算法设计与分析随机算法及计算复杂性

合集下载

算法设计与分析 教学大纲

算法设计与分析 教学大纲

《算法设计与分析》教学大纲适用于四年制本科计算机应用技术、信息与计算科学专业(参考学时数:64 学时)一、课程代码7100450,7100451二、课程的性质、任务算法设计与分析是计算机科学的核心问题之一,这门课是计算机专业以及相关专业的一门重要的课程。

本课程的教学目的是:在学生学习掌握了编程的基本技术,掌握了数据结构的基本知识、理论的基础上,比较系统的学习算法理论中的基础部分内容。

在这一课程教学中,培养学生掌握算法设计的方法论,掌握常用的算法设计的方法;掌握算法分析的基本工具、方法、技巧,在解决实际问题时,对于较复杂的问题能抽象出问题的数学模型,设计出有效的算法。

在此基础上学习本课程的中级篇:结构上的算法设计(分类、图的高级部分、流),学生通过这部分的学习,了解算法优化的实现途径,很好的解决数据结构中未能解决的问题、最后是本课程的高级篇:NP完全理论、现代优化计算方法简介。

学生通过这部分的学习初步了解计算复杂性理论的基本内容、现代算法的几个主要发展分支,为今后实际应用或者搞理论研究打下一些必备的理论基础。

三、课程基本要求学生必备的先行课是:高等数学、离散数学、程序设计、数据结构。

本课程不能求快,应循序渐进,培养学生浓厚的学习热情和求知欲。

教学中注重和前期课程数据结构的衔接,使学生明白这门课不同于数据结构的是:数据结构是讨论三种基本数据结构上的基本操作的实现,它是完成“如何做”,算法设计与分析这门课强调的是:怎么巧做,做的更好。

在本课程的后期教学中,特别提倡学生广泛阅读参考书、独立思考、结合实际问题展开讨论的教学方式,并以此达到教师精讲、学生宽学的目的。

课程的基本要求是:1.掌握7种常用的算法设计方法,并能综合、灵活的使用这些基本方法,同时用所学到的知识解决一些实际问题;2.掌握算法分析的基本工具、基本技巧、基本方法;3.掌握数据结构中未能详细、深入了解的部分内容(内存分类,图的高级部分、流上的算法);4.了解计算复杂性理论中的基本内容,包括:机器模型,NP完全、NP难题,近似计算;5.了解现代的计算算法和算法理论的发展趋势走向。

算法设计与分析课程教学大纲

算法设计与分析课程教学大纲

算法设计与分析课程教学大纲【适用专业】计算机科学与技术【课时】理论课时:32【学分】 2【课程性质、目标和要求】《算法设计与分析》是计算机科学与技术专业的专业课。

