圆的方程测试题及答案
圆方程测试题及答案
圆方程测试题及答案一、选择题1. 已知圆的一般方程为 \( x^2 + y^2 + 2gx + 2fy + c = 0 \),其中 \( g \)、\( f \) 和 \( c \) 是常数。
若圆心坐标为 \( (-g, -f) \),那么 \( c \) 的值应该是:A. \( g^2 + f^2 \)B. \( -g^2 - f^2 \)C. \( 1 \)D. \( 0 \)答案:A2. 圆 \( (x-1)^2 + (y-2)^2 = 25 \) 的半径是多少?A. 3B. 5C. 10D. 20答案:B二、填空题1. 圆的标准方程为 \( (x-a)^2 + (y-b)^2 = r^2 \),其中 \( (a,b) \) 是圆心坐标,\( r \) 是半径。
如果圆心坐标为 \( (3, 4) \),半径为 5,则该圆的方程为________________。
答案:\( (x-3)^2 + (y-4)^2 = 25 \)2. 圆 \( x^2 + y^2 = 9 \) 与直线 \( y = x \) 相切,求切点坐标。
答案:切点坐标为 \( (±\sqrt{2}, ±\sqrt{2}) \)。
三、解答题1. 已知圆 \( C \) 的圆心在 \( (1, 1) \),半径为 2,求圆 \( C \) 的方程。
解答:根据圆的标准方程,圆 \( C \) 的方程为 \( (x-1)^2 + (y-1)^2 = 4 \)。
2. 已知圆 \( x^2 + y^2 + 2x - 4y + 1 = 0 \) 与直线 \( 2x + y- 3 = 0 \) 相切,求圆心到直线的距离。
解答:首先,将圆的方程化为标准形式,得到 \( (x+1)^2 + (y-2)^2 = 4 \)。
圆心坐标为 \( (-1, 2) \)。
利用点到直线距离公式\( \frac{|Ax + By + C|}{\sqrt{A^2 + B^2}} \),将圆心坐标代入直线方程,得到距离 \( d = \frac{|2(-1) + 1(2) - 3|}{\sqrt{2^2 + 1^2}} = \frac{3}{\sqrt{5}} \)。
(完整版)直线与圆的方程测试题(含答案)
直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是,则斜率是( )32πA. B. C. D.3-3333-34. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,)D. 直线倾斜角的范围是(0,)2ππ5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是()A.x+2=0B.x-2=0C.y+2=0D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+=0与直线6x-2y+1=0之间的位置关系是( )21A.平行B.重合C.相交不垂直D.相交且垂直10.下列命题错误的是( )A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=x-1垂直,则a=( )21A.2B.-2C.D. 2121-13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是()A.1 B. C. D.35115315. 圆心在( -1,0),半径为5的圆的方程是()A.(x+1)2+y 2= B. (x+1)2+y 2=255C. (x-1)2+y 2= D. (x-1)2+y 2=25516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,则k 的取值范围是( )A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,则△ABC 的面积是()A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。
第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一
第二章直线和圆的方程专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一第二章直线和圆的方程专题测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息。
2.请将答案正确填写在答题卡上。
第I卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线 $ $l_1\parallell_2$,则实数 $k=$()。
A。
$-2$B。
$-1$C。
$1$D。
$2$2.(2020·XXX高一月考)直线$l_1:(a-2)x+(a+1)y+4=0$,$l_2:(a+1)x+ay-9=0$ 互相垂直,则 $a$ 的值是()。
A。
$-0.25$B。
$1$C。
$-1$D。
$1$ 或 $-1$3.(2020·XXX高一月考)直线 $l:(m-1)x-my-2m+3=0$($m\in R$)过定点 $A$,则点 $A$ 的坐标为()。
A。
$(-3,1)$B。
$(3,1)$C。
$(3,-1)$D。
$(-3,-1)$4.(2020·广东高二期末)设 $a\in R$,则“$a=1$”是“直线$ax+y-1=0$ 与直线 $x+ay+1=0$ 平行”的()。
A。
充分不必要条件B。
必要不充分条件C。
充分必要条件D。
既不充分也不必要条件5.(2020·黑龙江高一期末)若曲线 $y=4-x^2$ 与直线$y=k(x-2)+4$ 有两个交点,则实数 $k$ 的取值范围是()。
A。
$\left[\frac{3}{4},1\right]$B。
$\left[\frac{3}{4},+\infty\right)$C。
$(1,+\infty)$D。
$(1,3]$6.(2020·XXX高三其他)已知直线 $x+y=t$ 与圆$x+y=2t-t^2$($t\in R$)有公共点,则 $\frac{t(4-t)}{9}$ 的最大值为()。
圆与直线的方程单元测试题含答案
圆与直线的方程单元测试题含答案本文档为一个圆与直线的方程单元测试题,共包含多道题目及其答案。
问题 1给定圆 $C: (x-2)^2 + (y-3)^2 = 9$ 和直线 $L: 2x+y=6$,判断直线 $L$ 是否与圆 $C$ 相交。
答案:直线 $L$ 与圆 $C$ 交于两个点。
问题 2给定圆 $C: (x-1)^2 + (y+2)^2 = 16$ 和直线 $L: 3x+y=2$,求直线 $L$ 与圆 $C$ 的交点坐标。
答案:直线 $L$ 与圆 $C$ 的交点坐标为 $(\frac{10}{13}, -\frac{24}{13})$ 和 $(\frac{29}{13}, -\frac{6}{13})$。
问题 3给定圆 $C: (x+2)^2 + (y-1)^2 = 25$ 和直线 $L: x+y=0$,判断直线 $L$ 是否与圆 $C$ 相切。
答案:直线 $L$ 与圆 $C$ 相切。
问题 4给定圆 $C: (x-3)^2 + (y+4)^2 = 36$ 和直线 $L: 2x-y=10$,求直线 $L$ 与圆 $C$ 的交点坐标。
答案:直线 $L$ 与圆 $C$ 的交点坐标为 $(\frac{32}{5},\frac{14}{5})$ 和 $(\frac{2}{5}, -\frac{6}{5})$。
问题 5给定圆 $C: (x+1)^2 + (y-2)^2 = 25$ 和直线 $L: x-y=0$,判断直线 $L$ 是否与圆 $C$ 相离。
答案:直线 $L$ 与圆 $C$ 相离。
问题 6给定圆 $C: (x+5)^2 + (y+3)^2 = 36$ 和直线 $L: x+2y=5$,求直线 $L$ 与圆 $C$ 的交点坐标。
答案:直线 $L$ 与圆 $C$ 的交点坐标为 $(-1, 3)$。
以上为圆与直线的方程单元测试题及其答案。
注:答案均采用四舍五入取整的方式。
(完整版)高二数学-直线和圆的方程-单元测试(含答案).doc
高二直线和圆的方程单元测试卷班级: 姓名:一、选择题: 本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线 l 经过 A (2, 1)、B ( 1,m 2) (m ∈ R)两点,那么直线 l 的倾斜角的取值范围是A . [0, )B . [ 0, ] [3 C . [0, ], )444D . [0, ](, ) 422. 如果直线 (2a+5) x+( a - 2)y+4=0 与直线 (2- a)x+(a+3)y - 1=0 互相垂直,则 a 的值等于 A . 2 B .- 2C . 2,- 2D .2,0,- 2 3.已知圆 O 的方程为 x 2+ y 2= r 2,点 P ( a ,b )( ab ≠ 0)是圆 O 内一点,以P为中点的弦所在的直线为 m ,直线 n 的方程为 ax +by = r 2,则A .m ∥n ,且 n 与圆 O 相交B . m ∥ n ,且 n 与圆 O 相 离C . m 与 n 重合,且 n 与圆 O 相离D .m ⊥ n ,且 n 与圆 O 相离4. 若直线 ax2by 2 0( a,b 0) 始终平分圆 x 2y 2 4x 2 y8 0 的周长,则12a b的最小值为A .1B . 5 C.4 2D . 3 225. M (x 0 , y 0 ) 为 圆 x 2 y 2a 2 ( a 0) 内 异 于 圆 心 的 一 点 , 则 直 线x 0 x y 0 y a 2 与该圆的位置关系为A .相切 B.相交C.相离 D .相切或相交6. 已知两点 M ( 2,- 3), N (- 3,- 2),直线 L 过点 P ( 1, 1)且与线段 MN 相交,则直线 L 的斜率 k 的取值范围是A .3≤k ≤ 4B . k ≥ 3或 k ≤- 4C . 3≤ k ≤ 4D .-34444≤ k ≤45) 2 1)27. 过直线 y x 上的一点作圆 (x ( y 2 的两条切线 l 1, l 2 ,当直 线 l 1, l 2 关于 yx 对称时,它们之间的夹角为A . 30oB . 45oC . 60oD . 90ox y 1 01x 、yy1 0,那么 xy8满足条件4()的最大值为.如果实数2xy 1 0A . 2B. 1C.1D.19 (0, a),1x 2 y224其斜率为 ,且与圆2相切,则 a 的值为.设直线过点A.4B. 2 2C.2D.210.如图, l 1 、 l 2 、 l 3 是同一平面内的三条平行直线,l 1 与 l 2 间的距离是 1,l 2 与 l 3 间的距离是 2,正三角形 ABC 的三顶点分别在 l 1 、l 2 、l 3 上,则⊿ ABC的边长是A. 23 4 63 172 21B.3 C.4D.3一、选择题答案123 45 678910二、填空题: 本大题共 5 小题,每小题 5 分,共 25 分.答案填在题中横线上.11.已知直线 l 1 : x y sin 1 0 , l 2 : 2x siny 1 0 ,若 l 1 // l 2 ,则.12.有下列命题:①若两条直线平行,则其斜率必相等;②若两条直线的斜率乘积为- 1, 则其必互相垂直;③过点(- 1,1),且斜率为 2 的直线方程是y 1 2 ;x1④同垂直于 x 轴的两条直线一定都和 y 轴平行 ;⑤若直线的倾斜角为 ,则 0 .其中为真命题的有 _____________( 填写序号 ).13.直线 Ax + By +C = 0 与圆 x 2+ y 2= 4 相交于两点 M 、 N ,若满足 C 2= A 2+ uuuuruuurB 2,则 OM · ON ( O 为坐标原点)等于 _ .14.已知函数 f ( x) x 22x 3 ,集合 Mx, y f ( x) f ( y) 0 , 集 合 N x, y f ( x) f ( y) 0 , 则 集 合 MN 的 面 积是;15.集合P ( x, y) | x y 5 0,x N*,y N*},Q ( x, y) | 2x y m 0 ,M x, y) | z x y , ( x, y) ( P Q),若z 取最大值时,M(3,1) ,则实数m的取值范围是;三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12 分)已知ABC 的顶点A为(3,-1),AB边上的中线所在直线方程为6x 10 y 59 0, B 的平分线所在直线方程为x 4y 10 0 ,求BC 边所在直线的方程.17.(本小题满分12 分)某厂准备生产甲、乙两种适销产品,每件销售收入分别为 3 千元, 2 千元。
第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一
第二章 直线和圆的方程专题测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线1l :2y x =-,2l :y kx =,若12//l l ,则实数k =( ) A .-2B .-1C .0D .12.(2020·洮南市第一中学高一月考)直线()()1:2140l a x a y -+++=与()2:190l a x ay ++-=互相垂直,则a 的值是( ). A .-0.25B .1C .-1D .1或-13.(2020·江苏省海头高级中学高一月考)直线:l (1)230m x my m ---+=(m R ∈)过定点A ,则点A 的坐标为( ) A .(3,1)-B .(3,1)C .(3,1)-D .(3,1)--4.(2020·广东高二期末)设a R ∈,则“a =1”是“直线ax+y -1=0与直线x+ay+1=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件,5.(2020·黑龙江高一期末)若曲线y 与直线y =k (x ﹣2)+4有两个交点,则实数k 的取值范围是( ) A .3,14⎛⎤⎥⎝⎦B .3,4⎛⎫+∞⎪⎝⎭C .(1,+∞)D .(1,3]6.(2020·浙江柯城。
