =9√511, 故答案为:9√511.5.【解答】解:如图,过点D 作DF ∥AE , 则MM MM =MM MM =23, ∵MM MM =13,∴DF =2EC ,∴DO =2OC ,∴DO =23DC ,∴S △ADO =23S △ADC ,S △BDO =23S △BDC ,∴S △ABO =23S △ABC , ∵∠ACB =90°,∴C 在以AB 为直径的圆上,设圆心为G ,当CG ⊥AB 时,△ABC 的面积最大为:12×4×2=4,此时△ABO 的面积最大为:23×4=83.故答案为:83.三.相似三角形的判定(共3小题)6.【解答】解:如图,所以使得△ADE ∽△ABC 的格点三角形一共有6个.故选:C .7.【解答】解:∵四边形ABCD 为正方形,∴∠ADC =∠BCD =90°,AD =CD ,∵E 和F 分别为BC 和CD 中点,∴DF =EC =2,∴△ADF ≌△DCE (SAS ),∴∠AFD =∠DEC ,∠F AD =∠EDC ,∵∠EDC +∠DEC =90°,∴∠EDC +∠AFD =90°,∴∠DGF =90°,即DE ⊥AF ,故①正确;∵AD =4,DF =12CD =2,∴AF =√42+22=2√5,∴DG =AD ×DF ÷AF =4√55,故①错误;∵H 为AF 中点,∴HD =HF =12AF =√5, ∴∠HDF =∠HFD ,∵AB ∥DC ,∴∠HDF =∠HFD =∠BAG ,∵AG =√MM 2−MM 2=8√55,AB =4, ∴MM MM =MM MM =4√55=MM MM ,∴△ABG ~△DHF ,故①正确;∴∠ABG =∠DHF ,而AB ≠AG ,则∠ABG 和∠AGB 不相等,故∠AGB ≠∠DHF ,故HD 与BG 不平行,故①错误;故答案为:①①.8.【解答】(1)证明:∵MM MM =M′M′M′M′, ∴MM M′M′=MM M′M′, ∵MM M′M′=MM M′M′=MM M′M′, ∴MM M′M′=MM M′M′=MM M′M′, ∴△ADC ∽△A ′D ′C ', ∴∠A =∠A ′, ∵MM M′M′=MM M′M′,∴△ABC ∽△A ′B ′C ′. 故答案为:MM M′M′=MM M′M′=MM M′M′,∠A =∠A ′.(2)如图,过点D ,D ′分别作DE ∥BC ,D ′E ′∥B ′C ′,DE 交AC 于E ,D ′E ′交A ′C ′于E ′.∵DE ∥BC ,∴△ADE ∽△ABC ,∴MM MM =MM MM =MM MM , 同理,M′M′M′M′=M′M′M′M′=M′M′M′M′, ∵MM MM =M′M′M′M′, ∴MM MM =M′M′M′M′,∴MM M′M′=MM M′M′, 同理,MM MM =M′M′M′M′, ∴MM −MM MM =M′M′−M′M′M′M′,即MM MM =M′M′M′M′, ∴MM M′M′=MM M′M′, ∵MM M′M′=MM M′M′=MM M′M′, ∴MM M′M′=MM M′M′=MM M′M′,∴△DCE ∽△D ′C ′E ′,∴∠CED =∠C ′E ′D ′,∴∠CED +∠ACB =180°,同理,∠C ′E ′D ′+∠A ′C ′B ′=180°,∴∠ACB =∠A ′C ′B ′,∵MM M′M′=MM M′M′, ∴△ABC ∽△A ′B ′C ′.四.相似三角形的判定与性质(共29小题)9.【解答】解:∵∠BCD =∠A ,∠B =∠B ,∴△BCD ∽△BAC ,∴MM MM=MM MM , ∵BC =3,BD =2, ∴3MM =23, ∴BA =92, ∴AD =BA ﹣BD =92−2=52.故选:B .10.【解答】解:∵在①ABCD 中,CD =AB =10,BC =AD =15,∠BAD 的平分线交BC 于点E , ∴AB ∥DC ,∠BAF =∠DAF ,∴∠BAF =∠F ,∴∠DAF =∠F ,∴DF =AD =15,同理BE =AB =10,∴CF =DF ﹣CD =15﹣10=5;∴在△ABG 中,BG ⊥AE ,AB =10,BG =8,在Rt △ABG 中,AG =√MM 2−MM 2=√102−82=6,∴AE =2AG =12,∴△ABE 的周长等于10+10+12=32,∵四边形ABCD 是平行四边形,∴AB ∥CF ,∴△CEF ∽△BEA ,相似比为5:10=1:2,∴△CEF 的周长为16.故选:A .11.【解答】解:∵四边形ABCD 为矩形,∴AB =CD =3,BC =AD =10,AD ∥BC ,∴∠AEB =∠DAF ,∴△AFD ∽△EBA ,∴MM MM =MM MM =MM MM ,∵DF =6,∴AF =√MM 2−MM 2=√102−62=8,∴8MM =10MM =63,∴EF =AF ﹣AE =8﹣5=3.故选:B .12.【解答】解:如图,连接OE .∵四边形ABCD 是正方形,∴AC ⊥BD ,OA =OC =OB =OD ,∴∠BOC =90°,∵BE =EC ,∴∠EOB =∠EOC =45°,∵∠EOB =∠EDB +∠OED ,∠EOC =∠EAC +∠AEO ,∴∠AED +∠EAC +∠EDO =∠EAC +∠AEO +∠OED +∠EDB =90°,故①正确, 连接AF .