无论是计算科学还是计算实践,算法都在其中扮演着重要角色。

本课程的教学目的是讲授在计算机应用中常常遇到的实际问题的解法,讲授设计和分析各种算法的基本原理、方法和技术,培养学生对算法复杂性进行正确分析的能力。

课程基本要求是⑴掌握算法分析的基本概念和理论。

⑵掌握算法设计技术和分析算法以及算法复杂性。

【教学时间安排】本课程计 2 学分,理论课时32, 学时分配如下:【教学内容要点】第一章算法引论一、学习目的要求1.了解算法的计算复杂性分析方法2.理解算法分析的基本理论3.掌握算法分析的基本概念二、主要教学内容1. 算法的基本概念2. 表达算法的抽象机制3. 采用Java语言与自然语言相结合的方式描述算法的方法4. 算法的计算复杂性分析方法第二章递归与分治策略一、学习目的要求1.理解典型范例中递归与分治策略应用技巧2.掌握递归与分治策略3.掌握数学归纳法证明算法正确性方法二、主要教学内容1. 递归的概念2. 分治法的基本思想3. 二分搜索技术4. 大整数的乘法5. Strassen阵乘法6. 棋盘覆盖7. 合并排序8. 快速排序9. 线性时间选择10. 最接近点对问题11. 循环赛日程表第三章动态规划一、学习目的要求1.理解典型范例中动态规划算法的设计思想2.掌握动态规划算法的基本要求以及算法的设计要点二、主要教学内容1. 矩阵连乘问题2. 动态规划算法的基本要素3. 最长公共子序列4. 最大子段和5. 凸多边形最优三角剖分6. 多边形游戏7. 图像压缩8. 电路布线9. 流水作业调度10. 0—l背包问题11. 最优二叉搜索树12. 动态规划加速原理三、课堂讨论选题1. 最长公共子序列2. 0—l背包问题第四章贪心算法一、学习目的要求1.了解贪心算法的理论基础及基本要素2. 理解典型范例中贪心算法的设计思想3. 掌握贪心算法的设计要点二、主要教学内容1. 活动安排问题2. 贪心算法的基本要素3. 最优装载4. 哈夫曼编码5. 单源最短路径6. 最小生成树7. 多机调度问题8. 贪心算法的理论基础三、课堂讨论选题1. 最优装载2. 单源最短路径第五章回溯法一、学习目的要求1.理解回溯法的效率分析方法2.掌握回溯法的算法框架和应用技巧二、主要教学内容1. 回溯法的算法框架2. 装载问题3. 批处理作业调度4. 符号三角形问题5. n后问题6. 0—l背包问题7. 最大团问题8. 图的m着色问题9. 旅行售货员问题10. 圆排列问题11. 电路板排列问题12. 连续邮资问题13. 回溯法的效率分三、课堂讨论选题1. 0—l背包问题2. 图的m着色问题第六章分支限界法一、学习目的要求1.理解分支限界法的基本思想2.掌握典型范例中分支限界法的应用技巧二、主要教学内容1. 分支限界法的基本思想2. 单源最短路径问题3. 装载问题4. 布线问题5. 0-1背包问题6. 最大团问题7. 旅行售货员问题8. 电路板排列问题9. 批处理作业调度三、课堂讨论选题1. 0-1背包问题2. 批处理作业调度第七章概率算法一、学习目的要求1.理解概率算法的基本思想2.掌握典型范例中概率算法的应用技巧二、主要教学内容1. 随机数2. 数值概率算法3. 舍伍德算法4. 拉斯维加斯算法5. 蒙特卡罗算法第八章 NP完全性理论一、学习目的要求1.了解P类与NP类问题2.了解典型的NP完全问题二、主要教学内容1. 计算模型2. P类与NP类问题3. NP完全问题4. 一些典型的NP完全问题第九章近似算法一、学习目的要求1.掌握近似算法的基本思想2.掌握常用近似算法的应用二、主要教学内容1. 近似算法的性能2. 顶点覆盖问题的近似算法3. 旅行售货员问题近似算法4. 集合覆盖问题的近似算法5. 子集和问题的近似算法第十章算法优化策略一、学习目的要求1.掌握算法优化策略2.掌握算法优化的基本方法二、主要教学内容1. 算法优化策略的比较与选择2. 动态规划加速原理3. 问题的算法特征4. 优化数据结构5. 优化搜索策略【教学(实验)内容要点】算法设计与分析实验是算法设计与分析课的一个实践性教学环节。

