初中数学 4.5 相似三角形同步练习(1)及答案
相似三角形同步辅导试题答案
相似三角形同步辅导1 学海导航相似图形基础知识主要包括:2.相似多边形概念对应角相等,且对应边成比例的两个多边形叫做相似多边形.三角对应相等,且三边对应成比例的两个三角形叫做相似三角形.3、三角形相似的条件两个三角形只要满足:两边对应成比例,且夹角相等;三边对应成比例;两角对应相等;有一直角边与斜边对应成比例.这四项中的一项,这两个三角形就相似。
4.相似三角形性质相似三角的对应角相等,对应边成比例.对应角平分线,高,中线,周长的比都等于相似比,对应面积的比等于相似比的平方。
图形的相似错例分析图形的相似是初中几何的重点内容之一。
许多同学由于对图形的相似理解不透彻,在解决问题时出错较多。
为帮助同学们在解题时减少失误,本文就易错情况做简要例析。
1.如图,在矩形、锐角三角形、正五边形、直角三角形的外边加一个宽度一样的外框,保证外框的边与原图形的对应边平行,则外框与原图一定相似的有( ) A、1个B 、2个 C 、3个 D 、4个错解:选D正解:左图中的两个矩形不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件;锐角三角形和直角三角形相似,因为其三个角均相等,三条边均对应成比例,符合相似的条件;两个正五边形相似,因为它们的边长、对应角等所有元素都对应成比例,符合相似的条1. 比例的基本性质件. 故选C .点拨:边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形. A 、10 B 、8 C 、-8 D. D、±8 错解:∵线段c 是a 、b 的比例中项, ∴c 2=ab=64, 解得c=±8,正解:∵线段c 是a 、b 的比例中项, ∴c 2=ab=64, 解得c=±8,又∵线段是正数, ∴c=8. 故选B . 在某幅地图上,AB 两地距离8.5cm ,实际距离为170km ,则比例尺为( A 、1:20B 、1:20000C 、1:200000D 、1:2000000 解:∵170KM=17000000CM ,∴比例尺=8.5:17000000=1:2000000. 故选D . 5.如图,在梯形ABCD 中,∠A=90°,AB=7,AD=2,BC=3, 如果直线AB 上的点P 使得以P 、A 、D 为顶点的三角形与以P 、A 、2B 、-1C 、2或-1D 、不存在2.错解:正解:点拨:应错解:正点拨:4:B、C 为顶点的三角形相似,那么这样的点P 有几 个?错解:这样的点P 有 4个。
初三数学相似三角形典例及练习(含答案)
初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是:1。
理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割.2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。
3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。
4. 能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。
本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。
相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。
(二)重要知识点介绍: 1。
比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。
把线段AB 分成两条线段AC 和BC,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
2. 比例性质: ①基本性质:a b cdad bc =⇔= ②合比性质:±±a b c d a b b c d d=⇒= ③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()03。
平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。
则,,,…AB BC DE EF AB AC DE DF BC AC EFDF===②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
相似三角形 同步练习(含答案)
4.5相似三角形一、目标导航1.相似三角形的定义:三角对应相等,三边对应成比例的两个三角形叫做相似三角形; 2.相似三角形的对应角相等,对应边成比例. 二、基础过关1.如果两个三角形的相似比为1,那么这两个三角形________.2.若△ABC ∽△A /B /C /相似,一组对应边的长为AB =3 cm ,A /B /= 4 cm ,那么△A /B /C /与△ABC 的相似比是________.3.若△ABC 的三条边长的比为3∶5∶6,与其相似的另一个△A 'B 'C '的最小边长为12 cm ,那么△A 'B 'C '的最大边长是________.4.两个三角形相似,其中一个三角形两个内角分别是006040、,那么另一个三角形的最大角为 度,最小角为 度.三、能力提升5.已知△ABC 的三条边长分别为3 cm ,4 cm , 5 cm ,△ABC ∽△A /B /C /,那么△A /B /C /的形状是______,又知△A /B /C /的最大边长为20 cm ,那么△A /B /C /的面积为________. 6.如图,△ABC ∽△ADE ,AE =3,EC =5,DE =1.2,则BC 的长度为 . 7.下列说法正确的是( )A .相似三角形一定全等B .不相似的三角形不一定全等C .全等三角形不一定是相似三角形D .全等三角形一定是相似三角形 8.下列命题错误的是( )A .两个全等的三角形一定相似B .两个直角三角形一定相似C .两个相似三角形的对应角相等,对应边成比D .相似的两个三角形不一定全等 9.若△ABC ∽△DEF ,它们的周长分别为6 cm 和8 cm ,那么下式中一定成立的 是( )A .3AB =4DE B .4AC =3DEC .3∠A =4∠D D .4(AB +BC +AC )=3(DE +EF +DF ) 10.若△ABC ∽△A /B /C /,∠A =55°,∠B =100°,那么∠C /的度数是( ) A .55°B .100°C .25°D .不能确定6题EDCBA11.把△ABC 的各边分别扩大为原来的3倍得到△A ′B ′C ′,下列结论不成立的是( ) A .△ABC ∽△A ′B ′C ′ B .△ABC 与△A ′B ′C ′的各对应角相等 C .△ABC 与△A ′B ′C ′的相似比为41D .△ABC 与△A ′B ′C ′的相似比为3112.已知△ABC 的三边长分别为2,6,2,△A ′B ′C ′的两边长分别是1和3,如果△ABC 与△A 'B 'C '相似,那么△A 'B 'C '的第三边长应该是 ( ) A .2 B .22 C .26 D .33 13.一个钢筋三角架三 长分别为20cm ,50cm ,60cm ,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有 ( )A .一种B .两种C .三种D .四种14.△ABC 中,AB =12 cm ,BC =18 cm ,AC =24 cm ,若△A /B /C /∽△ABC ,且△A /B /C /的周长为81 cm .求△A /B /C /各边的长.四、聚沙成塔如图,分别取等边三角形ABC 各边的中点D 、E 、F ,得△DEF .若△ABC 的边长为a . ⑴△DEF 与△ABC 相似吗?如果相似,相似比是多少? ⑵分别求出这两个三角形的面积.⑶这两个三角形的面积比与边长之比有什么关系吗?FEDCBA参考答案1.全等;2.4:3;3.24cm ;4.80,40;5.直角三角形,96cm 2;6.3.2;7.D ;8.B ;9.D ;10.C ;11.C ;12.A ;13.B ;14.A /B /=18cm ,B /C /=27cm ,A /C /=36cm ;15.⑴相似,1:2.⑵分别为43a 2和163a 2. ⑶面积之比等于边长之比的平方.。
浙教版九年级数学上册同步练习(PDF)版):4.5 相似三角形的性质及其应用
.
12. 同一时刻阳光下,哥哥的身高是 1.68m,在地面上的影子长是 2.1m,同一时刻测得弟弟的影子 m. 为, ������������ , ������ʹ������ʹ 分别是它们的对应角平分线, ������������ = 6cm ,则
14. 如图,为了测量学校旗杆的高度,小东用长为 3.2m 的竹竿做测量工具,移动竹竿,旗杆顶端的 影子恰好落在地面的同一点,此时,竹竿与这一点相距 8m ,与旗杆相距 22m ,旗杆的高度 为 m.
A. ������1
B. ������2
C. ������3
D. ������4
9. 如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为 1m 的竹竿的影长是 0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影 子落在教学楼的墙壁上,她先测得留在墙壁上的影高为 1.2m,又测得地面的影长为 2.6m,请你 帮她算一下,树高是
A. 3
4
B.
24 5
C. 3 或
4
24 5
D. 3 或 )
2
12 5
4. 小明在测量楼高时,先测出 楼房落在地面上的影长 ������������ 为 15 米(如图所示),然后在 ������ 处竖立 一根高 2 米的标杆,测得标杆的影长 ������������ 为 3 米,则楼高为 (
A. 10 米
A. 2 影长度 ( )
1
B. 3
1
C. 8
1
D. 9
1
7. 如图,路灯距地面 8 米,身高 1.6 米的小明从点 ������ 处沿 ������������ 所在的直线行走 14m 到点 ������ 时,人
北师大版九年级数学上册--第四章4.5《相似三角形判定定理的证明》同步练习题(含答案)
4.5《相似三角形判定定理的证明》同步练习一、选择题1.下列语句正确的是( )A.在△ABC 和△A ´B ´C ´中,∠B=∠B ´=90°,∠A=30°,∠C ´=60°,则⊿ABC 和⊿A ´B ´C ´不相似;B.在⊿ABC 和⊿A ´B ´C ´中,AB=´5,BC=7,AC=8,A ´C ´=16,B ´C ´=14,A ´B ´=10,则⊿ABC ∽⊿A ´B ´C ´;C.两个全等三角形不一定相似;D.所有的菱形都相似2.如图,在正三角形ABC 中,D 、AC AD E 分别在AC 、AB 上,且=31,AE =BE ,则有( ) A.△AED ∽△BED B.△AED ∽△CBD C.△AED ∽△ABD D.△BAD ∽△BCD( 3题 ) (4题)3.已知:如图,∠ADE =∠ACD =∠ABC ,图中相似三角形共有( )A.1对B.2对C.3对D.4对4.三角形三边之比为3:5:7,与它相似的三角形的最长边为21cm,则其余两边之和为( )A.32cmB.24cmC.18cmD.16cm5.如图33-7,已知∠C =∠E ,则不一定能使△ABC ∽△ADE 的条件是 ( )A .∠BAD =∠CAEB .∠B =∠D C.BC DE =AC AE D.AB AD =AC AE图33-7 图33-86.如图33-8,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =14CD ,下列结论:①∠BAE =30°,②△ABE ∽△AEF ,③AE ⊥EF , ④△ADF ∽△ECF .其中正确的个数为( )A .1B .2C .3D .4二、填空题7. 已知一个三角形三边长是6cm ,7.5cm ,9cm ,另一个三角形的三边是8cm ,10cm ,12cm ,则这两个三角形 (填相似或不相似)8. 如图,平行四边形ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,则该平行四边形的面积是_____________。
九年级数学相似三角形经典题(含答案)
相似三角形经典习题教师版例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,如果2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 下列命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似. (3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,并且点D 、点E 和ABC ∆的一个顶点组成的小三角形与ABC ∆相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m ).例8 格点图中的两个三角形是否是相似三角形,说明理由.例9 根据下列各组条件,判定ABC ∆和C B A '''∆是否相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A . (2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长分别为5、12、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.例14.如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确定BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),并且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)如果有一个正方形的边在AB 上,另外两个顶点分别在AC ,BC 上,求这个正方形的面积.相似三角形经典习题答案例1. 解 ①、⑤、⑥相似,②、⑦相似,③、④、⑧相似例2. 解 ABCD 是平行四边形,∴CD AB CD AB =,//,∴AEF ∆∽CDF ∆,又2:1:=EB AE ,∴3:1:=CD AE ,∴AEF ∆与CDF ∆的周长的比是1:3. 又)cm (6,)31(22==∆∆∆AEF CDF AEF S S S ,∴)cm (542=∆CD F S . 例3 分析 由于ABD ∆∽ACE ∆,则CAE BAD ∠=∠,因此DAE BAC ∠=∠,如果再进一步证明AECAAD BA =,则问题得证.证明 ∵ABD ∆∽ACE ∆,∴CAE BAD ∠=∠.又DAC BAD BAC ∠+∠=∠ ,∴CAE DAC DAE ∠+∠=∠, ∴DAE BAC ∠=∠.∵ABD ∆∽ACE ∆,∴AEACAD AB =. 在ABC ∆和ADE ∆中,∵AEACAD AB ADE BAC =∠=∠,,∴ABC ∆∽ADE ∆ 例4.分析 (1)不正确,因为在直角三角形中,两个锐角的大小不确定,因此直角三角形的形状不同.(2)也不正确,等腰三角形的顶角大小不确定,因此等腰三角形的形状也不同. (3)正确.设有等腰直角三角形ABC 和C B A ''',其中︒='∠=∠90C C ,则︒='∠=∠︒='∠=∠45,45B B A A ,设ABC ∆的三边为a 、b 、c ,C B A '''∆的边为c b a '''、、, 则a c b a a c b a '=''='==2,,2,,∴a ac c b b a a '=''=',,∴ABC ∆∽C B A '''∆. (4)也正确,如ABC ∆与C B A '''∆都是等边三角形,对应角相等,对应边都成比例,因此ABC ∆∽C B A '''∆.答:(1)、(2)不正确.(3)、(4)正确. 例5.解:画法略.例6.分析 本题所叙述的内容可以画出如下图那样的几何图形,即60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=CE 米,求BC .由于ADF ∆∽ACAF EC DF AEC =∆,,又ACF ∆∽ABC ∆,∴BC GFEC DF =,从而可以求出BC 的长.解 EC DF EC AE //,⊥ ,∴EAC DAF AEC ADF ∠=∠∠=∠,,∴ADF ∆∽AEC ∆.∴ACAFEC DF =. 又EC BC EC GF ⊥⊥,,∴ABC AGF ACB AFG BC GF ∠=∠∠=∠,,//, ∴AGF ∆∽ABC ∆,∴BC GF AC AF =,∴BCGFEC DF =.又60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=EC 米,∴6=BC 米.即电线杆的高为6米. 例7.分析 根据物理学定律:光线的入射角等于反射角,这样,BCA ∆与MNA ∆的相似关系就明确了.解 因为MAN BAC AN MN CA BC ∠=∠⊥⊥,,,所以BCA ∆∽MNA ∆.所以AC AN BC MN ::=,即5.1:206.1:=MN .所以3.215.1206.1≈÷⨯=MN (m ). 说明 这是一个实际应用问题,方法看似简单,其实很巧妙,省却了使用仪器测量的麻烦.例8.分析 这两个图如果不是画在格点中,那是无法判断的.实际上格点无形中给图形增添了条件——长度和角度.解 在格点中BC AB EF DE ⊥⊥,,所以︒=∠=∠90B E , 又4,2,2,1====AB BC DE EF .所以21==BC EF AB DE .所以DEF ∆∽ABC ∆. 说明 遇到格点的题目一定要充分发现其中的各种条件,勿使遗漏.例9.解 (1)因为7128cm 4cm ,7117.5cm 2.5cm ,7124.5cm 3.5cm ==''==''==''A C CA C B BC B A AB ,所以ABC ∆∽C B A '''∆; (2)因为︒=∠-∠-︒=∠41180B A C ,两个三角形中只有A A '∠=∠,另外两个角都不相等,所以ABC ∆与C B A '''∆不相似;(3)因为12,=''='''∠=∠C B BC B A AB B B ,所以ABC ∆相似于C B A '''∆. 例10.解 (1)ADE ∆∽ABC ∆ 两角相等; (2)ADE ∆∽ACB ∆ 两角相等;(3)CDE ∆∽CAB ∆ 两角相等; (4)EAB ∆∽ECD ∆ 两边成比例夹角相等; (5)ABD ∆∽ACB ∆ 两边成比例夹角相等; (6)ABD ∆∽ACB ∆ 两边成比例夹角相等.例11.分析 有一个角是65°的等腰三角形,它的底角是72°,而BD 是底角的平分线,∴︒=∠36CBD ,则可推出ABC ∆∽BCD ∆,进而由相似三角形对应边成比例推出线段之间的比例关系.证明 AC AB A =︒=∠,36 ,∴︒=∠=∠72C ABC . 又BD 平分ABC ∠,∴︒=∠=∠36CBD ABD .∴BC BD AD ==,且ABC ∆∽BCD ∆,∴BC CD AB BC ::=,∴CD AB BC ⋅=2,∴CD AC AD ⋅=2.说明 (1)有两个角对应相等,那么这两个三角形相似,这是判断两个三角形相似最常用的方法,并且根据相等的角的位置,可以确定哪些边是对应边.(2)要说明线段的乘积式cd ab =,或平方式bc a =2,一般都是证明比例式,b dc a =,或caa b =,再根据比例的基本性质推出乘积式或平方式.例12分析 由ABC ∆的三边长可以判断出ABC ∆为直角三角形,又因为ABC ∆∽C B A '''∆,所以C B A '''∆也是直角三角形,那么由C B A '''∆的最大边长为26,可以求出相似比,从而求出C B A '''∆的两条直角边长,再求得C B A '''∆的面积.解 设ABC ∆的三边依次为,13,12,5===AB AC BC ,则222AC BC AB += ,∴︒=∠90C .又∵ABC ∆∽C B A '''∆,∴︒=∠='∠90C C .212613==''=''=''B A AB C A AC C B BC , 又12,5==AC BC ,∴24,10=''=''C A C B . ∴12010242121=⨯⨯=''⨯''=C B C A S .例13.分析 判断方法是否可行,应考虑利用这种方法加之我们现有的知识能否求出旗杆的高.按这种测量方法,过F作AB FG ⊥于G ,交CE 于H ,可知AGF ∆∽EHF ∆,且GF 、HF 、EH 可求,这样可求得AG ,故旗杆AB 可求.解 这种测量方法可行.理由如下:设旗杆高x AB =.过F 作AB FG ⊥于G ,交CE 于H (如图).所以AGF ∆∽EHF ∆.因为3,30327,5.1==+==HF GF FD ,所以5.1,25.15.3-==-=x AG EH .由AGF ∆∽EHF ∆,得HF GF EH AG =,即33025.1=-x ,所以205.1=-x ,解得5.21=x (米) 所以旗杆的高为21.5米.说明 在具体测量时,方法要现实、切实可行. 例14. 解:︒=∠=∠∠=∠90,ECD ABC EDC ADB ,∴ABD ∆∽ECD ∆,1006050120,=⨯=⨯==CD EC BD AB CD BD EC AB (米),答:两岸间AB 大致相距100米. 例15. 答案:1506=AB 米,30750=BD 步,(注意:AK FEFHKE AK CD DG KC ⋅=⋅=,.) 例16. 分析:要求BC 的长,需画图来解,因AB 、AC 都大于高AD ,那么有两种情况存在,即点D 在BC 上或点D 在BC 的延长线上,所以求BC 的长时要分两种情况讨论.求正方形的面积,关键是求正方形的边长. 解:(1)如上图,由AD ⊥BC ,由勾股定理得BD =3,DC =1,所以BC =BD +DC =3+1=4. 如下图,同理可求BD =3,DC =1,所以BC =BD -CD =3-1=2.(2)如下图,由题目中的图知BC =4,且162)32(2222=+=+AC AB ,162=BC ,∴222BC AC AB =+.所以△ABC 是直角三角形.由AE G F 是正方形,设G F =x ,则FC =2-x , ∵G F ∥AB ,∴AC FC AB GF =,即2232xx -=. ∴33-=x ,∴3612)33(2-=-=AEG F S 正方形. 如下图,当BC =2,AC =2,△ABC 是等腰三角形,作CP ⊥AB 于P ,∴AP =321=AB ,在Rt △APC 中,由勾股定理得CP =1, ∵GH ∥AB ,∴△C GH ∽△CBA ,∵x x x -=132,32132+=x ∴121348156)32132(2-=+=GFEH S 正方形 因此,正方形的面积为3612-或121348156-.相似三角形 一,比例线段 1, 成比例线段对于四条线段a ,b ,c ,d ,如果其中两条线段的长度的比等于另外两条线段的比,如b a =dc(或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。
