计量经济学91模型类型选择
经济学毕业论文中的计量经济模型方法
经济学毕业论文中的计量经济模型方法计量经济学作为经济学中的重要分支,是运用统计学和数学工具对经济现象进行量化分析的方法。
在经济学毕业论文中,使用合适的计量经济模型方法可以提高研究的准确性和可信度,帮助研究者得出科学合理的结论。
本文将介绍一些常见的计量经济模型方法,供毕业论文写作参考。
一、回归分析方法回归分析是计量经济学中最常用的方法之一,通过建立数学模型来研究因变量与自变量之间的关系。
在毕业论文中,可以使用简单线性回归、多元线性回归或者非线性回归等方法,根据具体研究问题选择合适的回归模型。
回归分析可以用来探究变量间的相关性、影响因素以及进行预测和政策评估等。
二、时间序列分析方法时间序列分析是研究时间上连续观测值之间的关系的方法。
在经济学毕业论文中,时间序列分析常用于研究经济变量在时间上的趋势、季节性、周期性和随机性等特征。
常见的时间序列分析方法包括平稳性检验、协整分析、ARMA模型、ARIMA模型等。
选择适当的时间序列分析方法可以揭示经济现象的演变规律和趋势。
三、面板数据分析方法面板数据分析是指对具有时间维度和横截面维度的数据进行分析的方法。
面板数据可以帮助研究者充分利用样本数据,提高数据的效率和效用。
在经济学毕业论文中,面板数据分析常用来研究个体间的差异、探讨个体与时间的关系,例如面板的固定效应模型、随机效应模型等。
面板数据分析方法能够更好地捕捉到数据的横截面和时间序列的信息,为研究结果提供更准确的解释。
四、计量经济模型评估方法在经济学毕业论文中,除了建立计量经济模型,还需要对模型进行评估。
评估经济模型要考察模型的适应性、有效性和准确性等特征。
常用的计量经济模型评估方法包括OLS估计法、极大似然估计法、广义矩估计法等。
通过模型评估,可以判断模型是否合理,以及对模型进行修正和调整。
综上所述,经济学毕业论文中的计量经济模型方法是一项重要的研究内容。
合适地选择和应用计量经济模型方法可以提高论文的研究质量和可信度,使得结论更加科学和准确。
计量经济学----几种常用的回归模型
• P175图6.10含义?
• 其测度了Y的瞬时增长率,即Y随着时间t变化的变 化率。 • 例如,Y为个人的年消费支出,t为年度,那么斜 率系数为个人消费支出的年增长率。
证明:
d(ln Y ) dY Y dY dt 2 dt dt Y
• 注意根据斜率系数的估计值也可以求出复 合增长率r的值。
线性到对数模型
回归子的相对改变量 2 回归元的绝对改变量
• 半对数模型的斜率系数度量了解释变量一个单位 的绝对变化,对应的因变量的相对变化量。 • P166例6.4
对数到线性模型(解释变量对数形式)
Yi 1 2 ln X i i
dY 2 d(lnX ) dX X
几种常用的回归模型
1. 对数线性模型 2. 半对数模型 3. 倒数模型 4. 对数倒数模型
1. 对数线性模型(不变弹性模型)
• 变量均以对数的形式出现
• 考虑以下指数回归模型
Yi 1X e
2 i
i
ln Yi ln1 2 ln X i i
ln Yi 2 ln X i i
半对数模型
• 只有一个变量以对数形式出现
2. 半对数模型
• 线性到对数模型(因变量对数形式) • 对数到线性模型(解释变量对数形式)
• 线性到对数模型(因变量对数形式)
t Y t Y 0(1 r )
(t 1, , 2 ...)
ln Yt ln Y 0 t ln(1 r )
2的含义?
