2014第十九届“华杯赛”初一初赛数学试题(A)及答案
初一华杯赛试题及答案
初一华杯赛试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. 2D. -1答案:B2. 如果一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 都不是答案:C3. 计算下列表达式的结果是偶数的是:A. 3 + 5B. 4 × 6C. 7 - 3D. 2 × 3答案:B4. 一个数的平方等于它本身,这个数可能是:A. 0B. 1C. 0或1D. 都不是答案:C5. 下列哪个数是质数?A. 2B. 4C. 6D. 8答案:A二、填空题(每题2分,共10分)6. 一个数的相反数是-8,这个数是________。
答案:87. 如果一个数的立方等于-27,那么这个数是________。
答案:-38. 一个数的平方根是4,那么这个数是________。
答案:169. 一个数的绝对值是10,这个数可能是________或________。
答案:10 或 -1010. 一个数的倒数是1/2,那么这个数是________。
答案:2三、解答题(每题5分,共20分)11. 计算下列表达式的值:(3x - 2) / (x + 1),当x = 3时。
答案:将x = 3代入表达式,得到(3×3 - 2) / (3 + 1) = (9 - 2) / 4 = 7 / 4。
12. 一个长方形的长是宽的两倍,如果长和宽的和是20厘米,求长和宽各是多少?答案:设宽为x,则长为2x。
根据题意,x + 2x = 20,解得x = 20 / 3,所以宽为20 / 3厘米,长为40 / 3厘米。
13. 一个数的平方加上这个数的两倍等于21,求这个数。
答案:设这个数为x,根据题意,x^2 + 2x = 21。
解这个一元二次方程,得到x = 3 或 x = -7。
14. 一个班级有40名学生,其中1/4的学生是男生,求班级中女生的人数。
答案:班级中有1/4 × 40 = 10名男生,所以女生的人数为40 - 10 = 30名。
华杯赛初一试题及答案
华杯赛初一试题及答案一、选择题(每题3分,共15分)1. 下列哪个选项是正确的自然数的平方?A. 2.5² = 6.25B. 3.5² = 12.25C. 4.5² = 20.25D. 5.5² = 30.252. 如果一个数的立方等于它本身,那么这个数可能是:A. 0B. 1C. -1D. 所有选项3. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 6/94. 一个圆的半径是5厘米,那么它的周长是:A. 31.4厘米B. 62.8厘米C. 94.2厘米D. 188.4厘米5. 如果一个三角形的三个内角之和是180度,那么这个三角形是:A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定二、填空题(每题2分,共10分)6. 一个数的绝对值是它本身,这个数是______或______。
7. 一个数的相反数是它本身,这个数是______。
8. 一个数的平方根是它本身,这个数是______或______。
9. 一个数的立方根是它本身,这个数是______。
10. 如果一个数的平方是16,那么这个数是______或______。
三、解答题(每题5分,共20分)11. 计算下列表达式的值:(-2)³ + √4 - 2π。
12. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,求它的体积。
13. 一个直角三角形的两个直角边分别是3厘米和4厘米,求它的斜边长度。
14. 一个圆的直径是14厘米,求它的面积。
四、应用题(每题10分,共20分)15. 某班级有40名学生,其中15名学生参加了数学竞赛,求班级中未参加数学竞赛的学生人数。
16. 一个农场主有一块长200米,宽150米的长方形土地,他想在这块土地上种植小麦,如果每平方米土地可以种植5千克小麦,那么这块土地总共可以种植多少千克小麦?答案:一、选择题1. D2. D3. C4. B5. D二、填空题6. 正数,07. 08. 0,19. 0,1,-110. 4,-4三、解答题11. (-2)³ + √4 - 2π = -8 + 2 - 2*3.14159 ≈ -8.2831812. 体积 = 长× 宽× 高= 8 × 6 × 5 = 240 立方厘米13. 斜边长度= √(3² + 4²) = √(9 + 16) = √25 = 5 厘米14. 面积= π × (直径/2)² = 3.14159 × (14/2)² ≈ 153.94 平方厘米四、应用题15. 未参加数学竞赛的学生人数 = 40 - 15 = 25 人16. 种植小麦的总量 = 土地面积× 每平方米种植量= 200 × 150 × 5 = 150000 千克结束语:本次华杯赛初一试题及答案涵盖了基础数学知识,旨在考察学生的计算能力、逻辑推理能力以及解决实际问题的能力。
初一数学华杯赛试题及答案
初一数学华杯赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于16,那么这个数是多少?A. 4B. ±4C. 16D. ±83. 一个长方形的长是宽的两倍,如果宽是5厘米,那么长是多少厘米?A. 5B. 10C. 15D. 204. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 都不是5. 一个数加上8等于这个数的两倍,这个数是多少?A. 8B. 4C. 0D. 166. 以下哪个分数是最接近0的?A. 1/2B. 1/3C. 1/4D. 1/57. 一个圆的半径是3厘米,那么它的面积是多少平方厘米?A. 28.26B. 18.84C. 9.42D. 3.148. 一个数的立方是-27,这个数是多少?A. -3B. 3C. -27D. 279. 以下哪个算式的结果是一个整数?A. 3 × 4 + 2B. 4 ÷ 2 - 1C. 5 × 3 - 2D. 6 ÷ 3 + 110. 一个数的平方根等于它本身,这个数是?A. 0B. 1C. -1D. 4二、填空题(每题4分,共20分)11. 一个数的平方等于25,这个数是_________。
12. 如果一个数的绝对值是3,那么这个数可能是_________。
13. 一个数的立方等于-8,这个数是_________。
14. 一个数的倒数是1/4,这个数是_________。
15. 一个数的平方根是2,这个数是_________。
三、解答题(每题10分,共50分)16. 一个班级有40名学生,其中1/4的学生喜欢数学,1/5的学生喜欢英语。
请问喜欢数学和喜欢英语的学生总数是多少?17. 一个直角三角形的两条直角边分别是3厘米和4厘米,求这个三角形的面积。
18. 一个数的平方加上8倍的这个数等于64,求这个数。
2014年初一华杯赛校内选拔试题
2014年七年级华杯赛校内选拔试题班级 学号 姓名一.选择题:(共7小题,每小题5分,总计35分) 1. 计算(-2)2005+(-2)2006所得结果是 ( )A. 2B. –2C. 1D. 220052.已知,,0b a b a ≠=+则化简)1()1(+++b baa ab 得( ).A .2aB .2bC .十2D .一23.使式子xx y z x 5201020092010201020092008--+有意义的x 的取值范围是( )A .x ≠0B .x ≠0且x ≠±402C .x ≠0且x ≠402D .x ≠0且x ≠-4024.如图,平行直线AB 、CD 与相交直线EF 、GH 相交,图中的同旁内角共有( ) . A .4对 B .8对 C .12对 D .16对5.已知:13-x +14-x +15-x +…+117-x 的值是一个确定的常数,则这个常数是( )A .5B .10C .15D .756.如图.正方形的边长为a ,以各边为直径在正方形内画半圆,所围成的图形(阴影部分)的面积为( ).A .22a a -π B .222a a -π C .2221a a -π D .2241a a π-7.如图,梯形ABCD 被对角线分为4个小三角形,已知ΔAOB 和ΔBOC 的面积分别为25cm 2和35cm 2,那么梯形的面积是( ) m 2.A .144B .140C . 160D .无法确定二、填空题:(共8小题,每小题5分,共计40分)8.在数轴上,点A 、B 分别表示31 和51,则线段AB 的中点所表示的数是9. a 、b 、c 在数轴上的位置如图且b 2=c 2,化简:-|b|-|a -b|+|a -c|-|b +c|=10.已知a 1+a 2=1,a 2+a 3=2,a 3+a 4=3,…,a 99+a 100=99,a 100+a 1=100,那么a 1+a 2+a 3+…a 100=11.如图,直线AB ∥CD ,∠EFA=30°,∠FGH=90°,∠HMN =30°,∠CNP= 50°,则 ∠GHM12. 如图,一个啤酒瓶的高度为30cm ,瓶中装有高度12cm 的水,将瓶盖盖好后倒置,这时瓶中水面高度20cm, 则瓶中水的体积和瓶子的容积之比为 . (瓶底的厚度不计)1层 2层 3层4层 图第n 层 … 图 20cm 30cm12cm ca13. 如图是由棱长为a 的小正方体堆积成的图形.若按照这样的规律继续摆放,第n 层需 要块小正方体(用含n 的代数式表示). 14.军训基地购买苹果慰问学员,已知苹果总数用八进位制表示为abc ,七进位制表示为cba ,那么苹果的总数用十进位制表示为_______.15.一个七边形棋盘如图所示,7个顶点顺序从0到6编号,称为七个格子。