4.4相似三角形的定义及判定(第1课时)同步练习(含答案)
4探索三角形相似的条件第1课时利用两角的关系判定三角形相似关键问答①相似三角形的性质有哪些?1.①如图4-4-1,已知△ABC∽△DEF,则x等于()图4-4-1A.40°B.60°C.80°D.80°或60°2.如图4-4-2,D,E,F,G四点在△ABC的边上,其中DG与EF相交于点H.若∠ABC=∠EFC=70°,∠ACB=60°,∠DGB=40°,则下列哪一组三角形相似()图4-4-2A.△BGD,△CEF B.△ABC,△CEFC.△ABC,△BGD D.△FGH,△ABC3.如图4-4-3,已知△ABC与△ADE相似,且∠B=∠ADE,则下列比例式正确的是()图4-4-3A.AD∶AC=DE∶BC B.AE∶BE=AD∶DCC.AE∶AB=AD∶AC D.AE∶AC=AD∶AB命题点1利用两角分别相等判定两三角形相似[热度:93%]4.②如图4-4-4,P为线段AB上一点,AD分别交BC,PC于点E,G,BC交PD于点F,∠CPD=∠A=∠B,则图中相似三角形有()图4-4-4A.1对B.2对C.3对D.4对方法点拨②根据相似三角形的定义可知:若△ABC∽△A′B′C′,△A′B′C′∽△A″B″C″,则△ABC∽△A″B″C″,即三角形相似具有传递性.5.③·株洲如图4-4-5所示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.(1)求证:△DAE≌△DCF;(2)求证:△ABG∽△CFG.图4-4-5解题突破③由正方形和等腰直角三角形我们可以得到哪些线段相等,哪些角相等?命题点2根据两三角形相似进行计算[热度:90%]6.④[·毕节]如图4-4-6,在△ABC中,D为AB边上一点,且∠BCD=∠A,已知BC =2 2,AB=3,则BD=________.图4-4-6方法点拨④在写相似表达式时要像写全等表达式那样,对应顶点的字母写在对应的位置上,这样也有利于正确写出边的比例式,保证结果正确.7.⑤将三角形纸片ABC按如图4-4-7所示的方式折叠,使点C落在AB边上的点D 处,折痕为EF.已知AB=AC=3,BC=4,若以点B,D,F为顶点的三角形与△ABC相似,则CF的长是________.图4-4-7易错警示⑤注意根据对应顶点分类讨论.8.⑥·六盘水如图4-4-8,在▱ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F.若CD=5,BC=8,AE=2,则AF=________.图4-4-8解题突破⑥作平行线构造“A”字形图的相似三角形.命题点3有关相似三角形的存在性问题[热度:80%]9.⑦如图4-4-9,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过点P作PF⊥AE于点F.(1)求证:△PF A∽△ABE.图4-4-9(2)当点P在射线AD上运动时,设P A=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由.易错警示⑦注意x的值可能不止一个.10.⑧如图4-4-10①,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,O是AC边上一点,连接BO交AD于点F,OE⊥OB交BC于点E.(1)求证:△ABF∽△COE;(2)当O 为AC 边的中点,AC AB =2时,如图②,求OFOE 的值;(3)当O 为AC 边的中点,AC AB =n 时,请直接写出OFOE的值.图4-4-10方法点拨⑧求线段的比时常借助相似三角形的性质,当比例式中的线段不能构成相似形时,可考虑利用等量代换的方法求解.详解详析【关键问答】①相似三角形的性质:对应角相等、对应边成比例.1.C[解析] ∵△ABC∽△DEF,∴∠B=∠E.∵∠B=80°,∴∠E=x=80°.故选C.2.B[解析] ∵∠ABC=∠EFC=70°,∴EF∥AB,∴△ABC∽△EFC,故B正确;在△BDG中,∠B=70°,∠DGB=40°,则∠GDB=70°;在△ABC中,∠B=70°,∠ACB=60°,则∠A=50°,∴△ABC,△CEF与△BGD不相似,故A,C错误;∵EF∥AB,∴△FGH∽△BGD;∵△BGD与△ABC不相似,∴△FGH与△ABC不相似,故D错误.故选B.3.D[解析] 由∠B=∠ADE可知△ABC∽△ADE,∴AE∶AC=AD∶AB.故选D.4.C[解析] 在△PCF和△BCP中,∵∠CPF=∠B,∠C为公共角,∴△PCF∽△BCP;在△APD和△PGD中,∵∠GPD=∠A,∠D为公共角,∴△APD∽△PGD;∵△APD∽△PGD,∴∠APD=∠PGD,∴∠BPF=∠AGP.又∵∠A=∠B,∴△AGP∽△BPF.共有3对相似三角形.故选C.5.证明:(1)由正方形ABCD及等腰直角三角形DEF,可知∠ADC=∠EDF=90°,AD =CD,DE=DF,∴∠ADE+∠ADF=∠ADF+∠CDF,∴∠ADE=∠CDF.在△DAE和△DCF中,DE=DF,∠ADE=∠CDF,AD=CD,∴△DAE≌△DCF.(2)延长BA交ED于点M,如图所示.∵△DAE≌△DCF,∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF.∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF.∵∠EAM=∠BAG,∴∠BAG=∠BCF.又∵∠AGB=∠CGF,∴△ABG∽△CFG.6.83[解析] ∵∠BCD=∠A,∠ABC=∠CBD,∴△ABC∽△CBD,∴BCBD=ABBC,即2 2BD=32 2,∴3BD=8,∴BD=83.7.127或2[解析] 因为△ABC沿EF折叠后点C和点D重合,所以FD=CF.设CF=x,则BF=4-x,若以点B,D,F为顶点的三角形与△ABC相似,分两种情况:①若∠BFD=∠C,则FDBF=ACBC,即x4-x=34,解得x=127;①若∠BFD=∠A,则FDBF=ACAB,即x4-x=1,解得x=2.综上所述,CF的长为127或2.8.169[解析] 如图,过点O作OM∥AD交AB于点M.∵四边形ABCD是平行四边形,∴OB=OD,∴MO是△ABD的中位线,∴AM=BM=12AB=52,MO=12BC=4.∵AF∥OM,∴△AEF∽△MEO,∴AEME=AFMO,即22+52=AF4,∴AF=169.9.[解析] (1)在△PF A与△ABE中,易得∠P AF=∠AEB及∠PF A=∠ABE=90°,故可得△PF A∽△ABE;(2)分两种情况列出关系式.解:(1)证明:∵四边形ABCD 是正方形, ∴AD ∥BC ,∴∠P AF =∠AEB . 又∵∠PF A =∠ABE =90°, ∴△PF A ∽△ABE .(2)若△EFP ∽△ABE ,,如图① 则∠PEF =∠EAB ,∴PE ∥AB , ∴四边形ABEP 为矩形, ∴P A =BE =2,即x =2;若△PFE ∽△ABE ,如图②, 则∠PEF =∠AEB .∵∠P AF =∠AEB ,∴∠PEF =∠P AF , ∴PE =P A .∵PF ⊥AE ,∴F 为AE 的中点. ∵AE =AB 2+BE 2=2 5, ∴EF =12AE = 5.∵PE AE =EF EB ,即PE 2 5=52, ∴PE =P A =5,即x =5. ∴满足条件的x 的值为2或5.10.[解析] (1)要求证△ABF ∽△COE ,只要证明∠BAF =∠C ,∠ABF =∠COE 即可. (2)作OH ⊥AC ,交BC 于点H ,易证△OF A 和△OEH 相似,根据相似三角形的对应边的比相等,即可得出所求的值.(3)同(2)可得,OFOE=n .解:(1)证明:∵AD ⊥BC ,∴∠DAC +∠C =90°. ∵∠BAC =90°,∴∠BAD +∠DAC =90°, ∴∠BAD =∠C .∵OE ⊥OB ,∴∠BOA +∠COE =90°. 又∵∠BOA +∠ABF =90°, ∴∠ABF =∠COE . ∴△ABF ∽△COE .(2)如图,过点O 作AC 的垂线交BC 于点H ,则OH ∥AB .由(1)得∠ABF =∠COE ,∠BAF =∠C , ∴∠AFB =∠OEC , ∴∠AFO =∠HEO .又∵∠BAF =∠C ,∠BAF +∠F AO =∠C +∠EHO =90°, ∴∠F AO =∠EHO ,∴△OF A ∽△OEH ,∴OF OE =OAOH .又∵O 为AC 的中点,OH ∥AB , ∴OH 为△ABC 的中位线, ∴OH =12AB ,OA =OC =12AC .而AC AB =2,∴OA OH =2,∴OF OE=2. (3)OF OE=n .。
初中数学经典相似三角形练习题附参考答案
经典练习题相似三角形(附答案)一.解答题(共30小题)1.如图,在△中,∥,∥,求证:△∽△.2.如图,梯形中,∥,点F在上,连与的延长线交于点G.(1)求证:△∽△;(2)当点F是的中点时,过F作∥交于点E,若6,4,求的长.3.如图,点D,E在上,且∥,∥.求证:△∽△.4.如图,已知E是矩形的边上一点,⊥于F,试说明:△∽△.5.已知:如图①所示,在△和△中,,,∠∠,且点B,A,D在一条直线上,连接,,M,N分别为,的中点.(1)求证:①;②△是等腰三角形;(2)在图①的基础上,将△绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长交线段于点P.求证:△∽△.6.如图,E是▱的边延长线上一点,连接,交于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△和△的顶点都在边长为1的小正方形的顶点上.(1)填空:∠°,;(2)判断△与△是否相似,并证明你的结论.8.如图,已知矩形的边长3,6.某一时刻,动点M从A点出发沿方向以1的速度向B点匀速运动;同时,动点N从D点出发沿方向以2的速度向A点匀速运动,问:(1)经过多少时间,△的面积等于矩形面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形中,若∥,,对角线、把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△中,D为上一点,2,∠45°,∠60°,⊥于E,连接.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△与△的面积之比.11.如图,在△中,,M为底边上的任意一点,过点M分别作、的平行线交于P,交于Q.(1)求四边形的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于的什么位置时,四边形为菱形并证明你的结论.12.已知:P是正方形的边上的点,且3,M是的中点,试说明:△∽△.13.如图,已知梯形中,∥,2,8,10.(1)求梯形的面积S;(2)动点P从点B出发,以1的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1的速度,沿C⇒D⇒A方向,向点A运动,过点Q作⊥于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线将梯形的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形,长12,宽8,P、Q分别是、上运动的两点.若P自点A 出发,以1的速度沿方向运动,同时,Q自点B出发以2的速度沿方向运动,问经过几秒,以P、B、Q为顶点的三角形与△相似?15.如图,在△中,10,20,点P从点A开始沿边向B点以2的速度移动,点Q从点B开始沿边向点C以4的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△与△相似.16.如图,∠∠90°,,2.问当的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形中,M是的中点,能否在边上找一点N(不含A、B),使得△与△相似?若能,请给出证明,若不能,请说明理由.18.如图在△中,∠90°,8,6,点Q从B出发,沿方向以2的速度移动,点P从C出发,沿方向以1的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△相似?19.如图所示,梯形中,∥,∠90°,7,2,3,试在腰上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△和△是两个等腰直角三角形,∠∠90°,△的顶点E位于边的中点上.(1)如图1,设与交于点M,与交于点N,求证:△∽△;(2)如图2,将△绕点E旋转,使得与的延长线交于点M,与交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形中,15,10,点P沿边从点A开始向B以2的速度移动;点Q沿边从点D开始向点A以1的速度移动.如果P、Q同时出发,用t (秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O 点)20米的A点,沿所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在下图中画出测量示意图;(3)设树高的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80的竹竿的影长为60.乙组:如图2,测得学校旗杆的影长为900.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200,影长为156.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离8.7m,窗口高1.8m,求窗口底边离地面的高.26.如图,李华晚上在路灯下散步.已知李华的身高,灯柱的高′P′,两灯柱之间的距离′.(1)若李华距灯柱的水平距离,求他影子的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和()是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S123.(1)如图②,分别以直角三角形三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△∽△,15,9,5.求.29.已知:如图△∽△,若3,4.(1)求、的长;(2)过B作⊥于E,求的长.30.(1)已知,且34z﹣240,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△中,∥,∥,求证:△∽△.考点:相似三角形的判定;平行线的性质。
浙教版九年级数学上册:4.5 相似三角形的性质及应用 同步练习(含答案)
4.5 相似三角形的性质及其应用一.填空题1.(2019•奉贤区一模)联结三角形各边中点,所得的三角形的周长与原三角形周长的比是.2.(2019•南关区一模)利用标杆CD测量建筑物的高度的示意图如图所示,若标杆CD的高为1.5米,测得DE=2米,BD=18米,则建筑物的高AB为米.3.(2019•曲阜市二模)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,BD 足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为.4.(2019春•广陵区校级期末)如图,∠ACB=90°,CD是Rt△ABC斜边上的高,已知AB=25cm,BC=15cm,则BD=.5.(2019春•滨湖区期末)如图,平行四边形ABCD中,点E为BC边上一点,AE和BD交于点F,已知△ABF的面积等于6,△BEF的面积等于4,则四边形CDFE的面积等于.二.选择题(共10小题)6.(2019春•海州区校级月考)若P是Rt△ABC斜边BC上异于B,C的一点,过点P作直线截△ABC,截得的三角形与原△ABC相似,满足这样条件的直线有()条.A.1 B.2 C.3 D.47.(2018秋•嘉兴期末)如图,有一块三角形余料ABC,BC=120mm,高线AD=80mm,要把它加工成一个矩形零件,使矩形的一边在BC上,点P,M分别在AB,AC上,若满足PM:PQ=3:2,则PM的长为()A.60mm B.mm C.20mm D.mm8.(2019•新乐市二模)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》.意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB、AD中点,EG⊥AB,FH⊥AD,EG=15里,HG经过A点,则FH=()A.1.2 里B.1.5 里C.1.05 里D.1.02 里9.(2018春•南票区期末)如图,在平行四边形ABCD中,O1、O2、O3分别是对角线BD上的三点,且BO1=O1O2=O2O3=O3D,连接AO1并延长交BC于点E,连接EO3并延长交AD于点F,则AF:DF等于()A.19:2 B.9:1 C.8:1 D.7:110.(2018秋•秀洲区期末)如图,点G是△ABC的重心,下列结论中正确的个数有()①=;②=;③△EDG∽△CBG;④=.A.1个B.2个C.3个D.4个11.若△ABC∽△DEF,且S△ABC:S△DEF=3:4,则△ABC与△DEF的周长比为()A.3:4 B.4:3 C.:2 D.2:12.(2018秋•道里区期末)如图,△ABC∽△ADE,且BC=2DE,则的值为()A.B.C.D.13.(2018秋•南岗区校级月考)两个相似三角形的一组对应边的长分别是15和23,它们周长的差是40,则这两个三角形的周长分别为()A.75,115 B.60,100 C.85,125 D.45,8514.(2019•毕节市)如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.100cm2B.150cm2C.170cm2D.200cm215.(2018秋•襄州区期末)如图是小明设计用手电筒来测量某古城墙高度的示意图.在地面上点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=18米,那么该古城墙的高度是()A.6米B.8米C.12米D.24米三.解答题16.(2019•余杭区二模)如图,在△ABC中,AD、BE是中线,它们相交于点F,EG∥BC,交AD于点G.(1)求证:△FGE∽△FDB;(2)求的值.17.(2018秋•梁溪区校级期中)(1)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,点P是边AB上一点,若△PAD∽△CBP,请利用没有刻度的直尺和圆规,画出满足条件的所有点P;(2)在(1)的条件下,若AB=8,AD=3,BC=4,则AP的长是.18.(2018秋•德清县期末)如图,点C,D在线段AB上,CD2=AC•DB,且△PCD是等边三角形.(1)证明:△ACP∽△PDB;(2)求∠APB的度数.19.