∵PF ⊥AE ,∴∠APF =∠ABF =90°,∴A ,P ,B ,F 四点共圆,∴∠AFP =∠ABP =45°,∴∠P AF =∠PF A =45°,∴P A =PF ,故①正确,设BE =EC =a ,则AE =√5a ,OA =OC =OB =OD =√2a ,∴MM MM =√5M √2M =√102,即AE =√102AO ,故①正确, 根据对称性可知,△OPE ≌△OQE ,∴S △OEQ =12S 四边形OPEQ =2,∵OB =OD ,BE =EC ,∴CD =2OE ,OE ∥CD ,∴MMMM =MMMM =12,△OEQ ∽△CDQ , ∴S △ODQ =4,S △CDQ =8,∴S △CDO =12,∴S 正方形ABCD =48,故①错误,∵∠EPF =∠DCE =90°,∠PEF =∠DEC ,∴△EPF ∽△ECD ,∴MMMM =MMMM ,∵EQ =PE ,∴CE •EF =EQ •DE ,故①正确,故选:B .13.【解答】解:∵NQ ∥MP ∥OB ,∴△ANQ ∽△AMP ∽△AOB ,∵M 、N 是OA 的三等分点,∴MM MM =12,MM MM =13, ∴M △MMMM △MMM =14,∵四边形MNQP 的面积为3, ∴M △MMM3+M △MMM=14, ∴S △ANQ =1, ∵1M △MMM =(MM MM )2=19,∴S △AOB =9,∴k =2S △AOB =18,故选:D .14.【解答】解:∵四边形ABCD ,四边形AEFG 都是正方形,∴∠EAG =∠BAD =90°,∠F AG =∠AFG =∠DAC =∠ACB =45°,AF =√2AG ,AC =√2AD , ∴∠EAG ﹣∠BAG =∠BAD ﹣∠BAG ,∴∠EAB =∠DAG ,故①正确;∵AF =√2AG ,AC =√2AD ,∴MM MM =√2=MM MM , ∵∠F AG =∠CAD =45°,∴∠F AC =∠DAG ,∴△F AC ∽△DAG ,故①正确,∴∠ADG =∠ACB =45°,延长DG 交AC 于N ,∵∠CAD =45°,∠ADG =45°,∴∠AND =90°,∴DG ⊥AC ,故①正确,∵∠F AC =∠F AH ,∠AFG =∠ACF =45°,∴△AFH ∽△ACF ,∴MM MM =MM MM ,∴AF 2=AH •AC ,∴2AE 2=AH •AC ,故①正确,故选:D .15.【解答】解:过点G 作GN ⊥AD 于N ,延长NG 交BC 于M ,∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC ,∵EF =12AD ,∴EF =12BC , ∵AD ∥BC ,NG ⊥AD ,∴△EFG ∽△CBG ,GM ⊥BC ,∴GN :GM =EF :BC =1:2,又∵MN =AB =6,∴GN =2,GM =4,∴S △BCG =12×10×4=20,∴S △EFG =12×5×2=5,S 矩形ABCD =6×10=60,∴S 阴影=60﹣20﹣5=35.故选:C .16.【解答】解:∵四边形ABCD 是矩形,△ABE 是等边三角形,∴AB =AE =BE ,∠EAB =∠EBA =60°,AD =BC ,∠DAB =∠CBA =90°,AB ∥CD ,AB =CD , ∴∠DAE =∠CBE =30°,故选项A 不合题意,∴cos ∠DAE =√32=MM MM =MM MM ,故选项D 不合题意, 在△ADE 和△BCE 中,{MM =MM MMMM =MMMM MM =MM ,∴△ADE ≌△BCE (SAS ),∴DE =CE =12CD =12AB ,∵AB ∥CD ,∴△ABF ∽△CEF ,∴MM MM =MM MM =12,故选项C 不合题意, 故选:B .17.【解答】解:∵平行四边形ABCD 的对角线AC ,BD 相交于点O ,∴点O 为线段BD 的中点.又∵点E 是CD 的中点,∴线段OE 为△DBC 的中位线,∴OE ∥BC ,OE =12BC ,∴△DOE ∽△DBC ,∴M △MMMM △MMM =(MM MM )2=14. 故选:B .18.【解答】解:∵四边形ABCD 是平行四边形,∴AB ∥CF ,AB =CD ,∴△ABE ∽△DFE ,∴MM MM =MM MM =12,∵DE =3,DF =4,∴AE =6,AB =8,∴AD =AE +DE =6+3=9,∴平行四边形ABCD 的周长为:(8+9)×2=34.故选:C .19.【解答】解:∵EF ∥BC ,∴MM MM=MM MM , ∵EG ∥AB , ∴MM MM =MM MM , ∴MM MM =MM MM ,故选:C .20.【解答】解:①由折叠的性质可知:∠CBE =∠FBE ,∠ABG =∠FBG , ∵四边形ABCD 是矩形,∴∠ABC =90°,∴∠EBG =∠GBH +∠EBF =12∠CBF +12∠ABF =12∠ABC =45°. 故①正确;①由折叠的性质可知:BF =BC =10,BH =AB =6,∴HF =BF ﹣BH =4,∴M △MMMM △MMM =MM MM =104=52, ∴2S △BFG =5S △FGH ;故①正确;①∵四边形ABCD 是矩形,∴∠A =∠D =90°,在Rt △ABF 中,AF =√MM 2−MM 2=8,设GF =x ,即HG =AG =8﹣x ,在Rt △HGF 中,HG 2+HF 2=GF 2,即(8﹣x )2+42=x 2,解得x =5,∴AG =3,∴FD =2;同理可得ED =83,∴MM MM =63=2, MM MM =832=43, ∴MM MM ≠MM MM , ∴△ABG 与△DEF 不相似,故①错误;①∵CD =AB =6,ED =83,∴CE =CD ﹣ED =103,∴MM MM =54,∴4CE =5ED .