华杯赛试题及答案初一
华杯赛试题及答案初一一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -1答案:B2. 如果一个数的平方等于81,那么这个数是多少?A. 9B. -9C. 9 或 -9D. 81答案:C3. 一个长方体的长、宽、高分别是3cm、4cm和5cm,其体积是多少立方厘米?A. 12B. 60C. 120D. 240答案:B4. 一个数的绝对值是5,这个数可以是?A. 5B. -5C. 5 或 -5D. 都不是答案:C5. 以下哪个表达式的结果不是整数?A. 4 + 3B. 7 - 2C. 5 × 3D. 6 ÷ 2答案:D二、填空题(每题2分,共10分)6. 一个数的相反数是-7,这个数是_________。
答案:77. 如果一个角是直角的一半,那么这个角的度数是_________。
答案:45°8. 一个数的平方根是4,这个数是_________。
答案:169. 一个数的立方是27,这个数是_________。
答案:310. 一个数的1/4加上2等于5,这个数是_________。
答案:12三、解答题(每题7分,共21分)11. 一个圆的半径是5厘米,求这个圆的周长和面积。
答案:周长= 2πr = 2 × 3.14 × 5 = 31.4厘米面积= πr² = 3.14 × 5² = 78.5平方厘米12. 一个班级有40名学生,其中1/5的学生是男生,求女生的人数。
答案:男生人数= 40 × 1/5 = 8人女生人数 = 40 - 8 = 32人13. 一个数列的前三项是2, 4, 6,如果这个数列是等差数列,求第10项的值。
答案:等差数列的公差 = 4 - 2 = 2第10项 = 2 + (10 - 1) × 2 = 2 + 9 × 2 = 20结束语本试题旨在考察初一学生对数学基础知识的掌握情况,希望同学们在解答过程中能够体会到数学的乐趣,不断提高自己的解题能力。
华杯初一决赛试题及答案
华杯初一决赛试题及答案一、选择题(每题5分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个等腰三角形的两个底角相等,如果顶角为60度,那么底角的度数是多少?A. 30度B. 45度C. 60度D. 90度答案:C3. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 9答案:C4. 一个数除以-1等于它本身,这个数是多少?A. 0B. 1C. -1D. 任何数答案:A5. 一个圆的直径是10厘米,那么它的半径是多少?A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A6. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A二、填空题(每题5分,共30分)7. 一个数的相反数是-5,那么这个数是________。
答案:58. 如果一个数的绝对值是4,那么这个数可能是________或________。
答案:4或-49. 一个直角三角形的两个直角边长分别是3和4,那么斜边的长度是________。
答案:510. 一个数的立方等于-8,那么这个数是________。
答案:-211. 一个数的平方根是2,那么这个数是________。
答案:412. 一个数除以它本身等于1,这个数是________。
答案:非零数三、解答题(每题20分,共40分)13. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求这个长方体的体积。
答案:长方体的体积 = 长 ×宽 ×高 = 10厘米 × 8厘米 × 6厘米= 480立方厘米。
14. 一个数列的前三项是1、3、5,从第四项开始,每一项都是前三项的和。
求这个数列的第10项。
答案:数列的前几项是:1、3、5、9(1+3+5)、17(3+5+9)、33(5+9+17)、65(9+17+33)、129(17+33+65)、257(33+65+129)、513(65+129+257)。
华杯赛初一组试题及答案
华杯赛初一组试题及答案一、选择题(每题5分,共40分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个等腰三角形的两个底角相等,如果其中一个底角是45度,那么顶角是多少度?A. 45度B. 90度C. 135度D. 180度答案:B3. 如果一个数的平方等于36,那么这个数是多少?A. 6B. ±6C. 36D. ±36答案:B4. 一个长方体的长、宽、高分别是a、b、c,那么它的体积是多少?A. abcB. ab + bc + acC. a + b + cD. a/b + b/c + c/a答案:A5. 下列哪个分数是最简分数?A. 3/4B. 4/6C. 5/8D. 7/9答案:D6. 一个圆的半径是r,那么它的面积是多少?A. πrB. πr^2C. 2πrD. 2πr^2答案:B7. 如果一个数x满足方程x^2 - 5x + 6 = 0,那么x的值是多少?A. 2B. 3C. 2或3D. 以上都不是答案:C8. 一个等差数列的首项是a1,公差是d,那么它的第n项是多少?A. a1 + (n-1)dB. a1 - (n-1)dC. a1 + ndD. a1 - nd答案:A二、填空题(每题5分,共30分)9. 一个数的相反数是-5,那么这个数是______。
10. 一个数的绝对值是8,那么这个数可以是______或______。
答案:8或-811. 一个等腰直角三角形的斜边长是10,那么它的直角边长是______。
答案:5√212. 一个数列的前三项是1,2,3,如果每一项都是前一项的两倍,那么第10项是______。
答案:2^9 = 51213. 一个圆的周长是2πr,如果周长是12π,那么半径r是______。
14. 一个长方体的长、宽、高分别是2,3,4,那么它的表面积是______。
答案:5215. 一个数列的前三项是1,3,5,如果每一项都比前一项多2,那么第n项是______。
华杯赛初一试题及答案
华杯赛初一试题及答案(正文)
一、华杯赛初一试题
1. 选择题
1) 下列哪个选项不属于五岳之一?
A. 泰山
B. 华山
C. 衡山
D. 黄山
2) 以下哪个是中国四大发明之一?
A. 火药
B. 纸
C. 吹风机
D. 印刷术
3) 中国的国花是什么?
A. 月季
B. 玫瑰
D. 牡丹
2. 填空题
1) 我国古代最伟大的发明家是______。
2) 现在世界上最高的山峰是_____。
3) 中国的首都是______。
3. 解答题
请用不少于50字回答下列问题:
1) 什么是五岳?
2) 简要介绍中国的四大发明。
二、华杯赛初一试题答案
1. 选择题答案
1) C
2) D
3) D
2. 填空题答案
1) 童蒙
2) 珠峰
3. 解答题答案
1) 五岳指的是中国被誉为"五岳"的五座著名山峰,分别是泰山、华山、黄山、衡山和恒山。
这些山峰在中国古代被认为是巍峨壮丽、雄伟险峻的象征,同时也具有宗教和文化上的重要意义。
2) 中国的四大发明包括造纸术、印刷术、火药和指南针。
造纸术的发明让人类有了记录历史和传播知识的可靠方法;印刷术的出现使书籍的制作和传播变得更加高效;火药的发明无疑对军事和烟花爆竹等领域产生了深远影响;指南针的使用让航海和探险成为可能,对地理探索起到了关键作用。
(文章结束)。
第十九届华杯赛决赛解答_初一