(2018秋•昌图县期末)如图,路灯(点P)距地面6m,身高1.5m的学生小明从路灯的底部点O处,沿射线OH走到距路灯底部9m的点B处,此时小明的身影为BN,接着小明走到点N处,此时的身影为AM.求学生小明的身影长度变长了多少米.(小明如图中BD、AC所示)20.(2018秋•番禺区期末)如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,设EG=xmm,EF=ymm.(1)写出x与y的关系式;(2)用S表示矩形EGHF的面积,某同学说当矩形EGHF为正方形时S最大,这个说法正确吗?说明理由,并求出S的最大值.参考答案一.填空题1.(2019•奉贤区一模)联结三角形各边中点,所得的三角形的周长与原三角形周长的比是1:2.【思路点拨】根据D、E、F分别是AB、BC、AC的中点,求证△DEF∽△ABC,然后利用相似三角形周长比等于相似比,可得出答案.【答案】解:如图,∵D、E、F分别是AB、BC、AC的中点,∴DE=AC,DF=BC,EF=AB,∴DE+DF+EF=AC+BC+AB,∵△DEF∽△ABC,∴所得到的△DEF与△ABC的周长之比是:1:2.故答案为:1:2.【点睛】此题考查了相似三角形的判定与性质和三角形中位线定理的理解和掌握,解答此题的关键是利用了相似三角形周长比等于相似比.2.(2019•南关区一模)利用标杆CD测量建筑物的高度的示意图如图所示,若标杆CD的高为1.5米,测得DE=2米,BD=18米,则建筑物的高AB为15米.【思路点拨】根据同一时刻同一地点物高与影长成正比列式求得CD的长即可.【答案】解:∵AB∥CD,∴△EBA∽△ECD,∴=,即=,∴AB=15(米).故答案为:15.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出直角三角形,难度不大.3.(2019•曲阜市二模)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,BD 足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为0.4m.【思路点拨】由∠ABO=∠CDO=90°、∠AOB=∠COD知△ABO∽△CDO,据此得=,将已知数据代入即可得.【答案】解:∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO=90°,又∵∠AOB=∠COD,∴△ABO∽△CDO,则=,∵AO=4m,AB=1.6m,CO=1m,∴=,解得:CD=0.4,∴栏杆C端应下降的垂直距离CD为0.4m.故答案为:0.4.【点睛】本题主要考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定与性质.4.(2019春•广陵区校级期末)如图,∠ACB=90°,CD是Rt△ABC斜边上的高,已知AB=25cm,BC=15cm,则BD=9cm.【思路点拨】根据相似三角形的判定和性质即可得到结论.【答案】解:∵CD⊥AB,∴∠CDB=∠ACB=90°,∵∠B=∠B,∴△ACB∽△CDB,∴,∴,解得:BD=9cm,故答案为:9cm.【点睛】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.5.(2019春•滨湖区期末)如图,平行四边形ABCD中,点E为BC边上一点,AE和BD交于点F,已知△ABF的面积等于6,△BEF的面积等于4,则四边形CDFE的面积等于11.【思路点拨】利用三角形面积公式得到AF:FE=3:2,再根据平行四边形的性质得到AD∥BE,S△ABD=S△CBD,则可判断△AFD∽△EFB,利用相似的性质可计算出S△AFD=9,所以S△ABD=S△CBD=15,然后用△BCD的面积减去△BEF的面积得到四边形CDFE的面积.【答案】解:∵△ABF的面积等于6,△BEF的面积等于4,即S△ABF:S△BEF=6:4=3:2,∴AF:FE=3:2,∵四边形ABCD为平行四边形,∴AD∥BE,S△ABD=S△CBD,∴△AFD∽△EFB,∴=()2=()2=,∴S△AFD=×4=9,∴S△ABD=S△CBD=6+9=15,∴四边形CDFE的面积=15﹣4=11.故答案为11.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的性质.二.选择题6.(2019春•海州区校级月考)若P是Rt△ABC斜边BC上异于B,C的一点,过点P作直线截△ABC,截得的三角形与原△ABC相似,满足这样条件的直线有()条.A.1 B.2 C.3 D.4【思路点拨】过点P作直线与另一边相交,使所得的三角形与原三角形有一个公共角,只要再作一个直角就可以.【答案】解:由于△ABC是直角三角形,过P点作直线截△ABC,则截得的三角形与△ABC有一公共角,所以只要再作一个直角即可使截得的三角形与Rt△ABC相似,过点P可作AB的垂线、AC的垂线、BC的垂线,共3条直线.故选:C.【点睛】本题主要考查三角形相似判定定理及其运用.解题时运用了两角法(有两组角对应相等的两个三角形相似)来判定两个三角形相似.7.(2018秋•嘉兴期末)如图,有一块三角形余料ABC,BC=120mm,高线AD=80mm,要把它加工成一个矩形零件,使矩形的一边在BC上,点P,M分别在AB,AC上,若满足PM:PQ=3:2,则PM的长为()A.60mm B.mm C.20mm D.mm【思路点拨】利用相似三角形的性质构建方程即可解决问题.【答案】解:如图,设AD交PN于点K.∵PM:PQ=3:2,∴可以假设MP=3k,PQ=2k.∵四边形PQNM是矩形,∴PM∥BC,∴△APM∽△ABC,∵AD⊥BC,BC∥PM,∴AD⊥PN,∴=,∴=,解得k=20mm,∴PM=3k=60mm,故选:A.【点睛】本题考查相似三角形的应用,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.8.(2019•新乐市二模)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》.意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB、AD中点,EG⊥AB,FH⊥AD,EG=15里,HG经过A点,则FH=()A.1.2 里B.1.5 里C.1.05 里D.1.02 里【思路点拨】首先根据题意得到△GEA∽△AFH,然后利用相似三角形的对应边的比相等列出比例式求得答案即可.【答案】解:如图所示:∵EG⊥AB,FH⊥AD,HG经过A点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴=.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴=,解得:FH=1.05里.故选:C.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形.9.(2018春•南票区期末)如图,在平行四边形ABCD中,O1、O2、O3分别是对角线BD上的三点,且BO1=O1O2=O2O3=O3D,连接AO1并延长交BC于点E,连接EO3并延长交AD于点F,则AF:DF等于()A.19:2 B.9:1 C.8:1 D.7:1【思路点拨】根据题意,易得△BO3E∽△DO3F和△BO1E∽△DO1A,利用相似的性质得出DF:BE的值,再求出BE:AD的值,进而求出AF:DF.【答案】解:根题意,在平行四边形ABCD中,易得△BO3E∽△DO3F∴BE:FD=3:1∵△BO1E∽△DO1A∴BE:AD=1:3∴AD:DF=9:1∴AF:DF=(AD﹣FD):DF=(9﹣1):1=8:1故选:C.【点睛】考查了平行四边形的性质,对边相等.利用相似三角形三边成比例列式,求解即可.10.(2018秋•秀洲区期末)如图,点G是△ABC的重心,下列结论中正确的个数有()①=;②=;③△EDG∽△CBG;④=.A.1个B.2个C.3个D.4个【思路点拨】根据三角形的重心的概念和性质得到AE,CD是△ABC的中线,根据三角形中位线定理得到DE∥BC,DE=BC,根据相似三角形的性质定理判断即可.【答案】解:∵点G是△ABC的重心,∴AE,CD是△ABC的中线,∴DE∥BC,DE=BC,∴△DGE∽△BGC,∴=,①正确;=,②正确;△EDG∽△CBG,③正确;=()2=,④正确,故选:D.【点睛】本题考查的是三角形的重心的概念和性质,相似三角形的判定和性质,三角形中位线定理,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.11.若△ABC∽△DEF,且S△ABC:S△DEF=3:4,则△ABC与△DEF的周长比为()A.3:4 B.4:3 C.:2 D.2:【思路点拨】由△ABC∽△DEF,S△ABC:S△DEF=3:4,根据相似三角形的面积比等于相似比的平方,即可求得答案.【答案】解:∵△ABC∽△DEF,S△ABC:S△DEF=3:4,∴△ABC与△DEF的相似比为::2,∴△ABC与△DEF的周长比为::2.故选:C.【点睛】此题考查了相似三角形的性质.注意相似三角形面积的比等于相似比的平方.12.(2018秋•道里区期末)如图,△ABC∽△ADE,且BC=2DE,则的值为()A.B.C.D.【思路点拨】根据相似三角形的性质解答即可.【答案】解:∵△ABC∽△ADE,且BC=2DE,∴,∴,故选:B.【点睛】此题考查相似三角形的性质,关键是根据相似三角形的面积之比等于相似比的平方解答.13.(2018秋•南岗区校级月考)两个相似三角形的一组对应边的长分别是15和23,它们周长的差是40,则这两个三角形的周长分别为()A.75,115 B.60,100 C.85,125 D.45,85【思路点拨】根据两个相似三角形的对应边的长,可求出它们的相似比,也就求出了它们的周长比,再根据它们的周长差为40,即可求出两三角形的周长.【答案】解:∵两相似三角形的一组对应边为15和23,∴两相似三角形的周长比为15:23,设较小的三角形的周长为15a,则较大三角形的周长为23a,依题意,有:23a﹣15a=40,a=5,∴15a=75,23a=115,因此这两个三角形的周长分别为75,115.故选:A.【点睛】本题考查对相似三角形性质的理解:相似三角形周长的比等于相似比.14.(2019•毕节市)如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.100cm2B.150cm2C.170cm2D.200cm2【思路点拨】设AF=x,根据正方形的性质用x表示出EF、CF,证明△AEF∽△ABC,根据相似三角形的性质求出BC,根据勾股定理列式求出x,根据三角形的面积公式、正方形的面积公式计算即可.【答案】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∴△AEF∽△ABC,∴==,∴BC=6x,在Rt△ABC中,AB2=AC2+BC2,即302=(3x)2+(6x)2,解得,x=2,∴AC=6,BC=12,∴剩余部分的面积=×12×6﹣4×4=100(cm2),故选:A.【点睛】本题考查的是相似三角形的应用、正方形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.15.(2018秋•襄州区期末)如图是小明设计用手电筒来测量某古城墙高度的示意图.在地面上点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=18米,那么该古城墙的高度是()A.6米B.8米C.12米D.24米【思路点拨】因为小明和古城墙均和地面垂直,且光线的入射角等于反射角,因此构成一组相似三角形,利用对应边成比例即可解答.【答案】解:由题意知:∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴=,∴CD==12(米).故选:C.【点睛】本题考查了相似三角形的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问.三.解答题16.(2019•余杭区二模)如图,在△ABC中,AD、BE是中线,它们相交于点F,EG∥BC,交AD于点G.(1)求证:△FGE∽△FDB;(2)求的值.【思路点拨】(1)由GE∥BC,可得出∠GEF=∠DBF,再结合对顶角相等即可得出△FGE∽△FDB;(2)根据三角形中位线定理以及中线的定义得出GE=BD、AG=DG,再利用相似三角形的性质得出DF=DG,进而即可得出=.【答案】(1)证明:∵GE∥BC,∴∠GEF=∠DBF.又∵∠GFE=∠DFB,∴△FGE∽△FDB;(2)∵AD、BE是中线,EG∥BC,∴GE为△ADC的中位线,BD=DC,∴GE=DC=BD,AG=DG.∵△FGE∽△FDB,∴==,∴DF=DG,∴==.【点睛】本题考查了相似三角形的判定与性质、三角形中线的定义以及中位线定理,解题的关键是:(1)由GE(2)根据相似三角形的性质结合中位线定理得出DF=DG、∥BC利用相似三角形的判定定理证出△EGF∽△BDF;AG=DG.17.(2018秋•梁溪区校级期中)(1)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,点P是边AB上一点,若△PAD∽△CBP,请利用没有刻度的直尺和圆规,画出满足条件的所有点P;(2)在(1)的条件下,若AB=8,AD=3,BC=4,则AP的长是2或6.【思路点拨】(1)先作CD中垂线得出CD的中点,再以中点为圆心,CD为半径作圆,与AB的交点即为所求;(2)证△APD∽△BPC得=,即=,解之可得.【答案】解:(1)如图所示,点P1和点P2即为所求.(2)∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=180°﹣∠B=90°,∴∠PAD=∠PBC=90°.∴∠ADP+∠APD=90°,由(1)知,∠CPD=90°,∴∠APD+∠BPC=90°,∴∠ADP=∠BPC,∴△APD∽△BPC,∴=,即=,解得:AP=2或AP=6.故答案为:2或6.【点睛】本题主要考查作图﹣相似变换,解题的关键是掌握线段中垂线的尺规作图及圆周角定理,相似三角形的判定与性质等知识点.18.(2018秋•德清县期末)如图,点C,D在线段AB上,CD2=AC•DB,且△PCD是等边三角形.(1)证明:△ACP∽△PDB;(2)求∠APB的度数.【思路点拨】(1)根据PC=PD=CD,以及CD2=AC•DB,可得,又∠ACP=∠PDB,则△ACP∽△PDB;(2)根据(1)的结论求出∠APC+∠BPD度数,最后加上∠CPD度数即可.【答案】(本小题8分)解:(1)∵△PCD是等边三角形,∴∠PCD=∠PDC=60°,∴∠ACP=∠PDB=120°,∵CD2=AC•DB,由PC=PD=CD可得:PC•PD=AC•DB,即,∴△ACP∽△PDB;(2)∵△ACP∽△PDB,∴∠APC=∠PBD.∵∠PDB=120°,∴∠DPB+∠DBP=60°,∴∠APC+∠BPD=60°.∴∠APB=∠CPD+∠APC+∠BPD=120°.【点睛】本题主要考查了相似三角形的判定和性质、等边三角形的判定和性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.19.(2018秋•昌图县期末)如图,路灯(点P)距地面6m,身高1.5m的学生小明从路灯的底部点O处,沿射线OH走到距路灯底部9m的点B处,此时小明的身影为BN,接着小明走到点N处,此时的身影为AM.求学生小明的身影长度变长了多少米.(小明如图中BD、AC所示)【思路点拨】根据相似三角形的性质解答即可.【答案】解:由题意知,∠PON=∠DBN=90°,△PON∽△DBN∴又∵OB=9∴BN=3,OA=12由题意知,∠POM=∠CAM=90°,△POM∽△CAM∴又∵OA=12∴AM=4,OM=16∴身影长BN=3,AM=4,AM﹣BN=4﹣3=1∴小明的身影长度变长了1米.【点睛】此题考查相似三角形的应用,关键是根据相似三角形的性质解答.20.(2018秋•番禺区期末)如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,设EG=xmm,EF=ymm.(1)写出x与y的关系式;(2)用S表示矩形EGHF的面积,某同学说当矩形EGHF为正方形时S最大,这个说法正确吗?说明理由,并求出S的最大值.【思路点拨】(1)证明△AEF∽△ABC,利用相似比得到=,从而得到y与x的关系式;(2)计算矩形的面积S=xy=﹣x2+120x,则S=﹣(x﹣40)2+2400,根据二次函数的性质得到当x=40时,S有最大值2400,由于y=60,此时矩形不为正方形,所以这个同学的说法错误.【答案】解:(1)易得四边形EGDK为矩形,则KD=EG=x,∴AK=AD﹣DK=80﹣x,∵EF∥BC,∴△AEF∽△ABC,∴=,即=,∴y=﹣x+120(0<x<80);(2)这个同学的说法错误.理由如下:S=xy=﹣x2+120x=﹣(x﹣40)2+2400,当x=40时,S有最大值2400,此时y=﹣×40+120=60,即矩形EGHF的长为60mm,宽为40mm时,矩形EGHF的面积最大,最大值为2400mm2,此时矩形不为正方形,所以这个同学的说法错误.【点睛】本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,用相似三角形对应边的比相等的性质求相应线段的长.也考查了二次函数的性质和矩形的性质.。
中考数学 相似三角形专题训练(含答案)
2020中考数学相似三角形专题训练(含答案)一、选择题:1. 如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是( )A.B.C.D.﹣答案:D.2.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是( )A.=B.=C.=D.=答案:C3. 如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①=;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是( )A.①②③④ B.①④ C.②③④D.①②③答案D.4.如图,矩形ABCD中,AE⊥BD于点E,CF平分∠BCD,交EA的延长线于点F,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD;②∠DBC=30°;③AE=;④AF=2,其中正确结论的个数有( )A.1个B.2个C.3个D.4个答案C.二、填空题:5.已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO= .答案:4.6. 在△ABC在,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE= 时,以A、D、E为顶点的三角形与△ABC相似.答案:或.7.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为.故答案为113°或92°.8.如图,四边形ABCD中,AD∥BC,CM是∠BCD的平分线,且CM⊥AB,M为垂足,AM= AB.若四边形ABCD的面积为,则四边形AMCD的面积是.答案:1.9. (2017内江)如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=,则CE= .答案:.10.如图,在▱ABCD中,∠B=30°,AB=AC,O是两条对角线的交点,过点O作AC的垂线分别交边AD,BC于点E,F,点M是边AB的一个三等分点,则△AOE与△BMF的面积比为.故答案为3:4.三、解答题:11.如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠BDE=180°﹣∠B﹣∠DEB,∠CEF=180°﹣∠DEF﹣∠DEB,∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF;(2)∵△BDE∽△CEF,∴,∵点E是BC的中点,∴BE=CE,∴,∵∠DEF=∠B=∠C,∴△DEF∽△CEF,∴∠DFE=∠CFE,∴FE平分∠DFC.12.如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.【解答】证明:①∵正方形ABCD,等腰直角三角形EDF,∴∠ADC=∠EDF=90°,AD=CD,DE=DF,∴∠ADE+∠ADF=∠ADF+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF;②延长BA到M,交ED于点M,∵△ADE≌△CDF,∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF,∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF,∵∠EAM=∠BAG,∴∠BAG=∠BCF,∵∠AGB=∠CGF,∴△ABG∽△CFG.13. 