故①正确.综上所述,正确的结论的序号为①①①.21.【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∵D 是AB 的中点,∴MM MM =12, ∴△MMM 的周长△MMM 的周长=12 ∵△ADE 的周长为6,∴△ABC 的周长为12,故答案为:12.22.【解答】解:∵ABCD 为菱形,∴AD =CD ,∵AE =DF ,∴DE =CF ,∵∠ADC =60°,∴△ACD 为等边三角形,∴∠D =∠ACD =60°,AC =CD ,∴△ACF ≌△CDE (SAS ),故①正确;过点F 作FP ∥AD ,交CE 于P 点.∵DF =2CF ,∴FP :DE =CF :CD =1:3,∵DE =CF ,AD =CD ,∴AE =2DE ,∴FP :AE =1:6=FG :AG ,∴AG =6FG ,∴CE =AF =7GF ,故①正确;过点B 作BM ⊥AG 于M ,BN ⊥GC 于N ,∵∠AGE =∠ACG +∠CAF =∠ACG +∠GCF =60°=∠ABC , 即∠AGC +∠ABC =180°,∴点A 、B 、C 、G 四点共圆,∴∠AGB =∠ACB =60°,∠CGB =∠CAB =60°,∴∠AGB =∠CGB =60°,∴BM =BN ,又AB =BC ,∴△ABM ≌△CBN (HL ),∴S 四边形ABCG =S 四边形BMGN ,∵∠BGM =60°,∴GM =12BG ,BM =√32BG ,∴S 四边形BMGN =2S △BMG =2×12×12MM ×√32MM =√34BG 2,故①正确; ∵∠CGB =∠ACB =60°,∠CBG =∠HBC ,∴△BCH ∽△BGC ,∴MM MM =MM MM =MM MM ,则BG •BH =BC 2,则BG •(BG ﹣GH )=BC 2,则BG 2﹣BG •GH =BC 2,则GH •BG =BG 2﹣BC 2,当∠BCG =90°时,BG 2﹣BC 2=CG 2,此时GH •BG =CG 2, 而题中∠BCG 未必等于90°,故①不成立,故正确的结论有①①①,故答案为:①①①.23.【解答】解:∵P A =3PE ,PD =3PF , ∴MM MM =MMMM =13, ∴EF ∥AD ,∴△PEF ∽△P AD ,∴M △MMMM △MMM =(13)2, ∵S △PEF =2,∴S △P AD =18,∵四边形ABCD是平行四边形, ∴S △P AD =12S 平行四边形ABCD ,∴S 1+S 2=S △P AD =18,故答案为18.24.【解答】解:①如图1,由折叠可知BF ⊥MN ,∴∠BOM =90°,∵MH ⊥BC ,∴∠BHP =90°=∠BOM ,∵∠BPH =∠OPM ,∴∠CBF =∠NMH ,∵∠MHN =∠C =90°,∴△MHN ∽△BCF ,故①正确;①当F 与C 重合时,MN =3,此时MN 最小,当F 与D 重合时,如图2,此时MN 最大,由勾股定理得:BD =5,∵OB =OD =52, ∵tan ∠DBC =MM MM =MM MM ,即MM 52=34, ∴ON =158, ∵AD ∥BC ,∴∠MDO =∠OBN ,在△MOD 和△NOB 中,∵{∠MMM =∠MMMMM =MM MMMM =MMMM,∴△DOM ≌△BON (ASA ),∴OM =ON ,∴MN =2ON =154, ∵点F 在线段CD 上(不与两端点重合),∴折痕MN 的长度的取值范围为3<MN <154; 故①正确;①如图3,连接BM ,FM ,当四边形CDMH 为正方形时,MH =CH =CD =DM =3,∵AD =BC =4,∴AM =BH =1,由勾股定理得:BM =√3+1=√10,∴FM =√10,∴DF =√MM 2−MM 2=√(√10)2−32=1,∴CF =3﹣1=2,设HN =x ,则BN =FN =x +1,在Rt △CNF 中,CN 2+CF 2=FN 2,∴(3﹣x )2+22=(x +1)2,解得:x =32,∴HN =32,∵CH =3,∴CN =HN =32,∴N 为HC 的中点;故①正确;①如图4,连接FM ,∵DF =13DC ,CD =3,∴DF =1,CF =2,∴BF =√22+42=2√5, ∴OF =√5,设FN =a ,则BN =a ,CN =4﹣a ,由勾股定理得:FN 2=CN 2+CF 2,∴a 2=(4﹣a )2+22,∴a =52, ∴BN =FN =52,CN =32,∵∠NFE =∠CFN +∠DFQ =90°,∠CFN +∠CNF =90°,∴∠DFQ =∠CNF ,∵∠D =∠C =90°,∴△QDF ∽△FCN ,∴MM MM =MM MM ,即MM 2=132, ∴QD =43,∵tan ∠HMN =tan ∠CBF =MM MM =MM MM , ∴MM 3=24, ∴HN =32, ∴MN =√32+(32)2=3√52,∵CH =MD =HN +CN =32+32=3,∴MQ =3−43=53,∴折叠后重叠部分的面积为:S△MNF+S△MQF=12⋅MM⋅MM+12⋅MM⋅MM=12×3√52×√5+12×53×1=5512;法二:折叠后重叠部分的面积为:S△MNF+S△MQF=S正方形CDMH﹣S△QDF﹣S△NFC﹣S△MNH=3×3−12×43×1−12×32×2−12×32×3=5512;故①正确;所以本题正确的结论有:①①①①;故答案为:①①①①.25.