第十九届华罗庚金杯少年数学邀请赛决赛试题解答(初一组)(时间: 2014年4月12日)一、填空(每题10分, 共80分)1. 计算: =÷-+-⨯+-÷--⎪⎭⎫ ⎝⎛-+⨯---÷+-⨯-]6)8()3[(12)3()]27(0[625.385|54|)2(16)5(3233 . 【答案】2-【解答】原式 =⎪⎭⎫ ⎝⎛-⨯+-÷+--÷+-⨯-31312)3(27920)8(16)5(27=2611225299202135-=-=--+--. 2. 如图,由单位正方形组成的网格中,每个小正方形的顶点称为格点, 以格点为顶点做了一个三角形, 记L 为三角形边上的格点数目, N 为三角形内部的格点数目, 三角形的面积可以用下面的式子求出来:顶点在格点的三角形的面积=121-+N L如果三角形的边上与内部共有20个格点, 则这个三角形的面积最大等于 , 最小等于 .【答案】17.5, 9【解答】(题目中的公式取自闵嗣鹤教授写的《格点与面积》一本小册子, 只用到顶点数目, 其说明也易于理解. 下面的说明也是取自该书),根据顶点在格点图形的面积=121-+N L ,因为L 为三角形边上的格点数目, N 为图形内部的格点数目, 要使三角形面积最大, 则要求L 最小. 当L 最小的时候, 三角形只有三个顶点在格点上,其它的点在三角形的内部. 此时面积为17.5.这种图形是存在的, 在相邻的3列格点中, 三角形的三个顶点分别在其中一列上, 使得只有3个顶点在三角形的边上, 见下图.考虑面积最小的情况, 当所有的格点都在三角形的边上时, 面积最小. 取相邻两行格点, 三角形的一个顶点在其中一行, 底边包含19个格点在另一行, 此时面积为9, 见下图.下面叙述这个公式的一步步的说明过程.(1)考虑1+m 行, 1+n 列的矩形, 则图形内的点数为))((11--n m , 边上的点数为)(2n m +, 图形的面积为mn . 而1))(2(21)1)(1(-++--=n m n m mn . 因此公式成立.(2)对于直角三角形, 设直角边的长度分别为m , n . 设斜边上的点数为K , 则三角形内部的格点数为2211+---K n m ))((, 三条边上的格点数为1-++K n m .因此,1211212211+=-++++---mn K n m K n m )())((. 而三角形的面积为mn 21, 故公式成立. (3)对于一般的三角形, 有下面的三种方式:对于每个上述情况, 可以把这个三角形记为T , 放入一个矩形中. 这样把矩形分割成一些直角三角形, 矩形与T . 对这些直角三角形与矩形进行编号 ,3,2,1. 记i 个图形的内部格点数目为i N , 边上的格点数目为i L , 每个图形面积满足121-+i i L N . 注意到:a) 每个图形的内部格点一定是外部矩形的内部格点.b) 每个公共边上内部的格点属于两个图形.c) 公共边的端点可能为多个图形的顶点. 如上左图中A , B 属于两个图形边的顶点, C 为3个图形顶点.把每个点对应一个数, 图形内部的格点对应1, 图形边上的格点对应21. 这样用外部矩形面积公式减去T 之外的其他直角三角形与矩形面积公式.T 之内的格点为对应的数1, T 边上内部的格点对应的数为21211=-, T 的三个顶点对应数的和是21212212123-=⨯---, 公式中常数1对应的值为1121=-⨯--)(, 其他格点对应的数为0. 这样外部矩形面积公式减去T 之外的其他直角三角形与矩形面积公式= T 的内部格点数+⨯21(边的内部格点数3-)+(121+-) = T 的内部格点数+⨯21(边的内部格点数)1-,因此公式对T 成立.对其他两个图形也进行类似的讨论. 3. 长为4的线段AB 上有一动点C , 等腰三角形ACD 和等腰三角形BEC 在过AB 的直线同侧, DC AD =, EB CE =, 则线段DE 的长度最小为 .【答案】2.【解答】 分别从D , E 向AB 作垂线, 过D 或E 做与AB 的平行线, 可以得到一个矩形, 参见右图. 线段DE 最短等于该矩形平行于AB 的边的长度(由过一点D 或E 到另一直线的距离, 垂线最短的结论). 三角形ACD 和三角形BCD 是等腰三角形, DE 最短等于AB 的一半, 即为2.4. 正整数c b a ,,满足等式, c b a =3, 且9432=⎪⎪⎭⎫ ⎝⎛++c b a , 又6822=+b a , 则=c . 【答案】12.【解答】由 cb ac b a ++==33, 知 9439322222222=⎪⎭⎫ ⎝⎛++=++==c b a c b a c b a , 所以,153499222=+=+)(b a c . 得1442=c , 12=c .5. 如图, 直角三角形ABC 中, F 为AB 上的点, 且FB AF 2=, 四边形EBCD 为平行四边形, 那么【答案】2【解答】连接FC , BD , 设kEF FD =, S S BFE =∆, 那么kS S BDF =∆, S k S S FBC BCD )1(+==∆∆. 由FB AF 2=可知kS S AFD 2=∆, 进而S k S A B C )41(+=∆, 得又所以)1(341k k +=+.解得, 2=k . 因此, EF FD 2=.6. 方程023=+++C Bx Ax x 的系数C B A ,,为整数, 5||,5||,5||<<<C B A , 且1是方程的一个根, 那么这种方程总共有 个.【答案】60【解答】由已知,b x a b x a x b ax x x C Bx Ax x --+-+=++-=+++)()1())(1(23223,其中, a , b 为实数, 于是有b C a b B a A -=-=-=,,1,并且得到a , b 为整数. 由题目条件得5||,5||,5|1|<<-<-b a b a .因此555564<<-+<<-<<-b b a b a ,,.当0=b 时, 由55,64<<-<<-a a , 得54<<-a , 即a 能够取8个整数值. 类似地, 当b 为1, 2, 3, 4 时, a 分别可以取9, 8, 7, 6个整数值. 同样地, 当1-=b 时, 由46,64<<-<<-a a , 得44<<-a , 即a 能能够取7个整数值. 类似地, 当b 为4,3,2---时, a 分别可以取6, 5, 4个整数值.这样, ),(b a 的取法, 亦即),,(C B A 的取法有60)4567()67898(=++++++++(种)所以, 这种方程共有60个.7. 一辆公交快车和一辆公交慢车沿某环路顺时针运行, 它们的起点分别在A站和B 站, 快车每次回到A 站休息4分钟, 慢车每次回到B 站休息5分钟, 两车在其他车站停留的时间不计. 已知沿顺时针方向A 站到B 站的路程是环路全程的52, 两车环行一次各需45分钟和51分钟(不包括休息时间), 那么它们从早上6时同时出发, 连续运行到晚上10时, 两车同在B 站共 次.【答案】3【解答】记早上6时为第0分钟, 从6时到22时是 9606016=⨯分钟, 快车环行一周连同休息时间需49445=+分钟, 294919960+⨯=, 慢车环行一周连同休息时间需56551=+分钟, 85617960+⨯=. 即第960分钟时, 快车共环行了19次, 慢车环行了17次.设慢车第m 次(171≤≤m , 6点出发为第0次)到达B 站的时间为第 m T 分钟, 则有:556-=m T m .快车第1次到达B 站是在第185245=⨯ 分钟, 11491918960+⨯=-, 快车经过B 站共20次. 记第n 次(201≤≤n )经过B 站的时间为n t 分钟, 则3149)1(4918-=-+=n n t n .两车同在B 站时, m , n 必须满足:m n m 563149556≤-≤-. 26495631n m ≤-≤推出31564926≤-≤m n , 73187726≤-≤m n . 既然m n 87-是整数, 故有4874≤-≤m n , 即得到二元整数方程:487=-m n .由上面的方程得,51,4≤≤=k k n ,得到:,4847=-⨯m k 127=-m k .所以, k 为奇数. 当k 为1, 3, 5时, m 分别为3, 10, 17, n 分别为4, 12, 20.所以, 快车和慢车同在B 站3次.8. 如果a , b , c 为不同的正整数, 且 222c b a =+¸那么乘积abc 最接近2014的值是 .【答案】2040【解答】解答1. 设如若平方数c ²取3m 或13+m 的形式, 那么a , b 中必有3的倍数, 不然c ²为23+m , 而与原设矛盾.如若设平方数c ²取5m 或5m ±1的形式, 那么, 要是a , b 都不是5的倍数, 则c ²必为5m 或5m ±2, 而与原设矛盾; 要是a , b 都是5m , 则c 为5的倍数, 要是a , b 是5m ±2, 则c 不是5的倍数, 而与题设矛盾, 则a , b 中必有5的倍数.若设平方数c ²取4m 或14+m 的形式, 要是a , b 都不是4的倍数, 则c ²必为24+m 的形式, 与题设矛盾. 故, a , b 中必有4的倍数.因而可知abc 必为3, 4, 5的公倍数, 且4, 5, 6的最小公倍数为60. 又 19803360=⨯, 3419802014=-, 20403460=⨯, 2620142040=-, 并且当17,8,15===c b a 时, 22217815=+, 204017815=⨯⨯.所以abc 中最接近2014的值是2040.解答2. 根据a , b , c 为不同的正整数, 满足222c b a =+, 则存在正整数)(,n m n m >, 使得22n m a -=, mn b 2=, 22n m c +=.所以)()(22222n m mn n m abc +-=.根据2)(2)2()()2()(222222222n m mn n m mn n m +=+-≤⨯-, 知道2)()(2)(3222222n m n m mn n m abc +≤+-=. (*) 当3=m 时, 根据n m >, n 最大为2,221972492233222222=+≤+≤+-=)()()()(n m n m mn n m abc . 另外4222222222m n m mn n m n m n m mn n m abc ≥++-=+-=)())(()()(. (**) 所以当7≥m 时,48042224222222=≥++-=+-=m n m mn n m n m n m mn n m abc )())(()()(.考察6,5,4===m m m , 把n 的所有情况代人公式)(2)(2222n m mn n m abc +-=有下表:所以abc 中最接近2014的值是2040.