如图,在▱ABCD中过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=,求AF的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∴∠C=∠AFB,∴△ABF∽△BEC;(2)解:∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°,在Rt△ABE中,根据勾股定理得:BE===4,在Rt△ADE中,AE=AD•sinD=5×=4,∵BC=AD=5,由(1)得:△ABF∽△BEC,∴,即,解得:AF=2.∵△ADF∽△DEC,14. 在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交DC于点E,M为AB的中点,连接MD,ME.(1)如图1,当∠ADC=90°时,线段MD与ME的数量关系是 MD=ME ;(2)如图2,当∠ADC=60°时,试探究线段MD与ME的数量关系,并证明你的结论;(3)如图3,当∠ADC=α时,求的值.【解答】解:(1)如图1,延长EM交AD于F,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME,∴AF=BE,MF=ME,∵DA=DC,∠ADC=90°,∴∠BED=∠ADC=90°,∠ACD=45°,∵∠ACB=90°,∴∠ECB=45°,∴∠EBC=∠BED﹣∠ECB=45°=∠ECB,∴CE=BE,∴AF=CE,∵DA=DC,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∴∠MDE=45°,∴MD=ME,故答案为MD=ME;(2)MD=ME,理由:如图2,延长EM交AD于F,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME,∴AF=BE,MF=ME,∵DA=DC,∠ADC=60°,∴∠BED=∠ADC=60°,∠ACD=60°,∵∠ACB=90°,∴∠ECB=30°,∴∠EBC=∠BED﹣∠ECB=30°=∠ECB,∴CE=BE,∴AF=CE,∵DA=DC,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∴∠MDE=30°,在Rt△MDE中,tan∠MDE=,∴MD=ME.(3)如图3,延长EM交AD于F,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME,∴AF=BE,MF=ME,延长BE交AC于点N,∴∠BNC=∠DAC,∵DA=DC,∴∠DCA=∠DAC,∴∠BNC=∠DCA,∵∠ACB=90°,∴∠ECB=∠EBC,∴CE=BE,∴AF=CE,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∵∠ADC=α,∴∠MDE=,在Rt△MDE中,=tan∠MDE=tan.15. (1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE 是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为 AD=AB+DC ;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E 是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE 上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF;(3)AB=(CF+DF),证明:如图③,延长AE交CF的延长线于点G,∵AB∥CF,∴△AEB∽△GEC,∴==,即AB=CG,∵AB∥CF,∴∠A=∠G,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=CG=(CF+DF).。
2021-2022学年浙教版九年级数学上册《4-5相似三角形的性质及应用》解答题专题训练(附答案)
2021-2022学年浙教版九年级数学上册《4.5相似三角形的性质及应用》解答题专题训练(附答案)1.如图,BE为△ABC的高,请用尺规作图法在BC边上求作一点F,使得△ACF∽△BCE.(保留作图痕迹,不写作法)2.如图,在△ABC中,请用尺规作图法,在AB边上找一点D,使△ACD∽△ABC.(保留作图痕迹,不写作法)3.如图,在△ABC中,AB=AC,在BC边上利用尺规求作一点P使得△APB∽△BAC(不必写作法,保留作图痕迹).4.如图,∠ACB=∠CDB=90°,在线段CD上求作一点P,使△APC∽△CDB.(不写作法,保留作图痕迹)5.如图,△ABC中,P是线段AB上一点,尺规作图:在BC边上找一点D,使以P、D、B为顶点的三角形与△ABC相似(保留作图痕迹,不写作法)6.如图,已知:在正方形ABCD中,M是BC边上一定点,连接AM.请用尺规作图法,在AM上作一点P,使△DP A∽△ABM.(不写作法,保留作图痕迹)7.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)8.如图,已知锐角△ABC,点D是AB边上的一定点,请用尺规在AC边上求作一点E,使△ADE与△ABC相似.(作出符合题意的一个点即可,保留作图痕迹,不写作法.)9.“创新实践”小组想利用镜子与皮尺测量大树AB的高度,因大树底部有障碍物,无法直接测量到大树底部的距离.聪明的小颖借鉴《海岛算经》的测量方法设计出如图所示的测量方案:测量者站在点F处,将镜子放在点M处时,刚好看到大树的顶端,沿大树方向向前走2.8米,到达点D处,将镜子放在点N处时,刚好看到大树的顶端(点F,M,D,N,B在同一条直线上).若测得FM=1.5米,DN=1.1米,测量者眼睛到地面的距离为1.6米,求大树AB的高度.10.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=1m,窗高CD=1.5m,并测得OE=1m,OF=5m,求围墙AB的高度.11.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看一到位于A处的树木(即点D在直线AC上).12.如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度.(结果保留根号)13.小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上).已知小明的身高EF是1.7m,请你帮小明求出楼高AB.(结果精确到0.1m)14.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E 与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.15.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM 方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.16.周末,小凯和同学带着皮尺,去测量杨大爷家露台遮阳篷的宽度.如图,由于无法直接测量,小凯便在楼前地面上选择了一条直线EF,通过在直线EF上选点观测,发现当他位于N点时,他的视线从M点通过露台D点正好落在遮阳篷A点处;当他位于N′点时,视线从M′点通过D点正好落在遮阳篷B点处,这样观测到的两个点A、B间的距离即为遮阳篷的宽.已知AB∥CD∥EF,点C在AG上,AG、DE、MN、M′N′均垂直于EF,MN=M′N′,露台的宽CD=GE.测得GE=5米,EN=12.3米,NN′=6.2米.请你根据以上信息,求出遮阳篷的宽AB是多少米?(结果精确到0.01米)17.晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)18.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.19.某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?20.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯CD的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).21.在一次数学测验活动中,小明到操场测量旗杆AB的高度.他手拿一支铅笔MN,边观察边移动(铅笔MN始终与地面垂直).如示意图,当小明移动到D点时,眼睛C与铅笔、旗杆的顶端M、A共线,同时,眼睛C与它们的底端N、B也恰好共线.此时,测得DB=50m,小明的眼睛C到铅笔的距离为0.65m,铅笔MN的长为0.16m,请你帮助小明计算出旗杆AB的高度(结果精确到0.1m).参考答案1.解:如图,△ACF即为所求.2.解:如图,△ACD即为所求.3.解:如图所示:△APB∽△BAC,点P即为所求.4.解:如图所示,点P即为所求.5.解:如图所示:6.解:如图所示,点P即为所求:∵DP⊥AM,∴∠APD=∠ABM=90°,∵∠BAM+∠P AD=90°,∠P AD+∠ADP=90°,∴∠BAM=∠ADP,∴△DP A∽△ABM.7.解:如图,AD为所作.8.解:如图,点E即为所求作的点.9.解:设NB的长为x米,则MB=x+1.1+2.8﹣1.5=(x+2.4)米.由题意,得∠CND=∠ANB,∠CDN=∠ABN=90°,∴△CND∽△ANB,∴.同理,△EMF∽△AMB,∴.∵EF=CD,∴,即.解得x=6.6,∵,∴.解得AB=9.6.答:大树AB的高度为9.6米.10.解:延长OD,∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,设AB=EB=xm,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴=,∴=,解得:x=4.经检验:x=4是原方程的解.答:围墙AB的高度是4m.11.解:DH=100,DK=100,AH=15,∵AH∥DK,∴∠CDK=∠A,而∠CKD=∠AHD,∴△CDK∽△DAH,∴=,即=,∴CK=.答:出南门步恰好看一到位于A处的树木.12.解:过E作EF⊥BC,∵∠CDE=120°,∴∠EDF=60°,设EF为x,DF=x,∵∠B=∠EFC=90°,∵∠ACB=∠ECD,∴△ABC∽△EFC,∴,即,解得:x=9+2,∴DE=(米),答:DE的长度为(6+4)米.13.解:过点D作DG⊥AB,分别交AB、EF于点G、H,∵AB∥CD,DG⊥AB,AB⊥AC,∴四边形ACDG是矩形,∴EH=AG=CD=1.2,DH=CE=0.8,DG=CA=30,∵EF∥AB,∴,由题意,知FH=EF﹣EH=1.7﹣1.2=0.5,∴,解得,BG=18.75,∴AB=BG+AG=18.75+1.2=19.95≈20.0.∴楼高AB约为20.0米.14.解:∵BC∥DE,∴△ABC∽△ADE,∴=,∴=,∴AB=17(m),经检验:AB=17是分式方程的解,答:河宽AB的长为17米.15.解:由题意可得:∠ABC=∠EDC=∠GFH=90°,∠ACB=∠ECD,∠AFB=∠GHF,故△ABC∽△EDC,△ABF∽△GFH,则=,=,即=,=,解得:AB=99,答:“望月阁”的高AB的长度为99m.16.解:延长MM′交DE于H,如图,则HM=EN=12.3米,CD=GE=5米,MM′=NN′=6.2米,∵CD∥HM,∴∠ADC=∠DMH,∴Rt△ACD∽Rt△DHM,∴==,∵AB∥MM′,∴△ABD∽△MM′D,∴==,即=,解得AB≈2.52(米).答:遮阳篷的宽AB是2.52米.17.解:由题意得:∠CAD=∠MND=90°,∠CDA=∠MDN,∴△CAD∽△MND,∴,∴,∴MN=9.6(米),又∵∠EBF=∠MNF=90°,∠EFB=∠MFN,∴△EFB∽△MFN,∴,∴∴EB≈1.75(米),∴小军身高约为1.75米.18.解:由题意可得:△DEF∽△DCA,则=,∵DE=0.5米,EF=0.25米,DG=1.5m,DC=20m,∴=,解得:AC=10,故AB=AC+BC=10+1.5=11.5(m),答:旗杆的高度为11.5m.19.解:由题意得,∠BAD=∠BCE,∵∠ABD=∠CBE=90°,∴△BAD∽△BCE,∴=,∴=,解得BD=13.6.答:河宽BD是13.6米.20.方法一:解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA∴MA∥CD∥BN∴EC=CD=x∴△ABN∽△ACD,∴即解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米.方法二:解:连接MN,并延长交CD于点F,设DF=xm,则MN∥AB,AB=MN=1.25m,MF=AC,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA∴∠EMA=∠MDF=45°∴DF=MF=AC=xm,DC=DF+AM=x+1.75m,∵MF∥AC∴==,即=,解得:x=4.375m,∴DC=4.375+1.75=6.125m≈6.1m,∴路灯高CD约为6.1米.21.解:过点C作CF⊥AB,垂足为F,交MN于点E.则CF=DB=50,CE=0.65,(2分)∵MN∥AB,∴△CMN∽△CAB.∴=,(5分)∴AB==≈12.3.∴旗杆AB的高度约为12.3米.(8分)。
2021-2022学年北师大版九年级数学上册《4-5相似三角形判定定理的证明》同步练习(附答案)
2021-2022学年北师大版九年级数学上册《4.5相似三角形判定定理的证明》同步练习(附答案)1.如图,在△ABC中,点D、E、F分别在AB、AC、BC上,DE∥BC,DF∥AC.下列比例式中,正确的是()A.B.C.D.2.如图,在正方形ABCD中,点E,F,G分别在边BC,CD,DA上,四边形EFGH由两个正方形组成且AB=1,则线段BE的长为()A.﹣1B.3﹣C.D.3.如图,在△ABC中,点D在AB边上,若AD:AB=2:3,BC=3,∠ADC=∠ACB,则线段CD的长为()A.B.C.D.24.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,正方形CDEF的顶点E在线段AD上,G是边EF上一点,连接AG,记△AEG面积为S1,△CBD面积为S2,若EG=BD,S1+S2=16,则DE的长为()A.B.C.4D.85.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;其中正确结论的个数()A.1B.3C.2D.06.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(,0),顶点D的坐标为(0,),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,……,按这样的规律进行下去,第2021个正方形的边长为()A.B.C.D.7.如图,矩形ABCD中,E,F分别为CD,BC的中点,且AE⊥EF,BC=2,则AC的长为()A.B.2C.3D.28.如图平行四边形ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,若△DEG的面积是1,则五边形DABFG的面积是()A.11B.12C.D.9.平行四边形ABCD如图所示,E为AB上的一点,F、G分别为AC与DE、DB的交点.若AB:AE=3:2,则四边形BGFE与▱ABCD的面积之比为()A.7:60B.8:70C.5:43D.3:2610.如图,在△ACD中,AD=6,BC=5,AC2=AB(AB+BC),且△DAB∽△DCA,若AD =3AP,点Q是线段AB上的动点,则PQ的最小值是()A.B.C.D.11.如图,在平行四边形ABCD中,F是AD上一点,且AF=2FD,连接BF并延长交CD 的延长线于点G,则的值为()A.B.C.D.12.如图,平行四边形ABCD中,AB:BC=3:2,∠BAD和∠ABC的平分线交CD于E、F两点,AE、BF交于点G,则△EFG和△ABG面积的比值是.13.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,且D、E分别为BA、BC边上靠近点B的三等分点,则下列结论正确的是.A.DE:AC=1:3;B.OD:OC=1:2;C.S△BDE:S△CDE=1:2;D.S△DOE:S△AOC=1:4.14.如图,在平行四边形ABCD中,点E在边DC上,△DEF的面积与△BAF的面积之比为9:25,则DE:EC=.15.如图,△ABC中,AB=AC=3,BC=2,AD⊥BC于D,CE⊥AB于E,AD与CE相交于点P,则S△PDE:S△P AC=.16.如图,在锐角△ABC中,点E是AB边上一点,BE=CE,AD⊥BC于点D,AD与EC 交于点G.(1)求证:∠BEC=2∠AGE;(2)若=,求的值.17.如图,在正方形ABCD中,点G是对角线上一点,CG的延长线交AB于点E,交DA的延长线于点F,连接AG.(1)求证:AG=CG;(2)若GE•GF=9,求CG的长.18.如图,分别以△ABC的边AC和BC为腰向外作等腰直角△DAC和等腰直角△EBC,连接DE.(1)求证:△DAC∽△EBC;(2)求△ABC与△DEC的周长比.19.如图,矩形ABCD中,点E在BC上,AE⊥ED.(1)求证:△ABE∽△ECD;(2)F为AE延长线上一点,满足EF=AE,连接DF交BC于点G.若AB=2,BE=1,求GC的长.20.已知:如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,点F在边AB上,BC2=BF•BA,CF与DE相交于点G.(1)求证:△BCF∽△DGF;(2)求证:DF•AB=BC•DG;(3)当点E为AC中点时,求证:2DF•EG=AF•DG.21.如图,在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点,已知PE⊥EC.(1)求证:△AEP∽△DEC;(2)若AB=3,BC=4,求AP的长.22.如图,在平行四边形ABCD中,过点A向BC边作垂线,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AE=6,AD=6,AF=4,求AB的长.23.如图,在△ABC中,∠ACB=90°,CD是高,BE平分∠ABC.BE分别与AC,CD相交于点E,F.(1)求证:△AEB∽△CFB;(2)求证:;(3)若CE=5,EF=2,BD=6.求AD的长.24.如图所示,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上的一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若BC=4,AB=3,BE=3,求BF的长.25.如图1,点E是正方形ABCD对角线AC上的一点,连接EB,ED.(1)求证:∠ABE=∠ADE;(2)如图2,延长BE交AD于F,点G在BC上,连接FG交DE于点O,如果FB=FG,求证:DF•AB=BF•OD.26.如图,四边形ABCD是菱形,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F,连接CE.(1)求证:△ADE≌△CDE;(2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论.27.已知:如图,在△ABC中,点D在边BC上,AE∥BC,BE与AD、AC分别相交于点F、G,AF2=FG•FE.(1)求证:△CAD∽△CBG;(2)连接DG,求证:DG•AE=AB•AG;(3)若AB=AC=9,BC=6,点D是BC的中点,连接CE,求CE的长.参考答案1.解:∵DE∥BC,∴△ADE∽△ABC,∵DF∥AC,∴△BDF∽△BAC,∴=,=,=,=,∴≠,≠,≠,故选:C.2.解:由题意知,GF=2EF,∵四边形ABCD是正方形,∴∠D=∠C=∠B=90°,AB=BC=DC=1.∵∠DFG+∠CFE=∠CFE+∠CEF=90°,∴∠DFG=∠CEF,∴△DFG∽△CEF,∴=2,设BE=x,则CE=1﹣x,∴DF=2CE=2﹣2x,同理可得△CEF∽△BAE,∴,∴,∴CF=x﹣x2,∵CD=AB,∴2﹣2x+x﹣x2=1,解得x=(负值舍去),∴BE=.故选:D.3.解:过点D作DE∥BC,如图所示:∴∠ADE=∠ABC,∠A=∠A,∴△ADE∽△ABC,∴,∵AD:AB=2:3,BC=3,∴,∴DE=2,∵∠ADC=∠ACB,∠A=∠A,∴△ADC∽△ACB,∴,∠ACD=∠ABC,∴∠ADE=∠ACD,∴△ADE∽△ACD,∴,∴,∴CD2=BC•DE,∴CD2=3×2,解得:CD=.故选:C.4.