【解答】解:∵∠ACB=90°,∴∠BCF+∠ACE=90°,∵∠BCF+∠CBF=90°,∴∠ACE=∠CBF,又∵∠BFD=90°=∠AEC,AC=BC,∴△BCF≌△CAE(AAS),∴BF=CE,故①正确;由全等可得:AE=CF,BF=CE,∴AE﹣CE=CF﹣CE=EF,连接FM,CM,∵点M是AB中点,∴CM=12AB=BM=AM,CM⊥AB,在△BDF和△CDM中,∠BFD=∠CMD,∠BDF=∠CDM,∴∠DBF=∠DCM,又BM=CM,BF=CE,∴△BFM≌△CEM(SAS),∴FM=EM,∠BMF=∠CME,∵∠BMC=90°,∴∠EMF=90°,即△EMF为等腰直角三角形,∴EF=√2EM=AE﹣CE,故①正确,∠MEF=∠MFE=45°,∵∠AEC=90°,∴∠MEF=∠AEM=45°,故①正确,设AE与CM交于点N,连接DN,∵∠DMF=∠NME,FM=EM,∠DFM=∠DEM=∠AEM=45°,∴△DFM≌△NEM(ASA),∴DF=EN,DM=MN,∴△DMN为等腰直角三角形,∴DN=√2DM,而∠DEA=90°,∴DE2+DF2=DN2=2DM2,故①正确;∵AC=BC,∠ACB=90°,∴∠CAB=45°,∵AE平分∠BAC,∴∠DAE=∠CAE=22.5°,∠ADE=67.5°,∵∠DEM=45°,∴∠EMD=67.5°,即DE=EM,∵AE=AE,∠AED=∠AEC,∠DAE=∠CAE,∴△ADE≌△ACE(ASA),∴DE=CE,∵△MEF 为等腰直角三角形,∴EF =√2EM ,∴MM MM=MM MM =MM MM =√2MM MM =√2,故①正确; ∵∠CDM =∠ADE ,∠CMD =∠AED =90°, ∴△CDM ∽△ADE , ∴MM MM=MM MM =MM MM , ∵BM =CM ,AE =CF , ∴MM MM =MM MM ,∴CF •DM =BM •DE ,故①正确;故答案为:①①①①①①.26.【解答】解:∵点B 坐标为(1,1),∴OA =AB =BC =CO =CO 1=1,∵A 1(2,3),∴A 1O 1=A 1B 1=B 1C 1=C 1O 2=3,∴B 1(5,3),∴A 2(8,9),∴A 2O 2=A 2B 2=B 2C 2=C 2O 3=9,∴B 2(17,9),同理可得B 3(53,27),B 4(161,81),…由上可知,B n (2×3n ﹣1,3n ),∴当n =2020时,B n (2×32020﹣1,32020).故答案为:(2×32020﹣1,32020).27.【解答】解:(1)∵MN 为①O 的直径,∴∠MPN =90°,∵PQ ⊥MN ,∴∠PQN =∠MPN =90°,∵NE 平分∠PNM ,∴∠MNE =∠PNE ,∴△PEN ∽△QFN ,∴MM MM =MM MM ,即MM MM =MM MM ①,∵∠PNQ +∠NPQ =∠PNQ +∠PMQ =90°,∴∠NPQ =∠PMQ ,∵∠PQN =∠PQM =90°,∴△NPQ ∽△PMQ ,∴MM MM =MM MM ①, ∴①×①得MM MM =MM MM , ∵QF =PQ ﹣PF , ∴MM MM =MM MM =1−MM MM , ∴MM MM +MM MM =1,故答案为:1;(2)∵∠PNQ =∠MNP ,∠NQP =∠NPM ,∴△NPQ ∽△NMP ,∴MM MM =MM MM ,∴PN 2=QN •MN ,∵PN 2=PM •MN ,∴PM =QN ,∴MM MM =MM MM , ∵cos ∠M =MM MM =MM MM , ∴MM MM =MM MM , ∴MM MM=MM MM +MM , ∴NQ 2=MQ 2+MQ •NQ ,即1=MM 2MM 2+MM MM , 设MM MM=M ,则x 2+x ﹣1=0, 解得,x =√5−12,或x =−√5+12<0(舍去), ∴MM MM =√5−12, 故答案为:√5−12.28.【解答】解:∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC , ∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC , ∴△BEF ∽△BAC , ∴MM MM =MM MM ,即MM 6=MM 3MM ,解得:EF =2, ∴DH =12EF =12×2=1,故答案为:1.29.【解答】解:①∵四边形ABCD 是正方形,∴∠B =∠ECG =90°,∵∠AEF =90°,∴∠AEB +∠CEG =∠AEB +∠BAE ,∴∠BAE =∠CEG ,∴△ABE ∽△ECG ,故①正确;①在BA 上截取BM =BE ,如图1,∵四边形ABCD 为正方形,∴∠B =90°,BA =BC ,∴△BEM 为等腰直角三角形,∴∠BME =45°,∴∠AME =135°,∵BA ﹣BM =BC ﹣BE ,∴AM =CE ,∵CF 为正方形外角平分线,∴∠DCF =45°,∴∠ECF =135°,∵∠AEF =90°,∴∠AEB +∠FEC =90°,而∠AEB +∠BAE =90°,∴∠BAE =∠FEC ,在△AME 和△ECF 中{∠MMM =∠MMMMM =MM MMMM =MMMM,∴△AME ≌△ECF (ASA ),∴AE =EF ,故①正确;①∵AE =EF ,∠AEF =90°,∴∠EAF =45°,∴∠BAE +∠DAF =45°,∵∠BAE +∠CFE =∠CEF +∠CFE =45°, ∴∠DAF =∠CFE ,故①正确;①设BE =x ,则BM =x ,AM =AB ﹣BM =2﹣x , S △ECF =S △AME =12•x •(2﹣x )=−12(x ﹣1)2+12, 当x =1时,S △ECF 有最大值12,故①错误.