衢州二中高三其他)已知直线x y t +=与圆()2222x y t tt R +=-∈有公共点,则()4t t -的最大值为( )A .4B .289C .329D .3277.(2020·广东高一期末)若两平行直线20,(0)x y m m ++=>与30x ny --=则m +n =( ) A .0B .1C .1-D .2-8.(2020·北京市第五中学高三其他)过直线y =x 上的一点作圆22(5)(1)2x y -+-=的两条切线l 1,l 2,当直线l 1,l 2关于y =x 对称时,它们之间的夹角为( ) A .30°B .45°C .60°D .90°二、多选题(每题不止有一个选项为正确答案,每题5分,共20分)9.(2020·江苏省苏州第十中学校高一期中)圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有( )A .公共弦AB 所在直线方程为0x y -= B .线段AB 中垂线方程为10x y +-=C .公共弦ABD .P 为圆1O 上一动点,则P 到直线AB 距离的最大值为12+ 10.(2020·江苏徐州.高一期末)已知直线12:10,:(2)330l x my l m x y +-=-++=,则下列说法正确的是( )A .若12l l //,则m =-1或m =3B .若12l l //,则m =3C .若12l l ⊥,则12m =-D .若12l l ⊥,则12m =11.(2020·江苏扬州.高一期末)已知直线l 与圆22:240C x y x y a ++-+=相交于,A B 两点,弦AB 的中点为()0,1M ,则实数a 的取值可为( ) A .1B .2C .3D .412.(2020·江苏省江阴高级中学高一期中)下列说法正确的是( ) A .直线32()y ax a a R =-+∈必过定点(3,2) B .直线32y x =-在y 轴上的截距为2-C 10y ++=的倾斜角为60°D .过点(1,2)-且垂直于直线230x y -+=的直线方程为20x y +=第II 卷(非选择题)三、填空题(每题5分,共20分)13.(2020·湖南张家界。
直线与圆的方程测试题(含答案)
直线与圆的方程测试题(本试卷总分值150分,考试时刻120分钟)一、单项选择题(本大题共18小题,每题4分,共72分)在每题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多项选择或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,那么y=( )B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,那么|AM|=( )B. -5C. 1D. -13. 直线的倾斜角是32π,那么斜率是( ) A.3-3B.33C.3-D.34. 以下说法正确的选项是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,2π) D. 直线倾斜角的范围是(0,π)5. 通过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0 =0 C. 2x+y+5=0 D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )=0 =0 C.x=2 =27. 直线在y 轴上的截距是-2,倾斜角为0°,那么直线方程是() +2=0 =0 C.y+2=0 =08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+21=0与直线6x-2y+1=0之间的位置关系是( )A.平行B.重合C.相交不垂直D.相交且垂直10.以下命题错误..的是( )A. 斜率互为负倒数的两条直线必然相互垂直B. 相互垂直的两条直线的斜率必然互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0 +y-2=012. 直线ax+y-3=0与直线y=21x-1垂直,则a=( ) B.-2 C. 21 D. 21- 13. 直线x=2与直线x-y+2=0的夹角是( )° B. 45° C. 60° D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是( )B.511 C.53 15. 圆心在( -1,0),半径为5的圆的方程是( )A.(x+1)2+y 2=5B. (x+1)2+y 2=25C. (x-1)2+y 2=5D. (x-1)2+y 2=2516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交只是圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,那么k 的取值范围是( )<-1或k>4 B. k=-1或k=4 C. -1<k<4 D. -1≤k ≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,那么△ABC 的面积是( ) .3 C二、填空题(本大题共5小题,每题4分,共20分)请在每题的空格中填上正确答案。
高中试卷-专题10 直线和圆的方程(单元测试卷)(含答案)
专题10 《直线和圆的方程》单元测试卷一、单选题1.(2019·全国高二月考(文))直线:的倾斜角为( )A .B .C .D .【答案】D 【解析】直线的斜率,设直线的倾斜角为,则,所以.故选:D.2.(2019·浙江省高二期中)圆心为,且过原点的圆的方程是( )A .B .C .D .【答案】A 【解析】根据题意.故选:.3.(2020·南京市江宁高级中学高一月考)如果直线(2a+5)x+(a -2)y+4=0与直线(2-a)x+(a+3)y -1=0互相垂直,则a 的值等于( )A .2B .-2C .2,-2D .2,0,-2【答案】C 【解析】(2a +5)(2-a )+(a -2)(a +3)=0,所以a =2或a =-2.4.(2019·山东省高一期中)圆与直线的位置关系( )A .相切B .相离C .相交D .不能确定【答案】Cx y +-0=30°45°60°135°0x y +=1k =-0x y +=1(080)a a °£<°tan 1a =-135a =°()2,2()()22228x y -+-=()()22222x y -+-=()()22228x y +++=()()22222x y +++=r ==()()22228x y -+-=A 22(1)5x y +-=120mx y m -+-=直线即即直线过点,把点代入圆的方程有,所以点在圆的内部,过点的直线一定和圆相交.故选:C.5.(2019·山东省高一期中)从点向圆引切线,则切线长的最小值( )A .B .5CD .【答案】A【解析】设切线长为,则,故选:A.6.(2020·南京市江宁高级中学高一月考)已知直线在两坐标轴上的截距相等,则实数A .1B .C .或1D .2或1【答案】D 【解析】由题意,当,即时,直线化为,此时直线在两坐标轴上的截距都为0,满足题意;当,即时,直线化为,由直线在两坐标轴上的截距相等,可得,解得;综上所述,实数或.故选:D .7.(2019·山东省高一期中)若点为圆的弦的中点,则弦所在直线的方程为( )A .B .C .D .120mx y m -+-=()12y m x -=-()21,()21,405+<()21,()21,(,3)P m 22(2)(2)1x y +++=4+d 2222(2)51(2)24d m m =++-=++min d \=20ax y a +-+=(a =)1-2-2a 0-+=a 2=ax y 2a 0+-+=2x y 0+=2a 0-+¹a 2¹ax y 2a 0+-+=122x ya a a+=--2a2a a-=-a 1=a 2=a 1=(1,1)P 2240x y x +-=AB AB 20x y +-=0x y -=20x y -+=22(1)5x y +-=【解析】化为标准方程为.∵为圆的弦的中点,∴圆心与点确定的直线斜率为,∴弦所在直线的斜率为1,∴弦所在直线的方程为,即.故选:B.8.(2020·武威第六中学高三二模(文))过点且倾斜角为的直线被圆所截得的弦长为( )AB .1CD .【答案】C 【解析】根据题意,设过点且倾斜角为的直线为 ,其方程为,即,变形可得,圆 的圆心为,半径 ,设直线与圆交于点,圆心到直线的距离,则,故选C.9.(2020·南京市江宁高级中学高一月考)已知直线和以,为端点的线段相交,则实数k 的取值范围为( )A .B.2240x y x +-=()22-24x y +=()1,1P ()22-24x y +=AB P 01121k -==--AB AB 11y x -=-0x y -=()1,030o ()2221x y -+=()1,030o l ()tan 301y x =-o)1y x =-10x -=()2221x y -+=()2,01r =l AB 12d 2AB ==20kx y -+=()3,2M -()2,5N 32k £32k ³C .D .或【答案】C 【解析】因为直线恒过定点,又因为,,所以直线的斜率k 的范围为.故选:C .10.(2020·四川省宜宾市第四中学校高二月考(理))已知圆,圆,、分别是圆、上动点,是轴上动点,则的最大值是( )A .BC .D【答案】D 【解析】如下图所示:4332k -££43k £-32k ³20kx y -+=()0,2A 43AM k =-32AN k =4332k -££()()221:231C x y -+-=()()222:349C x y -+-=M N 1C 2C P x PN PM -4+4+圆的圆心,半径为,圆的圆心,半径为,,由圆的几何性质可得,,,当且仅当、、三点共线时,取到最大值.故选:D.二、多选题11.(2019·辽宁省高二月考)在同一直角坐标系中,直线与圆的位置不可能是( )A .B .C .D .【答案】ABD 【解析】直线经过圆的圆心,且斜率为.故选项满足题意.故选:.12.(2020·山东省高三期末)已知点是直线上一定点,点、是圆上1C ()12,3C 11r =2C ()23,4C 23r =12C C ==2223PN PC r PC £+=+1111PM PC r PC ³-=-2112444PN PM PC PC C C -£-+£+=1C P 2C PN PM -4+2y ax a =+222()x a y a ++=2y ax a =+222()x a y a ++=(),0a -a ,,A B D ABD A :0l x y +=P Q 221x y +=的动点,若的最大值为,则点的坐标可以是( )A .B .C .D .【答案】AC 【解析】如下图所示:原点到直线的距离为,则直线与圆相切,由图可知,当、均为圆的切线时,取得最大值,连接、,由于的最大值为,且,,则四边形为正方形,所以由两点间的距离公式得整理得,解得,因此,点的坐标为或.故选:AC.13.(2020·广东省高二期末)瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是( )A .B .C .D .PAQ Ð90o A (()1))1,1-l 1d ==l 221x y +=AP AQ 221x y +=PAQ ÐOP OQ PAQ Ð90o 90APO AQO Ð=Ð=o 1OP OQ ==APOQ OA =OA ==220t -=0t =A ()ABC D ()4,0-A ()0,4B 20x y -+=C ()2,0()0,2()2,0-()0,2-【答案】AD 【解析】设的垂直平分线为,的外心为欧拉线方程为与直线的交点为,,①由,,重心为,代入欧拉线方程,得,②由 ①②可得或 .故选:AD 三、填空题14.(2019·浙江省高二期中)直线过定点______;若与直线平行,则______.【答案】 【解析】(1),故.即定点为(2) 若与直线平行,则,故或.当时与直线重合不满足.故.故答案为:(1) ; (2)15.(2018·江苏省高二月考)已知以为圆心的圆与圆相内切,则圆C 的方程是________.【答案】(x -4)2+(y +3)2=36.(,),C x y AB y x =-ABC D 20x y -+=y x =-(1,1)M-22||||(1)(1)10MC MA x y \==\++-=()4,0A -()0,4B ABC D 44(,33x y -+20x y -+=20x y --=2,0x y ==0,2x y ==-()1:20l m x y m +--=()m R Î1l 2:310l x my --=m =()1,23-()1:20(1)20l m x y m m x x y +--=Þ-+-=101202x x x y y -==ììÞíí-==îî()1,21l 2:310l x my --=()()()()()2310130m m m m +---=Þ-+=1m =3m =-1m =1l 2l 3m =-()1,23-()4,3C -22:1O x y +=【解析】,设所求圆的半径为,由两圆内切的充分必要条件可得:,据此可得:,圆C 的方程是(x -4)2+(y +3)2=36.16.(2020·河南省高三二模(文))圆关于直线的对称圆的标准方程为__________.【答案】【解析】,圆心为,半径为,设圆心关于直线的对称点为,对称圆的标准方程为.故答案为:.17.(2020·四川省高三二模(文))已知、为正实数,直线截圆所得的弦长为,则的最大值为__________.【答案】【解析】因为直线截圆所得的弦长为,且圆的半径为2.故圆心到直线的距离.,因为、为正实数,故,所以.当且仅当时取等号.5=()0r r >15r -=6r =22230x y y ++-=10x y +-=22(2)(1)4x y -+-=Q 2222230(41)x y y x y ++-=Þ+=+\(0,1)-210x y +-=(,)x y \1(1)1,2,1.110,22y x xy x y +ì´-=-ï=ìïÞíí=-îï+-=ïî\22(2)(1)4x y -+-=22(2)(1)4x y -+-=a b 10x y ++=()()224x a y b -+-=ab 1410x y ++=(224x (),a b d ==a b 1a b +=2124a b ab +æö£=ç÷èø12a b ==故答案为:四、解答题18.(2020·吴江汾湖高级中学高一月考)求圆上与直线的距离最小的点的坐标.【答案】【解析】过圆心且与直线垂直的直线方程为,联立圆方程得交点坐标为,,又因为与直线的距离最小,所以.19.(2019·全国高二月考(文))已知直线过点.(1)若原点到直线的距离为,求直线的方程;(2)当原点到直线的距离最大时,求直线的方程.【答案】(1)或;(2)【解析】(1)①当直线的斜率不存在时,方程符合题意;14224x y +=43120x y +-=86,55P æöç÷èø43120x y +-=340x y -=224340x y x y ì+=í-=î86,55æöç÷èø86,55æö--ç÷èø43120x y +-=86,55P æöç÷èøl (2,1)P -O l 2l O l l 20x -=34100x y --=250.x y --=l 2x =②当直线的斜率存在时,设斜率为,则方程为,即,解得,则直线的方程为故直线的方程为或(2)当原点到直线的距离最大时,直线因为,所以直线的斜率所以其方程为,即20.(2020·吴江汾湖高级中学高一月考)在中,,边上的高所在的直线方程为,边上中线所在的直线方程为.(1)求点坐标;(2)求直线的方程.