• 其测度了Y对X的弹性,即X变动百分之一引起Y变 动的百分数。 • 例如,Y为某一商品的需求量,X为该商品的价格, 那么斜率系数为需求的价格弹性。
计量经济学基础-非线性回归模型
第四节 非线形回归模型一、 可线性化模型在非线性回归模型中,有一些模型经过适当的变量变换或函数变换就可以转化成线性回归模型,从而将非线性回归模型的参数估计问题转化成线性回归模型的参数估计,称这类模型为可线性化模型。
在计量经济分析中经常使用的可线性化模型有对数线性模型、半对数线性模型、倒数线性模型、多项式线性模型、成长曲线模型等。
1.倒数模型我们把形如:u xb b y ++=110;u x b b y ++=1110 (3.4.1) 的模型称为倒数(又称为双曲线函数)模型。
设:xx 1*=,y y 1*=,即进行变量的倒数变换,就可以将其转化成线性回归模型。
倒数变换模型有一个明显的特征:随着x 的无限扩大,y 将趋于极限值0b (或0/1b ),即有一个渐进下限或上限。
有些经济现象(如平均固定成本曲线、商品的成长曲线、恩格尔曲线、菲利普斯曲线等)恰好有类似的变动规律,因此可以由倒数变换模型进行描述。
2.对数模型模型形式:u x b b y ++=ln ln 10 (3.4.2)(该模型是将ub e Ax y 1=两边取对数,做恒等变换的另一种形式,其中A b ln 0=)。
上式lny 对参数0b 和1b 是线性的,而且变量的对数形式也是线性的。
因此,我们将以上模型称为双对数(double-log)模型或称为对数一线性(log-liner)模型。
令:x x y y ln ,ln **==代入模型将其转化为线性回归模型: u x b b y ++=*10* (3.4.3)变换后的模型不仅参数是线性的,而且通过变换后的变量间也是线性的。
模型特点:斜率1b 度量了y 关于x 的弹性:xdx y dy x d y d b //)(ln )(ln 1== (3.4.4) 它表示x 变动1%,y 变动了多少,即变动了1b %。
模型适用对象:对观测值取对数,将取对数后的观测值(lnx ,lny )描成散点图,如果近似为一条直线,则适合于对数线性模型来描述x 与y 的变量关系。
经济学毕业论文中的计量经济模型模型选择方法
经济学毕业论文中的计量经济模型模型选择方法在经济学毕业论文中,计量经济模型的选择方法是至关重要的一步。
一个恰当选择的模型能够确保研究的可信度和准确性。
本文将介绍一些常用的计量经济模型选择方法,并分析其优缺点。
一、理论基础选择在选择计量经济模型时,首先需要考虑的是研究问题的理论基础。
不同的经济理论适用于不同的问题,因此需要根据研究的具体内容选择适当的理论基础。
例如,如果研究的问题与供求关系有关,可以选择供求模型作为理论基础;如果研究的问题与多重均衡有关,可以选择一般均衡模型作为理论基础。
理论基础的选择需要根据具体问题和研究目标来确定。
二、数据可用性和质量在选择计量经济模型时,还需要考虑数据的可用性和质量。
数据的可用性包括数据的时间跨度、数据的覆盖范围以及数据的可获取性。
在选择模型时,需要确保所需的数据能够满足研究的需求。
此外,数据的质量也是一个重要的考虑因素。
数据的质量可以通过数据的来源、采集方法以及数据的精确性来评估。
选择模型时,需要确保所使用的数据具有较高的质量,以保证研究的可信度。
三、模型复杂度与可解释性在选择计量经济模型时,需要考虑模型的复杂度和可解释性之间的平衡。
复杂的模型可能能够更好地拟合数据,但是可能过于复杂以至于难以解释模型的结果。
相反,简单的模型可能更容易理解和解释,但是可能不能很好地拟合数据。
选择模型时,需要根据研究的目标和数据的复杂度来确定模型的复杂度。
四、模型评估方法在选择计量经济模型时,还需要考虑模型评估方法。
常用的模型评估方法包括拟合优度指标、参数估计的显著性检验以及残差分析等。
这些评估方法可以帮助评估模型的拟合程度、参数的准确性以及模型的有效性。
选择模型时,需要根据评估方法的要求来确定合适的模型。
五、经验与文献研究最后,在选择计量经济模型时,还可以参考相关领域的经验和前人的研究。
通过阅读相关文献和研究,可以了解到在相似研究领域中常用的模型和方法。
这些经验和研究成果可以为模型选择提供有价值的参考。
计量经济模型及含义论文
计量经济模型及含义论文计量经济学是经济学中的一个重要分支,主要研究经济学中使用计量方法来分析经济现象和问题。
计量经济模型是计量经济学中应用最广泛的工具之一,它通过将经济学理论中的假设转化为数学形式,以便定量分析经济现象。
本文将详细介绍计量经济模型的基本概念、分类以及在经济学领域中的应用。
一、基本概念计量经济模型是对经济实际现象进行定量分析和预测的数学模型。
它基于经济学理论,使用统计学,数学和计算机科学方法,从数据中抽象出经济现象的本质特征和规律,以此提出有关经济变量之间关系的假设,并利用计量经济方法进行验证。
计量经济模型的基本假设包括结构假设、统计假设和函数假设。