二、解答下列各题(每题10分, 共40分, 要求写出简要过程)9. 有三个农场在一条公路边, 如图A 、B 和C 处. A 处农场年产小麦50吨, B处农场年产小麦10吨, C 处农场年产小麦60吨. 要在这条公路边修建一个仓库收买这些小麦.假设运费从A 到C 方向是1.5元/吨千米, 从C 到A 方向是1元/吨千米. 问仓库应该建在何处才能使运费最低?A【答案】A 处【解答】设仓库离B 处x 公里 (靠C 处), 则运费为:109503010950)120(6015)50(505.1≥+=-+++⨯x x x x 元.设仓库离B 处x 公里 (靠A 处), 则运费为:10700510950)120(601050505.1≥-=+++-⨯x x x x )(元.因此, 应该将仓库建在A 处.10. 如图, 在ABC Δ中, D 为BC 中点, FB AF 2=,AE CE 3=. 连接CF 交DE 于P 点, 求DPEP 的值. 【答案】3.【解答】如图所示, 连接EF , DF . 设x S BDF =Δ. 因为D 为BC 的中点, 所以x S FDC =∆, x S CFB 2=∆.因为BF AF 2=, 所以2==∆∆BFAF S S CFB CAF , 得x S CAF 4=∆. 因为31==∆∆CE AE S S EFC AFE , 所以x S EFC 3=∆. 因为DP PE S S S S CPD CEP DPF EFP ==∆∆∆∆, 所以3==∆∆FDC EFC S S DP PE . 11. 某地参加华杯赛决赛的104名小选手来自当地14所学校. 请你证明:其中一定存在两所学校选手的人数是相同的.【解答】如果结论不成立, 则这14所学校的选手数彼此互不相同. 也就是这14所学校的选手数是彼此不同的14个正整数. 而14个彼此不同的正整数之和最小为1051413121110987654321=+++++++++++++,104105>, 得出矛盾.所以这14所学校的选手数彼此不同不能成立. 因此, 一定存在两所学校选手的人数是相同的.12. 将一个四位数中的各数字和的两倍与这个四位数相加得2379. 求这个四位数.【答案】2353, 2347.【解答】设这个四位数为xyzw . 首先, 2=x . 因为 ,9,,0≤≤w z y 若1=x , 则有20552541999,54)(20=++≤++≤w z y ,与条件不符. 另一方面x 不能大于2. 于是, yzw xyzw 2=, 即有23792224101002000=+++++++w z y w z y .得到375312102=++w z y .容易验证, .2,1≠y 因此, .3=y 于是69312=+w z , 12369w z -=. 整数解: 4,7;5,3====z w z w . 所求四位数为:2353, 2347. 经验证, 都符合要求.三、解答下列各题(每小题15分, 共30分, 要求写出详细过程)13. 求质数c b,a,使得ab+bc=abc a+715.【答案】29,2,2===c b a ;11,5,11===c b a 或者13,3,13===c b a【解答】因为bc a |, 所以b a |或者c a |. 因为 a , b , c 都是质数, 所以b a =或者c a =.① 当b a =时,c a ac a a 2275=++,所以ac c a =++715,2112271⨯==--))((c a .若 ⎩⎨⎧=-=-27111c a , 得⎩⎨⎧==912c a , 与题意不符; 若⎩⎨⎧=-=-11721c a , 得⎩⎨⎧==1813c a , 也与题意不符; 若⎩⎨⎧=-=-17221c a , 得⎩⎨⎧==823c a , 也与题意不符. 若⎩⎨⎧=-=-22711c a , 得⎩⎨⎧==292c a , 与题意相符, 29,2,2===c b a 为一个答案. ②当c a =时,b a ac ab a 2715=++,所以b a ab a 2815=+, 由ab b =+815变化得到53151)8(×=×b=a -.若 ⎩⎨⎧==-1518b a , 得 ⎩⎨⎧==159b a , 与题意不符; 若 ⎩⎨⎧==-1158b a , 得 ⎩⎨⎧==123b a , 与题意不符; 若 ⎩⎨⎧==-538b a , 得 ⎩⎨⎧==511b a , 与题意相符, 11,5,11===c b a 为一个答案; 若 ⎩⎨⎧==-358b a , 得 ⎩⎨⎧==313b a , 与题意相符, 13,3,13===c b a 为一个答案.. 14. 如果正数10321,,,,a a a a 满足条件:,10,10,109432110321≤++++≤+≥≥≥≥a a a a a a a a a a那么210232221a a a a ++++ 的最大值是多少?【答案】100【解答】记⎪⎩⎪⎨⎧≤++++≤+≥≥≥≥)3(,10)2(,10)1(,109432110321a a a a a a a a a a 由 (2) 和 (3) 得2010321≤++++a a a a .根据 (1) 和 (2),,100)()()())((100)()()()(1002)(1022010)10(1021042432321221021024242323212221023222103212210232222210232222210232221≤-++-+-+-+=-++-+-+-+=++++++++-≤++++-=++++-≤++++a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a并且等号成立当且仅当乘积10210323212)(,,)(,)(a a a a a a a a a ---都等于0.取0,10104321======a a a a a ,或0,510654321========a a a a a a a ,则10321,,,,a a a a 都满足 (1), (2), (3), 并且100210232221=++++a a a a .综和上述讨论, 210232221a a a a ++++ 的最大值是100.。
华杯赛初一试题及答案
华杯赛初一试题及答案一、选择题1. 下列哪个选项是正确的?A. 2 + 3 = 5B. 3 + 4 = 7C. 5 - 2 = 2D. 4 × 3 = 12答案:A2. 如果一个数的平方等于其本身,那么这个数可能是:A. 0B. 1C. -1D. 以上都是答案:D二、填空题3. 一个数的立方是其本身,这个数可以是______。
答案:0 或 1 或 -14. 若a和b互为相反数,且a + b = 0,则a和b的值分别是______。
答案:a和b互为相反数,即a=-b三、解答题5. 计算下列表达式的值:(1) 2^3 - 3^2(2) (-2)^2 + 4 × (-3)答案:(1) 2^3 - 3^2 = 8 - 9 = -1(2) (-2)^2 + 4 × (-3) = 4 - 12 = -86. 一个长方体的长、宽、高分别是a、b、c,如果长方体的体积是底面积的两倍,求a、b、c之间的关系。
答案:根据题意,长方体的体积是V = abc,底面积是S = ab。
由题意知,V = 2S,即abc = 2ab,因此c = 2。
四、应用题7. 一个班级有50名学生,其中35名学生参加了数学竞赛,25名学生参加了物理竞赛,有10名学生两项竞赛都参加了。
请问:(1) 有多少名学生至少参加了一项竞赛?(3) 有多少名学生没有参加任何竞赛?答案:(1) 至少参加一项竞赛的学生数 = 参加数学竞赛的学生数 + 参加物理竞赛的学生数 - 两项都参加的学生数 = 35 + 25 - 10 = 50(2) 没有参加任何竞赛的学生数 = 总学生数 - 至少参加一项竞赛的学生数 = 50 - 50 = 0五、证明题8. 证明:对于任意的正整数n,n^3 - n 总是能被6整除。
答案:设n为任意正整数,我们有n^3 - n = n(n^2 - 1) = n(n + 1)(n - 1)。
由于连续的三个整数中至少有一个是2的倍数,至少有一个是3的倍数,所以n(n + 1)(n - 1)能被2和3整除,即能被6整除。
2014年第十九届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组)后附答案解析