【答案】(1)(2)【解析】(1)边上的高为,故的斜率为, 所以的方程为,即,因为的方程为解得所以.l k ()12y k x +=-210.kx y k ---=234k =l 34100.x y --=l 20x -=34100.x y --=O l .l OP ^011022OP k +==--l 2,k =()122y x +=-250.x y --=ABC D (1,2)A -AC BE 74460x y +-=AB CM 211540x y -+=C BC ()66C ,2180x y +-=AC 74460x y +-=AC 47AC ()4217y x -=+47180x y -+=CM 211540x y -+=21154047180x y x y -+=ìí-+=î,,66x y =ìí=î()66C ,(2)设,为中点,则的坐标为, 解得, 所以, 又因为,所以的方程为即的方程为.21.(2019·浙江省高二期中)如图,圆,点为直线上一动点,过点引圆的两条切线,切点分别为(1)求证:直线恒过定点,并求出该定点的坐标;(2)若两条切线于轴分别交于两点,求面积的最小值.【答案】(1)见解析,(2【解析】(1)设,则以 为直径的圆的方程: ,与圆,两式相减得:,()00,B x y M AB M 0012,22x y -+æöç÷èø0000122115402274460x y x y -+ì-+=ïíï+-=î0028x y =ìí=î()2,8B ()6,6C BC ()866626y x --=--BC 2180x y +-=22:(2)1C x y -+=P :4l x =P C ,A BAB Q ,PA PB y ,M N QMN V 5,02Q æöç÷èø(4,)P t CP ()22232t x y æö-+-=ç÷èø22:(2)1C x y -+=:2(2)1AB l x ty -+=所以直线恒过定点.(2)设直线与的斜率分别为,与圆,即.所以,,22.(2020·江西省新余一中高一月考)已知点,,直线:,设圆的半径为,圆心在直线上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,为坐标原点,求圆心的横坐标的取值范围.【答案】(1)或.(2)【解析】(1)由得:,所以圆C:..当切线的斜率存在时,设切线方程为,由,解得:当切线的斜率不存在时,即也满足所以切线方程为:或.5,02Qæöç÷èøAP BP12,k k(4)y t k x-=-C1=223410k tk t-+-=2121241,33-+=×=t tk k k k14My t k=-24Ny t k=-12||44=-==³MN k k()min1522MNQSD==(4,4)A(0,3)B l1y x=-C1C lC37y x=-A CC M2MB MO=O C a4x=3440x y-+=a££a££137y xy x=-ìí=-î()3,2C22(3)(2)1x y-+-=4(4)y k x-=-1d==34k=4x=4x=3440x y-+=(2)由圆心在直线l :上,设设点,由化简得:,所以点M在以为圆心,2为半径的圆上. 又点M 在圆C 上,所以圆C 与圆D 有交点,则即,解得:23.(2019·山东省高一期中)已知点,点在圆上运动.(1)求过点且被圆截得的弦长为的直线方程;(2)求的最值.【答案】(1)或;(2)最大值为88,最小值为72.【解析】(1)依题意,直线的斜率存在,因为过点且被圆截得的弦长为,,设直线方程为,即,解得或所以直线方程为或.(2)设点坐标为则.因为,所以,即的最大值为88,最小值为72.C 1y x =-(,1)C a a -(,)M x y ||2||MB MO ==22(1)4x y ++=(0,1)D -1||3CD ££13££a ££a ££(2,2),(2,6),(4,2)A B C ----P 22:4E x y +=C E 222||||||PA PB PC ++7100x y ++=20x y +-=C E 2(4)y k x +=-420kx y k ---==17k =-1k =-7100x y ++=20x y +-=P (),x y 224x y +=222222222||||||(2)(2)(2)(6)(4)(2)PA PB PC x y x y x y ++=++++++-+-++()223468804x y y y=+-+=-22y -≤≤7280488y £-£222||||||PA PB PC ++。
圆与方程测试题
圆与方程测试题一:选择题(本大题共10小题,每小题5分,共50分)1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为(A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-42.直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( )(A)22 (B)4 (C)24 (D)23.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( )(A) 11<<-a (B) 10<<a (C) 11>-<a a 或 (D) 1±=a4.自点 1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( ) (A) 5 (B) 3 (C) 10 (D) 55.已知M (-2,0), N (2,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是( D )(A) 222=+y x (B) 422=+y x(C) )2(222±≠=+x y x (D) )2(422±≠=+x y x6.若直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为A 、1,-1B 、2,-2C 、1D 、-17.过原点的直线与圆x 2+y 2+4x+3=0相切,若切点在第三象限,则该直线的方程是A 、x y 3=B 、x y 3-=C 、x y 33=D 、x y 33-= 8.过点A (1,-1)、B (-1,1)且圆心在直线x+y-2=0上的圆的方程是A 、(x-3)2+(y+1)2=4B 、(x+3)2+(y-1)2=4C 、(x-1)2+(y-1)2=4D 、(x+1)2+(y+1)2=49.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是A 、6πB 、4πC 、3πD 、2π 10.M (x 0,y 0)为圆x 2+y 2=a 2(a>0)内异于圆心的一点,则直线x 0x+y 0y=a 2与 该圆的位置关系是( )A 、相切B 、相交C 、相离D 、相切或相交二、填空题(本大题共5小题,每小题5分,共25分)11.以点A(1,4)、B(3,-2)为直径的两个端点的圆的方程为 .12.设A 为圆1)2()2(22=-+-y x 上一动点,则A 到直线05=--y x 的最大距离为______.13.过点P(-1,6)且与圆4)2()3(22=-++y x 相切的直线方程是________________.14.过圆x 2+y 2-x+y-2=0和x 2+y 2=5的交点,且圆心在直线3x+4y-1=0上的圆的方程为 .15.两圆221x y +=和22(4)()25x y a ++-=相切,则实数a 的值为三、解答题16.过原点O 作圆x 2+y 2-8x=0的弦OA 。
(完整版)高二数学-直线和圆的方程-单元测试(含答案)
高二直线和圆的方程单元测试卷班级:姓名:一、选择题:本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四 个选项中,只有一项是符合题目要求的.1.直线 l 经过 A(2,1)、B(1,m2)(m∈R)两点,那么直线 l 的倾斜角的取 值范围是A.[0, )B.[0, ] [ 3 , ) 44C.[0, ] 4D.[0, ] ( , ) 422. 如果直线(2a+5)x+(a-2)y+4=0与直线(2-a)x+(a+3)y-1=0互相垂直,则a 的值等于A. 2B.-2C.2,-2D.2,0,-23.已知圆 O 的方程为 x2+y2=r2,点 P(a,b)(ab≠0)是圆 O 内一点,以 P为中点的弦所在的直线为 m,直线 n 的方程为 ax+by=r2,则A.m∥n,且 n 与圆 O 相交 离B.m∥n,且 n 与圆 O 相C.m 与 n 重合,且 n 与圆 O 相离D.m⊥n,且 n 与圆 O 相离4. 若直线 ax 2by 2 0(a,b 0) 始终平分圆 x2 y2 4x 2 y 8 0 的周长,则 1 2 ab的最小值为A.1B.5C.42D. 3 2 25. M (x0 , y0 ) 为 圆 x2 y2 a2 (a 0) 内 异 于 圆 心 的 一 点 , 则 直 线x0 x y0 y a 2 与该圆的位置关系为A.相切B.相交C.相离D.相切或相交6. 已知两点 M(2,-3),N(-3,-2),直线 L 过点 P(1,1)且与线段MN 相交,则直线 L 的斜率 k 的取值范围是A. 3 ≤k≤4 4B.k≥ 3 或 k≤-4 4C. 3 ≤k≤4 4D.-4≤k≤ 3 47. 过直线 y x 上的一点作圆 (x 5)2 ( y 1)2 2 的两条切线 l1,l2 ,当直线 l1,l2 关于 y x 对称时,它们之间的夹角为A. 30B. 45C. 60D. 90x y 1 08.如果实数x、y满足条件 y 1 0x y 1 0,那么 4x (1)y 的最大值为 2A. 2B.1C. 1 2D. 1 49.设直线过点 (0, a), 其斜率为 1,且与圆 x2 y2 2 相切,则 a 的值为15 . 集 合 P (x, y) | x y 5 0 , x N* , y N* } ,Q (x, y) | 2x y m 0,M x, y) | z x y , (x, y) (P Q) , 若 z 取 最 大 值 时 ,M (3,1),则实数 m 的取值范围是;三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,证明过程或 演算步骤.16.(本小题满分 12 分)已知 ABC 的顶点 A 为(3,-1),AB 边上的中线所在直线方程为 6x 10y 59 0 , B 的平分线所在直线方程为 x 4y 10 0 ,求BC 边所在直线的方程.17.(本小题满分 12 分) 某厂准备生产甲、乙两种适销产品,每件销售收入分别为 3 千元,2 千 元。
人教版高中数学选修一第二单元《直线和圆的方程》测试卷(有答案解析)
一、选择题1.已知直线1:210l ax y +-=2:820l x ay a ++-=,若12l l //,则a 的值为( )A .4±B .-4C .4D .2±2.已知(1,1)P ,(2,3)Q --,点P ,Q 到直线l 的距离分别为2和4,则满足条件的直线l的条数是( ) A .1B .2C .3D .43.已知M (3,),N (-1,),F (1,0),则点M 到直线NF 的距离为( )A B .C .D .4.圆22(1)2x y ++=上一点到直线5y x =+的距离最小值为( ) A .1 B .2CD .5.直线220ax by -+=被222440x y x y ++--=截得弦长为6,则ab 的最大值是( ) A .9B .4C .12D .146.已知圆1C :224470x y x y ++-+=与圆2C :()()222516x y -+-=的位置关系是( ) A .外离B .外切C .相交D .内切7.在平面直角坐标系中,定义1212(,)||||d A B x x y y =-+-为两点11(,)A x y 、22(,)B x y 的“切比雪夫距离”,又设点P 及直线l 上任意一点Q ,称(,)d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(,)d P l ,给出下列三个命题: ①对任意三点A 、B 、C ,都有(,)(,)(,)d C A d C B d A B +≥; ②已知点(3,1)P 和直线:210l x y --=,则4(,)3d P l =; ③定义(0,0)O ,动点(,)P x y 满足(,)1d P O =,则动点P 的轨迹围成平面图形的面积是4;其中真命题的个数( ) A .0B .1C .2D .38.过坐标原点O 作圆()()22341x y -+-=的两条切线,切点为,A B ,直线AB 被圆截得弦AB 的长度为( )A .5B .5CD9.直线l :230kx y --=与圆C :()()22124x y -++=交于A 、B 两点,若ABC的周长为4+k 的值为( ) A .32B .32-C .32±D .12±10.点(2,3)P 到直线:(1)30ax a y +-+=的距离d 最大时,d 与a 的值依次为( ) A .3,-3 B .5,2 C .5,1D .7,111.圆221:2410C x y x y ++++=与圆222:4410C x y x y +---=的公切线有几条( ) A .1条B .2条C .3条D .4条12.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221x y +≤,若将军从点()20A ,处出发,河岸线所在直线方程为4x y +=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( )A 1B .1C .D二、填空题13.已知点M 是直线l :22y x =--上的动点,过点M 作圆C :()()22114x y -+-=的切线MA ,MB ,切点为A ,B ,则当四边形MACB 的面积最小时,直线AB 的方程为______.14.直线()130m x my m ++++=被圆2225x y +=所截的弦长的最小值为________. 15.已知方程:22(42)20,()x y m x my m m R +-+--=∈ ①该方程表示圆,且圆心在直线210x y --=上; ②始终可以找到一条定直线与该方程表示的曲线相切;③当1m =-时,该方程表示的曲线关于直线:10l x y -+=的对称曲线为C ,则曲线C上的点到直线l 的最大距离为22; ④若m 1≥,过点(1,0)-作该方程表示的面积最小的曲线的两条切线,切点分别为,A B ,则AB 所在的直线方程为420x y +-=.以上四个命题中,是正确的有_______________(填序号)16.将直线:10l x y +-=,20l nx y n +-=:,3:0l x ny n +-=(n *∈N ,2n ≥)围成的三角形面积记为n S ,则n n lim S →∞=___________.17.已知等腰三角形的底边所在直线过点()2,1P ,两腰所在的直线为20x y +-=与740x y -+=,则底边所在的直线方程是_____________.18.