解:∵CD⊥AB,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B,∴△ACD∽△CBD,∴=,∴CD2=AD•BD,∵四边形CDEF是正方形,∴CD=DE,∵△AEG面积=S1=AE•EG,△CBD面积=S2=BD•CD,且EG=BD,∴S1+S2=AE•EG+BD•CD=BD•(AE+CD)=BD•(AE+ED)=BD •AD=CD2=16,∴CD2=32,∴CD=4.∴DE=CD=4.故选:A.5.解:∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,,∴△DAP≌△ABQ(SAS),∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP,故结论①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴=,∴AO2=OD•OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP;故结论②错误;在△CQF与△BPE中,,∴△CQF≌△BPE(ASA),∴CF=BE,∴DF=CE,在△ADF与△DCE中,,∴△ADF≌△DCE(SAS),∴S△ADF=S△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故结论③正确;故选:C.6.解:根据题意,得:AD∥BC∥C1A2∥C2B2,∴∠BAA1=∠B1A1A2=∠B2A2x(两直线平行,同位角相等).∵∠ABA1=∠A1B1A2=90°,∴△BAA1∽△B1A1A2,∵顶点A的坐标为(,0),顶点D的坐标为(0,),∴OA=,OD=,在直角△ADO中,根据勾股定理,得:AD==1,∴AD=AB=1,∵cot∠DAO==,∵tan∠BAA1==cot∠DAO,∴BA1=AB=,∴CA1=1+=,同理,得:C1A2=+==()2,•第2021个正方形的边长为()2020,故选:B.7.解:∵四边形ABCD是矩形,∴AD=BC=2,∠D=90°,∴∠DAE+∠AED=90°,∵AE⊥EF,∴∠AEF=90°,∴∠DEA+∠CEF=90°,∴∠DAE=∠CEF,∴tan∠DAE=tan∠CEF,即,∵E,F分别为CD,BC的中点,∴DE=CE,CF=BC=1,∴DE2=AD•CF=2×1=2,∴DE=(﹣舍去),∴DC=2DE=2,在Rt△ADC中,根据勾股定理,得AC==2.故选:D.8.解:如图,连接BG,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠E=∠CFG,∵F为BC中点,∴FC=BC=AD,∵DE:AD=1:3,∴DE:BC=1:3,∴DE:CF=2:3,∵∠E=∠CFG,∠DGE=∠CGF,∴△DGE∽CGF,∴DG:CG=DE:CF=2:3,∴S△DEG:S△CFG=4:9=1:S△CFG,∴S△CFG=,取AD的中点Q,连接FQ,∴FQ∥DG,∴△EDG∽△EQF,∴DE:EQ=1:2.5=2:5,∴S△DEG:S△QEF=4:25=1:S△EQF,∴S△EQF=,∴S四边形DQFG=﹣1=,∴S四边形ABFQ=S四边形DQFG+S△CFG=+=,∴S五边形DABFG=+=.故选:D.9.解:∵AB:AE=3:2,∴BE:AB=1:3,∴S△DBE=S△ABD=S▱ABCD,∵四边形ABCD是平行四边形,∴AB∥CD,AG=GC,∴△AEF∽△CDF,∴,∴设AF=2a,CF=3a,∴AC=5a,∴AG=CG=a,∴FG=a,∴AG=5FG,∴S△DFG=S△ADG=S▱ABCD,∴S四边形BGFE=S△DBE﹣S△DFG=S▱ABCD,∴四边形BGFE与▱ABCD的面积之比为7:60,故选:A.10.解:∵△DAB∽△DCA,∴=,∴=,解得:BD=4(负值舍去),∵△DAB∽△DCA,∴,∴AC=,∵AC2=AB(AB+BC),∴(AB)2=AB(AB+BC),∴AB=4,∴AB=BD=4,过B作BH⊥AD于H,∴AH=AD=3,∴BH===,∵AD=3AP,AD=6,∴AP=2,当PQ⊥AB时,PQ的值最小,∵∠AQP=∠AHB=90°,∠P AQ=∠BAH,∴△APQ∽△ABH,∴,∴=,∴PQ=,故选:A.11.解:由AF=2FD,可以设DF=k,则AF=2k,AD=3k,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AFB=∠FBC=∠DFG,∠ABF=∠G,∴BE平分∠ABC,∴∠ABF=∠CBG,∴∠ABF=∠AFB=∠DFG=∠G,∴AB=CD=2k,DF=DG=k,∴CG=CD+DG=3k∵AB∥DG,∴△ABE∽△CGE,∴=.故选:C.12.解:∵AB:BC=3:2,∴设AB=3x,则BC=2x,在平行四边形ABCD中,∵AB∥DC,DC=AB=3x,AD=BC=2x,∴∠CFB=∠ABF,∵∠ABC的角平分线交CD于F,∴∠ABF=∠FBC,∴∠CFB=∠FBC,∴CF=CB=2x,同理可得:DE=AD=2x,∴EF=CF+DE﹣CD=2x+2x﹣3x=x,∵AD∥BC,∴△EFG∽△ABG,∴=()2=()2=()2=.故答案为:.13.解:∵DE∥AC,∴△BDE∽△BAC,△ODE∽△OCA,∴,,∵D、E分别为BA、BC边上靠近点B的三等分点,∴DE:AC=1:3,OD:OC=1:3,S△BDE:S△CDE=1:2,∴S△DOE:S△AOC=1:9.故答案为:AC.14.解:∵四边形ABCD是平行四边形,∴DC∥AB,∴△DEF∽△BAF,∴△DEF的面积与△BAF的面积之比等于相似比的平方,∵△DEF的面积与△BAF的面积之比为9:25,∴DE:AB=3:5,∴DE:EC=3:2.故答案为:3:2.15.解:∵AD⊥BC于D,CE⊥AB于E,∴∠CEB=∠ADB=90°,∵∠B=∠B,∴△CBE∽△ABD,∴,∴△BDE∽△BAC,∴=,∵AB=AC=3,BC=2,AD⊥BC,∴∠BAD=∠CAD,BD=CD=1,∴,∵CE⊥AB,∴∠ADB=∠CEB=90°,∴∠BAD+∠B=∠BCE+∠B=90°,∴∠BAD=∠BCE,∴∠BCE=∠CAD,∵∠BEC=90°,BD=CD,∴DE=CD,∴∠DCE=∠CED,∴∠CED=∠CAP,∴△PED∽△P AC,∴S△PDE:S△P AC=()2=,故答案为:.16.(1)证明:∵∠AGE=∠CGD,AD⊥BC,即∠GDC=90°,∴∠ECB=90°﹣∠CGD=90°﹣∠AGE,∵BE=CE,∴∠B=∠ECB=90°﹣∠CGD=90°﹣∠AGE,∴∠BEC=180°﹣∠B﹣∠ECB=180°﹣2(90°﹣∠AGE)=2∠AGE,∴∠BEC=2∠AGE;(2)如图,过点E作EF⊥BC交于点F,由(1)知∠BEC=2∠AGE,则∠BEC=∠AGE+∠EAG,∴∠AGE=∠EAG,则AE=EG,∵∠EFC=∠GDC,∠FCE=∠DCG,∴△EFC∽△GDC,∵,BE=BC,∴,,∵,∴,∵∠ABC=∠EBC,∠EFB=∠ADB=90°,∴△BEF∽△BAD,∴,∵,∴,∵AD=,GD=EF,∴AG=EF,∴=4.17.(1)证明:∵BD是正方形ABCD的对角线,∴∠ADB=∠CDB=45°,又AD=CD,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴AG=CG;(2)解:∵四边形ABCD是正方形,∴AD∥CB,∴∠FCB=∠F,由(1)可知△ADG≌△CDG,∴∠DAG=∠DCG,∴∠DAB﹣∠DAG=∠DCB﹣∠DCG,即∠BCF=∠BAG,∴∠EAG=∠F,又∠EGA=∠AGF,∴△AEG∽△F AG,∴,即GA2=GE•GF,∴GA=3或GA=﹣3(舍去),根据(1)中的结论AG=CG,∴CG=3.18.证明:(1)∵△DAC和△EBC是等腰直角三角形,∴∠DAC=∠EBC=90°,∠ACD=∠BCE=45°,∴△DAC∽△EBC;(2)根据(1)中的结论△DAC∽△EBC,∴,又∠BCE=∠ACD,∴∠BCE﹣∠ACE=∠ACD﹣∠ACE,即∠BCA=∠ECD,∴△ABC∽△DEC,∴=,∵△ADC是等腰直角三角形,∴=,∴△ABC与△DEC的周长比为.19.证明:(1)∵AE⊥DE,∴∠AED=90°=∠B=∠C,∴∠AEB+∠DEC=∠AEB+∠BAE,∴∠BAE=∠DEC,∴△ABE∽△ECD;(2)∵△ABE∽△ECD,∴,∴,∴EC=4,∵AE=EF,∠AED=90°,∴AD=DF,又∵∠AED=90°,∴∠ADE=∠FDE,∵AD∥BC,∴∠ADE=∠DEC=∠FDE,∴DG=EG,∵DG2=DC2+GC2,∴(4﹣GC)2=4+GC2,∴GC=.20.解:(1)∵DE∥BC,∴△BCF∽△DGF.(2)∵BC2=BF•BA,∴BC:BF=BA:BC,而∠ABC=∠CBF,∴△BAC∽△BCF,由(1)知△BCF∽△DGF,∴△DGF∽△BAC,∴DF:BC=DG:BA,∴DF•AB=BC•DG.(3)作AH∥BC交CF的延长线于H,如图:∵DE∥BC,∴AH∥DE,∵点E为AC的中点,∴AH=2EG,∵AH∥DG,∴△AHF∽△DGF,∴=,∴=,即2DF•EG=AF•DG21.证明:(1)∵AE⊥BD,PE⊥EC,∴∠AED=∠PEC=90°,∴∠AEP=∠DEC,∵∠EAD+∠ADE=90°,∠ADE+∠CDE=90°,∴∠EAP=∠EDC,∴△AEP∽△DEC;(2)在Rt△ADE和Rt△BAE中,∠AEB=∠AED=90°,又∵∠DAE+∠BAE=90°,∠DAE+∠ADE=90°,∴∠BAE=∠ADE,∴△AEB∽△DEA,∴,由(1)知,△AEP∽△DEC,∴,即,∴AP=.22.证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,AD=BC,∴∠ADE=∠DEC,∠B+∠C=180°,∵∠AFE=∠B,∠AFE+∠AFD=180°,∴∠C=∠AFD,∴△ADF∽△DEC;(2)解:∵AE⊥BC,BC∥AD,∴∠DAE=90°,∴DE===12,∵△ADF∽△DEC,∴,∴CD==8,∴AB=8.23.(1)证明:∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD为AB边上的高,∴∠ADC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∴△AEB∽△CFB.(2)证明:∵∠ABE=∠CBE,∠A=∠BCD,∴∠CFE=∠BCD+∠CBE=∠A+∠ABE,∵∠CEF=∠A+∠ABE,∴∠CEF=∠CFE,∴CE=CF,∵△AEB∽△CFB,∴=,∴=.(3)解:如图,作CH⊥EF于H.∵CE=CF,CH⊥EF,∴EH=FH=,∴CH===2,由△BFD∽△CFH,∴=,∴DF=3,CD=CF+DF=8,由△ACD∽△CBD,∴=,∴=,∴AD=.24.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠BAF=∠AED,∠D+∠C=180°,∵∠AFB+∠BFE=180°,∠BFE=∠C,∴∠AFB+∠C=180°,∴∠D=∠AFB,∴△ABF∽△EAD;(2)解:∵AB∥CD,BE⊥CD,∴∠ABE=90°∵AB=3,BE=3,∴在Rt△ABE中,AE===6,∵△ABF∽△EAD,∴,∴BF=2.25.证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAE=∠DAE=45°.∵AE=AE,∴△ABE≌△ADE(SAS),∴∠ABE=∠ADE;(2)∵四边形ABCD是正方形,∴AD∥BC.∴∠DFO=∠FGB,∠BF A=∠FBG.∵FB=FG,∴∠FGB=∠FBG.∴∠DFO=∠BF A.∵∠ABE=∠ADE,∴△ODF∽△ABF.∴DF:BF=OD:AB,∴DF•AB=BF•OD.26.(1)证明:∵四边形ABCD是菱形,∴DA=DC,∠ADE=∠CDE,在△ADE和△CDE中,,∴△ADE≌△CDE(SAS);(2)FG=3EF,证明:由(1)知,△ADE≌△CDE,∴∠DAE=∠DCE,AE=CE,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAE=∠G,∴∠DCE=∠G,又∵∠CEF=∠GEC,∴△CEF∽△GEC,∴,∴CE2=EF•EG,∵AE=2EF,∴CE=2EF,∴(2EF)2=EF•EG,∴EG=4EF,∴FG=EG=EF=4EF﹣EF=3EF,即FG=3EF.27.(1)∵AF2=FG•FE,∴.又∵∠AFG=∠EF A,∴△F AG∽△FEA.∴∠F AG=∠E.∵AE∥BC,∴∠E=∠EBC.∴∠EBC=∠F AG.又∵∠ACD=∠BCG,∴△CAD∽△CBG.(2)∵△CAD∽△CBG,∴.又∵∠DCG=∠ACB,∴△CDG∽△CAB,∴.∵AE∥BC,∴.∴,∴,∴DG•AE=AB•AG.(3)∵AB=AC=9,BC=6,点D是BC的中点,∴BD=CD=BC=3,AD⊥BC,∵AE∥BC,∴AD⊥AE,∴∠CAD=∠EAC=90°,由(1)知,∠AEF=∠CAD,∴∠AEF+∠EAG=90°,∴∠AGE=90°,∴AC⊥BE,∵∠BGC=∠ADC=90°,∠BCG=∠ACD,∴△BCG∽△ACD,∴,∴CG=,∴AG=AC﹣CG=7,在Rt△BCG中,BG=,∵AE∥BC,∴△AEC∽△CBG,∴,∴EG=,在Rt△CGE中,CE=.。
初中数学经典相似三角形练习题(附参考答案)
经典练习题相似三角形(附答案)一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠A BC= _________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=135°°,BC= ;(2)判断△ABC与△DEC是否相似,并证明你的结论.BC==22、,可得BC=∵BC=EC=;∴,∴8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.面积的面积的则有:(×3×6,即面积的因此有①,或t=(t=t=都符合题意,同时出发后,经过秒或9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.P=,即相似三角形的证明.还考查了相似三角形的判定.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.CE=.AE=∴sin∠AEF=,∴AF=AE•sin∠AEF=∴.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.∴QM=PM=AB=12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.∴CM=MD=∴PC=BC=AD=∴.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.(AB=∴tan∠ADP=tan∠C==∴=,∴t=∴tan∠APD=tan∠C==,∴=∴t=∴t=t=时,△PAD∴PD=∵CE=t QE=t∴QH=BE=8﹣t t∴PH=t﹣t=t∴PQ=,,,>∴t=t=14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?时,有:;时,有:∴经过15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.=,即=,解得对应时,有=,即=16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.解:∵AC=∴CD==.要使这两个直角三角形相似,有两种情况:时,有=,∴AB==3时,有=,∴AB=.317.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.a①若△CDM∽△MAN,则=∴AN=②若△CDM∽△NAM,则AN=18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?或)当,∴x=;)当,∴x=.所以,经过秒或19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.∴=,∴=,∴=,∴=,∴=,∴AP=.AP=时,由BP=,∴=,、20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.∴∴中有21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.所以所以;=,即=,;=,即=,t=时,以点22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?∴,23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.∴∴,∴.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)∴,即与①类似得:∴∴,与①类似得:,∴,∴MN=r(25.(2007•白银)阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.AE∥BD,所以△ECA∽△DCB,则有∴∴26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.∵∴∴解得:.∴,,即.∴同理可得:,∴=)可知,即,同理可得:∴,由等比性质得:∴,所以人影顶端在地面上移动的速度为27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;。
初中数学经典相似三角形练习题(附参考答案)
经典练习题相似三角形(附答案)一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠A BC= _________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.通过窗口照射到室,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,华晚上在路灯下散步.已知华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.考点:相似三角形的判定;平行线的性质。
4.5《相似三角形判定定理的证明》课时练习(含解析)