2014年第十九届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组)一、选择题(每小题10分,满分60分)1.(10分)两个正整数的和小于100,其中一个是另一个的两倍,则这两个正整数的和的最大值是()A.83B.99C.96D.982.(10分)现有一个正方形和一个长方形,长方形的周长比正方形的周长多4厘米,宽比正方形的边长少2厘米,那么长比正方形的边长多()厘米.A.2B.8C.12D.43.(10分)用8个3和1个0组成的九位数有若干个,其中除以4余1的有()个.A.5B.6C.7D.84.(10分)甲、乙、丙、丁、戊围坐在圆形桌子边玩扑克,甲有自己的固定座位.如果乙和丁的座位不能相邻,那么共有()种不同的围坐方法.A.10B.8C.12D.165.(10分)新生开学后去远郊步行拉练,到达A地时比原计划时间10点10分晚了6分钟,到达C地时比原计划时间13点10分早了6分钟,A,C之间恰有一点B是按照原计划时间到达的,那么到达B点的时间是()A.11点35分B.12点5分C.11点40分D.12点20分6.(10分)如图中的正方形的边长为10,则阴影部分的面积为()A.56B.44C.32D.78二、填空题(每小题0分,满分30分)7.(10分)爷爷的年龄的个位数字和十位数字交换后正好是爸爸的年龄,爷爷与爸爸的年龄差是小林年龄的5倍.那么小林的年龄是岁.8.(10分)五个小朋友A、B、C、D和E参加“快乐读拼音”比赛,上场时五个人站成一排.他们胸前有每人的选手编号牌,5个编号之和等于35.已知站在E、D、A、C右边的选手的编号的和分别为13、31、21和7.那么A、C、E三名选手编号之和是.9.用图1的四张含有4个方格的纸板拼成了图2所示的图形.若在图2的16个方格分别填入1,3,5,7(每个方格填一个数),使得每行、每列的四个数都不重复,且每个纸板内四个格子里的数也不重复,那么A,B,C,D四个方格中数的平均数是.10.(10分)在一个平面上,用若干个单位长度的木棍可以摆出由多个正方形相邻的图形,如图是一示例.现在用20根单位长的小木棍摆出一个图形,要求除第一行的方格外,下面几行方格构成一个长方形,那么这样的图形中最多有个单位边长的正方形.2014年第十九届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组)参考答案与试题解析一、选择题(每小题10分,满分60分)1.(10分)两个正整数的和小于100,其中一个是另一个的两倍,则这两个正整数的和的最大值是()A.83B.99C.96D.98【分析】因为一个数是另一个数的两倍,这就说明这两个数的和是另一个数的3倍,因此只要判断100以内3的最大的倍数是多少即可.【解答】解:根据3的倍数特征,不难判断83和98都不是3的倍数,99和96都是,但99>96,所以这两个数的最大值是99.故选:B.【点评】这题实际上是一个和倍问题,和是较小数的(1+2)倍,根据3的倍数特征求解.2.(10分)现有一个正方形和一个长方形,长方形的周长比正方形的周长多4厘米,宽比正方形的边长少2厘米,那么长比正方形的边长多()厘米.A.2B.8C.12D.4【分析】显然长方形的周长比正方形的周长多4厘米,则长方形的长和宽比正方形的两条边长之和多2厘米,而宽比正方形的边长少2厘米,则长应该比正方形的边长多:2+2=4厘米.【解答】解:根据分析,长方形的周长=2×(长+宽),正方形的周长=2×(边长+边长),∵长方形的周长比正方形的周长多4厘米,∴长方形的长和宽之和比正方形的两条边长之和多2厘米,宽比正方形的边长少2厘米,则则长应该比正方形的边长多:2+2=4厘米.故选:D.【点评】本题考查了巧算周长,本题的突破点是:利用周长之差,得到长宽与边长之差,不难求得差值.3.(10分)用8个3和1个0组成的九位数有若干个,其中除以4余1的有()个.A.5B.6C.7D.8【分析】4的整除特性是只看后两位是4的倍数,只要满足后两位数除以4余数是1就是满足条件的数.只需要考虑0的位置即可.【解答】解:当尾数是033时,满足条件,其余数字都是唯一确定的有一个数字.当尾数是333时,9位数字中还有6位数字,0不能在首位,0的位置有5种情况.共5个数字.当尾数是03或者30都不满足条件.故选:B.【点评】本题是考察4的整除特性,关键是要找到满足条件的后两位,再进行讨论问题解决.4.(10分)甲、乙、丙、丁、戊围坐在圆形桌子边玩扑克,甲有自己的固定座位.如果乙和丁的座位不能相邻,那么共有()种不同的围坐方法.A.10B.8C.12D.16【分析】此题实际上就是按一定的顺序给乙、丙、丁、戊4人排位置.故可以:①将4人全排列坐法种数为:=24.②乙丁相邻时排列分两步:第一步是先把2人捆绑为1人,此坐法种数是=2;第二步是用捆绑的2人作为1人,再与丙、戊进行全排列,其排列做法种数为=6.所以乙丁相邻时坐法种数是2×6=12.③4人全排列坐法种数﹣乙丁相邻时坐法种数=乙丁不相邻时的坐法种数.至此问题就解决了.【解答】解:将乙丙丁戊进行全排列坐法种数是=4×3×2×1=24.乙丁相邻时坐法种数是×=2×1×3×2×1=12.乙丁不相邻时坐法种数是24﹣12=12故选:C.【点评】对于比较复杂的排列题,不好直接求解的,不妨换种思路,用间接的方法来求解,比如此题.5.(10分)新生开学后去远郊步行拉练,到达A地时比原计划时间10点10分晚了6分钟,到达C地时比原计划时间13点10分早了6分钟,A,C之间恰有一点B是按照原计划时间到达的,那么到达B点的时间是()A.11点35分B.12点5分C.11点40分D.12点20分【分析】首先分析时间差为12分钟,那么要恰好准点,需要赶回第一个时间差6分钟即可.【解答】解:依题意可知:开始晚到6分,最后提前6分,那么时间差是12分.从起始点A到C共用时间是3小时.那么准点是时间就是需要时间差为6分钟的时候.6分钟和12分钟比较正好为一半的时间,即从10:10分开始过后的1.5小时正好是准时的.即时间是11:40分.故选:C.【点评】本题考查对追及问题的理解和运用,关键问题是找到需要追及的时间差和总时间差的关系.问题解决.6.(10分)如图中的正方形的边长为10,则阴影部分的面积为()A.56B.44C.32D.78【分析】如下图进行切割,图中a、b、c、d 4个部分空白处面积和对应的阴影部分面积相等,找到这个等量关系即可解.【解答】解:如上图的方法进行切割,可知:图中a、b、c、d 4个部分空白处面积和对应的阴影部分面积相等;空白的面积=(正方形面积﹣3×4的小长方形面积)÷2=(10×10﹣3×4)÷2=44;阴影部分面积=正方形面积﹣空白的面积=10×10﹣44=56.故选:A.【点评】对图形的分割是本题的关键.二、填空题(每小题0分,满分30分)7.(10分)爷爷的年龄的个位数字和十位数字交换后正好是爸爸的年龄,爷爷与爸爸的年龄差是小林年龄的5倍.那么小林的年龄是9岁.【分析】设爷爷的年龄为=10a+b,则爸爸的年龄为=10b+a,根据“爷爷与爸爸的年龄差是小林年龄的5倍.”可得10a+b﹣(10b+a)=9(a﹣b),所以9(a﹣b)是5的倍数,再根据a﹣b的值只能小于10,可以推算出小林的年龄.【解答】解:设爷爷的年龄为=10a+b,则爸爸的年龄为=10b+a,爷爷与爸爸的年龄差是:10a+b﹣(10b+a)=9(a﹣b),因为爷爷与爸爸的年龄差是小林年龄的5倍,所以,9(a﹣b)是5的倍数,即(a﹣b)是5的倍数,又因为a﹣b<10,所以a﹣b=5,则小林的年龄只能是9岁.答:小林的年龄是9岁.故答案为:9.【点评】本题考查了年龄问题和位置原则的综合应用,有一定的难度,关键是得出爷爷年龄的十位数字和个位数字的差是5.8.(10分)五个小朋友A、B、C、D和E参加“快乐读拼音”比赛,上场时五个人站成一排.他们胸前有每人的选手编号牌,5个编号之和等于35.已知站在E、D、A、C右边的选手的编号的和分别为13、31、21和7.那么A、C、E三名选手编号之和是24.【分析】因为“站在E、D、A、C右边的选手的编号的和分别为13、31、21和7”,即小朋友的位置越靠左,右边的人数的越多,则编号之和越大,31>21>13>7,所以EDAC四位小朋友的顺序从左到右为D、A、E、C.C右边小朋友的编号和为7,说明C右边还有一位小朋友B,那么五位小朋友从做到右依次为D,A,E,C,B.D右边的和为31,所以D为35﹣31=4A右边的和为21,所以A为35﹣21﹣4=10,E右边的和为13,所以E为35﹣13﹣4﹣10=8,C右边的和为7,所以C为35﹣7﹣4﹣10﹣8=6C右边的和为7,所以B为7那么A、C、E三名选手编号之和是10+8+6=24据此解答即可.【解答】解:根据分析知:右侧数字和越大的位置越向左,由题意可知:E,D,A,C,从左到右的顺序为DAEC.C右边的选手号为7,只能是B.而最右侧的D应为:35﹣31=4所以:A+C+E=35﹣(7+4)=24故答案为:24.【点评】本题属于组合模块,重点在于分析出小朋友的左右顺序.9.用图1的四张含有4个方格的纸板拼成了图2所示的图形.若在图2的16个方格分别填入1,3,5,7(每个方格填一个数),使得每行、每列的四个数都不重复,且每个纸板内四个格子里的数也不重复,那么A,B,C,D四个方格中数的平均数是4.【分析】如图2,,根据每个纸板内四个格子里的数不重复,可得:A≠E,A≠F,B≠E,B≠F,所以A=G,B=H或A=H,B=G,所以G+H=A+B,据此求出A,B,C,D四个方格中数的平均数是多少即可.【解答】解:如图2,,因为每个纸板内四个格子里的数不重复,所以A≠E,A≠F,B≠E,B≠F,所以A=G,B=H或A=H,B=G,所以G+H=A+B,所以A,B,C,D四个方格中数是1,3,5,7(每个方格填一个数),所以A,B,C,D四个方格中数的平均数是:(1+3+5+7)÷4=4.答:A,B,C,D四个方格中数的平均数是4.故答案为:4.【点评】此题主要考查了平均数问题,考查了分析推理能力的应用,要熟练掌握,解答此题的关键是判断出:A=G,B=H或A=H,B=G.10.(10分)在一个平面上,用若干个单位长度的木棍可以摆出由多个正方形相邻的图形,如图是一示例.现在用20根单位长的小木棍摆出一个图形,要求除第一行的方格外,下面几行方格构成一个长方形,那么这样的图形中最多有7个单位边长的正方形.【分析】从上图可以看出,只要小正方形的边相邻,才能节省小木棍,摆成的图形越接近大正方形就越节省木棍.因此这题可以从2×2的正方形和3×3的正方形入手.从上图可以看出左边2×2的正方形需要12根木棍,右边3×3的正方形需要24根木棍,20根摆成的图形可以由3×3这个图形去掉一些木棍得到.【解答】解:将上面3×3这个图形去掉4根木棍得到下图故此题填7【点评】在这题中要使正方形的个数最多,就尽量使正方形与正方形之间共用的木棍尽量的多.。