直线:20180l x y +-=的倾斜角为__________;19.已知直线l 过点(4,1)A -,且和直线320x y -+=的夹角为30°,则直线l 的方程为____________.20.直线2ax +by =1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(0,1)之间的距离的最大值为________.三、解答题21.已知三条直线123121323:20,:20,:210,,,l x y l x l x y l l A l l B l l C -=+=+-=⋂=⋂=⋂=.(1)求ABC 外接圆的方程;(2)若圆22:20D x y ax +-=与ABC 的外接圆相交,求a 的取值范围.22.已知直线方程为()()221340m x m y m -++++=,其中m R ∈. (1)当m 变化时,求点()3,4Q 到直线的距离的最大值;(2)若直线分别与x 轴、y 轴的负半轴交于A ,B 两点,求AOB 面积的最小值及此时的直线方程.23.已知圆C :222430x y x y ++-+=(1)若圆C 的切线在x 轴和y 轴上的截距相等,且截距不为零,求此切线的方程; (2)若从圆C 外一点()1,2P -向该圆引切线PA 和PB (A ,B 为切点),求弦长AB 的大小.24.已知圆1C 过点(0,6)A ,且与圆222:10100C x y x y +++=相切于原点,直线:(21)(1)740l m x m y m +++--=.(1)求圆1C 的方程;(2)求直线l 被圆1C 截得的弦长最小值.25.(1)如图,已知直线l : 0mx ny r ++=(0mn ≠)外一点P (a ,b ),请写出点P 到直线l 的距离PH 的公式及公式的推导过程.....(2)一质点从点(4,0)A 处沿向量(1,1)a =-方向按每秒2个单位速度移动,求几秒后质点与点(2,4)B 距离最近.26.已知正方形的一条边AB 所在直线为310--=x y ,正方形的中心为()0,1R .求:(1)该正方形的面积;(2)该正方形的两条对角线所在直线的一般式方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由12l l //可得280,a a ⨯-⨯=解得4a =±,然后再检验,得出答案. 【详解】因为12l l //,所以280,4a a a ⨯-⨯=∴=±. 当4a =时,两直线重合,所以4a =舍去. 当4a =-时,符合题意. 所以4a =-. 故选:B 【点睛】易错点睛:已知直线1110a x b y c ++=和直线2220a x b y c ++=平行求参数的值时,除了要计算12210a b a b -=,还一定要把求出的参数值代入原直线方程进行检验,看直线是否重合.本题就是典型例子,否则容易出现错解,属于中档题2.B解析:B 【分析】以P 为圆心,以2为半径的圆记为圆P ,以Q 为圆心,以4为半径的圆记为圆Q ,利用圆P 与圆Q 相交,两圆有两条公切线,可得结果.【详解】22||(12)(13)5PQ =+++=,以P 为圆心,以2为半径的圆记为圆P ,以Q 为圆心,以4为半径的圆记为圆Q , 因为42-<524<+,所以圆P 与圆Q 相交,所以两圆有两条公切线,所以满足条件的直线l 的条数是2. 故选:B 【点睛】关键点点睛:转化为判断两个圆的公切线的条数是解题关键.3.B解析:B 【分析】首先利用题中所给的点N (-1,,F (1,0),求出直线NF 的方程,之后利用点到直线的距离公式求得结果. 【详解】易知NF 的斜率kNF 的方程为y(x -1),+y=0. 所以M 到NF.故选:B. 【点睛】思路点睛:该题考查的是有关点到直线的距离的问题,解题思路如下:(1)根据题意首先求出直线的方程,可以先求斜率,利用点斜式求,也可以直接利用两点式求;(2)之后利用点到直线的距离公式直接求结果.4.C解析:C 【分析】求出圆心到直线距离,减去半径得解. 【详解】圆心为(1,0)-,直线方程为5y x =+,所以d == ,圆22(1)2x y ++=上一点到直线5y x =+的距离最小值d r -=故选C . 【点睛】圆上的点到直线的距离的最值的几何求法通常运用圆心到直线的距离加减半径得到.属于基础题.5.D解析:D 【分析】根据弦长可知直线过圆心,再利用基本不等式求ab 的最大值. 【详解】将222440x y x y ++--=化为标准形式:22(1)(2)9x y ++-=, 故该圆圆心为(1,2)-,半径为3. 因为直线截圆所得弦长为6,故直线过圆心,所以2220a b --+=,即1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭(当且仅当12a b ==时取等号),故选:D. 【点睛】关键点点睛:本题考查直线与圆相交,基本不等式求最值,本题的关键是根据弦长判断直线过圆心,这样问题就变得简单易求.6.B解析:B 【分析】分别求得两圆的圆心坐标和半径,结合圆与圆的位置关系的判定方法,即可求解. 【详解】由题意,圆1C :224470x y x y ++-+=,可得圆心坐标为1(2,2)C -,半径为11r =,圆2C :()()222516x y -+-=,可得圆心坐标为1(2,5)C ,半径为14r =,又由125C C ==,且12145r r =+=+,即1212C C r r =+,所以圆12,C C 相外切. 故选:B. 【点睛】圆与圆的位置关系问题的解题策略:判断两圆的位置关系时常采用几何法,即利用两圆的圆心之间的距离与两圆的半径间的关系进行判断,一般不采用代数法;若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.7.B解析:B 【分析】由新定义表示出三点,,A B C 两两之间的“切比雪夫距离”,然后根据绝对值的性质判断①,由新定义计算出(,)d P l ,判断②,根据新定义求出P 的轨迹方程,确定其轨迹,求得轨迹围成的图形面积判断③. 【详解】①设112233(,),(,),(,)A x y B x y C x y ,则1212(,)d A B x x y y =-+-,13132323(,)(,)d A C d B C x x y y x x y y +=-+-+-+-,显然1323132312()()x x x x x x x x x x -+-≥---=-,同理132312y y y y y y -+-≥-,∴(,)(,)(,)d C A d C B d A B +≥,①正确; ②设(,)P x y 是直线l 上任一点,则21y x =-,(,)31322d P l x y x x =-+-=-+-35,31,1353,1x x x x x x -≥⎧⎪=+≤<⎨⎪-<⎩,易知(,)d P l 在[1,)+∞上是增函数,在(,1)-∞上是减函数,∴1x =时,min (,)13222d P l =-+-=,②错; ③由(,)1d P O =得1x y +=,易知此曲线关于x 轴,y 轴,原点都对称,它是以(1,0),(0,1),(1,0),(0,1)--为顶点的正方形,其转成图形面积为12222S =⨯⨯=,③错.故选:B . 【点睛】关键点点睛:本题考查新定义,解题关键是理解新定义,解题方法是把新概念转化为绝对值的问题,利用绝对值的性质求解.8.A解析:A 【分析】求得圆的圆心坐标和半径,借助11222AOM AB S OA MA OM ∆=⨯⨯=⨯⨯,即可求解. 【详解】如图所示,设圆()()22341x y -+-=的圆心坐标为(3,4)M ,半径为1r =,则5OM ==,OA ===,则11222AOM AB S OA MA OM ∆=⨯⨯=⨯⨯,可得25OA MA AB OM ⨯⨯== 故选A.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到圆的切线方程应用,着重考查了推理与运算能力,属于基础题.9.A解析:A 【分析】先根据半径和周长计算弦长23AB =即可. 【详解】圆C :()()22124x y -++=中,圆心是()1,2C -,半径是2r,故ABC 的周长为423+2423r AB +=+23AB =又直线与圆相交后的弦心距2243144k k d k k +-+==++,故由2222AB r d ⎛⎫=+ ⎪⎝⎭得()221434k k +=++,解得32k . 故选:A. 【点睛】本题考查了直线与圆的综合应用,考查了点到直线的距离公式,属于中档题.10.C解析:C 【分析】将直线方程整理为()()30a x y y ++-=,可得直线()130ax a y +-+=经过定点()3,3Q -,由此可得当直线()130ax a y +-+=与PQ 垂直时PQ 的长,并且此时点P 到直线的距离达到最大值,从而可得结果. 【详解】直线()130ax a y +-+=,即()()30a x y y ++-=,∴直线()130ax a y +-+=是过直线0x y +=和30y -=交点的直线系方程,由030x y y +=⎧⎨-=⎩,得33x y =-⎧⎨=⎩,可得直线()130ax a y +-+=经过定点()3,3Q -,∴当直线()130ax a y +-+=与PQ 垂直时,点()2,3P 到直线()130ax a y +-+=的距离最大,d ∴的最大值为5PQ ==,此时//PQ x 轴,可得直线()130ax a y +-+=斜率不存在,即1a =. 故选:C. 【点睛】本题主要考查直线的方程与应用,以及直线过定点问题,属于中档题. 探索曲线过定点的常见方法有两种:① 可设出曲线方程 ,然后利用条件建立等量关系进行消元(往往可以化为()(),,0tf x y g x y +=的形式,根据()(),0,0f x y g x y ⎧=⎪⎨=⎪⎩求解),借助于曲线系的思想找出定点(直线过定点,也可以根据直线的各种形式的标准方程找出定点). ,从特殊情况入手,先探求定点,再证明与变量无关.11.C解析:C 【分析】将两圆化为标准形式,求出圆心距和两圆半径之和,判断即可. 【详解】圆221:(1)(2)4C x y +++=,圆心 1(1,2)C -- ,12r =, 圆222:(2)(2)9C x y -+-= ,圆心2C ()2,2,23r =,圆心距125C C ==1212C C r r =+,∴两圆外切,有3条公切线.故选:C. 【点睛】本题考查圆与圆的位置关系,考查学生数形结合思想以及求解运算能力,属于基础题.12.B解析:B 【分析】先求出点A 关于直线4x y +=的对称点'A ,点'A 到圆心的距离减去半径即为最短. 【详解】解:设点A 关于直线4x y +=的对称点(,)A a b ','2AA bk a =-,AA '的中点为2,22a b +⎛⎫⎪⎝⎭,故122422b a a b ⎧=⎪⎪-⎨+⎪+=⎪⎩解得4a =,2b =, 要使从点A 到军营总路程最短,即为点f A 到军营最短的距离, 即为点'A 和圆上的点连线的最小值,为点'A 和圆心的距离减半径, “将军饮马”的最短总路程为4161251+-=-,故选:B 【点睛】本题考查了数学文化问题、点关于直线的对称问题、点与圆的位置关系等等,解决问题的关键是将实际问题转化为数学问题,建立出数学模型,从而解决问题.二、填空题13.【分析】由已知结合四边形面积公式可得四边形MACB 面积要使四边形MACB 面积最小则需最小此时CM 与直线垂直求得以CM 为直径的圆的方程再与圆C 的方程联立可得AB 所在直线方程【详解】由圆的标准方程可知圆 解析:210x y ++=【分析】由已知结合四边形面积公式可得四边形MACB 面积22||||2||2||4,CAM S S CA AM MA CM ==⋅==-△要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,求得以CM 为直径的圆的方程,再与圆C 的方程联立可得AB 所在直线方程.【详解】由圆的标准方程可知,圆心C (1,1) ,半径r =2.因为四边形MACB的面积2||||2||CAM S S CA AM MA ==⋅==△ 要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直. 直线CM 的方程为11(x 1)2y -=- ,即11.22y x =+联立112222y x y x ⎧=+⎪⎨⎪=--⎩,解得(1,0)M -则以CM 为直径的圆的方程为2215()24x y +-=, 联立222215(),24(1)(1)4x y x y ⎧+-=⎪⎨⎪-+-=⎩消去二次项可得直线AB 的方程为210x y ++=, 故答案为:210x y ++= 【点睛】关键点点睛:根据四边形的面积表达式可以看出要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,此时所做圆的直径为CM ,写出圆的方程,两圆方程相减即可求出过AB 的直线方程.14.【分析】转化条件为直线过结合垂径定理可得当直线与直线垂直时弦长最小即可得解【详解】直线可变为由可得所以直线过定点又圆的圆心为半径所以点在圆内所以当直线与直线垂直时弦长最小此时弦长为故答案为:【点睛】解析:【分析】转化条件为直线过()3,2A -,结合垂径定理可得当直线AO 与直线()130m x my m ++++=垂直时,弦长最小,即可得解.【详解】直线()130m x my m ++++=可变为()130x y m x ++++=,由1030x y x ++=⎧⎨+=⎩可得32x y =-⎧⎨=⎩,所以直线()130m x my m ++++=过定点()3,2A -, 又圆2225x y +=的圆心为()0,0O ,半径=5r ,所以213AO =,点()3,2A -在圆内,所以当直线AO 与直线()130m x my m ++++=垂直时,弦长最小,此时弦长为==.故答案为: 【点睛】关键点点睛:解决本题的关键是找到直线经过的定点,再利用几何法转化出弦长.15.③④【分析】先将方程:化为:确定出圆心半径判断选项①②;将代入得圆方程可转化为该圆上的点到直线的最大距离问题求解;先求出以圆外点与圆心连线为直径的圆方程再将两圆方程相减即可得两切点连线的直线方程【详解析:③④ 【分析】先将方程:22(42)20x y m x my m +-+--=化为:()()22221551x m y m m m -++-=++⎡⎤⎣⎦,确定出圆心,半径判断选项①②;将1m =-代入得圆方程,可转化为该圆上的点到直线l 的最大距离问题求解;先求出以圆外点(1,0)-与圆心连线为直径的圆方程,再将两圆方程相减即可得两切点连线的直线方程.【详解】方程:22(42)20x y m x my m +-+--=可化为:()()22221551x m y m m m -++-=++⎡⎤⎣⎦,当25510m m ++>即m >或m <时,方程表示圆,故①错;由①知,当m >或m <时,该方程表示圆,且圆心()21,M m m +在直线210x y --=上移动,且半径不定,故②显然不正确;当1m =-时,方程表示圆M :()()22111x y +++=,由条件知曲线C 上的点到直线l 的最大距离即为圆M 上的点到直线l 212+=,所以③正确;当m 1≥时,22211551524r m m m ⎛⎫=++=+- ⎪⎝⎭,所以当1m =时,圆面积最小,此时圆心为()3,1M ,圆M 方程为:()()223111x y -+-=,设()1,0P -,则PM 的中点为11,2⎛⎫ ⎪⎝⎭,217PM =, 所以PM 为直径的圆方程为()22117124x y ⎛⎫-+-= ⎪⎝⎭,两圆方程相减即得AB 所在的直线方程为420x y +-=,故④正确. 故答案为:③④ 【点睛】方法点睛:已知圆外一点引圆的两条切线,求解切点连线的直线方程,通常先求出以圆外一点与圆心连线为直径的圆方程,然后将两圆方程相减,即可得切点连线的直线方程.16.【分析】求出三条直线的交点坐标从而可求得三角形的面积再求极限即可【详解】由得即同理可得到直线的距离为∴∴故答案为:【点睛】本题考查数列的极限解题关键是求出三角形的面积 解析:12【分析】求出三条直线的交点坐标,从而可求得三角形的面积n S ,再求极限即可。