二、分类计量经济模型按照变量的性质分为宏观经济模型和微观经济模型,按照观测随机性分为确定性模型和随机模型。
在计量经济学中应用较为广泛的主要模型包括线性回归模型、时间序列模型和面板数据模型。
1. 线性回归模型线性回归模型是计量经济学中最常见的模型之一,它通过建立经济变量之间的线性关系来描述经济现象。
线性回归模型可以分为单变量回归和多变量回归模型两种类型,多变量回归模型中又分为多元线性回归和多项式回归两种形式。
线性回归模型的应用范围广泛,可以用来研究成本、收入、价格、就业等方面的经济问题。
2. 时间序列模型时间序列模型主要用于研究时间序列数据的变化规律,其基本假设是时间序列数据具有一定的平稳性。
常用的时间序列模型包括自回归模型、移动平均模型和ARMA模型等。
3. 面板数据模型面板数据模型是一种使用面板数据对经济变量进行分析的方法。
面板数据是指对同一群体或人群在不同时间和不同地点上的数据进行的横向比较和纵向分析,可以通过面板数据模型进行经济变量之间的关系分析以及预测。
三、应用计量经济模型在经济学领域中应用广泛,可以用于分析生产、消费、出口、投资等各个方面的经济问题。
其中,线性回归模型被广泛应用于服务业、金融业、医疗保健等领域,用于预测市场需求、研究货币政策、分析医疗保健成本等问题;时间序列模型被广泛应用于宏观经济预测、股票价格预测等领域,用于研究货币政策、经济增长和就业等问题;面板数据模型被广泛应用于人口统计学、医学研究、教育研究等领域,用于分析人口增长、医疗保健政策和教育政策等问题。
举例说明计量经济学模型常用的数据类型
举例说明计量经济学模型常用的数据类型
计量经济学模型是经济学领域的一种常用模型,它可以用来研究特定问题,如特定国家的经济增长模式、因果关系等,以帮助决策者为经济政策形成更准确的建议。
计量经济学模型又被称为回归模型,因为它借助数据可用于实施回归分析,以获得该经济系统的定量分析和经济预测。
计量经济学模型的数据类型主要包括定量数据和定性数据。
定量数据是指数据的变量是符号数字表示的,如利率、消费和出口量等;定性数据是指数据的变量以文字或符号图形表示,如行政区划、居住地点、性别等。
另外,还有指标数据,指标数据是指以定量或定性来表示某一变量的活动,了解该变量与特定因素之间的关联。
比如,该变量可能与特定政策之间的关系,也可能与某一行业的重要指标有关。
最后,也有结构数据。
结构数据是指查看某一特定变量的特定类型的数据,它关注变量的变化——如绝对值大小、增长率、趋势等,而不关注实际的数值。
总之,计量经济学模型的数据类型主要有定量数据、定性数据、指标数据和结构数据,这些数据有助于经济学家分析和预测特定经济系统的状况,并帮助决策者采取有效的行动,以提高经济系统的效率。
计量经济学模型整理大全
1
E
需要
0
E
对变形后的模型做 OLS 估计即可
1
先忽略异方差做普通的 OLS,得到 ,然
后用 代替 来回归变形之后的模型
可以减小异方差
做平常的 OLS,然后在认为有异方差的情
况下,用 代替 ,进而得到一致估计量
∗
⇔
∗
∗ ∗
∗
方法:OLS 使得∑ ∗ 最小
∗
∑ ∑
∑ ∑
Var
∗
∑ ∑
∑
1
∑
∑ ∑
∑
性质
未知
E
E
1
对数法
怀特稳健
标准误
内
生
性
1
1
1
′
∑ 1
Var
∑
可线性化的模型
模型/用途
可
线
性
化
的
模
型
双对数
不变弹性模型
线性-对数
衡量增长率
设定
计量经济学简单模型分析
计量经济学简单模型分析计量经济学是经济学领域中的一个重要分支,它借助数学和统计学的方法,通过建立模型来描述、解释和预测经济现象。
简单模型分析是计量经济学的基础,本文将介绍如何进行计量经济学简单模型分析。
首先,进行计量经济学简单模型分析需要明确研究问题和目标。
确定研究问题需要考虑实际背景和理论依据,确定模型的目标是为了回答研究问题。
其次,需要收集相关数据,包括时间序列数据、横截面数据等。
在收集数据时,需要注意数据的准确性、完整性和可比较性。
接下来,需要选择合适的模型。
简单线性回归模型是计量经济学中最简单的模型之一,适用于单一自变量和因变量的分析。
简单线性回归模型的数学形式为:y = β0 + β1x + ε,其中y是因变量,x是自变量,β0和β1是模型的参数,ε是误差项。
建立模型后,需要进行模型的估计和检验。
普通最小二乘法(OLS)是估计简单线性回归模型最常用的方法,它通过最小化残差平方和来估计模型的参数。
模型的检验包括拟合优度检验、统计检验和计量经济学检验等。
拟合优度检验用于评估模型对数据的拟合程度,统计检验用于检验模型的假设条件是否成立,计量经济学检验用于评估模型的可靠性、稳定性和预测能力。
最后,需要对模型进行分析和解释。
模型的参数估计值是解释模型的关键,β1表示自变量x每增加一个单位时因变量y的平均增加量。
需要分析模型的假设条件是否成立,以及模型的预测能力。
如果模型存在不足之处,需要进行相应的调整和改进。
总之,计量经济学简单模型分析是经济学研究的重要基础。