华杯赛初一组试题及答案
华杯赛初一组试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 2+2=5B. 3+3=6C. 4+4=8D. 5+5=10答案:D2. 以下哪个图形是正方形?A. 一个四边形,对角线相等且互相垂直B. 一个四边形,对边相等且互相平行C. 一个四边形,对角线相等D. 一个四边形,对边相等答案:A3. 计算下列哪个式子的结果为正数?A. (-3) + (-2)B. (-3) × (-2)C. (-3) ÷ (-2)D. (-3) - (-2)答案:B4. 以下哪个选项是质数?A. 4B. 6C. 9D. 11答案:D二、填空题(每题5分,共20分)1. 一个数的平方是36,这个数是______。
答案:±62. 一个数的立方是-27,这个数是______。
答案:-33. 一个数的倒数是1/2,这个数是______。
答案:24. 一个数的绝对值是5,这个数可以是______。
答案:±5三、解答题(每题10分,共40分)1. 计算下列表达式的值:(3x - 2) / (x + 1),其中x = 2。
答案:将x = 2代入表达式,得到(3*2 - 2) / (2 + 1) = (6 - 2) / 3 = 4 / 3。
2. 一个长方体的长、宽、高分别是2cm、3cm和4cm,求它的体积。
答案:体积 = 长× 宽× 高= 2cm × 3cm × 4cm = 24cm³。
3. 一个圆的直径是10cm,求它的半径和面积。
答案:半径 = 直径 / 2 = 10cm / 2 = 5cm。
面积= π × 半径² = π × (5cm)² = 25π cm²。
4. 一个数列的前三项是2, 4, 6,每一项是前一项加上一个常数。
求这个常数,并写出数列的第四项。
答案:常数 = 4 - 2 = 2,第四项 = 6 + 2 = 8。
2014年第19届华杯决赛A高年级组试题答案详解解析
第十九届华罗庚金杯少年数学邀请赛决赛试题A (小学高年级组)一、填空题(每小题 10 分, 共80 分)1. 如右图, 边长为12米的正方形池塘的周围是草地, 池塘边A , B , C , D 处各有一根木桩, 且AB =BC =CD =3米. 现用长4米的绳子将一头羊拴在其中的某根木桩上. 为了使羊在草地上活动区域的面积最大, 应将绳子拴在 处的木桩上. 【考点】圆与扇形 【答案】B【解析】拴在B 处活动区域最大,为43圆。
2. 在所有是20的倍数的正整数中, 不超过2014并且是14的倍数的数之和是 . 【考点】最小公倍数,等差数列 【答案】14700【解析】[]14014,20=,141402014=⎥⎦⎤⎢⎣⎡,()1470014321140=+++⨯ .3. 从1~8这八个自然数中任取三个数, 其中没有连续自然数的取法有 种. 【考点】计数 【答案】20【解析】解法一:枚举法(1)三奇数:135、137、157、357,4个; (2)三偶数:246、248、268、468,4个;(3)两奇一偶:136、138、158、147、358、257,6个; (4)两偶一奇:247、258、146、148、168、368,6个; 共4+4+6+6=20种.解法二:排除法1~8中任取三个数,有5638 C 种不同的取法其中三个连续数有6种(123~678)两个连续数有5+4+4+4+4+4+5=30种(如124、125、126、127、128等) 则满足题意的取法有56—6—30=20种.4. 如右图所示, 网格中每个小正方格的面积都为1平方厘米. 小明在网格纸上画了一匹红鬃烈马的剪影(马的轮廓由小线段组成, 小线段的端点在格子点上或在格线上), 则这个剪影的面积为 平方厘米.【考点】格点与面积 【答案】56.5【解析】如图(见下页),通过分割和格点面积公式可得小马总面积为56.5个正方形,即面积为56.5平方厘米。
第十九届华杯赛决赛解答_初一
第十九届华罗庚金杯少年数学邀请赛决赛试题解答(初一组)(时间: 2014年4月12日)一、填空(每题10分, 共80分)1. 计算: =÷-+-⨯+-÷--⎪⎭⎫ ⎝⎛-+⨯---÷+-⨯-]6)8()3[(12)3()]27(0[625.385|54|)2(16)5(3233 . 【答案】2-【解答】原式 =⎪⎭⎫ ⎝⎛-⨯+-÷+--÷+-⨯-31312)3(27920)8(16)5(27=2611225299202135-=-=--+--. 2. 如图,由单位正方形组成的网格中,每个小正方形的顶点称为格点, 以格点为顶点做了一个三角形, 记L 为三角形边上的格点数目, N 为三角形内部的格点数目, 三角形的面积可以用下面的式子求出来:顶点在格点的三角形的面积=121-+N L如果三角形的边上与内部共有20个格点, 则这个三角形的面积最大等于 , 最小等于 .【答案】17.5, 9【解答】(题目中的公式取自闵嗣鹤教授写的《格点与面积》一本小册子, 只用到顶点数目, 其说明也易于理解. 下面的说明也是取自该书),根据顶点在格点图形的面积=121-+N L ,因为L 为三角形边上的格点数目, N 为图形内部的格点数目, 要使三角形面积最大, 则要求L 最小. 当L 最小的时候, 三角形只有三个顶点在格点上,其它的点在三角形的内部. 此时面积为17.5.这种图形是存在的, 在相邻的3列格点中, 三角形的三个顶点分别在其中一列上, 使得只有3个顶点在三角形的边上, 见下图.考虑面积最小的情况, 当所有的格点都在三角形的边上时, 面积最小. 取相邻两行格点, 三角形的一个顶点在其中一行, 底边包含19个格点在另一行, 此时面积为9, 见下图.下面叙述这个公式的一步步的说明过程.(1)考虑1+m 行, 1+n 列的矩形, 则图形内的点数为))((11--n m , 边上的点数为)(2n m +, 图形的面积为mn . 而1))(2(21)1)(1(-++--=n m n m mn . 因此公式成立.(2)对于直角三角形, 设直角边的长度分别为m , n . 设斜边上的点数为K , 则三角形内部的格点数为2211+---K n m ))((, 三条边上的格点数为1-++K n m .因此,1211212211+=-++++---mn K n m K n m )())((. 而三角形的面积为mn 21, 故公式成立. (3)对于一般的三角形, 有下面的三种方式:对于每个上述情况, 可以把这个三角形记为T , 放入一个矩形中. 这样把矩形分割成一些直角三角形, 矩形与T . 对这些直角三角形与矩形进行编号 ,3,2,1. 记i 个图形的内部格点数目为i N , 边上的格点数目为i L , 每个图形面积满足121-+i i L N . 注意到:a) 每个图形的内部格点一定是外部矩形的内部格点.b) 每个公共边上内部的格点属于两个图形.c) 公共边的端点可能为多个图形的顶点. 如上左图中A , B 属于两个图形边的顶点, C 为3个图形顶点.把每个点对应一个数, 图形内部的格点对应1, 图形边上的格点对应21. 这样用外部矩形面积公式减去T 之外的其他直角三角形与矩形面积公式.T 之内的格点为对应的数1, T 边上内部的格点对应的数为21211=-, T 的三个顶点对应数的和是21212212123-=⨯---, 公式中常数1对应的值为1121=-⨯--)(, 其他格点对应的数为0. 这样外部矩形面积公式减去T 之外的其他直角三角形与矩形面积公式= T 的内部格点数+⨯21(边的内部格点数3-)+(121+-) = T 的内部格点数+⨯21(边的内部格点数)1-,因此公式对T 成立.对其他两个图形也进行类似的讨论. 3. 长为4的线段AB 上有一动点C , 等腰三角形ACD 和等腰三角形BEC 在过AB 的直线同侧, DC AD =, EB CE =, 则线段DE 的长度最小为 .【答案】2.【解答】 分别从D , E 向AB 作垂线, 过D 或E 做与AB 的平行线, 可以得到一个矩形, 参见右图. 线段DE 最短等于该矩形平行于AB 的边的长度(由过一点D 或E 到另一直线的距离, 垂线最短的结论). 三角形ACD 和三角形BCD 是等腰三角形, DE 最短等于AB 的一半, 即为2.4. 正整数c b a ,,满足等式, c b a =3, 且9432=⎪⎪⎭⎫ ⎝⎛++c b a , 又6822=+b a , 则=c . 【答案】12.【解答】由 cb ac b a ++==33, 知 9439322222222=⎪⎭⎫ ⎝⎛++=++==c b a c b a c b a , 所以,153499222=+=+)(b a c . 得1442=c , 12=c .5. 