最新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(含答案解析)
一、选择题1.若圆22220x y x y k +---=上的点到直线100x y +-=的最大距离为k 的值是( )A .2-B .2C .2-或2D .2-或02.若直线1y kx =-与曲线y =有公共点,则k 的取值范围是( ) A .4(0,]3B .14[,]33C .1[0,]2D .[0,1]3.若圆22:60,(0,0)M x y ax by ab a b +++--=>>平分圆22:4240N x y x y +--+=的周长,则2a b +的最小值为( )A .8B .9C .16D .204.圆C :x 2+y 2-6x -8y +9=0被直线l :ax +y -1-2a =0截得的弦长取得最小值时,此时a 的值为( ) A .3B .-3C .13D .-135.直线0x y +=被圆226240x y x y +-++=截得的弦长等于( )A .4B .2C .D6.在平面直角坐标系中,定义1212(,)||||d A B x x y y =-+-为两点11(,)A x y 、22(,)B x y 的“切比雪夫距离”,又设点P 及直线l 上任意一点Q ,称(,)d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(,)d P l ,给出下列三个命题: ①对任意三点A 、B 、C ,都有(,)(,)(,)d C A d C B d A B +≥; ②已知点(3,1)P 和直线:210l x y --=,则4(,)3d P l =; ③定义(0,0)O ,动点(,)P x y 满足(,)1d P O =,则动点P 的轨迹围成平面图形的面积是4;其中真命题的个数( ) A .0B .1C .2D .37.已知圆22:(2)2C x y ++=,则在x 轴和y 轴上的截距相等且与圆C 相切的直线有几条( ) A .1条 B .2条 C .3条 D .4条 8.若圆x 2+y 2+ax -by =0的圆心在第二象限,则直线x +ay -b =0一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限9.过点(0,2)P 的直线l 与以(1,1)A ,(2,3)B -为端点的线段有公共点,则直线l 的斜率k的取值范围是( ) A .5[,3]2-B .5(,][3,)2-∞-⋃+∞C .3[,1]2-D .1(,1][,)2-∞-⋃-+∞ 10.已知直线1l :(4)10kx k y +-+=与2l :2230kx y -+=平行,则k 的值是( ) A .1或0B .5C .0或5D .1或511.抛物线2?y x =上一点到直线240x y --=的距离最短的点的坐标是( ) A .()2,4B .11,24⎛⎫ ⎪⎝⎭C .39,24⎛⎫⎪⎝⎭D .()1,112.若直线220++=ax y 与直线840x ay ++=平行,则a 的值为( ) A .4B .4-C .4-或4D .2-二、填空题13.已知三条直线的方程分别为0y =0y -+=0y +-,那么到三条直线的距离相等的点的坐标为___________.14.已知点(),P x y 是直线240x y -+=上一动点,直线PA ,PB 是圆22:20C x y y ++=的两条切线,A ,B 为切点,C 为圆心,则四边形PACB 面积的最小值是______.15.经过点(2,1)M ,并且与圆2268240x y x y +--+=相切的直线方程是________. 16.已知点M 是直线l :22y x =--上的动点,过点M 作圆C :()()22114x y -+-=的切线MA ,MB ,切点为A ,B ,则当四边形MACB 的面积最小时,直线AB 的方程为______.17.已知直线l 经过点(1,2)P -,且垂直于直线2310x y ,则直线l 的方程是________.18.在直角坐标系xoy 中,已知圆C :()222824580x y m x my m m +---+-=,直线l 经过点()2,1,若对任意的实数m ,直线l 被圆C 截得弦长为定值,则直线l 方程为______.19.定义点()00,P x y 到直线()22:00l Ax By C A B ++=+≠的有向距离d =.已知点12,P P 到直线l 的有向距离分别是12,d d ,给出以下命题:①若120-=d d ,则直线12PP 与直线l 平行;②若120d d +=,则直线12PP 与直线l 平行;③若120d d +=,则直线12PP 与直线l 垂直;④若120<d d ,则直线12PP 与直线l 相交.其中正确命题的个数是_______.20.已知点M 为直线1:20l x y a +-=与直线2:210l x y -+=在第一象限的交点,经过点M 的直线l 分别交x ,y 轴的正半轴于A ,B 两点,O 为坐标原点,则当AOBS 取得最小值为1425时,a 的值为________.三、解答题21.已知圆221:2440C x y x y ++--=.(1)在下列两个条件中任选一个作答.注:如果选择两个条件分别解答,按第一个解答计分.①已知不过原点的直线l 与圆1C 相切,且在x 轴、y 轴上的截距相等,求直线l 的方程; ②从圆外一点(2,1)P 向圆引切线,求切线方程.(2)若圆222:4C x y +=与圆1C 相交与D 、E 两点,求线段DE 的长.22.已知圆C 的圆心在直线l :20x y -=上,且过点()0,0O 和()2,6A . (1)求圆C 的方程.(2)求证:直线1l :()130m x y m -+-=,m ∈R 与圆C 恒相交. (3)求1l 与圆C 相交所得弦的弦长的最小值及此时对应的直线方程.23.已知直线l :43100x y ++=,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)直线4y kx =-与圆C 交于不同的M ,N 两点,且120MCN ∠=︒,求直线l 的斜率;(3)过点()1,0M 的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.24.已知圆C 经过点()1,0A -和()3,4B ,且圆心C 在直线3150x y +-=上. (1)求圆C 的标准方程;(2)设点()()1,0Q m m ->在圆C 上,求△QAB 的面积. 25.△ABC 中∠C 的平分线所在直线方程为y x =,且A (-1,52),B (4,0).(1)求直线AB 的截距式...方程; (2)求△ABC 边AB 的高所在直线的一般式...方程. 26.从圆外一点()4,4P -作圆22:1O x y +=的两条切线,切点分别为A ,B . (1)求以OP 为直径的圆的方程; (2)求线段AB 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】将圆的方程化成标准方程,求出圆心及半径r ,圆心到直线的距离为d ,则圆上的点到直线的最大距离为d r + 【详解】圆22220x y x y k +---=化成标准形式()()22112x y k -+-=+,圆心()1,1,半径r =2k >-;圆心()1,1到直线100x y +-=的距离===d圆上的点到直线的最大距离为+==d r=,解得:2k =或2k =-(舍去) 故选:B 【点睛】结论点睛:本题考查直线与圆的位置关系,求圆上点到直线的最大距离与最小距离常用的结论:设圆的半径r ,圆心到直线的距离为d , (1)当dr 时,圆上的点到直线的最大距离为d r +,最小距离为d r -;(2)当d r ≤时,圆上的点到直线的最大距离为d r +,最小距离为0; 2.D解析:D 【分析】1y kx =-是过定点()0,1-的直线,曲线表示以()2,0为圆心,半径为1的圆的下半部分,画出两函数图像,找出两图像有公共点时k 的范围即可. 【详解】解:根据题意可得:1y kx =-是过定点()0,1-的直线,曲线表示以()2,0为圆心,半径为1的圆的下半部分,画出函数图像,如图所示: 当直线与曲线相切时:0k =,当()1,0在直线上时,代入可得1k =,所以两函数图像有公共点的k 的范围是[]0,1. 故选:D.【点睛】本题考查直线与圆的位置关系,利用了数形结合的思想,属于中档题. 方法点睛:(1)画出函数图像;(2)根据图像找到有公共点的相切或相交的情况; (3)根据公式计算,得到结果.3.A解析:A 【分析】由两圆的相交弦是圆N 的直径得出,a b 的关系,然后由基本不等式求得最小值. 【详解】两圆方程相减得,(4)(2)100a x b y ab +++--=,此为相交弦所在直线方程, 圆N 的标准方程是22(2)(1)1x y -+-=,圆心为(2,1)N , ∴2(4)2100a b ab +++--=,121a b+=, ∵0,0a b >>,∴12442(2)()4428b a b aa b a b a b a b a b+=++=++≥+⨯=,当且仅当4b a a b =即2,4a b ==时等号成立.故选:A . 【点睛】本题考查圆的方程,考查基本不等式求最值.圆的性质:(1)圆的直径平分圆;(2)相交两圆方程相减所得一次方程是两圆公共弦所在直线方程.4.C解析:C 【分析】先判断直线l 恒过点(2,1)P ,可得直线l 垂直于直线PC 时,截得的弦长最短,利用直线垂直的性质可得答案. 【详解】直线:120+--=l ax y a 可化为:(2)(1)0-+-=l a x y , 故直线l 恒过点(2,1)P .圆22:6890+--+=C x y x y 的圆心为(3,4)C ,半径为4. 当直线l 垂直于直线PC 时,截得的弦长最短, 因为直线PC 的斜率41332PC k -==-, ax +y -1-2a =0的斜率为a -, 此时1313PC l k k a a ⋅=-=-⇒=.故选:C . 【点睛】方法点睛:判断直线过定点主要形式有: (1)斜截式,0y kx y =+,直线过定点()00,y ; (2)点斜式()00,y y k x x -=-直线过定点()00,x y ; (3)化为()(),,0tf x y g x y +=的形式,根据()(),0,0f x y g x y ⎧=⎪⎨=⎪⎩ 求解.5.A解析:A 【分析】先将圆化成标准方程,求出圆心与半径,再求圆心到直线的距离,然后解弦长即可. 【详解】因为226240x y x y +-++= 所以22(3)(1)6x y -++=, 圆心到直线的距离为22d ==直线0x y +=被圆226240x y x y +-++=截得的弦长()222(6)24l =-;故选:A . 【点睛】计算圆的弦长通常使用几何法简捷.也可使用代数法计算.6.B解析:B 【分析】由新定义表示出三点,,A B C 两两之间的“切比雪夫距离”,然后根据绝对值的性质判断①,由新定义计算出(,)d P l ,判断②,根据新定义求出P 的轨迹方程,确定其轨迹,求得轨迹围成的图形面积判断③. 【详解】①设112233(,),(,),(,)A x y B x y C x y ,则1212(,)d A B x x y y =-+-,13132323(,)(,)d A C d B C x x y y x x y y +=-+-+-+-,显然1323132312()()x x x x x x x x x x -+-≥---=-,同理132312y y y y y y -+-≥-,∴(,)(,)(,)d C A d C B d A B +≥,①正确; ②设(,)P x y 是直线l 上任一点,则21y x =-,(,)31322d P l x y x x =-+-=-+-35,31,1353,1x x x x x x -≥⎧⎪=+≤<⎨⎪-<⎩,易知(,)d P l 在[1,)+∞上是增函数,在(,1)-∞上是减函数,∴1x =时,min (,)13222d P l =-+-=,②错; ③由(,)1d P O =得1x y +=,易知此曲线关于x 轴,y 轴,原点都对称,它是以(1,0),(0,1),(1,0),(0,1)--为顶点的正方形,其转成图形面积为12222S =⨯⨯=,③错.故选:B . 【点睛】关键点点睛:本题考查新定义,解题关键是理解新定义,解题方法是把新概念转化为绝对值的问题,利用绝对值的性质求解.7.C解析:C 【分析】先看直线不过原点的情况,设出直线的方程,斜率为1-,则可知这样的直线有2条,再看直线过原点的情况,把原点代入即可知原点在圆外,则这样的直线也应该有2条,最后验证以上4条中有一条是重复,最后综合得到结论. 【详解】若直线不过原点,其斜率为1-,设其方程为y x m =-+,则d ==0m =或4-,当0m =时,直线过原点;若过原点,把()0,0代入()2200242++=>,即原点在圆外,所以过原点有2条切线,综上,一共有3条, 故选:C . 【点睛】本题主要考查了直线与圆的位置关系,考查了学生数形结合的思想和对基本知识的理解,属于中档题.8.C解析:C【分析】由圆心位置确定a ,b 的正负,再结合一次函数图像即可判断出结果. 【详解】因为圆22+0x y ax by +-=的圆心坐标为,22a b ⎛⎫-⎪⎝⎭, 由圆心在第二象限可得0,0a b >>,所以直线0x ay b +-=的斜率10a -<,y 轴上的截距为0b a>,所以直线不过第三象限. 故选:C9.D解析:D 【分析】画出图形,设直线l 的斜率为k ,求出PA k 和PB k ,由直线l 与线段AB 有交点,可知PA k k ≤或PB k k ≥,即可得出答案.