通过简单模型分析,我们可以描述、解释和预测经济现象,为经济决策提供科学依据。
随着数据科学和机器学习的发展,计量经济学的方法和技术将不断得到完善和创新,为经济学研究提供更加精确和实用的工具。
计量经济学模型方法
计量经济学模型方法
计量经济学是一种应用数学和统计学原理来研究经济现象的方法。
计量经济学模型是一种用来描述经济关系的数学模型。
常用的计量经济学模型方法包括:
1. 线性回归模型(Linear Regression Model):线性回归模型是最常用的计量经济学模型之一,用于描述一个或多个自变量与因变量之间的线性关系。
该模型可以用来估计变量之间的关系,并进行预测和因果推断。
2. 面板数据模型(Panel Data Model):面板数据模型是一种用于分析来自多个观察单位的经济数据的模型。
它结合了时间序列数据和截面数据的特点,可以考虑个体间的异质性和个体内的序列相关性。
3. 时间序列模型(Time Series Model):时间序列模型用于分析随时间变化的经济数据。
它考虑到数据的序列相关性和趋势,可以用来预测未来的值和分析数据的长期趋势。
4. 非线性回归模型(Nonlinear Regression Model):非线性回归模型用于描述自变量和因变量之间的非线性关系。
它可以更准确地拟合实际经济数据,但参数估计和推断方法更复杂。
5. 非参数模型(Nonparametric Model):非参数模型是一种不对数据分布做出假设的模型,它不依赖于具体的函数形式,通过比较观测值之间的相对顺序来估计变量之间的关系。
这些方法可以根据具体问题的需要进行选择和应用。
在实际研究中,常常会结合多种方法和模型,以得到更全面和准确的分析结果。
经济学毕业论文中的计量经济模型参数估计方法
经济学毕业论文中的计量经济模型参数估计方法计量经济模型在经济学研究中扮演着重要的角色,它通过对经济变量之间的关系进行量化,并运用统计学方法来估计这些关系的参数。
本文将介绍一些常用的计量经济模型参数估计方法,以及它们在经济学毕业论文中的应用。
一、最小二乘法(Ordinary Least Squares, OLS)最小二乘法是最经典的参数估计方法之一,它通过最小化实际观测值与模型预测值之间的差异来估计参数。
在OLS中,我们假设误差项服从正态分布,且具有零均值和常数方差。
这种方法通常适用于线性回归模型。
二、广义最小二乘法(Generalized Least Squares, GLS)广义最小二乘法是对OLS的一种扩展,它允许误差项不符合OLS 的基本假设。
当误差项具有异方差或者相关性时,GLS可以提供更为准确的参数估计。
通过引入协方差矩阵的倒数作为权重矩阵,GLS可以对不同方程的参数进行加权,以提高估计的有效性。
三、仪器变量法(Instrumental Variables, IV)仪器变量法是一种用于解决内生性问题的参数估计方法。
当存在内生性问题时,OLS的估计结果会偏倚,仪器变量法可以通过寻找具有相关性但不影响被解释变量的仪器变量来解决该问题。
该方法常用于面板数据模型或者工具变量回归模型。
四、差分法(Difference-in-Differences, DID)差分法是一种用于估计政策效果的方法。
该方法通过比较政策实施前后不受政策影响的对照组和实施组之间的差异来估计政策效果。
差分法需要具备实验和对照组的数据,并且假设两组在政策实施前具有平行趋势。
五、面板数据模型(Panel Data Model)面板数据模型是一种将时间序列与横截面数据相结合的经济学模型。
它可以用于估计个体效应和时间效应对经济变量的影响。
面板数据模型可以采用固定效应模型、随机效应模型或者混合效应模型进行估计。
六、极大似然法(Maximum Likelihood Estimation, MLE)极大似然法是一种在统计学中广泛使用的参数估计方法。
计量经济学模型的设定
计量经济学模型的设定计量经济学是经济学中的一个分支,它利用统计方法和实证数据来研究经济现象和经济政策的效果。
在计量经济学中,构建一个合理的模型是非常重要的,因为模型的设定直接影响到实证研究的结果。
在构建计量经济学模型时,首先需要确定研究的目的和问题。
例如,我们想要研究某个政策对就业率的影响,那么我们的模型就应该包括就业率和该政策所涉及的变量。
其次,需要确定模型的函数形式。
比如,我们可以使用线性函数、对数函数或其他函数形式来描述变量之间的关系。
此外,还应该考虑模型的内生性问题。
如果模型中的某个变量受到其他变量的影响,那么该变量就是内生的。
为了得到准确的结果,模型的设定还应考虑到可能的非线性和异方差性问题。
非线性可以是由于被研究现象的特殊性质引起的,因此必须在模型中予以考虑。
异方差性是指随机误差项的方差不恒定,可能会导致估计结果的失真。
解决这些问题的方法包括引入非线性函数和使用异方差性稳健的估计方法。
此外,数据的选择也是模型设定的一个关键因素。