如图, 直角三角形ABC 中, F 为AB 上的点, 且FB AF 2=, 四边形EBCD 为平行四边形, 那么【答案】2【解答】连接FC , BD , 设kEF FD =, S S BFE =∆, 那么kS S BDF =∆, S k S S FBC BCD )1(+==∆∆. 由FB AF 2=可知kS S AFD 2=∆, 进而S k S A B C )41(+=∆, 得又所以)1(341k k +=+.解得, 2=k . 因此, EF FD 2=.6. 方程023=+++C Bx Ax x 的系数C B A ,,为整数, 5||,5||,5||<<<C B A , 且1是方程的一个根, 那么这种方程总共有 个.【答案】60【解答】由已知,b x a b x a x b ax x x C Bx Ax x --+-+=++-=+++)()1())(1(23223,其中, a , b 为实数, 于是有b C a b B a A -=-=-=,,1,并且得到a , b 为整数. 由题目条件得5||,5||,5|1|<<-<-b a b a .因此555564<<-+<<-<<-b b a b a ,,.当0=b 时, 由55,64<<-<<-a a , 得54<<-a , 即a 能够取8个整数值. 类似地, 当b 为1, 2, 3, 4 时, a 分别可以取9, 8, 7, 6个整数值. 同样地, 当1-=b 时, 由46,64<<-<<-a a , 得44<<-a , 即a 能能够取7个整数值. 类似地, 当b 为4,3,2---时, a 分别可以取6, 5, 4个整数值.这样, ),(b a 的取法, 亦即),,(C B A 的取法有60)4567()67898(=++++++++(种)所以, 这种方程共有60个.7. 一辆公交快车和一辆公交慢车沿某环路顺时针运行, 它们的起点分别在A站和B 站, 快车每次回到A 站休息4分钟, 慢车每次回到B 站休息5分钟, 两车在其他车站停留的时间不计. 已知沿顺时针方向A 站到B 站的路程是环路全程的52, 两车环行一次各需45分钟和51分钟(不包括休息时间), 那么它们从早上6时同时出发, 连续运行到晚上10时, 两车同在B 站共 次.【答案】3【解答】记早上6时为第0分钟, 从6时到22时是 9606016=⨯分钟, 快车环行一周连同休息时间需49445=+分钟, 294919960+⨯=, 慢车环行一周连同休息时间需56551=+分钟, 85617960+⨯=. 即第960分钟时, 快车共环行了19次, 慢车环行了17次.设慢车第m 次(171≤≤m , 6点出发为第0次)到达B 站的时间为第 m T 分钟, 则有:556-=m T m .快车第1次到达B 站是在第185245=⨯ 分钟, 11491918960+⨯=-, 快车经过B 站共20次. 记第n 次(201≤≤n )经过B 站的时间为n t 分钟, 则3149)1(4918-=-+=n n t n .两车同在B 站时, m , n 必须满足:m n m 563149556≤-≤-. 26495631n m ≤-≤推出31564926≤-≤m n , 73187726≤-≤m n . 既然m n 87-是整数, 故有4874≤-≤m n , 即得到二元整数方程:487=-m n .由上面的方程得,51,4≤≤=k k n ,得到:,4847=-⨯m k 127=-m k .所以, k 为奇数. 当k 为1, 3, 5时, m 分别为3, 10, 17, n 分别为4, 12, 20.所以, 快车和慢车同在B 站3次.8. 如果a , b , c 为不同的正整数, 且 222c b a =+¸那么乘积abc 最接近2014的值是 .【答案】2040【解答】解答1. 设如若平方数c ²取3m 或13+m 的形式, 那么a , b 中必有3的倍数, 不然c ²为23+m , 而与原设矛盾.如若设平方数c ²取5m 或5m ±1的形式, 那么, 要是a , b 都不是5的倍数, 则c ²必为5m 或5m ±2, 而与原设矛盾; 要是a , b 都是5m , 则c 为5的倍数, 要是a , b 是5m ±2, 则c 不是5的倍数, 而与题设矛盾, 则a , b 中必有5的倍数.若设平方数c ²取4m 或14+m 的形式, 要是a , b 都不是4的倍数, 则c ²必为24+m 的形式, 与题设矛盾. 故, a , b 中必有4的倍数.因而可知abc 必为3, 4, 5的公倍数, 且4, 5, 6的最小公倍数为60. 又 19803360=⨯, 3419802014=-, 20403460=⨯, 2620142040=-, 并且当17,8,15===c b a 时, 22217815=+, 204017815=⨯⨯.所以abc 中最接近2014的值是2040.解答2. 根据a , b , c 为不同的正整数, 满足222c b a =+, 则存在正整数)(,n m n m >, 使得22n m a -=, mn b 2=, 22n m c +=.所以)()(22222n m mn n m abc +-=.根据2)(2)2()()2()(222222222n m mn n m mn n m +=+-≤⨯-, 知道2)()(2)(3222222n m n m mn n m abc +≤+-=. (*) 当3=m 时, 根据n m >, n 最大为2,221972492233222222=+≤+≤+-=)()()()(n m n m mn n m abc . 另外4222222222m n m mn n m n m n m mn n m abc ≥++-=+-=)())(()()(. (**) 所以当7≥m 时,48042224222222=≥++-=+-=m n m mn n m n m n m mn n m abc )())(()()(.考察6,5,4===m m m , 把n 的所有情况代人公式)(2)(2222n m mn n m abc +-=有下表:所以abc 中最接近2014的值是2040.二、解答下列各题(每题10分, 共40分, 要求写出简要过程)9. 有三个农场在一条公路边, 如图A 、B 和C 处. A 处农场年产小麦50吨, B处农场年产小麦10吨, C 处农场年产小麦60吨. 要在这条公路边修建一个仓库收买这些小麦.假设运费从A 到C 方向是1.5元/吨千米, 从C 到A 方向是1元/吨千米. 问仓库应该建在何处才能使运费最低?A【答案】A 处【解答】设仓库离B 处x 公里 (靠C 处), 则运费为:109503010950)120(6015)50(505.1≥+=-+++⨯x x x x 元.设仓库离B 处x 公里 (靠A 处), 则运费为:10700510950)120(601050505.1≥-=+++-⨯x x x x )(元.因此, 应该将仓库建在A 处.10. 如图, 在ABC Δ中, D 为BC 中点, FB AF 2=,AE CE 3=. 连接CF 交DE 于P 点, 求DPEP 的值. 【答案】3.【解答】如图所示, 连接EF , DF . 设x S BDF =Δ. 因为D 为BC 的中点, 所以x S FDC =∆, x S CFB 2=∆.因为BF AF 2=, 所以2==∆∆BFAF S S CFB CAF , 得x S CAF 4=∆. 因为31==∆∆CE AE S S EFC AFE , 所以x S EFC 3=∆. 因为DP PE S S S S CPD CEP DPF EFP ==∆∆∆∆, 所以3==∆∆FDC EFC S S DP PE . 11. 某地参加华杯赛决赛的104名小选手来自当地14所学校. 请你证明:其中一定存在两所学校选手的人数是相同的.【解答】如果结论不成立, 则这14所学校的选手数彼此互不相同. 也就是这14所学校的选手数是彼此不同的14个正整数. 而14个彼此不同的正整数之和最小为1051413121110987654321=+++++++++++++,104105>, 得出矛盾.所以这14所学校的选手数彼此不同不能成立. 因此, 一定存在两所学校选手的人数是相同的.12. 将一个四位数中的各数字和的两倍与这个四位数相加得2379. 求这个四位数.【答案】2353, 2347.【解答】设这个四位数为xyzw . 首先, 2=x . 因为 ,9,,0≤≤w z y 若1=x , 则有20552541999,54)(20=++≤++≤w z y ,与条件不符. 另一方面x 不能大于2. 于是, yzw xyzw 2=, 即有23792224101002000=+++++++w z y w z y .得到375312102=++w z y .容易验证, .2,1≠y 因此, .3=y 于是69312=+w z , 12369w z -=. 整数解: 4,7;5,3====z w z w . 所求四位数为:2353, 2347. 经验证, 都符合要求.三、解答下列各题(每小题15分, 共30分, 要求写出详细过程)13. 求质数c b,a,使得ab+bc=abc a+715.【答案】29,2,2===c b a ;11,5,11===c b a 或者13,3,13===c b a【解答】因为bc a |, 所以b a |或者c a |. 因为 a , b , c 都是质数, 所以b a =或者c a =.