北师大版数学九年级上册第4章第5节相似三角形判定定理的证明同步检测一、选择题1.如图,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.答案:B解析:解答:已知给出的三角形的各边AB、CB、AC分别为2、2、10,只有选项B的各边为1、2、5与它的各边对应成比例.故选:B.分析:首先求得△ABC三边的长,然后分别求得选项A,B,C,D各三角形的三边的长,最后根据三组对应边的比相等的两个三角形相似,即可求得答案.熟悉三组对应边的比相等的两个三角形相似定理是解答此题的关键.2.如图,点P是ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对答案:D解析:解答:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴△EAP∽△EDC,△EAP∽△CPB,∴△EDC∽△CBP,故有3对相似三角形.故选:D.分析:利用相似三角形的判定方法以及平行四边形的性质得出即可.熟练掌握相似三角形的判定方法是解答此题的关键.3.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.2AB AD AC=D.AD AB AB BC=答案:D解析:解答:A.∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,所以此选项不合题意;B.∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,所以此选项不合题意;C.∵2AB AD AC=,∴AD ABAB BC=,∠A=∠A,△ABC∽△ADB,所以此选项不合题意;D.AD ABAB BC=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.分析:根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出正确答案.此题考查了相似三角形的判定.4.下列条件中,能判定两个等腰三角形相似的是()A.都含有一个30︒的内角B.都含有一个45︒的内角C.都含有一个60︒的内角D.都含有一个80︒的内角答案:C解析:解答:因为选项A、B、D给出的角30︒,45︒,80︒可能是顶角也可能是底角,不对应,则不能判定两个等腰三角形相似;所以选项A,B,D错误;因为有一个60°的内角的等腰三角形是等边三角形,所有的等边三角形相似,所以选项C正确.故选:C.分析:若要判定两三角形相似,最常用的方法是找两对对应相等的角,而选项A、选项B、选项D都只能找到一对相等的角,只有选项C可以找出两对对应相等的角.5.下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形.其中一定相似的有()A.2组B.3组C.4组D.5组答案:A解析:解答:①不相似,因为没有指明相等的角或成比例的边;②不相似,因为只有一对角相等,不符合相似三角形的判定;③相似,因为其四个角均相等,四条边都相等,符合相似的条件;④不相似,虽然其四个角均相等,因为没有指明边的情况,不符合相似的条件;⑤不相似,因为菱形的角不一定对应相等,不符合相似的条件;⑥相似,因为两正五边形的角相等,对应边成比例,符合相似的条件;所以正确的有③⑥.故选:A.分析:根据相似多边形的判定定理对各个选项进行分析,确定最后答案.边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.6.如图,E为矩形ABCD的CD边延长线上一点,BE交AD于G,AF⊥BE于F,图中相似三角形的对数是()A.5B.7C.8D.10答案:D解析:解答:∵矩形ABCD∴AD∥BC,AB∥CD,∠DAB=∠ADE=90︒∴△EDG∽△ECB∽△BAG∵AF⊥BE∴∠AFG=∠BFA=∠DAB=∠ADE=90︒∵∠AGF=∠BGA,∠ABF=∠GBA∴△GAF∽△GBA∽△ABF∴△EDG∽△ECB∽△BAG∽△AFG∽△BFA∴共有10对故选:D.分析:根据已知及相似三角形的判定方法找出存在的相似三角形即可得到答案.此题考查了相似三角形的判定:如果两个三角形的三组对应边的比相等,那么这两个三角形相似;如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;如果两个三角形的两个对应角相等,那么这两个三角形相似;平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.7.如图,在△ABC中,P为AB上一点,则下列四个条件中,(1)∠ACP=∠B(2)∠APC=∠ACB(3)2=(4)AB•CP=AP•CB,AC AP AB其中能满足△APC和△ACB相似的条件有()A.1个B.2个C.3个D.4个答案:C解析:解答:(1)中,∠ACP=∠B,又有一公共角∠A,所以相似,(1)正确;(2)∠APC=∠ACB,且有一公共角∠A,(2)正确;(3)中AC2=AP•AB,∠A为其夹角,(3)正确;(4)中不是两组对应边成比例,夹角相等,所以(4)错误.故选:C.分析:两组对应角相等的三角形是相似三角形;两组对应边成比例且夹角相等两个三角形是相似三角形.由此可求出答案.8.如图,已知点P是不等边△ABC的边BC上的一点,点D在边AB或AC上,若由点P、D截得的小三角形与△ABC相似,那么D点的位置最多有()A.2处B.3处C.4处D.5处答案:C解析:解答:①△CPD与△CBA相似;此时△CPD与△CBA共用∠C,P点的位置有两个:∠CPD=∠B或∠CPD=∠A;②△BPD与△BCA相似;此时△CPD与△CBA共用∠B,P点的位置同样有两个:∠BPD=∠C或∠BPD=∠A;所以符合条件的D点位置最多有4处.故选:C.分析:先判断由点P、D截得的小三角形与△ABC有哪些相等的条件,再根据相似三角形的判定方法来判断符合条件的D点有几个.注意不要漏解.9.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90 ,AB=8,AD=3,BC=4,点P为AB 边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个答案:C解析:解答:∵AB ⊥BC , ∴∠B =90︒. ∵AD ∥BC ,∴∠A =180°-∠B =90︒, ∴∠PAD =∠PBC =90︒.AB =8,AD =3,BC =4, 设AP 的长为x ,则BP 长为8-x .若AB 边上存在P 点,使△PAD 与△PBC 相似,那么分两种情况: ①若△APD ∽△BPC ,则AP :BP =AD :BC ,即x :(8-x )=3:4,解得x =247; ②若△APD ∽△BCP ,则AP :BC =AD :BP ,即x :4=3:(8-x ),解得x =2或x =6. ∴满足条件的点P 的个数是3个, 故选:C .分析:因为∠PAD =∠PBC =90︒,所以要使△PAD 与△PBC 相似,分两种情况讨论:①△APD ∽△BPC ,②△APD ∽△BCP ,这两种情况都可以根据相似三角形对应边的比相等求出AP 的长,从而得到P 点的个数.进行分类讨论是解答此题的关键.10.如图,在平面直角坐标系中,A (0,4),B (2,0),点C 在第一象限,若以A 、B 、C 为顶点的三角形与△AOB 相似(不包括全等),则点C 的个数是( )A .1B .2C .3D .4 答案:D解析:解答:如图①,∠OAB =∠1BAC ,∠AOB =∠1ABC 时,△AOB ∽△1ABC .如图②,AO ∥BC ,BA ⊥2AC ,则∠2ABC =∠OAB ,故△AOB ∽△2BAC ;如图③,3AC ∥OB ,∠ABC 3=90︒,则∠ABO =∠CAB ,故△AOB ∽△3C BA ;如图④,∠AOB =∠4BAC =90︒,∠ABO =∠4ABC ,则△AOB ∽△4C AB .故选:D .分析:根据题意画出图形,根据相似三角形的判定定理可得出结论.此题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键.11.如图,锐角△ABC 的高CD 和BE 相交于点O ,图中与△ODB 相似的三角形有( )A .1个B .2个C .3个D .4个 答案:C解析:解答:∵∠BDO =∠BEA =90︒,∠DBO =∠EBA , ∴△BDO ∽△BEA ,∵∠BOD =∠COE ,∠BDO =∠CEO =90︒, ∴△BDO ∽△CEO ,∵∠CEO =∠CDA =90︒,∠ECO =∠DCA ,∴△CEO∽△CDA,∴△BDO∽△BEA∽△CEO∽△CD A.故选:C.分析:根据∠BDO=∠BEA=90︒,∠DBO=∠EBA,证得△BDO∽△BEA,同理可证△BDO∽△CEO,△CEO∽△CDA,从而可知.此题考查了相似三角形的判定,解题的关键是找出两个对应角相等.12.下列条件,不能判定△ABC与△DEF相似的是()A.∠C=∠F=90︒,∠A=55︒,∠D=35︒B.∠C=∠F=90︒,AB=10,BC=6,DE=15,EF=9C.∠C=∠F=90︒,BC AC EF DF=D.∠B=∠E=90︒,AB DF EF AC=答案:D解析:解答:A.相似:∵∠A=55︒∴∠B=90︒-55︒=35︒∵∠D=35︒∴∠B=∠D∵∠C=∠F∴△ABC∽△DEF;B.相似:∵AB=10,BC=6,DE=15,EF=9,则102153ABDE==,6293BCEF==,∴AB BCDE EF=,又∵∠C=∠F∴△ABC∽△DEF;C.相似:∵∠C=∠F=90︒,BC ACEF DF=∴△ABC∽△DEF;D.不相似:∵∠B=∠E=90︒,AB DFEF AC=,有一组角相等两边对应成比例,但该组角不是这两边的夹角,故不相似.故选:D.分析:根据相似三角形的判定方法对各个选项进行分析作出正确判断.此题考查了相似三角形判定的理解及运用.13.下面两个三角形一定相似的是()A.两个等腰三角形B.两个直角三角形C.两个钝角三角形D.两个等边三角形答案:D解析:解答:A.等腰三角形的角不一定相等,各边也不一定对应成比例,所以A不正确;B.两个直角三角形只有一个直角可以确定相等,其他两个角度未知,所以B不正确;C.两个钝角三角形的对应角不一定相等,各边也不一定对应成比例,所以C不正确;D.两个等边三角形的各角度都为60︒,各边对应相等,所以D正确.故选:D.分析:按照三角形相似的判定定理逐个分析,确定正确答案.三角形相似的判定定理有:①两角对应相等的两个三角形相似;②两边对应成比例且夹角相等的两个三角形相似;③三边对应成比例的两个三角形相似.14.已知△ABC如图所示.则与△ABC相似的是图中的()A.B.C.D.答案:C解析:解答:∵AB=AC=6,∴∠C=∠B=75︒,∴∠A=30︒,∵55 66 =,∴与△ABC相似的是选项C.故选:C.分析:由已知图形,根据等边对等角及三角形内角和定理,可得∠A=30︒,△ABC是等腰三角形;根据有两边对应成比例且夹角相等三角形相似,可求得答案.解题的关键是仔细识图和熟悉相似三角形的判定方法.15.在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对答案:A解析:解答:甲:根据题意得:AB∥A B'',AC∥A C'',BC∥B C'',∴∠A=∠A',∠B=∠B',∴△ABC∽△A BC''',∴甲说法正确;乙:∵根据题意得:AB=CD=3,AD=BC=5,则A B''=C D''=3+2=5,A D''=B C''=5+2=7,∴35AB CDA B C D''''==,57AD BCA DB C''''==,∴AB ADA B A D≠'''',∴新矩形与原矩形不相似.∴乙说法正确.故选:A.分析:甲:根据题意得:AB∥A B'',AC∥A C'',BC∥B C'',可证得∠A=∠A',∠B=∠B',由两角对应相等两三角形相似得△ABC∽△A BC''';乙:根据题意得:AB=CD=3,AD=BC=5,则A B''=C′D′=3+2=5,A′D′=B C''=5+2=7,则可得AB ADA B A D≠'''',即新矩形与原矩形不相似.此题考查了相似三角形以及相似多边形的判定.二、填空题16.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则AODO等于______答案:1 2解析:解答:∵∠ADO=∠ADO,∠DOA=∠DAE=90°,∴△AOD∽△EAD,∴AO AEDO AD==12.故答案为:12.分析:利用两角对应相等得△AOD∽△EAD,那么AO AEDO AD=.此题考查了相似三角形的判定;把所求的线段的比进行相应的转移是解决此题的关键.17.将一副三角板按图叠放,则△AOB与△DOC的面积之比等于答案:1:3解析:解答:∵∠ABC=90︒,∠DCB=90︒∴AB∥CD,∴∠OCD=∠A,∠D=∠ABO,∴△AOB∽△COD又∵AB:CD=BC:CD=1:3∴△AOB与△DOC的面积之比等于1:3.故答案为:1:3.分析:一副三角板按图叠放,则得到两个相似三角形,且相似比等于1:3,相似三角形的性质相似三角形面积的比等于相似比的平方得到△AOB与△DOC的面积之比等于1:3.18.如图,在△ABC中,DE∥BC,AD=1,AB=3,DE=2,则BC=答案:6解析:解答:∵DE∥BC,∴△ADE ∽△ABC , ∴AD DE AB BC =, 即123BC= 解得:BC =6.故答案为:6.分析:根据DE ∥BC ,判断△ADE ∽△ABC ,利用对应边成比例的知识可得AD DE AB BC=,代入数据求出B C .19.如图,DE ∥BC ,EF ∥AB ,且S △ADE =4,S △EFC =9,则△ABC 的面积为答案:25解析:解答:∵DE ∥BC ,EF ∥AB∴∠C =∠AED ,∠FEC =∠A ,∴△EFC ∽△ADE ,而ADE S ∆=4,EFC S ∆=9, ∴294EC AE =(), ∴EC :AE =3:2,∴EC :AC =3:5, ∴EFC ABC S S ∆∆=2239()()525EC AC ==, ∴ABC S ∆=9×259=25. 故答案为25.分析:相似三角形的面积比等于相似比的平方,即对应边之比的平方,所以先利用△EFC ∽△ADE ,得出对应线段的比,从而得出面积比,再代入求出其面积.此题考查了相似三角形的判定和性质,熟练掌握平行线分线段成比例的性质.20.如图所示,△ABC 中,DE ∥BC ,AE :EB =2:3,若△AED 的面积是4m 2,则四边形DEBC 的面积为答案:21解析:解答:∵23AE EB =, ∴25AE AB =. ∵DE ∥BC ,∴△ADE ∽△ACB , ∴2()ADE ACB S AE S AB∆∆=. ∵△AED 的面积是24m , ∴242()5ACB S ∆=, ∴ACB S ∆=25,∴四边形DEBC 的面积为:25-4=21.故答案为:21.分析:根据DE ∥BC 可得出△ADE ∽△ACB ,可以得出2()ADE ACB S AE AB S ∆∆=,由23AE EB =可以得出25AE AB =,代入可以求出△ABC 的面积,从而求出四边形DEBC 的面积. 三、解答题21.已知,在△ABC 中,三条边的长分别为2,3,4,△A ′B ′C ′的两边长分别为1,1.5,要使△ABC ∽△'''A B C ,求△A BC '''中的第三边长.答案:2解析:解答:已知在△ABC 中,三条边的长分别为2,3,4,△'''A B C 的两边长分别为1,1.5,可以看出,△'''A B C 的两边分别为△ABC 的两边长的一半,因此要使△ABC ∽△'''A B C 需两三角形各边对应成比例,则第三边长就为4的一半即2. 故答案为:2.分析:此题主要应用两三角形相似的判定定理,三边对应成比例的两个三角形相似,分析作答即可.22.如图,ABCD是平行四边形,点E在边BC延长线上,连AE交CD于点F,如果∠EAC=∠D,试问:AC•BE与AE•CD是否相等?答案:相等解析:解答:∵四边形ABCD是平行四边形,∴∠D=∠B,∵∠EAC=∠D,∴∠EAC=∠B,∵∠E=∠E,∴△ACE∽△BAE,∴AC:AE=AB:BE,即AC•BE=AE•AB,∵AB=CD,∴AC•BE=AE•C D.分析:要证明AC•BE=AE•CD,只要证明这4条线段所在的三角形相似即可,但直接找不到,利用相等的线段代换后,从条件可以得出4条线段所在三角形相似从而得出结论.此题考查了相似三角形的判定和性质,利用相似三角形求出线段比,从而转化为线段的积.23.如图,正方形AEFG的顶点E在正方形ABCD的边CD上,AD的延长线交EF于H点.若E为CD的中点,正方形ABCD的边长为4,求DH的长.答案:1解析:解答:∵正方形AEFG和正方形ABCD中,∠AEH=∠ADC=∠EDH=90︒,∴∠AED+∠DEH=90︒,∠AED+∠DAE=90︒,∴∠DEH=∠DAE.∵△AED∽△EHD,AD DEDE DH=.∵正方形ABCD的边长为4,∴AD=CD=4.∵E为CD的中点,∴DE=2.∴422DH =,∴DH=1.分析:根据正方形的性质和等角的余角相等,可得两个三角形中,有两个角对应相等,证得两个三角形相似,在此基础上,根据相似三角形的性质进行求解.24.如图,在Rt△ABC中,∠C=90︒,△ACD沿AD折叠,使得点C落在斜边AB上的点E 处.(1)问:△BDE与△BAC相似吗?答案:相似(2)已知AC=6,BC=8,求线段AD的长度.答案:3解析:解答:(1)相似.理由如下:∵∠C=90︒,△ACD沿AD折叠,使得点C落在斜边AB上的点E处,∴∠C=∠AED=90︒,∴∠DEB=∠C=90︒,∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理,得AB=222268AC BC+=+=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90︒.∴BE=AB-AE=10-6=4,在Rt△BDE中,由勾股定理得,222DE BE BD+=,即22248CD CD +=-(), 解得:CD =3,在Rt △ACD 中,由勾股定理得222AC CD AD +=,即22236AD +=,解得:AD =3分析:(1)根据折叠的性质得出∠C =∠AED =90︒,利用∠DEB =∠C ,∠B =∠B 证明三角形相似;(2)先由勾股定理求出AB 的长,再由折叠的性质知DE =CD ,AE =AC ,BE =AB -AE ,在Rt △BDE 中运用勾股定理求出DE ,即CD ,最后在Rt △ACD 中运用勾股定理得出A D .25.如图,在△ABC 中,AB =8cm ,BC =16cm ,动点P 从点A 开始沿AB 边运动,速度为2cm /s ;动点Q 从点B 开始沿BC 边运动,速度为4cm /s ;如果P 、Q 两动点同时运动,那么何时△QBP 与△ABC 相似?答案:2秒|0.8秒解析:解答:设经过t 秒时,以△QBC 与△ABC 相似,则AP =2t ,BP =8-2t ,BQ =4t , ∵∠PBQ =∠ABC ,∴当BP BQ BA BC =时,△BPQ ∽△BAC , 即824816t t -=,解得t =2(s ); 当BP BQ BC BA =时,△BPQ ∽△BCA , 即824168t t -=,解得t =0.8(s ); 综合上述,经过2秒或0.8秒时,△QBC 与△ABC 相似.分析:设经过t 秒时,以△QBC 与△ABC 相似,则AP =2t ,BP =8-2t ,BQ =4t ,利用两组对应边的比相等且夹角对应相等的两个三角形相似进行分类讨论:当BP BQ BA BC =时,△BPQ ∽△BAC ;当BP BQ BC BA=时,△BPQ ∽△BC A . 。
相似三角形经典练习题及答案
相似三角形经典练习题及答案一、选择题1、若两个相似三角形的面积之比为 1∶4,则它们的周长之比为()A 1∶2B 1∶4C 1∶5D 1∶16答案:A解析:相似三角形面积的比等于相似比的平方,相似三角形周长的比等于相似比。
因为两个相似三角形的面积之比为 1∶4,所以相似比为 1∶2,那么它们的周长之比为 1∶2。
2、如图,在△ABC 中,点 D、E 分别在边 AB、AC 上,DE∥BC,若 AD∶DB = 1∶2,则下列结论中正确的是()A AE∶EC = 1∶2B AE∶EC = 1∶3 C DE∶BC = 1∶2 DDE∶BC = 1∶3答案:B解析:因为 DE∥BC,所以△ADE∽△ABC。
因为 AD∶DB =1∶2,所以 AD∶AB = 1∶3。
因为相似三角形对应边成比例,所以AE∶AC = AD∶AB = 1∶3,所以 AE∶EC = 1∶2。
3、已知△ABC∽△A'B'C',相似比为 3∶4,△ABC 的周长为 6,则△A'B'C'的周长为()A 8B 7C 9D 10答案:A解析:因为相似三角形周长的比等于相似比,所以△ABC 与△A'B'C'的周长之比为3∶4。
设△A'B'C'的周长为x,则6∶x =3∶4,解得 x = 8。
4、如图,在△ABC 中,D、E 分别是 AB、AC 上的点,且DE∥BC,如果 AD = 2cm,DB = 1cm,AE = 15cm,则 EC =()A 05cmB 1cmC 15cmD 3cm答案:B解析:因为 DE∥BC,所以△ADE∽△ABC,所以 AD∶AB =AE∶AC。
因为 AD = 2cm,DB = 1cm,所以 AB = 3cm。
所以 2∶3= 15∶(15 + EC),解得 EC = 1cm。
5、下列各组图形一定相似的是()A 两个直角三角形B 两个等边三角形C 两个菱形D 两个矩形答案:B解析:等边三角形的三个角都相等,都是 60°,所以两个等边三角形一定相似。
4.5相似三角形(含位似)-简单数学之2022年中考一轮复习一点三练系列(解析版)(全国适用)
第四章三角形4.5相似三角形(含位似)一、课标解读1.了解比例的基本性质、线段的比、成比例的线段;通过建筑、艺术上的实例了解黄金分割。
2.通过具体实例认识图形的相似。
了解相似多边形和相似比。
3.掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例。
4.了解相似三角形的判定定理及其证明。
5.了解相似三角形的性质定理。
6.了解图形的位似,知道利用位似可以将一个图形放大或缩小。
7.会利用图形的相似解决一些简单的实际问题。