数据的可用性和质量应满足模型的需求,例如,如果我们的模型需要时间序列数据,那么我们必须选择包含足够时间跨度和频率的数据集。
在模型设定之后,计量经济学研究者需要选择适当的估计方法来得到参数估计值。
常用的估计方法包括最小二乘法、极大似然估计和广义矩估计等。
这些方法在处理不同类型的模型和数据时具有一定的优势和适用性。
最后,模型设定后需要进行模型检验和灵敏度分析。
模型检验可以用来检验模型是否具有良好的拟合度和解释力,以及是否存在模型假设的违背。
灵敏度分析可以用来检验模型结果对模型假设的敏感程度,以及对不同的数据设定和估计方法的稳健性。
总之,计量经济学模型的设定是一个复杂而关键的过程,它在很大程度上决定了研究结果的有效性和可靠性。
只有合理、生动、全面、有指导意义的模型设定,才能为我们提供可靠的实证分析和政策建议。
因此,在进行计量经济学研究时,我们应该根据研究问题的特点和数据的特征,选择适当的变量、函数形式和估计方法,进行合理的模型设定。
计量经济学4种常用模型
计量经济学4种常用模型计量经济学是经济学的一个重要分支,主要研究经济现象的数量关系及其解释。
在计量经济学中,常用的模型有四种,分别是线性回归模型、时间序列模型、面板数据模型和离散选择模型。
下面将对这四种模型进行详细介绍。
第一种模型是线性回归模型,也是计量经济学中最常用的模型之一。
线性回归模型是通过建立自变量与因变量之间的线性关系来解释经济现象的模型。
在线性回归模型中,自变量通常包括经济学理论认为与因变量相关的变量,通过最小二乘法估计模型参数,得到经济现象的解释。
线性回归模型的优点是简单易懂,计算方便,但其前提是自变量与因变量之间存在线性关系。
第二种模型是时间序列模型,它主要用于分析时间序列数据的模型。
时间序列模型假设经济现象的变化是随时间演变的,通过分析时间序列的趋势、周期性和随机性,可以对经济现象进行预测和解释。
时间序列模型的常用方法包括自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)等。
时间序列模型的优点是能够捕捉到时间的动态变化,但其局限性是对数据的要求较高,需要足够的时间序列观测样本。
第三种模型是面板数据模型,也称为横截面时间序列数据模型。
面板数据模型是将横截面数据和时间序列数据结合起来进行分析的模型。
面板数据模型可以同时考虑个体间的差异和时间的变化,因此能够更全面地解释经济现象。
面板数据模型的常用方法包括固定效应模型、随机效应模型等。
面板数据模型的优点是能够控制个体间的异质性,但其需要对个体间的相关性进行假设。
第四种模型是离散选择模型,它主要用于分析离散选择行为的模型。
离散选择模型假设个体在面临多种选择时,会根据一定的规则进行选择,通过建立选择概率与个体特征之间的关系,可以预测和解释个体的选择行为。
离散选择模型的常用方法包括二项Logit模型、多项Logit模型等。
离散选择模型的优点是能够分析个体的选择行为,但其局限性是对选择行为的假设较强。
综上所述,计量经济学中常用的模型有线性回归模型、时间序列模型、面板数据模型和离散选择模型。
经济学研究中的计量经济学模型建立方法
经济学研究中的计量经济学模型建立方法计量经济学是应用数理统计方法研究经济现象的学科,它是现代经济学的重要组成部分。
在经济学研究中,计量经济学模型的建立是一个关键的环节,它能够帮助我们对经济现象进行定量分析和预测。
下面我们将介绍一些常用的计量经济学模型建立方法。
首先,经济学研究中最常见的计量经济学模型是线性回归模型。
线性回归模型假设自变量与因变量之间存在线性关系,并通过最小二乘法来估计模型参数。
在建立线性回归模型时,我们首先需要确定自变量和因变量的选择,然后通过收集相关数据来估计模型参数,并进行假设检验来验证模型的有效性。
其次,有些经济现象可能存在非线性关系,这时我们可以使用非线性回归模型来建立计量经济学模型。
非线性回归模型可以捕捉到因变量和自变量之间的复杂关系,但模型的参数估计通常更加困难。
常见的非线性回归模型包括多项式回归、对数线性模型、指数模型等。
在建立非线性回归模型时,我们需要选择适当的函数形式,并通过非线性最小二乘法来估计模型参数。
此外,为了解决自变量与因变量之间可能存在内生性的问题,我们可以使用工具变量法建立计量经济学模型。
工具变量法利用一个或多个外生变量来代替内生变量进行估计,从而避免内生性引起的估计偏误。
在建立工具变量法模型时,我们需要选择有效的工具变量,并使用合适的估计方法来得到一致的估计结果。
另外,为了适应面板数据的特点,我们可以使用面板数据模型来研究经济现象。
面板数据模型结合了时间序列和横截面数据的特点,可以提供更加准确的估计结果。
常见的面板数据模型包括固定效应模型、随机效应模型和差分法模型等。
在建立面板数据模型时,我们需要考虑时间和个体的固定影响,并使用适当的估计方法进行分析。
此外,为了处理具有序列相关性的时间序列数据,我们可以使用时间序列分析方法建立计量经济学模型。