故答案为:①①①. 30.【解答】解:延长CE 、DA 交于Q ,如图1, ∵四边形ABCD 是矩形,BC =6,∴∠BAD =90°,AD =BC =6,AD ∥BC , ∵F 为AD 中点,∴AF =DF =3,在Rt △BAF 中,由勾股定理得:BF =√MM 2+MM 2=√42+32=5,∵AD ∥BC ,∴∠Q =∠ECB ,∵E 为AB 的中点,AB =4,∴AE =BE =2,在△QAE 和△CBE 中{∠MMM =∠MMM MM =MMMM MM =MM∴△QAE ≌△CBE (AAS ),∴AQ =BC =6,即QF =6+3=9,∵AD ∥BC ,∴△QMF ∽△CMB ,∴MM MM =MM MM =96, ∵BF =5,∴BM =2,FM =3,延长BF 和CD ,交于W ,如图2,同理AB =DW =4,CW =8,BF =FW =5,∵AB ∥CD ,∴△BNE ∽△WND ,∴MM MM =MM MM , ∴MM 5−MM +5=24, 解得:BN =103, ∴MN =BN ﹣BM =103−2=43, 故答案为:43.31.【解答】解:∵点B 坐标为(1,1),∴OA =AB =BC =CO =CO 1=1,∵A 1(2,3),∴A 1O 1=A 1B 1=B 1C 1=C 1O 2=3,∴B 1(5,3),∴A 2(8,9),∴A 2O 2=A 2B 2=B 2C 2=C 2O 3=9,∴B 2(17,9),同理可得B 3(53,27),B 4(161,81),…由上可知,M M (2×3M −1,3M ),∴当n =2020时,M M (2×32020−1,32020).故答案为:(2×32020﹣1,32020).32.【解答】解:∵四边形ABCD 是正方形,∴AB =BC =CD =AD =2,∠BDC =∠EAF =45°,AC ⊥BD ,BD =AC =2√2,∵AE =AC =2√2,∠EF A =∠CBA ,∠EAF =∠BAC =45°,∴△AEF ≌△ACB (AAS ),∴∠E =∠ACB =45°,EF =BC =2,AF =AB =2,∴∠E =∠BDG ,∵EF ⊥AC ,AC ⊥BD ,∴EF ∥BD ,∴∠EFB =∠DBG ,∴△EBF ∽△DGB ,∴MM MM =MM MM , ∴2√2−2MM =2√2, ∴DG =4﹣2√2,故答案为:4﹣2√2,33.【解答】(1)证明:∵AB 为①O 的直径,∴∠AEB =90°(直径所对的圆周角是直角),∴AF ⊥BC .∵在△ABC 中 AB =AC ∴CE =BE (等腰三角形三线合一),∵AE =EF .∴四边形ABFC 是平行四边形(对角线互相平分的四边形是平行四边形).又∵AF ⊥BC ,∴①ABFC 是菱形(对角线互相垂直的平行四边形是菱形).(2)解:∵圆内接四边形ABED ,∴∠ADE +∠ABC =180°(圆内接四边形的对角互补).∵∠ADE +∠CDE =180°,∴∠ABC =∠CDE .∵∠ACB =∠ECD (公共角).∴△ECD ∽△ACB (两角分别对应相等的两个三角形相似).∴MM MM =MMMM (相似三角形的对应边成比例).∵四边形ABFC 是菱形,∴MM =MM =12MM =2.∴CE =2BC =4.∴2MM =14. ∴AC =8.∴AB =AC =8.∴①O 的半径为4.34.【解答】解:(1)证明:如图,连接OC ,∵AB 是直径,∴∠ACB =90°,∵OD ∥BC ,∴∠CFE =∠ACB =90°,∴∠DEC +∠FCE =90°,∵∠DEC =∠BDC ,∠BDC =∠A ,∴∠DEC =∠A ,∵OA =OC ,∴∠OCA =∠A ,∴∠OCA =∠DEC ,∵∠DEC +∠FCE =90°,∴∠OCA +∠FCE =90°,即∠OCE =90°,∴OC ⊥CE ,又∵OC 是①O 的半径,∴CE 是①O 切线.(2)由(1)得∠CFE =90°,∴OF ⊥AC ,∵OA =OC ,∴∠COF =∠AOF ,∴MM̂=MM ̂, ∴∠ACD =∠DBC ,又∵∠BDC =∠BDC ,∴△DCG ∽△DBC ,∴MM MM =MM MM ,∴DC 2=DG •DB =9,∴DC =3,∵OC =OD =3,∴△OCD 是等边三角形,∴∠DOC =60°,在Rt △OCE 中MMM60°=MM MM, ∴√3=MM 3, ∴MM =3√3.35.【解答】证明:(1)∵AB 是①O 的直径,∴∠AEB =90°,∴∠EAB +∠EBA =90°,∵∠CBE =∠BDE ,∠BDE =∠EAB ,∴∠EAB =∠CBE ,∴∠EBA +∠CBE =90°,即∠ABC =90°,∴CB ⊥AB ,∵AB 是①O 的直径,∴BC 是①O 的切线;(2)证明:∵BD 平分∠ABE ,∴∠ABD =∠DBE ,∵∠DAF =∠DBE ,∴∠DAF =∠ABD ,∵∠ADB =∠ADF ,∴△ADF ∽△BDA ,∴MM MM =MM MM ,∴AD 2=DF •DB .36.