二、知识点回顾知识点1. 比例线段1.定义:对于四条线段a,b,c,d,如果其中两条线段的比(即它们长度的比)与另两条线段的比相等,如a b=cd(即ad=bc),我们就说这四条线段成比例.2.基本性质:性质1:若ab=cd,则ad=bc (b≠0,d≠0).性质2:若ab=cd,则a±bb=c±dd(b≠0,d≠0).性质3:若ab=cd=…=mn(b+d+…+n≠0),则a+c+…+mb+d+…+n=ab.3.比例中项:如果ab=bc,即b2=ac,就把b叫做a,c的比例中项.知识点2. 平行线分线段成比例1.基本事实:两条直线被一组平行线所截,所得的对应线段.如图1,若l1∥l2∥l3,则ABBC=DEEF或ABAC=DEDF.2.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.如图2,3,若DE∥BC,则ADDB=AEEC,ADAB=AEAC等.知识点3 相似三角形的性质及判定1.定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比叫做相似比.2.相似三角形的性质:(1)相似三角形的对应角相等,对应边成比例;(2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比;(3)相似三角形周长的比等于相似比,面积的比等于相似比的平方.知识点4 相似三角形的判定方法1.(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.(2)三边对应成比例的两个三角形相似.(3)两边对应成比例且对应边的夹角相等的两个三角形相似.(4)两角分别相等的两个三角形相似.(5)斜边和一直角边对应成比例.2. 常见的相似三角形模型(1)A字型及其变形已知BC∥DE 已知∠1=∠B 已知∠1=∠B(2)X字型及其变形已知AB∥DE 已知∠A=∠D(3)旋转型(4)垂直型双垂直型 三垂直型一线三等角型知识点5 相似多边形1.概念:两个边数相等的多边形,如果它们的角对应相等,边对应成比例,那么这两个多边形叫做相似多边形,对应边的比叫做相似比.2.性质: (1)相似多边形的对应角相等,对应边成比例;(2)相似多边形周长的比等于相似比,面积的比等于相似比的平方.知识点5 位似1.位似图形的定义:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形,这点叫做位似中心,这时我们说这两个图形关于这点位似,它们的相似比又称为位似比.2.位似图形的性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比.3.位似变换的坐标:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即若原图形的某一点坐标为(x,y),则其位似图形对应点的坐标为(kx,ky)或(-kx,-ky).三、热点训练热点1:相似图形的概念和性质一练基础1.(2022·福建三明·一模)如图,已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,B,C,D,E,F,若DE=7,EF=10,则A BB C的值为()A.710B.107C.717D.1017【答案】A【解析】【分析】根据平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例,求解即可.解:∵DE =7,EF =10,a ∥b ∥c ,∴710AB DE BC EF ==,故选A .【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.2.(2021·广东·二模)如图,在△ABC 中,点D 是AB 边上的一点.以B 为圆心,以一定长度为半径画弧,分别交AB 、BC 于点F 、G ,以D 为圆心,以相同的半径画弧,交AD 于点M ,以M 为圆心,以FG 的长度为半径画弧,交 MN于点N ,连接DN 并延长交AC 于点E .则下列式子中错误的是( )A .AD AEBD EC=B .AB ACBD EC=C .AD DEBD BC=D .AD AEAB AC=【答案】C 【解析】【分析】由平行线分线段成比例可得=AD AE BD EC ,=AD AEAB AC ,=AB AC BD EC由相似三角形的性质可得=AD DE AB BC ,即可求解.【详解】解:由题意可得:∠ABC =∠ADE ,∴DE ∥BC ,∴=AD AE BD EC ,=AD AEAB AC ,=AB AC BD EC,故选项A ,B ,D 不合题意,∵DE ∥BC ,∴△ADE ∽△ABC ,∴=AD DEAB BC,故选项C 符合题意,【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的性质是解题的关键.3.(2022·上海虹口·九年级期末)已知点P是线段AB上的黄金分割点,AP>PB,线段AB=2厘米,那么线段AP=____________.【答案】)1cm【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AP AB,代入数据即可得出AP的长.【详解】解:由于P为线段AB的黄金分割点,且AP是较长线段;则AP=AB=1,1.【点睛】本题考查黄金分割的概念:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割.4.(2021·上海市徐汇中学九年级阶段练习)已知点P是线段AB的黄金分割点(AP>BP),AB=4,那么AP=____.【答案】25-2##-2+25【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AP AB,代入数据即可得出AP的长.【详解】解:由于P为线段AB的黄金分割点,且AP是较长线段,AB=4,则AP AB×4=2.故答案为2.【点睛】.5.(2018·安徽相山·中考模拟)若23a c eb d f===,则2323a c eb d f-+-+=______.【答案】2 3【解析】【分析】根据23a c eb d f===可得222,,333a b c d e f===,把a,c,e代入所求代数式中,约分后即可求得结果.【详解】∵23a c eb d f===∴222,,333 a b c d e f ===∴2222323223233323233233b d fa c eb d fb d f b d f b d f-´+´-+-+==´= -+-+-+故答案为:2 3【点睛】本题考查了比例的性质,求代数式的值,根据比例的性质变形是关键.6.(2021·四川德阳·的矩形叫做黄金矩形.黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计.已知四边形ABCD是黄金矩形,边AB1,则该矩形的周长为__________________.【答案】2或4【解析】【分析】分两种情况:①边AB为矩形的长时,则矩形的宽为3②边AB为矩形的宽时,则矩形的长为2=,求出矩形的周长即可.【详解】解:分两种情况:①边AB1)3=,\矩形的周长为:134-+=;②边AB为矩形的宽时,则矩形的长为:1)2=,\矩形的周长为12)2+=+;综上所述,该矩形的周长为2或4,故答案为:2或4.【点睛】本题考查了黄金分割,熟记黄金分割的比值是解题的关键.二练巩固7.(2022·上海杨浦·九年级期末)已知点P是线段AB上的一点,线段AP是PB和AB的比例中项,下列结论中,正确的是()A.PBAP=B.PBAB=C.APAB=D.APPB=【答案】C【解析】【分析】设AB=1,AP=x,则PB=1-x,由比例中项得出AP2=PB·AB,代入解一元二次方程即可解答.【详解】解:设AB=1,AP=x,则PB=1-x,∵线段AP是PB和AB的比例中项,∴AP2=PB·AB,即x2=1-x,∴x2+x-1=0,解得:1x2x=,∴PB=1∴PBAP=,APAB=APPB故选:C.【点睛】本题考查比例中项、线段的比、解一元二次方程,熟知比例中项的定义是解答的关键.8.(2021·四川巴中·中考真题)两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:如图,点P是线段AB上一点(AP>BP),若满足BP APAP AB=,则称点P是AB的黄金分割点.黄金分割在日常生活中处处可见,例如:主持人在舞台上主持节目时,站在黄金分割点上,观众看上去感觉最好.若舞台长20米,主持人从舞台一侧进入,设他至少走x米时恰好站在舞台的黄金分割点上,则x满足的方程是( )A.(20﹣x)2=20x B.x2=20(20﹣x)C.x(20﹣x)=202D.以上都不对【答案】A【解析】【分析】点P是AB的黄金分割点,且PB<PA,PB=x,则PA=20−x,则BP APAP AB=,即可求解.【详解】解:由题意知,点P是AB的黄金分割点,且PB<PA,PB=x,则PA=20−x,∴BP AP AP AB=,∴(20−x)2=20x,故选:A.【点睛】本题考查了黄金分割,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.9.(2021·全国·九年级专题练习)如果四条线段a、b、c、d构成a cb d=,0m>,则下列式子中,成立的是()A.b ca d=B.a c mb d m+=+C.a b d cb d--=D.a c cb d d+=+【答案】D【解析】【分析】根据比例的性质变形,再进行判断.【详解】解:A、∵a cb d=,0m>,∴b da c=;故本选项错误;B 、∵a cb d =,0m >,∴ac m bd m +¹+;故本选项错误;C 、∵a cb d =,0m >,∴a b dc bd --=-;故本选项错误;D 、∵a cb d =,0m >,∴ac c bd d+=+;故本选项正确.故选D .【点睛】本题考查了比例的基本性质,熟练掌握比例的基本性质是解题的关键.10.(2011·上海·中考模拟)若线段c 是线段a ,b 的比例中项,且4a =,9b =,则c =_____________.【答案】6【解析】【分析】根据比例中项的定义可得c 2=ab ,从而易求c .【详解】解:∵线段c 是线段a ,b 的比例中项,∴c 2=ab ,∵a =4,b =9,∴c 2=36,∴c =6(负数舍去),故答案是:6.【点睛】本题考查了比例线段,解题的关键是理解比例中项的含义.11.(2021·四川内江·中考真题)已知非负实数a ,b ,c 满足123234a b c---==,设23S a b c =++的最大值为m ,最小值为n ,则nm的值为 __.【答案】1116+##0.6875【解析】【分析】设123234a b c k ---===,则21a k =+,32b k =+,34c k =-,可得414S k =-+;利用a ,b ,c 为非负实数可得k 的取值范围,从而求得m ,n 的值,结论可求.【详解】解:设123234a b ck---===,则21a k=+,32b k=+,34c k=-,23212(32)3(34)414S a b c k k k k\=++=++++-=-+.aQ,b,c为非负实数,\210 320 340kkk+ìï+íï-î………,解得:13 24k -…….\当12k=-时,S取最大值,当34k=时,S取最小值.1414162mæö\=-´-+=ç÷èø,3414114n=-´+=.\1116nm=.故答案为:11 16【点睛】本题主要考查了比例的性质,解不等式组,非负数的应用等,设123234a b ck---===是解题的关键.12.(2021·浙江·诸暨市暨阳初级中学一模)AD为面积为30 的锐角三角形ABC的高,∠ACB=2∠BAD,线段AB上的点E将AB分成两条线段的比为3∶2,过点E作BC的平行线交AC于点F,若AD=6,则CF =_______.【答案】4或6【解析】【分析】根据三角形面积公式求得BC=10,根据角的和差倍数可得∠B=∠BAC,继而由等角对等边的性质可得BC =AC=10,根据线段比例即可求解.【详解】∵S△ABC=12AD BC×=30,AD=6,∴BC=10,在Rt △ABD 中,∠BAD =90°﹣∠B ,∠B =90°﹣∠BAD ,在Rt △ACD 中,∠CAD =90°﹣∠ACB ,∵∠ACB =2∠BAD ,∴∠CAD =90°﹣2∠BAD ,∴∠BAC =∠CAD +∠BAD =90°﹣∠BAD ,∴∠B =∠BAC ,∴BC =AC =10,∵点E 将AB 分成两条线段的比为3∶2,EF ∥BC ,∴2210455CF AC ==´=,或3310655CF AC ==´=,故答案为:4或6.【点睛】本题考查角的和差倍数关系,等角对等边的性质,线段的比例,解题的关键是求得BC =AC =10.三练拔高13.(2021·全国·九年级专题练习)如图,四边形ABCD 中,P 为对角线BD 上一点,过点P 作//PE AB ,交AD 于点E ,过点P 作//PF CD ,交BC 于点F ,则下列所给的结论中,不一定正确的是( ).A .PE PF AB CD =B .AE BF DE CF =C .1CF AE BC AD +=D .1PE PF AB CD+=【答案】A【解析】【分析】根据//PE AB ,可证△EPD ∽△ABD ,△BFP ∽△BCD ,即可判断A ;由//PE AB ,//PF CD 可得AE BP ED PD =,BF BP FC PD =可判断B ;由//PE AB ,//PF CD ,可得AE BP AD BD =,FC PD BC BD=,可判断C ,由 //PE AB ,可证△EPD ∽△ABD ,△BFP ∽△BCD ,可判定D .【详解】解:A .∵//PE AB ,∴∠DEP =∠A ,∠DPE =∠DBA ,∴△EPD ∽△ABD ,∴ EP DP AB DB=,∵//PF CD ,∴∠BPF =∠BDC ,∠BFP =∠C ,∴△BFP ∽△BCD ,∴PF BP CD DB =,∵DP BP DB DB ¹,∴PE PF AB CD¹,故选项A 不正确;B .∵//PE AB ,//PF CD ,∴AE BP ED PD =,BF BP FC PD =,∴AE BF DE CF=,故选项B 正确;C .∵//PE AB ,//PF CD ,∴AE BP AD BD =,FC PD BC BD =,∴1AE FC BP PD AD BC BD BD+=+=,故选项C 正确,1CF AE BC AD+= ,D .∵//PE AB ,∴∠DEP =∠A ,∠DPE =∠DBA ,∴△EPD ∽△ABD ,∴ EP DP AB DB=,∵//PF CD ,∴∠BPF =∠BDC ,∠BFP =∠C ,∴△BFP ∽△BCD ,∴PF BP CD DB =,∴ 1EP PF DP PB DP PB AB CD DB BD BD++=+==,故选项D 正确.故选择A .【点睛】本题考查平行线截线段比例,和三角形相似判定与性质,掌握平行线截线段长比例,和三角形相似判定与性质是解题关键.14.(2021·全国·0.618)»的矩形称为黄金矩形,这被称为黄金分割比例.如图,名画《蒙娜丽莎的微笑》的整个画面的主体部分很好地体现了黄金分割比例,其中矩形ABCD 是黄金矩形,若我们把一个正方形AEFD 嵌入黄金矩形ABCD 中(正方形的边长等于黄金矩形的宽),这样就创造了一个新的黄金矩形BEFC .如果把这个过程重复数次,接着我们要在每个正方形内画一条圆弧,让每个圆弧的半径等于它所在正方形的边长就会得到下面这张图,若AB a =,则图中弧HF 的长为( )A B .2pC .22a p·D .32a p·【答案】C 【解析】【分析】根据黄金矩形的定义,求出BE 长,再用弧长公式求解即可.【详解】解:∵矩形ABCD 是黄金矩形,AB a =,∴BC AB =,BC =,∵矩形BEFC 是黄金矩形,∴BE CB =2BE GH a ==,弧HF 的长为2901802a GH p p ·=×,故选:C .【点睛】本题考查了黄金分割和弧计算,解题关键是利用黄金分割求出半径,再熟练运用弧长公式进行计算.15.(2022·福建福州·一模)如图,在四边形ABCD 中,AB = 5,∠A = ∠B = 90°,O 为AB 中点,过点O 作OM ⊥CD 于点M .E 是AB 上的一个动点(不与点A ,B 重合),连接CE ,DE ,若∠CED = 90°且CE DE = 43.现给出以下结论:(1)△ADE 与△BEC 一定相似;(2)以点O 为圆心,OA 长为半径作⊙O ,则⊙O 与CD 可能相离;(3)OM 的最大值是52;(4)当OM 最大时,CD =12524.其中正确的是 _________ .(写出所有正确结论的序号)【答案】(1)(3)(4)【解析】【分析】利用“一线三垂直”可以判定△ADE 与△BEC 相似;再利用四边形ADMO 与四边形MOBC 相似,可知225OM AE AE =-+,即可得出OM 最大值为52,即可判定(2)、(3)、(4).【详解】解:∵∠A = ∠B = 90°,∠CED = 90°,∴∠AED = ∠BCE ,∴V ADE ∼V BEC .故(1)正确;∵∠OMC = 90°,∴∠ADM +∠AOM =180°,∠ADM +∠MCB =180°,∴∠AOM =∠MCB ,∴四边形ADMO 与四边形MOBC 相似,∴AD OM OM BC=,∴2OM AD BC=g ∵△ADE ∼△BEC ∴34AD AE DE BE BC CE ===,∴AD BC AE BE =g g ,∴2OM AE BE =g ,即()25-OM AE AE =g ,∴225OM AE AE=-+∴当AE =BE =52时,OM 值最大,最大值为52.∴以点O 为圆心,OA 长为半径作⊙O ,则⊙O 与CD 不可能相离,故(2)错误,(3)正确,∵当OM 最大时,点O 与点E 重合(如图所示),AE =BE =OM =52,∴AED MED @V V ,BCE MCE @V V ,∴AD =MD ,BC =MC ,∴CD =AD +BC ,∵34AD DE BE CE ==,34AE DE BC CE ==,解得:158AD =,103BC =,∴CD =AD +BC =12524.故答案为:(1)(3)(4)【点睛】本题主要考查的是四边形中相似的应用,熟练的进行边的比值的转化时本题的解题关键.16.(2021·湖南湘潭·中考真题)德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿”.如图①,点C 把线段AB 分成两部分,如果0.618CB AC =»,那么称点C 为线段AB 的黄金分割点.(1)特例感知:在图①中,若100AB =,求AC 的长;(2)知识探究:如图②,作⊙O 的内接正五边形:①作两条相互垂直的直径MN 、A I ;②作ON 的中点P ,以P 为圆心,PA 为半径画弧交OM 于点Q ;③以点A 为圆心,AQ 为半径,在⊙O 上连续截取等弧,使弦AB BC CD DE AQ ====,连接AE ;则五边形ABCDE 为正五边形.在该正五边形作法中,点Q 是否为线段OM 的黄金分割点?请说明理由.(3)拓展应用:国旗和国徽上的五角星是革命和光明的象征,是一个非常优美的几何图形,与黄金分割有着密切的联系.延长题(2)中的正五边形ABCDE 的每条边,相交可得到五角星,摆正后如图③,点E 是线段PD 的黄金分割点,请利用题中的条件,求cos72°的值.【答案】(1)61.8;(2)是,理由见解析;(3【解析】【分析】(1)根据黄金分割的定义求解即可;(2)设⊙O 的半径为a ,则OA =ON =OM =a ,利用勾股定理求出PA ,继而求出OQ ,MQ ,即可作出判断;(3)先求出正五边形的每个内角,即可得到∠PEA =∠PAE =18010872°-°=°,根据已知条件可知cos 72°=12AE PE,再根据点E 是线段PD 的黄金分割点,即可求解.【详解】0.618»,,即0.618100AC AC -=»,解得:AC ≈61.8;(2)Q 是线段OM 的黄金分割点,理由如下:设⊙O 的半径为a ,则OA =ON =OM =a ,∴OP ∴PA PQ =,∴OQ ∴MQ MQ OQ =∴Q 是线段OM 的黄金分割点;(3)正五边形的每个内角为:()521801085-´°=°,∴∠PEA =∠PAE =18010872°-°=°,∴cos 72°=12AE PE,∵点E 是线段PD 的黄金分割点,∴DE PE =,又∵AE =ED ,∴AE PE =,∴cos72°=12AEPE=【点睛】本题考查黄金分割、勾股定理、锐角三角函数,解题的关键是读懂题意正确解题.热点2:相似三角形的性质与判定一练基础1.(2022·福建三明·一模)下列各组图形中,不一定相似的是()A.任意两个等腰直角三角形B.任意两个等边三角形C.任意两个矩形D.任意两个正方形【答案】C【解析】【分析】根据相似图形的判定定理,对选项进行一一分析,找出符合题意的答案.【详解】解:A、任意两个等腰直角三角形,根据等腰直角三角形的性质,两腰分别相等,它们两边的比值成比例,夹角为直角相等,根据相似三角形的判定定理可得任意两个等腰直角三角形相似,故不符合题意;B、任意两个等边三角形,三边分别相等,两个三角形三边对应成比例,根据三角形相似的判定定理可得任意两个等边三角形相似,故不符合题意;C、任意两个矩形,虽然对应角都等于90°相等,但对应边不一定成比例,任意两个矩形,不一定相似,故符合题意;D、任意两个正方形,四边各自相等,可得它们对应边成比例,对应角都是90°相等,根据多边形相似的判定定理可得任意两个正方形相似,故不符合题意.故选C.【点睛】本题考查相似图形的识别,掌握图形相似的定义即图形的形状相同,但大小不一定相同的是相似形与判定定理是解题关键.2.(2021·贵州毕节·九年级阶段练习)在图(1)、(2)所示的△ABC中,AB=4,AC=6.将△ABC分别按照图中所标注的数据进行裁剪,对于各图中剪下的两个阴影三角形而言,下列说法正确的是()A.只有(1)中的与△ABC相似B.只有(2)中的与△ABC相似C.都与△ABC相似D.都与△ABC不相似【答案】B【解析】【分析】根据相似三角形判定定理,两边对应成比例夹角相等,两个三角形相似,先求出两个三角形中夹角相等的两边的比值,看是否相等可判断A不正确,B正确,进而可判断C与D即可.