常见的时间序列分析方法包括自回归移动平均模型(ARMA模型)、自回归条件异方差模型(ARCH模型)和广义自回归条件异方差模型(GARCH模型)等。
计量经济学模型
1969 R. Frish J. Tinbergen 1973 W. Leotief 1980 L. R. Klein 1984 R. Stone 1989 T. Haavelmo 2000 J. J. Heckman D. L. McFadden ○16位担任过世界计量经济学会会长 ○ 30位左右在获奖成果中应用了计量经济学 ○“二战以后的经济学是计量经济学的时代”-Samuelson ○“计量经济学的讲授已经成为经济学课程表中最有权威 的济活动中各因素之间的理论关系, 用确定性的数学方程描述。例如,生产函数可描述为: Q Aet K L 公式描述了技术、资本、劳动与产出量之间 的理论关系,认为这种关系是准确实现的。利用数理经济 模型,可以分析经济活动中各种因素之间的互相影响,为 控制经济活动提供理论指导。但是,数理经济模型并没有 揭示因素之间的定量关系,在上式中,参数是未知的。
解释:如何正确地选择解释变量
• 首先,需要正确理解和把握所研究的经济现象中暗含的经济学理论和 经济行为规律。这是正确选择解释变量的基础 – 例如,在上述生产问题中,已经明确指出属于供给不足的情况, 那么,影响产出量的因素就应该在投人要素方面,而在当前,一 般的投人要素主要是技术、资本与劳动 – 如果属于需求不足的情况,那么影响产出量的因素就应该在需求 方面,而不在投入要素方面。这时,如果研究的对象是消费品生 产,应该选择居民收人等变量作为解释变量;如果研究的对象是 生产资料生产,应该选择固定资产投资总额等变量作为解释变量。
• 经济计量模型由系统或方程组成,方程由 变量和系数组成。其中,系统也是由方程 组成。
怎样看待计量经济模型?
• 广义地说,一切包括经济、数学、统计三 者的模型;
计量经济学模型
怎样看待计量经济模型?
• 广义地说,一切包括经济、数学、统计三 者的模型;
• 狭义地说,仅只用参数估计和假设检验的 数理统计方法研究经验数据的模型。ቤተ መጻሕፍቲ ባይዱ
• 事实上,理论研究需要经验数据的检验, 而经验研究也需要理论分析的指导,我们 不能只搞没有计量的理论,更不能搞“没 有理论的计量”—统计“炼金术”
如何解决
图1-2
一、理论模型的设计 1.确定模型所包含的变量 2.确定模型的数学形式 3.拟定理论模型中待估参数的理论 期望值 二、样本数据的收集 三、模型参数的估计 四、模型的检验 五、模型的应用
经济计量模型的一般形式
n
Y b0 bi xi i 1
Y :被解释变量
xi:解释变量 b0,bi:参数
:服从正态分布的随机变量 正是由于的随机性导致Y的随机性。 服从正态分布,Y也服从正态分布。
三、计量经济学的内容体系
⒈ 广义计量经济学和狭义计量经济学 广义计量经济学是利用经济理论、数学以及统计学定量研究
○51位获奖者中8位直接因为对计量经济学发展的贡献而获 奖
1969 R. Frish J. Tinbergen 1973 W. Leotief 1980 L. R. Klein 1984 R. Stone 1989 T. Haavelmo 2000 J. J. Heckman D. L. McFadden ○16位担任过世界计量经济学会会长 ○ 30位左右在获奖成果中应用了计量经济学 ○“二战以后的经济学是计量经济学的时代”-Samuelson ○“计量经济学的讲授已经成为经济学课程表中最有权威 的一部分”
第二节 建立计量经济学模型的步骤 和要点
常用计量经济学模型
Box和Pierce的Q统计量
Q T
2 2 ˆ ( k ) ~ (K ) k 1
K
如果检验通过,则随机过程是白噪声。
自相关函数还可被用于检验一个序列是否平稳。
平稳时间序列的自相关函数随着滞后期k的增加而快速下降为0
(k )
(k )
k
k
平稳序列
非平稳序列
齐次非平稳过程
yt非平稳,但yt – yt-1平稳,称yt为一阶齐次非平稳过程 [例] 随机游走过程是一阶齐次非平稳过程
对于季度资料
~ 此时可大致认为 yt 已无季节和不规则波动,可看作 L C 的估计
1 ~ yt (0.5 yt 2 yt 1 yt yt 1 0.5 yt 2 ) 4
第二步 估计S×I
令
yt zt ~ yt
L S C I ( S I) LC
zt即为S×I的估计
第三步 消除不规则变动,得到S的估计
对S×I中同一季节的数据进行平均,从而消除掉I。
例如,对于月度数据,假定 y1是1月份的数据,
y2是1月份的数据,
y3是1月份的数据, 则 y4是1月份的数据,总共4年数据。
1 z1 ( z1 z13 z 25 z37 ) 4 1 z 2 ( z 2 z14 z 26 z38 ) 4
五、混合自回归-移动平均(ARMA)模型
ARMA (p , q):
yt 1 yt 1 p yt p t 1 t 1 q t q
ARMA(1 , 1):
yt 1 yt 1 t 1 t 1