【解答】(1)证明:∵DE ∥AC ,∴∠DEB =∠FCE ,∵EF ∥AB ,∴∠DBE =∠FEC ,∴△BDE ∽△EFC ;(2)解:①∵EF ∥AB ,∴MM MM =MM MM =12, ∵EC =BC ﹣BE =12﹣BE , ∴MM12−MM=12, 解得:BE =4; ①∵MM MM =12, ∴MM MM =23,∵EF ∥AB ,∴△EFC ∽△BAC ,∴M △MMMM △MMM =(MM MM )2=(23)2=49, ∴S △ABC =94S △EFC =94×20=45. 37.【解答】解:(1)∵在正方形ABCD 中,AD ∥BC ,∴∠DAG =∠F ,又∵AG 平分∠DAE ,∴∠DAG =∠EAG ,∴∠EAG =∠F ,∴EA =EF ,∵AB =2,∠B =90°,点E 为BC 的中点,∴BE =EC =1,∴AE =√MM 2+MM 2=√5,∴EF =√5,∴CF =EF ﹣EC =√5−1;(2)①证明:∵EA =EF ,EG ⊥AF ,∴AG =FG ,在△ADG 和△FCG 中{∠M =∠MMM MMMM =MMMM MM =MM,∴△ADG ≌△FCG (AAS ),∴DG =CG ,即点G 为CD 的中点;①设CD =2a ,则CG =a ,由①知,CF =DA =2a ,∵EG ⊥AF ,∠GCF =90°,∴∠EGC +∠CGF =90°,∠F +∠CGF =90°,∠ECG =∠GCF =90°,∴∠EGC =∠F ,∴△EGC ∽△GFC ,∴MM MM=MM MM , ∵GC =a ,FC =2a , ∴MM MM =12, ∴MM MM =12, ∴EC =12a ,BE =BC ﹣EC =2a −12a =32a ,∴λ=MM MM =12M 32M=13.五.相似三角形的应用(共4小题)38.【解答】解:长120cm 的木条与三角形木架的最长边相等,要满足两边之和大于第三边,则长120cm 的木条不能作为一边,设从120cm 的木条上截下两段长分别为xcm ,ycm (x +y ≤120),由于长60cm 的木条不能与75cm 的一边对应,否则x +y >120cm ,当长60cm 的木条与100cm 的一边对应,则M 75=M 120=60100, 解得:x =45,y =72; 当长60cm 的木条与120cm 的一边对应,则M 75=M 100=60120,解得:x =37.5,y =50.∴有两种不同的截法:把120cm 的木条截成45cm 、72cm 两段或把120cm 的木条截成37.5cm 、50cm 两段.故选:B .39.【解答】解:泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的图形的相似,故选:D .40.【解答】解:设投影三角尺的对应边长为xcm ,∵三角尺与投影三角尺相似,∴8:x =2:5,解得x =20.故选:A .41.【解答】解:∵AE ⊥l ,BF ⊥l ,∵∠ANE =45°,∴△ANE 和△BNF 是等腰直角三角形,∴AE =EN ,BF =FN ,∴EF =15米,FM =2米,MN =8米,∴AE =EN =15+2+8=25(米),BF =FN =2+8=10(米),∴AN =25√2(米),BN =10√2(米),∴AB =AN ﹣BN =15√2(米);过C 作CH ⊥l 于H ,过B 作PQ ∥l 交AE 于P ,交CH 于Q ,∴AE ∥CH ,∴四边形PEHQ 和四边形PEFB 是矩形,∴PE =BF =QH =10,PB =EF =15,BQ =FH ,∵∠1=∠2,∠AEF =∠CHM =90°,∴△AEF ∽△CHM ,∴MM MM =MM MM =2515=53, ∴设MH =3x ,CH =5x ,∵CQ =5x ﹣10,BQ =FH =3x +2,∵∠APB =∠ABC =∠CQB =90°,∴∠ABP +∠P AB =∠ABP +∠CBQ =90°,∴∠P AB =∠CBQ ,∴△APB ∽△BQC ,∴MM MM =MM MM ,∴153M +2=155M −10,∴x =6,∴BQ =CQ =20,∴BC =20√2(米),方法二:∵∠ANE =45°,∴∠ABP =45°,∴∠CBQ =45°,∴CQ =BQ ,∵CQ =5x ﹣10,BQ =FH =3x +2,∴5x ﹣10=3x +2,∴x =6,∴BQ =CQ =20,∴BC =20√2(米),故答案为:15√2,20√2.六.作图-相似变换(共1小题)42.【解答】解:(1)如图:作出∠APD=∠ABP,即可得到△PCD∽△ABP;(2)证明:如图,∵∠APC=2∠ABC,∠APD=∠ABC,∴∠DPC=∠ABC∴PD∥AB.七.位似变换(共4小题)43.【解答】解:∵△ABC与△DEF是位似图形,OA:OD=1:2,∴△ABC与△DEF的位似比是1:2.∴△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的面积比为1:4,故选:C.44.【解答】解:∵以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),∴D(2,4),F(6,2),∴DF=√(2−6)2+(4−2)2=2√5.故选:D.45.【解答】解:∵四边形ABCD与四边形A′B′C′D′位似,其位似中心为点O,OC=6,CC′=4,∴MMMM′=610=35,∴MMM′M′=35,∵AB=3,∴A′B′=5.故答案为:5.46.【解答】解:如图,∵△OAB∽△OA′B′,相似比为3:2,B(3.6),∴B′(2,4),根据对称性可知,△OA″B″在第三象限时,B″(﹣2,﹣4),∴满足条件的点B′的坐标为(2,4)或(﹣2,﹣4).