【详解】直线过定点(0,2)P ,设直线l 的斜率为k , ∵12110PA k -==--,321202PB k -==---, ∴要使直线l 与线段AB 有交点,则k 的取值范围是1k ≤-或12k ≥-, 即1(,1][,)2k ∈-∞-⋃-+∞.故选:D. 【点睛】方法点睛:求直线的斜率(或取值范围)的方法:(1)定义法:已知直线的倾斜角为α,且90α︒≠,则斜率tan k α=; (2)公式法:若直线过两点()11,A x y ,()22,B x y ,且12x x ≠,则斜率2121y y k x x -=-;(3)数形结合方法:该法常用于解决下面一种题型:已知线段AB 的两端点及线段外一点P ,求过点P 且与线段AB 有交点的直线l 斜率的取值范围.若直线,PA PB 的斜率都存在,解题步骤如下: ①连接,PA PB ; ②由2121y y k x x -=-,求出PA k 和PB k ; ③结合图形写出满足条件的直线l 斜率的取值范围.10.C解析:C 【分析】由两直线平行得出()224k k k -=-,解出k 的值,然后代入两直线方程进行验证. 【详解】 解:直线1l :(4)10kx k y +-+=与2l :2230kx y -+=平行,()224k k k ∴-=-,整理得()50k k -=,解得0k =或5.当0k =时,直线11:4l y =-,23:2l y =,两直线平行;当5k =时,直线1:510l x y -+=,23:502l x y -+=,两直线平行. 因此,0k =或5. 故选:C. 【点睛】方法点睛:本题考查直线的一般方程与平行关系,在求出参数后还应代入两直线方程进行验证.(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A1、A2、B1、B2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②2112210A A l B B l +⇔=⊥;11.D解析:D 【分析】设抛物线y=x 2上一点为A (x 0,x 02),点A (x 0,x 02)到直线2x-y-4=0的距离d ==由此能求出抛物线y=x 2上一点到直线2x-y-4=0的距离最短的点的坐标. 【详解】设抛物线y=x 2上一点为A (x 0,x 02), 点A (x 0,x 02)到直线2x-y-4=0的距离d ==∴当x 0=1时,即当A (1,1)时,抛物线y=x 2上一点到直线2x-y-4=0的距离最短. 故选D . 【点睛】本题考查抛物线上的点到直线的距离最短的点的坐标的求法,是基础题.解题时要认真审题,仔细解答.12.B解析:B 【分析】根据两直线平行,列出方程组,即可求解. 【详解】由题意,直线220++=ax y 与直线840x ay ++=平行,可得2802240a a a ⨯-⨯=⎧⎨-⨯≠⎩,解得4a =-.故选: B. 【点睛】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线的平行的条件是解答的关键,着重考查运算与求解能力.二、填空题13.【分析】先画出图形求出再分四种情况讨论得解【详解】如图所示由题得的平分线:和的平分线:的交点到三条直线的距离相等联立两直线的方程解方程组得交点为;的外角平分线:和的外角平分线:的交点到三条直线的距离解析:(0,30,3(-【分析】先画出图形,求出(1,0),(1,0)A B C -,再分四种情况讨论得解. 【详解】 如图所示,由题得(1,0),(1,0)A B C -,CAB ∠的平分线AO :0x =和ACB ∠的平分线CD :(1)3y x =+的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3xy x=⎧⎪⎨=+⎪⎩得交点为3(0,)3;ACB∠的外角平分线CE:3(1)y x=-+和ABC∠的外角平分线BF:3(1)y x=-的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3(1)y xy x⎧=-+⎪⎨=-⎪⎩得交点为(0,3)-;ACB∠的外角平分线CG:3(1)y x=-+和CAB∠的外角平分线AG:3y=的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y xy⎧=-+⎪⎨=⎪⎩得交点为(2,3)-;ABC∠的外角平分线BH:3(1)y x=-和CAB∠的外角平分线AG:3y=的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y xy⎧=-⎪⎨=⎪⎩得交点为(2,3).故答案为:(0,3)-、30,3、(2,3)、(2,3)-【点睛】关键点睛:解答本题的关键是利用平面几何的知识分析找到四个点,再利用直线的知识解答即可.14.2【分析】根据切线的性质可将面积转化为求出的最小值即到直线的距离【详解】圆化为可得圆心为半径为1如图可得则当取得最小值时最小点是直线上一动点到直线的距离即为的最小值故答案为:2【点睛】关键点睛:本题解析:2【分析】根据切线的性质可将面积转化为21PACBS PC=-PC的最小值即()0,1C-到直线240x y -+=的距离. 【详解】圆22:20C x y y ++=化为()2211x y ++=,可得圆心为()0,1-,半径为1,如图,可得22221PA PC AC PC =-=-,212212PACB PACS SPA AC PA PC ==⨯⨯⨯==-则当PC 取得最小值时,PACB S 最小, 点(),P x y 是直线240x y -+=上一动点,()0,1C ∴-到直线240x y -+=的距离即为PC 的最小值,()min 222014521PC ⨯++∴==+-()min 512PACB S ∴=-=.故答案为:2. 【点睛】关键点睛:本题考查直线与圆相切问题,解题的关键是利用切线性质将面积转化为21PACB S PC =-PC 的最小值即可.15.或【分析】求出圆心和半径判断斜率不存在的直线是否是切线斜率存在时设出直线方程由圆心到切线距离等于半径求得参数值得切线方程【详解】圆标准方程是圆心为半径为1易知直线与圆相切设斜率存在的切线方程为即由解解析:2x =或4350x y --= 【分析】求出圆心和半径,判断斜率不存在的直线是否是切线,斜率存在时设出直线方程,由圆心到切线距离等于半径求得参数值得切线方程. 【详解】圆标准方程是22(3)(4)1x y -+-=,圆心为(3,4),半径为1. 易知直线2x =与圆相切,设斜率存在的切线方程为1(2)y k x -=-,即210kx y k --+=,1=,解得43k =,切线方程为481033x y --+=,即4350x y --=.故答案为:2x =或4350x y --=. 【点睛】本题考查求圆的切线方程,解题方法是由圆心到切线的距离等于半径求解.但解题时要注意过定点斜率不存在的直线是否是切线,否则由方程求不出此直线方程.如果所过的点在圆上,由可由过切点的半径与切线垂直得出切线斜率后得直线方程.16.【分析】由已知结合四边形面积公式可得四边形MACB 面积要使四边形MACB 面积最小则需最小此时CM 与直线垂直求得以CM 为直径的圆的方程再与圆C 的方程联立可得AB 所在直线方程【详解】由圆的标准方程可知圆 解析:210x y ++=【分析】由已知结合四边形面积公式可得四边形MACB面积2||||2||CAM S S CA AM MA ==⋅==△要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,求得以CM 为直径的圆的方程,再与圆C 的方程联立可得AB 所在直线方程. 【详解】由圆的标准方程可知,圆心C (1,1) ,半径r =2.因为四边形MACB的面积2||||2||CAM S S CA AM MA ==⋅==△ 要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直. 直线CM 的方程为11(x 1)2y -=- ,即11.22y x =+联立112222y x y x ⎧=+⎪⎨⎪=--⎩,解得(1,0)M -则以CM 为直径的圆的方程为2215()24x y +-=, 联立222215(),24(1)(1)4x y x y ⎧+-=⎪⎨⎪-+-=⎩消去二次项可得直线AB 的方程为210x y ++=, 故答案为:210x y ++=【点睛】关键点点睛:根据四边形的面积表达式可以看出要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,此时所做圆的直径为CM ,写出圆的方程,两圆方程相减即可求出过AB 的直线方程.17.【分析】根据题意设直线的方程是代入点求得的值即可求解【详解】由题意所求直线垂直于直线设直线的方程是又由直线过点代入可得解得故的方程是【点睛】与直线平行的直线方程可;与直线垂直的直线方程可 解析:3270x y -+=【分析】根据题意,设直线l 的方程是320x y c -+=,代入点(1,2)P -,求得c 的值,即可求解. 【详解】由题意,所求直线l 垂直于直线2310x y , 设直线l 的方程是320x y c -+=,又由直线l 过点(1,2)P -,代入可得340c --+=,解得7c =, 故l 的方程是3270x y -+=. 【点睛】与直线220(0)Ax By C A B ++=+≠平行的直线方程可0()Ax By n n c ++=≠;与直线220(0)Ax By C A B ++=+≠垂直的直线方程可0Bx Ay M -+=。
选择性必修第二章直线与圆的方程测试题(含答案)
, , : , , ,选择性必修第二章直线与圆的方程测试题时间:120 分钟满分:145 分命卷人:卢焕邓审核人:一、选择题(每小题 5 分,共 10 小题 50 分)1、过点且平行于直线的直线方程为( ) C. D.7、已知点,点是圆上的动点,点 是圆上的动点,则的最大值是()A.B.C. D.8、已知动点 是圆内一点,直线围成的四边形的面积 为 ,则下列说法正确的是( )A.B. C. D.4、两平行直线,分别过点,,它们分别绕 ,旋转, 但始终保持平行,则, 之间的距离的取值范围是()A.B.C.D.5、已知倾斜角为的直线与直线垂直,则( )A.B.C. D.6、直线与直线平行,则( ) A.B.且 A. B.C. D.9、圆 关于直线对称的圆是( )A.B. C.D.10、 过点作直线(不同时为零)的 垂线,垂足为 ,已知点,则当变化时,的取值范围是( ) A.B.C.D.二、填空题(每小题 5 分,共 7 小题 35 分)A.2、已知圆B.C.的圆心坐标为,则 D.( )A.3、若圆 :称,则由点 B.C.关于直线向圆所作的切线长的最小值是( )D.对11、已知是圆上的动点,是圆上的动点,则的取值范围为 . 三、解答题(每小题 12 分,共 5 小题 60 分)18、已知的顶点 ,边上的高为.求:边上的中线12、已知直线与圆相交于标为,则直线 的方程为.两点,且线段的中点坐 (1) 中线的方程;(2) 高所在直线的方程及高的长. 19、下列方程是否表示圆,若表示圆,写出圆心坐标和半径长.(1);(2) ;13、经过直线与的交点,且平行于直线的直线方程是.14、圆 上的点到直线的最近距离为(3);(4) .20、在平面直角坐标系中, 曲线与坐标轴的交点都在圆上.(1) 求圆 的方程;,最远距离为 .15、过点的直线 与圆交于两点,当 (2) 若圆与直线交于21、已知直线 经过点 ,斜率为 ;两点,且,求 的值.最小时,直线的方程为,此时.16、已知直线,若直线 与直线垂直,则的值为 ;动直线 被圆截得 的最短弦长为.17、已知半径为 5 的动圆的圆心在直线上.若动圆过点,求圆的方程,(1) 若的纵截距是横截距的两倍,求直线的方程; (2) 若,一条光线从点出发,遇到直线反射,反射光线遇到轴再次反射回点,求光线所经过的路程.22、已知圆:与圆: ,试判断两圆的位置关系,并求两圆公切线的方程. 存在正实数,使得动圆中满足与圆相外切的圆有且仅有一个.,,,,,,,选择性必修第二章直线与圆的方程测试题答案解析第 1 题答案D第 1 题解析由题意可设所求直线方程为,∵直线过点,代入可得,解得,∴所求直线,故选:D.第 2 题答案D第 2 题解析由圆的标准方程可知圆心为,即. 故选D.第 3 题答案C第 3 题解析第 4 题答案C第 4 题解析 当时,与的最大距离为,因为两直线平行,则两直线距离不为,故选C .第 5 题答案D第 5 题解析 因为直线 与直线垂直,所以 .将圆 的方程化为标准方程为: ,圆心为, 又为直线倾斜角,解得.圆关于直线对称,所以圆心位于该直线上,将圆心坐标代入,即点在直线上.过为,过点作圆的切线,切点设为,则切线长最短,此时,所以根据勾股定理,得.第 6 题答案B第 6 题解析 与直线平行的直线可设为,而直线,所以值为 ,的最小值为的最大值为.第 7 题答案B第 7 题解析第 10 题解析且直线,整理为:,从而可得直线过定点,如图,或者与之一重合,,故点在以为直径的圆上运动,设该圆的圆心为,则线段满足的范围为圆的圆心 ,半径,圆的圆心,半径 ,,所以:的取值范围是.则的最大,则第 8 题答案A第 8 题解析由已知 ,四条直线围成的面积 ,故选 A.第 9 题答案B第 9 题解析 圆心关于直线的对称点为,半径不变,∴所求圆的方程为.第 10 题答案A第 11 题答案第 11 题解析 易知,所以,即.第 12 题答案第 12 题解析因为圆圆心坐标为,又点坐标为,所以直线的斜率为;又因为是圆的一条弦, 为的中点,所以,故,即直线的斜率为, 因此,直线的方程为,即.第 13 题答案第 13 题解析联立方程组可知与的交点,为,设所求直线为,则,.第 14 题答案第 14 题解析圆的方程可化为,,半径.圆心到直线的距离,所以所求的最近距离为,最远距离为.第 15 题答案第 15 题解析圆的圆心为,当最小时,和垂直,∴直线的斜率等于,∴直线的方程为,即,,∴,∴,即.第 16 题答案或第 16 题解析由题意得,∴或.圆,动直,当时,截得的弦长最短,为第 18 题答案(1)见解答;(2)见解答 .第 18 题解析(1)设点的坐标为,因为点是线段中点,所以, ,即点的坐标为,由两点式得所在直线方程为即,所以中线的方程为: .第 17 题答案或第 17 题解析(2)直线的斜率为: ,因为,所以,所以所在直线方程是即.直线的方程为: ,因为就是点到直线的距离,(1)依题意,可设动圆的方程为,其中圆心.又∵动圆过点,∴.解方程组可得或故所求圆的方程为或.(2)圆的圆心到直线的距离.当满足时,即时,动圆中有且仅有 1 个圆与圆外切. 所以由点到直线的距离公式.第 19 题答案(1)不表示圆(2)不表示圆(3)不表示圆(4)表示圆,圆心坐标为,半径第 19 题解析, ∵ 的纵截距是横截距的两倍,∴,解得或,∴直线的方程为或(1)中与的系数不同,故原方程不表示圆. (2)中含有项,故原方程不表示圆. (3)∵,∴原方程不表示圆.(4)∵,∴方程表示圆,圆心坐标为,半径. (1)或;(2).第 21 题解析(1)由题意得.,(2)第 20 题解析(1)曲线与坐标轴的交点为,设圆的,则,.(2)由,得为等腰直角三角形, . 第 21 题答案即或;(2)当时,直线的方程为,设点关于的对称点为,则,, , 直线的方程为,即第 20 题答案令,得,(1)令,得,解得,∴点的坐标为,∴关于轴的对称点为,光线所经过的路程为.第 22 题答案外切,,,第 22 题解析由:与圆:可知,∴圆与圆外切有条公切线.如图,设两圆的外公切线与轴相交于,由相似三角形易,即,解得,故知.∴外公切线的斜率,故两程为,,,即,.。