美国商业部:1986年1月至1995年12月百货公司 的月零售额(亿元)
计量经济学模型设定与变量选择
4.函数的设定
3)设滞后项 广告存在1期的滞后影响
D 0 1 e A m e t d 2 A n v a e t t 1 d e n n u v
4.函数的设定
4)部分变量取非线性形式
价格下降对需求的影响呈递减趋势
D e m a n d 0 1 e x p ( P r i c e ) 2 P r o m o t i o n 3 A d v e r t i s e m e n t 4 G r a d e u
H 0: 120
例:建立中国国债发行额模型
首先分析中国国债发行额序列的特征。1980年国债发行额是 43.01亿元,占GDP当年总量的1%,2001年国债发行额是4604 亿元,占GDP当年总量的4.8%。以当年价格计算,21年间 (1980-2001)增长了106倍。平均年增长率是24.9%。
5000 4000
M C 1 22 Q 33 Q 2
Q0,MC0
1 0
二次函件 数: 有二 极 0
3 0
Q
当 Q 2/33, M取 C最小值
20
1.模型的评价
MC要大于0,不能和X轴有交点:
b 2 4 ac 0
4
2 2
12
1 3
2 2
31 3
2.变量变换——取对数
取对数的好处
❖ 如果因变量、自变量都取对数,参数具有弹性含义 ❖ 经过对数变换的变量,一般更加符合假设条件 ❖ 可以缩小取值范围,减少异常值的影响
F (SSEr SSEu ) / m (2942679 48460.78) / 2 537.5
SSEu /(T k 1)
48460.78 /(22 4)
因为F=537.5 >>F( 2, 18) =3.55,所以拒绝原假设。不能从模型中删除解释变
常用计量经济模型
常用计量经济模型引言计量经济学是经济学中的一个重要分支,研究经济现象的数理模型和定量分析方法。
在实际经济研究中,常用计量经济模型能够帮助经济学家和研究者更好地理解和解释经济现象。
本文将介绍一些常用的计量经济模型,并对其原理及应用进行解析。
一、线性回归模型线性回归模型是计量经济学中最基本、最常用的模型之一。
其基本形式为:\[ y = \beta_0 + \beta_1x_1 + \beta_2x_2 + … + \beta_kx_k +\varepsilon \]其中,y表示被解释变量,x1,x2,...,x k表示解释变量,$\\varepsilon$表示误差项。
线性回归模型假设被解释变量和解释变量之间存在线性关系,并通过最小二乘法来估计模型参数。
线性回归模型的应用非常广泛,例如在市场营销中,可以使用线性回归模型来分析广告投放对销售额的影响;在金融学中,线性回归模型可以用于股票价格预测等。
二、时间序列模型时间序列模型用于分析时间序列数据,这种数据通常表示某个指标随时间的变化情况。
常见的时间序列模型包括AR(自回归模型)、MA(移动平均模型)、ARMA(自回归移动平均模型)和ARIMA(差分自回归移动平均模型)等。
时间序列模型的应用非常广泛,例如经济学中的季节性调整和趋势预测、气象学中的天气预测等。
三、面板数据模型面板数据模型,也被称为固定效应模型或混合效应模型,主要用于分析具有面板数据结构的经济问题。
面板数据包括横截面数据和时间序列数据,通过对面板数据进行分析可以得到更加准确和丰富的经济结论。
面板数据模型的应用非常广泛,例如在国际贸易中,可以利用面板数据模型来研究贸易对GDP的影响;在劳动经济学中,可以使用面板数据模型来研究教育对收入的影响。
四、计量经济模型的评价指标在使用计量经济模型进行分析时,我们需要对模型的拟合程度和统计显著性进行评价。
常见的评价指标包括确定系数(R^2)、均方根误差(RMSE)和F统计量等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 在已经广泛开展的应用研究中,主要的问题和错误不 是出现在模型方法上,而是在如何正确地设定模型和 采集与处理数据方面。
– 计量经济学课程不能只讲模型的估计和检验,应该讲 授如何在经济理论的指导下分析经济关系,如何利用 经验数据检验经济关系,进而进行模型总体设定。
2019/7/3
计量经济学
传统的计量经济学教科书
• 翻开任何一本国内外计量经济学教科书,都是以 模型估计和检验作为核心内容,甚至是全部内容
。也就是说,计量经济学课程所讲授的,并不是
计量经济学模型方法的全部,只是其中的一部分 。
经济学研究
计量经济学模型研究
观察
模型设定
抽象
样本采集
检验
模型估计
模型检验
发现
模型应用
2019/7/3
• P.A.Samuelson:“计量经济学可以定义为实际经济 现象的数量分析,这种分析是基于理论与观测的 并行发展,而理论与观测又通过适当的推断方法 得以联系。”
2019/7/3
计量经济学
• S.Goldberger:“计量经济学可定义为这样的社会 科学:它把经济理论、数学和统计推断作为工具 ,应用于经济现象的分析。”