故答案为(2,4)或(﹣2,﹣4).八.作图-位似变换(共2小题)47.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.48.【解答】解:(1)由题意知:△ABC的三个顶点的坐标分别是A(1,3),B(4,1),C(1,1),则△ABC关于x轴成轴对称的△A1B1C1的坐标为A1(1,﹣3),B1(4,﹣1),C1(1,﹣1),连接A1C1,A1B1,B1C1得到△A1B1C1.如图所示△A1B1C1为所求;(2)由题意知:位似中心是原点,则分两种情况:第一种,△A2B2C2和△ABC在同一侧则A2(2,6),B2(8,2),C2(2,2),连接各点,得△A2B2C2.第二种,△A2B2C2在△ABC的对侧A2(﹣2,﹣6),B2(﹣8,﹣2),C2(﹣2,﹣2),连接各点,得△A2B2C2.因为在网格中作图,图中网格是有范围的,只能在网格中作图,所以位似放大只能画一个.综上所述:如图所示△A2B2C2为所求.九.相似形综合题(共2小题)49.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=∠C=90°,由折叠对称知:∠AGE=∠B=90°,∠AHF=∠D=90°,∴∠GHF=∠C=90°,∠EGC+∠HGF=90°,∠GFH+∠HGF=90°,∴∠EGC=∠GFH,∴△EGC∽△GFH.(2)解:∵S△GFH:S△AFH=2:3,且△GFH和△AFH等高,∴GH:AH=2:3,∵将△ABE沿着AE折叠,点B刚好落在CD边上点G处,∴AG=AB=GH+AH=20,∴GH=8,AH=12,∴AD=AH=12.(3)解:在Rt△ADG中,DG=√MM2−MM2=√202−122=16,由折叠的对称性可设DF=FH=x,则GF=16﹣x,∵GH2+HF2=GF2,∴82+x2=(16﹣x)2,解得:x=6,∴HF=6,在Rt△GFH中,tan∠GFH=MMMM=86=43.50.【解答】解:(1)∵△ADE由△ABC绕点A按逆时针方向旋转90°得到,∴AB=AD,∠BAD=90°,△ABC≌△ADE,在Rt△ABD中,∠B=∠ADB=45°,∴∠ADE=∠B=45°,∴∠BDE=∠ADB+∠ADE=90°.(2)①DF=PF.证明:由旋转的性质可知,AC=AE,∠CAE=90°,在Rt△ACE中,∠ACE=∠AEC=45°,∵∠CDF=∠CAD,∠ACE=∠ADB=45°,∴∠ADB+∠CDF=∠ACE+∠CAD,即∠FPD=∠FDP,∴DF=PF.①证明:过点P作PH∥ED交DF于点H,。

2020年河南中考数学·分类汇编 专题05 作图题考查及应用(学生版)

2020年河南中考数学·分类汇编 专题05 作图题考查及应用(学生版)

专题05作图题考查及应用一.选择题(共10小题)径作弧,两弧相交于点M 、N ;②作直线MN 交AB 于点D ,连接CD ,若CD AD =,20B ∠=︒,则下列结论中错误的是()A .40CAD ∠=︒B .70ACD ∠=︒C .点D 为ABC ∆的外心D .90ACB ∠=︒2.(2020•郑州一模)如图,平行四边形ABCD 中,3AB =,5BC =.以点C 为圆心,适当长为半径画弧,交BC 于延长线于点E ,则AE 的长是()3.(2020•广饶县一模)如图,在ABC ∆中,90C ∠=︒,以点B 为圆心,以适当长为半径画弧交AB 、BC 于P 、Q8AC =,则CD 的长是()A .2B .2.4C .3D .4弧,两弧交于M 、N 两点,直线MN 交AC 于点D ,交AB 于点E ,若3CD =,则AC 的长度为()径作弧,两弧相交于M 、N 两点,作直线MN ,交BC 于点D ,连接AD ,若6BD =,则CD 的长为()A .2B .4C .6D .36.(2020•河南一模)如图,在四边形ABCD 中,对角线AC 与BD 交于点E ,过点E 作EF BC ⊥于点F ,5AC =,线PQ ,若点B ,E 在直线PQ 上,且:2:3AE EC =,则BC 的长为()7.(2020•许昌一模)如图,在平行四边形ABCD 中,以点A 为圆心,AB 长为半径画弧交AD 于点F ,再分别以点的周长为12,60C ∠=︒,则四边形ABEF 的面积是()8.(2020•沈丘县一模)如图,在ABC ∆中,AB AC =,以点C 为圆心,CB 长为半径画弧,交AB 于点B 和点D ,则EC 的长度是()9.(2020•郑州市校级一模)如图,在四边形ABCD 中,//AD BC ,90D ∠=︒,4AD =,3BC =.分别以点A ,C则CD 的长为()10.(2020•河南模拟)如图所示,已知ABCD 为平行四边形,按以下步骤作图:①以点A 为圆心,适当长度为半径交于点G ;③作射线AG ,交边BC 于点P ,若6CD =,3BP CP =,则平行四边形ABCD 的周长为()A .20B .32C .28D .24二.填空题(共2小题)半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交BC 于点E .若3AC =,5AB =,则DE 等12.(2020•邓州市一模)如图,在平行四边形ABCD 中,6AB =,8AD =,120BAD ∠=︒,分别以点A ,B 为圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2020•遂宁)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()