圆的方程测试题及答案.doc
圆的方程专项测试题一、选择题1.若直线4x-3y -2=0与圆x 2+y 2-2ax+4y +a 2-12=0总有两个不同交点,则a 的取值范围是( )A.-3<a <7 B .-6<a <4 C.-7<a <3 D.-21<a <192.圆(x-3)2+(y -3)2=9上到直线3x+4y -11=0的距离等于1的点有( ) A.1个 B.2个 C.3个 D.4个3.使圆(x-2)2+(y +3)2=2上点与点(0,-5)的距离最大的点的坐标是( ) A.(5,1) B.(3,-2) C.(4,1)D.(2 +2,2-3)4.若直线x+y =r 与圆x 2+y 2=r(r >0)相切,则实数r 的值等于( ) A.22B.1C.2D.25.若曲线x 2+y 2+a 2x +(1–a 2)y –4=0关于直线y –x =0的对称曲线仍是其本身,则实数a =( B ) A .21± B .22± C .2221-或D .2221或-6.直线x-y +4=0被圆x 2+y 2+4x-4y +6=0截得的弦长等于( ) A.8B.4C.22D.427.圆9)3()3(22=-+-y x 上到直线3 x + 4y -11=0的距离等于1的点有( C ) A .1个 B .2个 C .3个 D .4个8.圆(x-3)2+(y +4)2=2关于直线x+y =0的对称圆的标准方程是( ) A.(x+3)2+(y -4)2=2 B.(x-4)2+(y +3)2=2 C.(x+4)2+(y -3)=2 D.(x-3)2+(y -4)2=29.点P(5a+1,12a)在圆(x-1)2+y 2=1的内部,则实数a 的取值范围是( ) A.|a |<1B.|a |<51 C.|a |<121D.|a |<131 10.关于x,y 的方程Ax 2+Bx y +C y 2+Dx+E y +F=0表示一个圆的充要条件是( ) A.B=0,且A=C ≠0 B.B=1且D 2+E 2-4AF >0 C.B=0且A=C ≠0,D 2+E 2-4AF ≥0 D.B=0且A=C ≠0,D 2+E 2-4AF >0 11.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆心坐标是( ) A.(314,5) B.(5,1) C.(0,0) D.(5,-1)12.若两直线y =x+2k 与y =2x+k+1的交点P 在圆x 2+2=4的内部,则k 的范围是( ) A.-51<k <-1B.-51<k <1C.-31<k <1 D.-2<k <2二、填空题13.圆x 2+y 2+ax=0(a ≠0)的圆心坐标和半径分别是 .14.若实数x,y 满足x 2+y 2-2x+4y =0,则x-2y 的最大值是 .15.若集合A={(x 、y )|y =-|x |-2},B={(x,y )|(x-a)2+y 2=a 2}满足A ∩B=ϕ,则实数a 的取值范围是 .16.过点M(3,0)作直线l 与圆x 2+y 2=16交于A 、B 两点,当θ= 时,使△AOB 的面积最大,最大值为 (O 为原点).三、解答题17.求圆心在直线2x-y -3=0上,且过点(5,2)和(3,-2)的圆的方程.18. 过圆(x -1)2+(y -1)2=1外一点P(2,3),向圆引两条切线切点为A 、B. 求经过两切点的直线l 方程.19. 已知圆02422=++-+m y x y x 与y 轴交于A 、B 两点,圆心为P ,若︒=∠90APB .求m 的值.20.已知直角坐标平面内点Q(2,0),圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0),求动点M 的轨迹方程,并说明轨迹是什么曲线.21.自点A (-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射光线m 所在直线与圆C :x 2+ y 2 -4x -4y +7 = 0相切,求光线L 、m 所在的直线方程.22.已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线L ,使L 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线L 的方程,若不存在说明理由.参考答案:1.B2.C3.B4.D5.B6.C7.C8.B9.D 10.D 11.D 12.B 13.(-2a ,0), 2a 14.10 15.-2(2+1)<a <2(2+1)16.θ=arccot22 或π-arccot22, 817.(x-2)2+(y -1)2=10 10.3x+4y +1=0或4x+3y -1=0 ;18. 解:设圆(-1)2+(y -1)2=1的圆心为1O ,由题可知,以线段P 1O 为直径的圆与与圆1O 交于AB 两点,线段AB 为两圆公共弦,以P 1O 为直径的圆方程5)20()23(22=-+-y x ①已知圆1O 的方程为(x-1)2+(y -1)2=1 ② ①②作差得x+2y -41=0, 即为所求直线l 的方程。
直线和圆的方程综合能力测试及答案
直线和圆的方程综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(每小题只有一个选项是正确的,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2009·湖北荆州质检二)过点P (1,2),且方向向量v =(-1,1)的直线的方程为( )A .x -y -3=0B .x +y +3=0C .x +y -3=0D .x -y +3=0 答案:C解析:方向向量为v =(-1,1),则直线的斜率为-1,直线方程为y -2=-(x -1)即x +y -3=0,故选C.2.(2009·重庆市高三联合诊断性考试)将直线l 1:y =2x 绕原点逆时针旋转60°得直线l 2,则直线l 2到直线l 3:x +2y -3=0的角为 ( )A .30°B .60°C .120°D .150° 答案:A解析:记直线l 1的斜率为k 1,直线l 3的斜率为k 3,注意到k 1k 3=-1,l 1⊥l 3,依题意画出示意图,结合图形分析可知,直线l 2到直线l 3的角是30°,选A.3.(2009·东城3月)设A 、B 为x 轴上两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程x -y +1=0,则直线PB 的方程为 ( )A .2x +y -7=0B .2x -y -1=0C .x -2y +4=0D .x +y -5=0 答案:D解析:因k P A =1,则k PB =-1,又A (-1,0),点P 的横坐标为2,则B (5,0),直线PB 的方程为x +y -5=0,故选D.4.过两点(-1,1)和(0,3)的直线在x 轴上的截距为 ( )A .-32 B.32 C .3 D .-3答案:A解析:由两点式,得y -31-3=x -0-1-0,即2x -y +3=0,令y =0,得x =-32,即在x 轴上的截距为-32.5.直线x +a 2y +6=0和(a -2)x +3ay +2a =0无公共点,则a 的值是 ( ) A .3 B .0 C .-1 D .0或-1 答案:D解析:当a =0时,两直线方程分别为x +6=0和x =0,显然无公共点;当a ≠0时,-1a 2=-a -23a,∴a =-1或a =3.而当a =3时,两直线重合,∴a =0或-1.6.两直线2x -my +4=0和2mx +3y -6=0的交点在第二象限,则m 的取值范围是( )A .-32≤m ≤2B .-32<m <2C .-32≤m <2D .-32<m ≤2答案:B解析:由⎩⎪⎨⎪⎧2x -my +4=0,2mx +3y -6=0,解得两直线的交点坐标为(3m -6m 2+3,4m +6m 2+3),由交点在第二象限知横坐标为负、纵坐标为正,故3m -6m 2+3<0且4m +6m 2+3>0⇒-32<m <2.7.(2009·福建,9)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0,(a 为常数)所表示的平面区域的面积等于2,则a 的值为( ) A .-5 B .1C .2D .3答案:D解析:不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0所围成的区域如图所示.∵其面积为2,∴|AC |=4,∴C 的坐标为(1,4),代入ax -y +1=0, 得a =3.故选D. 8.(2009·陕西,4)过原点且倾斜角为60°的直线被圆x 2+y 2-4y =0所截得的弦长为( )A. 3 B .2 C. 6 D .2 3 答案:D解析:∵直线的方程为y =3x ,圆心为(0,2),半径r =2.由点到直线的距离公式得弦心距等于1,从而所求弦长等于222-12=2 3.故选D. 9.(2009·西城4月,6)与直线x -y -4=0和圆x 2+y 2+2x -2y =0都相切的半径最小的圆的方程是 ( )A .(x +1)2+(y +1)2=2B .(x +1)2+(y +1)2=4 C .(x -1)2+(y +1)2=2 D .(x -1)2+(y +1)=4 答案:C解析:圆x 2+y 2+2x -2y =0的圆心为(-1,1),半径为2,过圆心(-1,1)与直线x -y -4=0垂直的直线方程为x +y =0,所求的圆的圆心在此直线上,排除A 、B ,圆心(-1,1)到直线x -y -4=0的距离为62=32,则所求的圆的半径为2,故选C.10.(2009·安阳,6)已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,且|OA →+OB →|=|OA →-OB →|,其中O 为原点,则实数a 的值为 ( )A .2B .-2C .2或-2 D.6或- 6 答案:C解析:由|OA →+OB →|=|OA →-OB →|得|OA →+OB →|2=|OA →-OB →|2,OA →·OB →=0,OA →⊥OB →,三角形AOB 为等腰直角三角形,圆心到直线的距离为2,即|a |2=2,a =±2,故选C.11.(2009·河南实验中学3月)若直线l :ax +by =1与圆C :x 2+y 2=1有两个不同交点,则点P (a ,b )与圆C 的位置关系是 ( )A .点在圆上B .点在圆内C .点在圆外D .不能确定 答案:C解析:直线l :ax +by =1与圆C :x 2+y 2=1有两个不同交点,则1a 2+b 2<1,a 2+b 2>1,点P (a ,b )在圆C 外部,故选C.12.(2010·保定市高三摸底考试)从原点向圆x 2+(y -6)2=4作两条切线,则这两条切线夹角的大小为 ( )A.π6B.π2 C .arccos 79 D .arcsin 229 答案:C解析:如图,sin ∠AOB =26=13,cos ∠BOC =cos2∠AOB =1-2sin 2∠AOB =1-29=79,∴∠BOC =arccos 79,故选C.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在题中的横线上。
圆与方程测试题及答案
圆与方程测试题一、选择题1.若圆 C 的圆心坐标为 (2,- 3),且圆 C 经过点 M (5,- 7),则圆 C 的半径为 ().A. 5B. 5C. 25D. 102.过点 A(1,- 1), B(- 1, 1)且圆心在直线x+y- 2= 0 上的圆的方程是 ().A. (x- 3)2+ (y+ 1)2= 4B. (x+ 3)2+ (y- 1)2= 4C. (x- 1)2+ (y- 1)2=4D. (x+ 1)2+ (y+ 1)2= 43.以点 (-3, 4)为圆心,且与 x 轴相切的圆的方程是 ().A. (x- 3)2+ (y+ 4)2= 16B. (x+3)2+ (y- 4)2=16C. (x- 3)2+ (y+ 4)2=9D. (x+3)2+ (y- 4)2= 194.若直线 x+ y+ m= 0 与圆 x2+ y2= m 相切,则 m 为 ().A.0或2B. 2C.2D.无解5.圆 (x-1)2+ (y+ 2)2=20在 x 轴上截得的弦长是 ().A.8B. 6C.6 2D. 4312+ y2+ 2x+ 2y- 2= 0 与 C22+ y2- 4x- 2y+ 1= 0 的地点关系为 ().6.两个圆 C : x: xA.内切B.订交C.外切D.相离7.圆 x2+ y2- 2x- 5= 0 与圆 x2+y2+2x- 4y- 4= 0 的交点为 A,B,则线段 AB 的垂直均分线的方程是().A. x+ y- 1=0B.2x- y+ 1= 0C. x-2y+ 1= 0D. x- y+ 1= 08.圆 x2+ y2- 2x=0 和圆 x2+ y2+ 4y= 0 的公切线有且仅有 ().A.4 条B.3 条C.2条D.1 条9.在空间直角坐标系中,已知点M (a, b, c),有以下表达:点 M 对于 x 轴对称点的坐标是M 1(a,- b, c);点 M 对于 yoz 平面对称的点的坐标是M 2(a,- b ,- c);点 M 对于 y 轴对称的点的坐标是M 3(a,- b, c);点 M 对于原点对称的点的坐标是M4 (-a,- b,- c).此中正确的表达的个数是 ().A.3B. 2C. 1D. 010.空间直角坐标系中,点A(-3, 4, 0)与点 B(2,- 1, 6)的距离是 ().A.2 43B.2 21C. 9D. 86二、填空题11.圆 x2+ y2- 2x- 2y+1= 0 上的动点 Q 到直线 3x+4y+8= 0 距离的最小值为.12.圆心在直线 y= x 上且与 x 轴相切于点 (1, 0)的圆的方程为.13.以点 C(-2,3)为圆心且与 y 轴相切的圆的方程是.14.两圆 x2+ y2= 1 和 (x+ 4)2+ (y-a)2= 25 相切,试确立常数 a 的值.15.圆心为 C(3,- 5),而且与直线 x- 7y+ 2=0 相切的圆的方程为.16.设圆 x2+ y2- 4x-5= 0 的弦 AB 的中点为 P(3, 1),则直线 AB 的方程是.三、解答题17.求圆心在原点,且圆周被直线3x+4y+15= 0 分红 1 ∶2 两部分的圆的方程.18.求过原点,在x 轴, y 轴上截距分别为a, b 的圆的方程 (ab≠0).19.求经过 A(4, 2), B(- 1,3)两点,且在两坐标轴上的四个截距之和是 2 的圆的方程.20.