【详解】解:图形(1)中标字母如图,∵BE=2,BA=4,23BEBA=,BF=3,BC不定,3BF BEBC BC BA=¹,∴(1)中的△BEF不与△ABC相似,故选项A不正确;图2中标字母如图,∵GC=4,BH=1,AB=4,AC=6.∴AH=AB-BH=4-1=3,AG=AC-GC=6-4=2,∴2142AGAB==,3162AHAC==,∴AG AH AB AC=,∵∠HAG=∠CAB,∴△AHG ∽△ACB ,故选项B 正确,,故选项C 不正确,选项D 不正确.故选择B .【点睛】本题考查相似三角形的判定,掌握三角形相似的判定方法是解题关键.3.(2022·江苏兴化·九年级期末)如图,如果BAD CAE Ð=Ð,那么添加下列一个条件后,仍不能确定ABC ADE V :V 的是( )A .B DÐ=ÐB .AB DE AD BC =C .C AED Ð=ÐD .AB AC AD AE=【答案】B【解析】【分析】根据题意可得EAD CAB Ð=Ð,然后根据相似三角形的判定定理逐项判断,即可求解.【详解】解:∵BAD CAE Ð=Ð,∴EAD CAB Ð=Ð,A 、若添加B D Ð=Ð,可用两角对应相等的两个三角形相似,证明ABC ADE V :V ,故本选项不符合题意;B 、若添加AB DE AD BC=,不能证明ABC ADE V :V ,故本选项符合题意;C 、若添加C AED Ð=Ð,可用两角对应相等的两个三角形相似,证明ABC ADE V :V ,故本选项不符合题意;D 、若添加AB AC AD AE=,可用两边对应成比例,且夹角相等的两个三角形相似,证明ABC ADE V :V ,故本选项不符合题意;【点睛】本题主要考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.4.(2021·湖北当阳·一模)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和10cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为( )A .3cmB .4cmC .4.5cmD .5cm 【答案】D【解析】【分析】根据相似三角形的对应边成比例求解可得.【详解】解:设另一个三角形的最长边长为x cm ,根据题意,得:2.5510x =,解得:5x =,即另一个三角形的最长边长为5cm ,故选D .【点睛】本题主要考查相似三角形的性质,解决本题的关键是要熟练掌握相似三角形的性质.5.(2021·河南伊川·九年级期中)如图,在ABC V 中,6,4AC AB ==,点D 与点A 在直线BC 的同侧,且ACD ABC Ð=Ð,2CD =,点E 是线段BC 延长线上的动点,当DCE V 和ABC V 相似时线段CE 的长为( )A .3B .43C .3或43D .4或34【答案】C 【解析】根据ACD ABC Ð=Ð,可得A DCE Ð=Ð ,然后分两种情况讨论,即可求解.【详解】解:∵ACD ABC Ð=Ð,ACD DCE A ABC Ð+Ð=Ð+Ð ,∴A DCE Ð=Ð ,当 B CDE A C V :V 时,∴CD CE AB AC= ,∵6,4AC AB ==,2CD =,∴246CE = ,解得:3CE = ;当B CED A C V :V 时,∴CE CD AB AC= ,∵6,4AC AB ==,2CD =,∴246CE = ,解得:43CE =∴线段CE 的长为3或43.故选:C【点睛】本题主要考查了相似三角形的性质,熟练掌握相似三角形的性质定理是解题的关键.6.(2021·广东·东莞市石龙第二中学模拟预测)如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,若△ABC 的面积为4,则四边形BCED 的面积为___.【答案】3【解析】【分析】由题意知DE 是ABC V 的中位线,有12DE BC DE BC =∥,,从而得ADE ABC △△∽,有212ADE ABC S S æö=ç÷èøV V ,求出ADE S V 的值,对ABC ADE BCED S S S =-V V 四边形计算求解即可.【详解】解:由题意知DE 是ABC V 的中位线∴12DE BC DE BC =∥,∴ADE ABC△△∽∴212ADE ABC S S æö=ç÷èøV V ∵=4ABC S △∴=1ADE S V ∴=3ABC ADE BCED S S S =-V V 四边形故答案为:3.【点睛】本题考查了中位线,相似三角形的性质.解题的关键在于明确相似三角形的面积比等于相似比的平方.7.(2021·广东惠阳·二模)如图,AB ,CD 相交于O 点,△AOC ∽△BOD ,OC :CD =1:3,AC =2,则BD 的长为 __.【答案】4【解析】【分析】根据OC :CD =1:3,求得OC :OD =1:2,根据相似三角形的对应边的比相等列出方程,计算即可.【详解】∵OC :CD =1:3,∴OC :OD =1:2,∵△AOC ∽△BOD,∴AC OC BD OD=,即212 BD=,解得:BD=4,故答案为:4.【点睛】本题考查的是相似三角形的性质,掌握相似三角形的对应角相等,对应边的比相等是解题的关键.8.(2022·江苏溧阳·九年级期末)如果两个相似三角形的周长比是1︰4,那么它们的面积比是_________.【答案】1:16【解析】【分析】根据相似三角形的相似比等于周长比,可得两个相似三角形的相似比是1︰4,再由相似三角形的面积比等于相似比的平方,即可求解.【详解】解:∵两个相似三角形的周长比是1︰4,∴两个相似三角形的相似比是1︰4,∴它们的面积比是1:16.故答案为:1:16【点睛】本题主要考查了相似三角形的性质,熟练掌握相似三角形的相似比等于周长比,相似三角形的面积比等于相似比的平方是解题的关键.二练巩固9.(2022·福建福州·一模)如图,点D,E分别在△ABC的边AB,AC上,且AD = 1,BD = 5,AE = 2,∠AED = ∠B,则AC的长是()A.2.4B.2.5C.3D.4.5【答案】C【解析】【分析】由AED B Ð=Ð,DAE CAB Ð=Ð可证DAE CAB ∽△△,有DA AE CA AB =,计算求解即可.【详解】解:∵AED B Ð=Ð,DAE CAB Ð=Ð,∴DAE CAB ∽△△,∴DA AE CA AB =,∴1251AC =+,解得3AC =,故选:C .【点睛】本题考查了相似三角形的判定与性质,解题的关键在于证明三角形相似.10.(2021·湖南·师大附中梅溪湖中学二模)如图,在菱形ABCD 中,点F 在线段CD 上,连接EF ,且∠CBE +∠EFC =180°,DF =2,FC =3.则DB =( )A .6B .C .5D .【答案】D【解析】【分析】根据菱形的性质可得BD =2DE ,BC =CD =5,从而得到∠CBE =∠CDB ,再由∠CBE +∠EFC =180°,可得∠CBE =∠CDB =∠DFE ,从而得到△DEF ∽△DCB ,可得到2DE DF BC DE=,解得DE ,即可求解.【详解】解:在菱形ABCD 中,BD =2DE ,BC =CD =DF +FC =2+3=5,∴∠CBE =∠CDB ,∵∠CBE +∠EFC =180°,∠DFE +∠EFC =180°,∴∠CBE =∠DFE ,∴∠CBE =∠CDB =∠DFE ,∵∠CDB =∠EDF ,∴△DEF ∽△DCB ,∴DE DF DC BD = ,∴2DE DF BC DE =,∴252DE DE= ,解得:DE ,∴2DB DE =.故选:D【点睛】本题主要考查了相似三角形的判定和性质,菱形的性质,熟练掌握相似三角形的判定和性质定理,菱形的性质定理是解题的关键.11.(2021·广东花都·三模)如图,在平行四边形ABCD 中,E 是AB 边上一点,若AE :AB =1:3,则S △AEF :S △ADC =( )A .1:12B .1:9C .1:6D .1:3【答案】A【解析】【分析】先判断出△AEF 与△DCF 是相似,利用性质可求面积比,再由△AEF 与△ADF 是等高的三角形,也可得出面积比,最后根据S △ADC =S △CDF +S △ADF 计算比值即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∵AE :AB =1:3,∴AE :CD =1:3,∵AE ∥CD ,∴△AEF ∽△CDF ,∴21(9AEF CDF S AE S CD ==V V ,13EF AE DF CD ==,∴S △CDF =9S △AEF ,S △ADF =3S △AEF ,∵S △ADC =S △CDF +S △ADF ,∴19312AEF AEF ADC AEF AEF S S S S S ==+V V V V V ,故选:A .【点睛】本题考查相似三角形的判定和性质,平行四边形的性质等知识,解题的关键是熟练掌握相似和平行四边形的基本知识,属于中考常考题型.12.(2021·山东济南·中考真题)如图,在ABC V 中,90ABC Ð=°,30C Ð=°,以点A 为圆心,以AB 的长为半径作弧交AC 于点D ,连接BD ,再分别以点B ,D 为圆心,大于12B D 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点E ,连接DE ,则下列结论中不正确的是( )A .BE DE=B .DE 垂直平分线段AC C.EDC ABC S S △△D .2BD BC BE=×【答案】C【解析】【分析】由题中作图方法易证AP 为线段BD 的垂直平分线,点E 在AP 上,所以BE=DE ,再根据,90ABC Ð=°,30C Ð=°得到ABD D 是等边三角形,由“三线合一”得AP 平分BAC Ð,则30PAC C Ð=Ð=°,AE CE =,且30°角所对的直角边等于斜边的一半,故12AB AD AC ==,所以DE 垂直平分线段AC ,证明~EDC ABC D D 可得ED CD AB BC =即可得到结论.【详解】由题意可得:AD AB =,点P 在线段BD 的垂直平分线上AD AB =Q ,\点A 在线段BD 的垂直平分线上\AP 为线段BD 的垂直平分线Q 点E 在AP 上,\BE=DE ,故A 正确;Q 90ABC Ð=°,30C Ð=°,60BAC \Ð=°且12AB AD AC ==ABD \D 为等边三角形且AD CD=AB AD BD \==,AP \平分BAC Ð1302EAC BAC \Ð=Ð=°,AE EC \=,ED \垂直平分AC ,故B 正确;30ECD ACB Ð=Ð=°Q ,90EDC ABC Ð=Ð=°,EDC ABC \D D ∽,ED CD AB AB BC BC \===,213EDC ABC s s D D \==,故C 错误;ED BE =Q ,AB CD BD==BE BD BD BC\=,2BD BC BE \=×,故D 正确故选C .【点睛】本题考查30°角的直角三角形的性质、线段垂直平分线的判定和性质,相似三角形的判定和性质,掌握这些基础知识为解题关键.13.(2021·山西·太原五中九年级阶段练习)如图,D 、E 分别是ABC V 的边AB 、BC 上的点,且//DE AC ,若:1:3BDE CDE S S =V V ,则DOE AOC S S V V :的值( )A .13B .14C .19D .116【答案】D【解析】【分析】证明:1:3=BE EC ,得出:1:4BE BC =;证明BDE BAC D D ∽,DOE AOC D D ∽,得到14DE BE AC BC ==,由相似三角形的性质即可解决问题.【详解】解::1:3BDE CDE S S D D =Q ,:1:3BE EC \=;:1:4BE BC \=;//DE AC Q ,BDE BAC \D D ∽,DOE AOC D D ∽,\14DE BE AC BC ==,21:()16DOE AOC DE S S AC D D \==.故选:D .【点睛】本题主要考查了相似三角形的判定及其性质的应用问题,解题的关键是灵活运用相似三角形的判定及其性质来分析、判断、推理或解答.14.(2021·四川绵阳·中考真题)如图,在ACD △中,6AD =,5BC =,()2AC AB AB BC =+,且DAB DCA V :V ,若3AD AP =,点Q 是线段AB 上的动点,则PQ 的最小值是( )A B C D .85【答案】A【解析】【分析】根据相似三角形的性质得到A D C DB D A D =,得到4BD =,4AB BD ==,过B 作BH AD ^于H ,根据等腰三角形的性质得到132AH AD ==,根据勾股定理得到BH ==,当PQ AB ^时,PQ 的值最小,根据相似三角形的性质即可得到结论.【详解】解:DAB DCA D D Q :,AD CD BD AD\=,656BD BD +\=,解得:4BD =(负值舍去),DAB DCA D D Q :,9362AC CD AB AD \===,32AC AB \=,()2AC AB AB BC =+Q ,()232AB AB AB BC æö\=+ç÷èø,4AB \=,4AB BD \==,过B 作BH AD ^于H ,132AH AD \==,BH \=,3,6AD AP AD ==Q ,2AP \=,当PQ AB ^时,PQ 的值最小,90,AQP AHB PAQ BAHÐ=Ð=°Ð=ÐQ APQ ABH \D D :,AP PQ AB BH\=,24\PQ \故选:A .【点睛】本题考查了相似三角形的判定和性质,勾股定理,等腰三角形的判定和性质,正确的作出辅助线构造相似三角形是解题的关键.15.(2021·福建·莆田八中九年级阶段练习)如图,点D 在等边三角形ABC 的边BC 上,连接AD ,线段AD 的垂直平分线EF 分别交边AB 、AC 于点E 、F .当CD =2BD 时,AE AF 的值为___.【答案】45##0.8【解析】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.5 相似三角形 同步练习
课内练习
理解相似三角形的意义,会找相似三角形的对应边及对应角;能进行简单的有关相似三角形对应边及对应角的计算. 一、选择题
1.△ABC ∽△A ′B ′C ′,如果∠A =55°,∠B =100°,则∠C ′的度数等于( )
A.55°
B.100°
C.25°
D.30°
2.如图1,△ADE ∽△ACB ,∠AED =∠B ,那么下列比例式成立的是( )
A.
BC DE AB AE AC AD == B.BC DE
AC AE AB AD == C.
BC DE AB AC AE AD == D.BC
DE
EC AE AB AD ==
图1 图2
3.如果△ABC ∽△A ′B ′C ′,BC =3,B ′C ′=1.8,则△A ′B ′C ′与△ABC 的相似比为( ) A.5∶3
B.3∶2
C.2∶3
D.3∶5
4.若△ABC ∽△A ′B ′C ′,AB =2,BC =3,A ′B ′=1,则B ′C ′等于( )
A.1.5
B.3
C.2
D.1
5.△ABC 的三边长分别为2、10、2,△A ′B ′C ′的两边长分别为1和5,如果△ABC ∽△A ′B ′C ′,那么△A ′B ′C ′的第三边的长应等于( ) A.
2
2
B.2
C.2
D.22
二、填空题
6.如图2,已知△ADE ∽△ABC ,且∠ADE =∠B ,则对应角为________,对应边为________.
7.如图3,已知DE ∥BC ,△ADE ∽△ABC ,则
AB
AD
=________=________.
图3
8. 如果△ABC 和△A ′B ′C ′的相似比等于1,则这两个三角形________. 9. 已知△ABC ∽△A ′B ′C ′,A 和A ′,B 和B ′分别是对应点,若AB =5 cm ,
A ′
B ′=8 cm ,A
C =4 cm ,B ′C ′=6 cm ,则△A ′B ′C ′与△ABC 的相似比为________,A ′C ′=________,BC =________.
10.如果Rt △ABC ∽Rt △A ′B ′C ′,∠C =∠C ′=90°,AB =3,BC =2,A ′B ′=12,则A ′C ′=________. 三、解答题
11.判断下列两组三角形是否相似,并说明理由.
(1)△ABC 和△A ′B ′C ′都是等边三角形.
(2)△ABC 中,∠C =90°,AC =BC ;△A ′B ′C ′中,∠C ′=90°,A ′C ′=B ′C ′.
12.已知△ABC 中,AB =15 cm ,BC =20 cm ,AC =30 cm ,另一个与它相似的△A ′B ′C ′的最长边为40 cm ,求△A ′B ′C ′的其余两边的长.
13.已知:△ABC 三边的比为1∶2∶3,△A ′B ′C ′∽△ABC ,且△A ′B ′C ′的最大边长为15 cm ,求△A ′B ′C ′的周长.
*14.如图4,正方形ABCD 中,点E 是CD 的中点,点F 在BC 上,且CF ∶BC =1∶4,你能说明
EC
AD
EF AE 吗?
图4
参考答案
一、1.C 2.A 3.D 4.A 5.C
二、6.∠A 与∠A ∠AED 与∠C AD 与AB ,AE 与AC ,DE 与BC 7.
AC AE BC
DE
8.全等 9.
5
8
6.4 cm 3.75 cm 10.45 三、11.(1)相似 (2)相似
12.A ′B ′=20 cm ,B ′C ′=263
2
cm 13.30 cm 14.略
课外练习
一、请你填一填
(1)如果两个三角形的相似比为1,那么这两个三角形________.
(2)若△ABC与△A′B′C′相似,一组对应边的长为AB=3 cm,A′B′=4 cm,那么△A′B′C′与△ABC的相似比是________.
(3)若△ABC的三条边长的比为3∶5∶6,与其相似的另一个△A′B′C′的最小边长为12 cm,那么△A′B′C′的最大边长是________.
(4)已知△ABC的三条边长分别为3 cm,4 cm,5 cm,△ABC∽△A′B′C′,那么△A′B′C′的形状是______,又知△A′B′C′的最大边长为20 cm,那么△A′B′C′的面积为________.
二、认真选一选
(1)下列命题错误的是()
A.两个全等的三角形一定相似
B.两个直角三角形一定相似
C.两个相似三角形的对应角相等,对应边成比例
D.相似的两个三角形不一定全等
(2)若△ABC∽△DEF,它们的周长分别为6 cm和8 cm,那么下式中一定成立的是()
A.3AB=4DE
B.4AC=3DE
C.3∠A=4∠D
D.4(AB+BC+AC)=3(DE+EF+DF)
(3)若△ABC与△A′B′C′相似,∠A=55°,∠B=100°,那么∠C′的度数是()
A.55°
B.100°
C.25°
D.不能确定
(4)把△ABC的各边分别扩大为原来的3倍,得到△A′B′C′,下列结论不能成立的是()
A.△ABC∽△A′B′C′
B.△ABC与△A′B′C′的各对应角相等
1
C.△ABC与△A′B′C′的相似比为
4
1
D.△ABC与△A′B′C′的相似比为
3
三、△ABC中,AB=12 cm,BC=18 cm,AC=24 cm,若△A′B′C′∽△ABC,△A′B′
C′的周长为81 cm,求△A′B′C′各边的长.
四、好好想一想
如图4—5—1:分别取等边三角形ABC 各边的中点D 、E 、F ,得△DEF .若△ABC 的边长为a .
(1)△DEF 与△ABC 相似吗?如果相似,相似比是多少? (2)分别求出这两个三角形的面积.
(3)这两个三角形的面积比与边长之比有什么关系吗?
图4—5—1
参考答案 一、(1)全等 (2)3∶4 (3)24cm (4)直角三角形 96cm 2 二、(1)B (2)D (3)C (4)C 三、解法1:设△A ′B ′C ′与△ABC 的相似比为x ,根据题意得:BC
C B AC C A AB B A '
'=''='' =x 将AB =12,BC =18,AC =24代入上式可得: A ′B ′=12x ,B ′C ′=18x ,A ′C ′=24x ∵△A ′B ′C ′的周长为81 cm ∴12x +18x +24x =81,解得:x =2
3
∴A ′B ′=12x =18(cm ),B ′C ′=18x =27(cm ) A ′C ′=24x =36(cm )
解法2:由已知得△ABC 的周长为12+18+24=54(cm ) 所以△A ′B ′C ′与△ABC 的相似比等于81∶54即3∶2 则
2
3
=''=''=''AC C A BC C B AB B A ,
∴
2
3
241812=''=''=''C A C B B A ∴A ′B ′=18(cm ),B ′C ′=27(cm ),A ′C ′=36(cm ) 四、(1)根据三角形中位线定理得DE =21a ,EF =DF =2
1a 所以△DEF 是等边三角形,△DEF 与△ABC 相似,相似比为2
1
(2)△ABC 的面积为2
1AB ·A E =2
1
a ·2224
3)21(a a a =
- △DEF 的面积为2
1·2
1
a ·16
3)41()21(22=
-a a a 2 (3)S △DEF ∶S △ABC =
163a 2∶43a 2=4
1∶1=1∶4 这两个三角形的面积比等于边长之比的平方.。