①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1B.2C.3D.4
考点:角平分线的性质;线段垂直平分线的性质;作图—基本作图.
分析:①根据作图的过程可以判定AD是∠BAC的角平分线;
②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度
数;
③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质
可以证明点D在AB的中垂线上;
④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形
的面积之比.
解答:解:①根据作图的过程可知,AD是∠BAC的平分线.
故①正确;
②如图,∵在△ABC中,∠C=90°,∠B=30°,
∴∠CAB=60°.
又∵AD是∠BAC的平分线,
∴∠1=∠2=∠CAB=30°,
∴∠3=90°﹣∠2=60°,即∠ADC=60°.
故②正确;
③∵∠1=∠B=30°,
∴AD=BD,
∴点D在AB的中垂线上.
故③正确;
④∵如图,在直角△ACD中,∠2=30°,
∴CD=AD,
∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.
∴S△ABC=AC•BC=AC•AD=AC•AD,
∴S△DAC:S△ABC=AC•AD:AC•AD=1:3.
故④正确.
综上所述,正确的结论是:①②③④,共有4个.
故选D.
点评:本题考查了角平分线的性质、线段垂直平分线的性质以及作图﹣基本作图.解题时,需要熟悉等腰三角形的判定与性质.
(2020•乐山)如图9,已知线段AB.
(1)用尺规作图的方法作出线段AB 的垂直平分线l (保留作图痕迹,不要求写出作法);
(2)在(1)中所作的直线l上任意取两点M、N(线段AB的上方).连结AM、AN、BM、BN.求证:∠MAN=∠MBN.
(2020鞍山)如图,已知线段a及∠O,只用直尺和圆规,求做△ABC,使BC=a,∠B=∠O,∠C=2∠B(在指定作图区域作图,保留作图痕迹,不写作法)
考点:作图—复杂作图.
分析:先作一个角等于已知角,即∠MBN=∠O,在边BN上截取BC=a,以射线CB为一边,C 为顶点,作∠PCB=2∠O,CP交BM于点A,△ABC即为所求.
解答:解:如图所示:.
点评:本题主要考查了基本作图,关键是掌握作一个角等于已知角的基本作图方法.
(2020•白银)两个城镇A、B与两条公路l1、l2位置如图所示,电信部门需在C处修建一座信号反射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图找出所有符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)
考点:作图—应用与设计作图.
分析:仔细分析题意,寻求问题的解决方案.
到城镇A、B距离相等的点在线段AB的垂直平分线上,到两条公路距离相等的点在两条公路所夹角的角平分线上,分别作出垂直平分线与角平分线,它们的交点即为所求作的点C.
由于两条公路所夹角的角平分线有两条,因此点C有2个.
解答:解:(1)作出线段AB的垂直平分线;
(2)作出角的平分线(2条);
它们的交点即为所求作的点C(2个).
点评:本题借助实际场景,考查了几何基本作图的能力,考查了线段垂直平分线和角平分线的性质及应用.题中符合条件的点C有2个,注意避免漏解.
(2020•青岛)已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点
求作:点E,使直线DE∥AB,且点E到B、D两点的距离相等
(在题目的原图中完成作图)
结论:
解析:因为点E到B、D两点的距离相等,所以,点E一定在线段BD的垂直平分线上,
首先以D为顶点,DC为边作一个角等于∠ABC,再作出DB的垂直平分线,即可找到点E.点E即为所求.
(2020杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.
考点:作图—复杂作图.
分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.
解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.
点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.
(2020兰州)如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)
考点:作图—应用与设计作图.
分析:根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.解答:解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求.
点评:此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.
(2020,河北)如已知:线段AB,BC,∠ABC = 90°. 求作:矩形ABCD.
以下是甲、乙两同学的作业:
对于两人的作业,下列说法正确的是
A.两人都对B.两人都不对
C.甲对,乙不对D.甲不对,乙对。

相关文档
最新文档