① 当b a =时,c a ac a a 2275=++,所以ac c a =++715,2112271⨯==--))((c a .若 ⎩⎨⎧=-=-27111c a , 得⎩⎨⎧==912c a , 与题意不符; 若⎩⎨⎧=-=-11721c a , 得⎩⎨⎧==1813c a , 也与题意不符; 若⎩⎨⎧=-=-17221c a , 得⎩⎨⎧==823c a , 也与题意不符. 若⎩⎨⎧=-=-22711c a , 得⎩⎨⎧==292c a , 与题意相符, 29,2,2===c b a 为一个答案. ②当c a =时,b a ac ab a 2715=++,所以b a ab a 2815=+, 由ab b =+815变化得到53151)8(×=×b=a -.若 ⎩⎨⎧==-1518b a , 得 ⎩⎨⎧==159b a , 与题意不符; 若 ⎩⎨⎧==-1158b a , 得 ⎩⎨⎧==123b a , 与题意不符; 若 ⎩⎨⎧==-538b a , 得 ⎩⎨⎧==511b a , 与题意相符, 11,5,11===c b a 为一个答案; 若 ⎩⎨⎧==-358b a , 得 ⎩⎨⎧==313b a , 与题意相符, 13,3,13===c b a 为一个答案.. 14. 如果正数10321,,,,a a a a 满足条件:,10,10,109432110321≤++++≤+≥≥≥≥a a a a a a a a a a那么210232221a a a a ++++ 的最大值是多少?【答案】100【解答】记⎪⎩⎪⎨⎧≤++++≤+≥≥≥≥)3(,10)2(,10)1(,109432110321a a a a a a a a a a 由 (2) 和 (3) 得2010321≤++++a a a a .根据 (1) 和 (2),,100)()()())((100)()()()(1002)(1022010)10(1021042432321221021024242323212221023222103212210232222210232222210232221≤-++-+-+-+=-++-+-+-+=++++++++-≤++++-=++++-≤++++a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a并且等号成立当且仅当乘积10210323212)(,,)(,)(a a a a a a a a a ---都等于0.取0,10104321======a a a a a ,或0,510654321========a a a a a a a ,则10321,,,,a a a a 都满足 (1), (2), (3), 并且100210232221=++++a a a a .综和上述讨论, 210232221a a a a ++++ 的最大值是100.。
2014华杯赛中年级组试卷和答案
word 格式-可编辑-感谢下载支持 第十九届华罗庚金杯少年数学邀请赛 决赛试题(小学中年级组) (时间: 2014年4月12日14:00~15:30) 一、填空题(每小题 10分, 共80分) 1、25024924824724621___________-+-+-+-=。
【答案:125】 2、在某商店每花费25元就可以得到5点积分。
如果在该商店里花费了200元,能得到_________点积分。
【答案:40】 3、在甲乙两地之间,有一段300千米长的铁路正在施工,使得行驶其间的列车时速从每小时100千米降至每小时75千米。
列车行驶施工路段须增加__________小时。
【答案:1】 4、一天在数学课上,小明问老师:“老师,您今年多大岁数?”老师回答道:“今年我的岁数是你的4倍,但是5年前我的岁数是你的7倍。
”那么老师今年________岁。
【答案:40】 5、有10个人要在医院做手术,每个人的手术都要花45分钟。
第一个手术在早上8点开始,第二个手术在早上8点15分开始,并且以后的手术都相隔15分钟开始。
那么最后一个手术结束的时间是上午_______时______分。
【答案:11点0分】 6、如图所示的加法竖式中,不同的汉字代表不同的数字,相同的汉字则代表相同的数字。
若“赛”代表数字7,则“有”代表的数字是_________。
+华杯赛华杯赛竞赛有益 【答案:3】 7、如图所示,在一个正方形的网格上有A 、B 、C 、D 、E 、F 六个点。
任意连接其中3个点,可得到许多三角形。
这些三角形中,不含直角的三角形有_________个。
【答案:4】 8、在一个小立方块的每一面上都喷刷了一个不同的字母。
左下图显示了小方块的三个不同的位置。
右下图中“?”处的字母是_________。
【答案:V 】二、解答下列各题(每题10分,共40分,要求写出简要过程)9、小明有1800件货物,每件进价37.9元,预计售价每件40元。
19届华杯赛答案试题
19届华杯赛答案试题同学们,欢迎参加今年的华杯赛!为了帮助大家更好地准备比赛,我将为你们提供一些答案试题。
请注意,以下是一些可能出现的题目,供大家参考和学习。
祝各位取得好成绩!1. 数学题1.1 简答题1.1.1 什么是平行线?请举一个例子。
答:平行线指在同一个平面内,永远不会相交的两条直线。
比如,地球上北纬23.5°的回归线和南纬23.5°的回归线就是平行线。
1.1.2 三角形的内角和等于多少?请给出证明。
答:三角形的内角和等于180度。
证明如下:设三角形的三个内角分别为A、B、C,则可以得到以下等式:A +B +C = 180度其中,A、B、C是三个内角的度数之和。
1.2 计算题1.2.1 计算下列方程的解:2x + 5 = 15答:将方程两边同时减去5,得到:2x = 10再将方程两边同时除以2,得到:x = 5所以,方程的解为x = 5。
1.2.2 计算下列方程的解:4(x + 3) - 2x = 10答:首先,将方程两边进行分配计算,得到:4x + 12 - 2x = 10然后,将方程合并同类项,得到:2x + 12 = 10最后,将方程两边同时减去12,得到:2x = -2再将方程两边同时除以2,得到:x = -1所以,方程的解为x = -1。
2. 英语题2.1 阅读理解Passage 1In ancient Greece, the Olympics were held every four years in honor of the god Zeus. People from all over Greece would gather in Olympia to celebrate and compete in various sports events.1. Why did ancient Greeks hold the Olympics?A. To honor the god Zeus.B. To compete in sports events.C. To gather in Olympia.D. To celebrate every four years.答:A. To honor the god Zeus.2.2 选择题Choose the correct word to complete the sentence.I have _____ interesting book to read.A. anB. aC. theD. -答:B. a3. 历史题3.1 简答题3.1.1 第一次世界大战爆发的原因是什么?答:第一次世界大战爆发的原因主要有军备竞赛、帝国主义扩张和阿尔萨斯-洛林问题等。
2014年第十九届华杯赛小中组初赛详解
学习有意思
快乐思维
8.五个小朋友 A , B , C , D 和 E 参加“快乐读拼音”比赛,上场时五个人站成一排.他们胸前有每人的 选手编号牌,5 个编号之和等于 35.已知站在 E , D , A , C 右边的选手的编号的和分别为 13,31, 21 和 7.那么 A , C , E 三名选手编号之和是________. 【考点】杂题——编号问题 【难度】☆☆ 【答案】24 【解析】 由于选手右侧的其他选手编号和越大, 选手就越靠近左边, 所以从左到右的编号是 D(4) ,A(10) , E (8) , C (6 ) , B (7) . 9. 用左下图的四张含有 4 个方格的纸板拼成了右下图所示的图形. 若在右下图的 16 个方格分别填入 1, 3, 5,7(每个方格填一个数) ,使得每行、每列的四个数都不重复,且每个纸板内四个格子里的数也不重 复,那么 A , B , C , D 四个方格中数的平均数是________. 【考点】数阵图 【难度】☆☆☆ 【答案】4 【解析】填入的 1,3,5,7 分别为 M , N , P , Q 其中的一个.
目前还剩下 3 根木棍,最后无论如何摆放,都只能再组成一个正方形.
综上:最多可组成 7 个正方形.
帅帅思维公众号:shuaiteacher
帅
【考点】循环,找规律 【难度】☆☆☆☆ 【答案】7 【解析】当摆第一个正方形时,需要 4 根木棍,
兴趣是最好的老师
老
第 3 页
可以先填入第四行.由于在左下角纸板内的四个数不重复,则 A 、 B 只能填入 M 、 N ; C 、 D 只能填入 P 、 Q ;所以 A 、 B 、 C 、 D 四个格子填入 4 个不 同的数即 1,3,5,7.他们的平均数为 (1 3 5 7) 4 4 .