计量经济学
• 《Basic Econometrics》(Damodar N.Gujarati): “计量经济学家的主要兴趣在于经济理论的经验 论证”,“计量经济学家常常采用数理经济学家 所提出的数学方程式,将这些方程式改造成适合 于经验检验的形式”,“收集、加工经济数据, 是统计学家的工作”,“这些数据构成了计量经 济模型的原始资料”。
计量经济学
本章内容
• 第1节是关于计量经济学应用模型的模型类型设定,讨论如 何针对研究对象选择计量经济学模型类型。
• 第2节是关于总体回归模型设定中的变量选择问题,讨论在 模型类型确定之后,应该按照什么原则选择进入模型的变 量。
• 第3节是关于模型函数关系设定,讨论如何在经济学理论和 在统计分析的指导下,设定模型中解释变量和被解释变量 之间的关系,即模型的函数形式。
2019/7/3
计量经济学
2、模型类型选择的重要性
• 建立计量经济学应用模型的第一步 • 模型类型决定采用什么理论方法 • 实际应用研究中的大量错误
2019/7/3
计量经济学
3、例题
• 例9.1.1属于截面数据单方程计量经济学应用模型 类型选择问题 。
2019/7/3
计量经济学
• 例9.1.2属于单方程模型和联立方程模型之间的选 择问题。
计量经济学
一、问题的提出
2019/7/3
计量经济学
1、计量经济学模型类型
• 参数模型和非参数模型 • 单方程模型和联立方程模型 • 截面数据模型、时间序列数据模型和Panel Data模
型
• 在截面数据单方程参数模型中,还包括经典模型、 选择性样本模型、计数数据(Count Data)模型、 离散选择模型、持续时间数据(Duration Data) 模型等多种类型
• 第4节是关于模型变量性质设定,讨论如何确定被选择进入 模型的变量的性质,重点讨论了变量性质设定的相对性。
2019/7/3
计量经济学
§9.1 计量经济学应用模型类型设定
一、问题的提出 二、单方程应用模型类型对被解释 变量数据类型的依赖性 三、单方程模型和联立方程模型的 选择对经济行为的依赖性
2019/7/3
关于第9章的说明
2019/7/3
计量经济学
《计量经济学》第2版和第3版的比较
第2版
第3版
第 1 章 绪论
第 1 章 绪论
第 2 章 经典单方程计量经济学模型:一元 第 2 章 经典单方程计量经济学模型:一元
线性回归模
线性回归模
第 3 章 经典单方程计量经济学模型:多元 第 3 章 经典单方程计量经济学模型:多元
方法
方法
第 7 章 经典计量经济学应用模型
第 7 章 扩展的单方程计量经济学模型
第 8 章 扩展的单方程计量经济学模型
第 8 章 时间序列计量经济学模型
第 9 章 时间序列计量经济学模型
第 9 章 经典计量经济学应用模型
2019/7/3
计量经济学
第2版 第 7 章 经典计量经济学应用模型 §7.1 生产函数模型 §7.2 需求函数模型 §7.3 消费函数模型 §7.4 宏观计量经济模型
第3版 第 9 章 经典计量经济学应用模型 §9.1 计量经济学应用模型类型设定 §9.2 计量经济学应用模型总体回归模型设定 §9.3 计量经济学应用模型函数关系设定 §9.4 计量经济学应用模型变量性质设定
2019/7/3
计量经济学
什么是计量经济学
• R.Frisch:“经验表明,统计学、经济理论和数学 这三者对于真正了解现代经济生活的数量关系来 说,都是必要的,但本身并非是充分条件。三者 结合起来,就是力量,这种结合便构成了计量经 济学。”
• 《Introductory Econometrics》(Jeffrey M. Wooldridge): “在多数情况下,计量经济分析 是从一个已经设定的模型开始的,而没有考虑模 型构造的细节”。
2教学目的
• 使得计量经济学课程涵盖“模型设定、数据诊断 、模型估计、模型检验、模型应用”全过程,实 现“经济理论、统计学、数学的结合”,成为一 门真正的经济学课程。
2019/7/3
计量经济学
• 例9.1.3属于同一类模型(Panel Data Models)中 具体模型类型选择问题 。
2019/7/3
计量经济学
二、单方程应用模型类型对被解释变量 数据类型的依赖性
线性回归模型
线性回归模型
第 4 章 经典单方程计量经济学模型:放宽 第 4 章 经典单方程计量经济学模型:放宽
基本假定的模型
基本假定的模型
第 5 章 经典单方程计量经济学模型:专门 第 5 章 经典单方程计量经济学模型:专门
问题
问题
第 6 章 联立方程计量经济学模型:理论与 第 6 章 联立方程计量经济学模型:理论与
• 《Basic Econometrics》作者Damodar N.Gujarati将 计量经济学方法归结为以下8个步骤:“理论或假 说的陈述、理论的数学模型的设定、理论的计量 经济模型的设定、获取数据、计量经济模型的参 数估计、假设检验、预报或预测、利用模型进行 控制或制定政策。”
2019/7/3