求经过点 (8, 3),而且和直线x= 6 与 x= 10 都相切的圆的方程.圆与方程参照答案一、选择题1.B 圆心 C 与点 M 的距离即为圆的半径,( 2-5)2+( -3+7 )2= 5.2.C 分析一:由圆心在直线x+ y- 2=0 上能够获得A, C 知足条件,再把 A 点坐标(1,- 1)代入圆方程. A 不知足条件.∴ 选C.分析二:设圆心 C的坐标为 (a,b),半径为 r,由于圆心 C 在直线 x+y- 2= 0 上,∴b= 2- a.由 | CA| =| CB| ,得 (a- 1)2+ (b+1)2= (a+ 1)2+ (b- 1)2,解得 a=1, b= 1.所以圆的方程为 (x-1)2+ (y- 1)2=4.3.B 分析:∵与 x 轴相切,∴ r= 4.又圆心 (- 3, 4),∴ 圆方程为 (x+ 3)2+(y- 4)2= 16.4.B 分析:∵ x+ y+m=0 与 x2+ y2=m 相切,∴ (0, 0)到直线距离等于m .∴mm ,∴ m= 2.=25.A 分析:令y=0,∴ (x- 1)2= 16.∴ x- 1=± 4,∴ x1=5 ,x2=- 3.∴弦长= |5 - (- 3)| = 8.6.B 分析:由两个圆的方程C1:(x+1)2+ (y+ 1)2=4, C2:(x- 2)2+ (y-1)2= 4 可求得圆心距 d= 13 ∈ (0,4), r= r = 2,且 r1-r < d< r1+ r故两圆订交,选B.12227.A 分析:对已知圆的方程x2+ y2- 2x- 5=0, x2+ y2+ 2x- 4y-4= 0,经配方,得 (x- 1)2+ y2= 6,(x+ 1)2+ (y-2)2= 9.圆心分别为C1(1, 0), C2(- 1, 2).直线 C1C2的方程为 x+y- 1= 0.8.C 分析:将两圆方程分别配方得(x-1)2+ y2=1和 x2+ (y+ 2)2= 4,两圆圆心分别为 O1 (1, 0), O2(0,-12 1 212+22=521<12= 3,故两圆订交,所以有两条公切2), r = 1, r = 2,| O O | =,又 1= r- r 5 < r+r 线,应选 C.9.C 解:①②③错,④对.选 C.10.D 分析:利用空间两点间的距离公式.二、填空题11.2.分析:圆心到直线的距离d=3+4+8=3,∴动点 Q 到直线距离的最小值为d-r=3 -1= 2.512.(x- 1)2+ (y- 1)2= 1.分析:绘图后能够看出,圆心在(1, 1),半径为 1.故所求圆的方程为: (x- 1)2+(y- 1)2= 1.13.(x+ 2)2+ (y- 3)2= 4.分析:由于圆心为(- 2, 3),且圆与 y 轴相切,所以圆的半径为2.故所求圆的方程为 (x+ 2)2+ (y- 3)2=4.14.0 或±25 .分析:当两圆相外切时,由| O1O2| = r1+r 2知 4 2+a 2= 6,即 a=±25 .当两圆相内切时,由 | O1O2| = r1- r2(r 1> r2)知 4 2+ a2= 4,即 a=0.∴ a 的值为0或±25 .15.(x- 3)2+ (y+ 5)2= 32.分析:圆的半径即为圆心到直线x- 7y+ 2=0 的距离;16.x+ y- 4=0.分析:圆 x2+ y2-4x- 5= 0 的圆心为 C(2,0), P(3,1)为弦 AB 的中点,所以直线 AB 与直线 CP垂直,即 k AB· k CP=- 1,解得 k AB=- 1,又直线 AB 过 P(3,1),则直线方程为x+ y- 4=0 .三、解答题y17. x2+ y2= 36.分析:设直线与圆交于A,B 两点,则∠ AOB= 120°,设所求圆方程为: x2+ y2= r2,则圆心到直线距离为r152,所5以 r =6,所求圆方程为x2+ y2= 36.4A2O- 5- 25 xr- 4B22- ax- by= 0.第 17题18.x+ y分析:∵圆过原点,∴设圆方程为x2+ y2+ Dx+ Ey= 0.∵圆过 (a, 0)和(0, b),∴a2+Da= 0, b2+ bE=0.又∵ a≠ 0, b≠0 ,∴ D=- a, E=- b.故所求圆方程为x2+ y2-ax- by= 0.19.x2+ y2- 2x- 12= 0.分析:设所求圆的方程为x2+ y2+ Dx+ Ey+ F= 0.∵ A,B 两点在圆上,代入方程整理得:D- 3E- F=10①4D+ 2E+F=- 20②设纵截距为b1,b2,横截距为a1, a2.在圆的方程中,令 x= 0 得 y2+ Ey+ F= 0,∴ b1+b 2=- E;令 y= 0 得 x2+ Dx+ F= 0,∴a 1+ a2=- D.由已知有- D- E= 2.③①②③联立方程组得D=- 2, E=0, F=- 12.所以圆的方程为x2+ y2- 2x-12= 0.20.解:设所求圆的方程为(x- a)2+ (y- b)2= r2.依据题意: r=10 6 =2,圆心的横坐标a=6+2=8,2所以圆的方程可化为:(x- 8)2+ (y- b)2= 4.又由于圆过 (8, 3)点,所以 (8- 8)2+ (3- b)2= 4,解得 b= 5 或 b= 1,所求圆的方程为(x- 8)2+ (y- 5)2= 4 或(x- 8)2+ (y- 1)2= 4.。
(完整版)直线与圆的方程测试题(含答案)
直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是32π,则斜率是( ) A.3-3B.33C.3-D.34. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,2π) D. 直线倾斜角的范围是(0,π)5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是() A.x+2=0 B.x-2=0 C.y+2=0 D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+21=0与直线6x-2y+1=0之间的位置关系是( )A.平行B.重合C.相交不垂直D.相交且垂直10.下列命题错误..的是( )A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=21x-1垂直,则a=( )A.2B.-2C. 21D. 21-13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是( )A.1B.511 C.53 D.3 15. 圆心在( -1,0),半径为5的圆的方程是( )A.(x+1)2+y 2=5B. (x+1)2+y 2=25C. (x-1)2+y 2=5D. (x-1)2+y 2=2516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,则k 的取值范围是( )A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k ≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,则△ABC 的面积是( )A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的方程专项测试题
一、选择题
1.若直线4x-3y -2=0与圆x 2+y 2-2ax+4y +a 2-12=0总有两个不同交点,则a 的取值范围是( )
<a <7 <a <4 <a <3 <a <19
2.圆(x-3)2+(y -3)2=9上到直线3x+4y -11=0的距离等于1的点有( ) 个 个 个 个
3.使圆(x-2)2+(y +3)2=2上点与点(0,-5)的距离最大的点的坐标是( ) A.(5,1) B.(3,-2)
C.(4,1)
D.(2 +2,2-3)
4.若直线x+y =r 与圆x 2+y 2=r(r >0)相切,则实数r 的值等于( ) A.
2
2
B .1
C.2
5.若曲线x 2+y 2+a 2x +(1–a 2)y –4=0关于直线y –x =0的对称曲线仍是其本身,则实数a =( B ) A .2
1± B .22± C .2221-或 D .2221或-
6.直线x-y +4=0被圆x 2+y 2+4x-4y +6=0截得的弦长等于( )
B.4
2 2
7.圆9)3()3(22=-+-y x 上到直线3 x + 4y -11=0的距离等于1的点有( C ) A .1个 B .2个 C .3个 D .4个 8.圆(x-3)2+(y +4)2=2关于直线x+y =0的对称圆的标准方程是( ) A.(x+3)2+(y -4)2=2 B.(x-4)2+(y +3)2=2 C.(x+4)2+(y -3)=2 D.(x-3)2+(y -4)2=2
9.点P(5a+1,12a)在圆(x-1)2+y 2=1的内部,则实数a 的取值范围是( ) A.|a |<1
B.|a |<
5
1 C.|a |<
12
1
D.|a |<
13
1 10.关于x,y 的方程Ax 2+Bx y +C y 2+Dx+E y +F=0表示一个圆的充要条件是( ) =0,且A=C≠0 =1且D 2+E 2-4AF >0 =0且A=C≠0,D 2+E 2-4AF≥0 =0且A=C≠0,D 2+E 2-4AF >0 11.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆心坐标是( ) A.(
3
14
,5) B.(5,1) C.(0,0) D.(5,-1)
12.若两直线y =x+2k 与y =2x+k+1的交点P 在圆x 2+2=4的内部,则k 的范围是( )
5
1
<k <-1
5
1
<k <1
3
1
<k <1 <k <2
二、填空题
13.圆x 2+y 2+ax=0(a≠0)的圆心坐标和半径分别是 .
14.若实数x,y 满足x 2+y 2-2x+4y =0,则x-2y 的最大值是 .
15.若集合A={(x 、y )|y =-|x |-2},B={(x,y )|(x-a)2+y 2=a 2}满足A∩B=ϕ,则实数a 的取值范围是 .
16.过点M(3,0)作直线l 与圆x 2+y 2=16交于A 、B 两点,当θ= 时,使△AOB 的面积最大,最大值为 (O 为原点).
三、解答题
17.求圆心在直线2x-y -3=0上,且过点(5,2)和(3,-2)的圆的方程.
18. 过圆(x -1)2+(y -1)2=1外一点P(2,3),向圆引两条切线切点为A 、B. 求经过两切点的直线l 方程.
19. 已知圆0242
2
=++-+m y x y x 与y 轴交于A 、B 两点,圆心为P ,若
︒=∠90APB .
求m 的值.
20.已知直角坐标平面内点Q(2,0),圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0),求动点M 的轨迹方程,并说明轨迹是什么曲线.
21. 自点A (-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射光线m 所在直线与圆C :x 2 + y 2 -4x -4y +7 = 0相切,求光线L 、m 所在的直线方程.
22. 已知圆C :04422
2
=-+-+y x y x ,是否存在斜率为1的直线L ,使L 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线L 的方程,若不存在说明理由.
参考答案:
13.(- 2
a
,0), 2a (2+1)<a <2(2+1)
16.θ=arccot22 或π-arccot22, 8
17.(x-2)2+(y -1)2=10 +4y +1=0或4x+3y -1=0 ;
18. 解:设圆(-1)2+(y -1)2=1的圆心为1O ,由题可知,以线段P 1O 为直径的圆与与圆1
O 交于AB 两点,线段AB 为两圆公共弦,以P 1O 为直径的圆方程
5)20()2
3
(22=-+-y x ①
已知圆1O 的方程为(x-1)2+(y -1)2=1 ② ①②作差得x+2y -
4
1
=0, 即为所求直线l 的方程。
19. 解:由题设△APB 是等腰直角三角形,∴圆心到y 轴的距离是圆半径的2
2倍,将圆方程
02422=++-+m y x y x 配方得:m y x -=++-5)1()2(22.
圆心是P(2,-1),半径r=m -5 ∴225⋅=-m 解得m= -3.
20.解:M 的轨迹方程为(λ2-1)(x 2+y 2)-4λ2x+(1+4x 2)=0,
当λ=1时,方程为直线x=
4
5.
当λ≠1时,方程为(x-1222-λλ)2+y 2=2
22
)1(31-+λλ它表示圆, 该圆圆心坐标为(1222
-λλ,0)半径为1
3122-+λλ
21. 解1:.已知圆的标准方程是,1)2()2(22=-+-y x 它关于x 轴 的对称圆的方程为 ,1)2()2(22=++-y x 设光线L 所在的直
线方程是y -3=k(x+3),由题设知对称圆的圆心)2,2(1-C 到这条直线 的距离为1,即,012251211552
2
=++⇒=++=
k k k
k d 解得
3
4
k 43-=-=或k .故所求入射光线L 所在的直线方程为:
033y 4x 0343=++=-+或y x 。
这时反射光线所在直线的
斜率为3
4
k 4311==或k ,所以所求反射光线m 3x -4y -3=0或4x -3y +3=0. 解2:已知圆的标准方程是,1)2()2(22=-+-y x 设光线L 所在的直线方程是y -3=k(x +3),
由题设知0≠k ,于是L 的反射点的坐标是)0,)
1(3(k k +-,由于入射角等于反射角,所以
反射光线m 所在的直线方程为:0)1(3),)
1(3(=+++⇒++-=k kx y k
k x k y ,这条直线应与
已知圆相切,故圆心到直线的 距离为1,即,0122512115522
=++⇒=++=
k k k k d 以下同
解1.
22. 解:圆C 化成标准方程为:2223)2()1(=++-y x
假设存在以AB 为直径的圆M ,圆心M 的坐标为(a ,b ) 由于CM ⊥L ,∴k CM ?k L =-1 ∴k CM =11
2-=-+a b ,
即a +b+1=0,得b= -a -1 ①
直线L 的方程为y -b=x --,即x -y +b -a =0 ∴ CM=2
3+-a b
∵以AB 为直径的圆M 过原点,∴OM MB MA == 2
)3(92
222+--=-=a b CM CB MB ,222b a OM +=
∴222
2)
3(9b a a b +=+--
② 把①代入②得 0322=--a a ,∴12
3-==a a 或 当2
5,2
3-==b a 时此时直线L 的方程为:x -y -4=0;当0,1=-=b a 时此时直线L 的方
程为:x -y +1=0
故这样的直线L 是存在的,方程为x -y -4=0 或x -y +1=0.。