计算机算法的设计与分析

计算机算法的设计与分析

计算机算法的设计与分析计算机算法是计算机科学中非常重要的概念,它是解决问题和完成任务的步骤和规则。

在计算机科学领域,算法的设计与分析被广泛应用于各种领域,如数据结构、人工智能、图像处理等。

本文将重点探讨计算机算法的设计与分析,并介绍一些常见的算法。

一、算法的定义和特点算法是指解决问题的有限步骤序列,其中每个步骤具有明确的目标和执行顺序。

算法的设计与分析是通过选择和组合适当的数据结构和算法,以解决实际问题和优化计算性能。

合理设计的算法应具备以下特点:1. 正确性:算法能够解决问题,并给出正确的结果。

2. 可读性:算法的结构和步骤清晰易懂,容易被其他人理解和阅读。

3. 高效性:算法的执行时间和所需资源尽可能少,以提高计算效率。

4. 通用性:算法能够适用于不同规模和类型的问题,并具有良好的扩展性。

二、算法的设计方法在设计算法时,可以采用不同的方法和策略。

下面介绍几种常见的算法设计方法:1. 分治法:将大问题划分成若干个相同或类似的小问题,逐个解决小问题,最后将结果合并。

2. 动态规划:将复杂问题划分成一系列相互联系的子问题,通过解决子问题来求解原问题。

3. 贪心算法:每次选择当前看起来最优的策略来解决问题,不考虑后续可能产生的影响。

4. 回溯法:采用试错的思想,尝试所有可能的答案,当发现不满足条件时,进行回溯重新尝试。

5. 随机算法:通过随机选择的方式求解问题,时间复杂度通常较高。

三、算法的复杂性分析算法的复杂性分析是评估算法的执行时间和所需资源的一种方法。

一般来说,常用的复杂性分析有时间复杂性和空间复杂性。

1. 时间复杂性:衡量算法执行所需的时间。

常见的时间复杂性表示方法有大O记法,表示算法执行时间的上限。

2. 空间复杂性:衡量算法执行所需的额外内存空间。

常见的空间复杂性表示方法也是大O记法,表示算法所需额外内存空间的上限。

通过复杂性分析,可以选择适当的算法来解决特定问题,并评估算法的性能。

四、常见的算法以下是几种常见的计算机算法:1. 排序算法:包括冒泡排序、选择排序、插入排序、快速排序等,用于按照一定规则对数据进行排序。

计算机科学中的算法复杂性分析

计算机科学中的算法复杂性分析

计算机科学中的算法复杂性分析在当今数字化的时代,计算机科学的影响力日益显著,而算法作为计算机科学的核心之一,其复杂性分析更是至关重要。

当我们使用各种软件、应用程序或者进行大规模的数据处理时,背后都离不开算法的支持。

而了解算法的复杂性,能够帮助我们更好地评估其效率,从而做出更明智的选择。

那么,什么是算法的复杂性呢?简单来说,算法的复杂性就是衡量一个算法在执行过程中所需要的资源量,这些资源通常包括时间和空间。

时间复杂性关注的是算法运行所需的时间,而空间复杂性则关注的是算法在运行过程中所占用的内存空间。

为了更直观地理解算法的复杂性,让我们来看一个简单的例子:冒泡排序算法。

冒泡排序的基本思想是通过反复比较相邻的元素并交换它们的位置,将最大的元素逐步“浮”到数组的末尾。

对于一个包含 n个元素的数组,冒泡排序在最坏情况下的时间复杂度为 O(n^2)。

这意味着,如果数组的元素数量增加一倍,算法运行的时间将增加大约四倍。

与冒泡排序相比,快速排序算法通常在平均情况下具有更好的性能。

快速排序通过选择一个基准元素,将数组分为小于和大于基准元素的两部分,然后对这两部分分别进行排序。

在平均情况下,快速排序的时间复杂度为 O(n log n)。

这种对数级的增长速度使得快速排序在处理大规模数据时更加高效。

算法复杂性的分析不仅仅局限于排序算法,在图论、搜索算法、动态规划等众多领域都有着广泛的应用。

例如,在图的遍历中,深度优先搜索和广度优先搜索有着不同的时间和空间复杂性。

深度优先搜索通常具有较低的空间复杂度,但在某些情况下可能会导致较长的运行时间;而广度优先搜索则在处理某些问题时能够更快地找到解,但可能需要更多的空间来存储队列。

影响算法复杂性的因素有很多。

首先是问题的规模,通常来说,问题的规模越大,算法所需的时间和空间就越多。

其次是算法的设计和实现方式,一个巧妙的算法设计能够显著降低复杂性。

此外,硬件环境和编程语言的选择也可能对算法的实际性能产生影响。

算法设计与分析复习题目及答案 (3)

算法设计与分析复习题目及答案 (3)

分治法1、二分搜索算法是利用(分治策略)实现的算法。

9. 实现循环赛日程表利用的算法是(分治策略)27、Strassen矩阵乘法是利用(分治策略)实现的算法。

34.实现合并排序利用的算法是(分治策略)。

实现大整数的乘法是利用的算法(分治策略)。

17.实现棋盘覆盖算法利用的算法是(分治法)。

29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。

不可以使用分治法求解的是(0/1背包问题)。

动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。

下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。

(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。

矩阵连乘问题的算法可由(动态规划算法B)设计实现。

实现最大子段和利用的算法是(动态规划法)。

贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。

回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。

剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。

分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。

分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。

(2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。

第5章 算法与复杂性

第5章 算法与复杂性
对于一个算法的评价,通常要从正确性、可理解性、 健壮性、时间复杂度(Time Complexity)及空间复杂 度(Space Complexity)等多个方面加以衡量。 1.算法的时间复杂度 时间复杂度是度量时间的复杂性,即算法的时间效率 的指标。 2.算法的空间复杂度 算法的空间复杂度是度量空间的复杂性,即执行算法 的程序在计算机中运行时所占用空间的大小。
5.7 可计算性理论基础
研究计算的可行性和函数算法的理论,又称算法 理论,是算法设计与分析的基础,也是计算机科 学的理论基础。可计算性是函数的一个特性。
5.8 NP问题
NP(Non-deterministic Polynomial)问题是非确定性多 项式问题,是指算法无法直接计算出结果,只能通过进 行一些有选择的“猜算”来得到结果。 NP问题的研究结果有两种可能: 一种是找到了求解问题的算法; 另一种就是求解问题的算法是不存在的,那么就要从数
钥,通常有两个密钥,称为“公钥”和“私钥”,它 们两个必须配对使用,否则不能打开加密文件。
5.10 加密算法
常见加密算法有如下: (1)DES(Data Encryption Standard):数据加密标准,速 度较快,适用于加密大量数据的场合。 (2)3DES(Triple DES):是基于DES,对一块数据用3个不 同的密钥进行3次加密,强度更高; (3)RC2和RC4:用变长密钥对大量数据进行加密,比DES 快。 (4)IDEA(International Data Encryption Algorithm)国 际数据加密算法,使用128位密钥提供非常强的安全性。 (5)RSA:由RSA公司发明,是一个支持变长密钥的公共密 钥算法,需要加密的文件块的长度也是可变的。 (6)DSA(Digital Signature Algorithm):数字签名算法, 是一种标准的DSS(数字签名标准)。

数学中的随机算法设计与分析

数学中的随机算法设计与分析

数学中的随机算法设计与分析随机算法是指在算法的执行过程中引入随机性的一种计算方法。

随机算法在计算机科学和数学领域中广泛应用,它能够解决许多与随机性相关的问题,如概率、统计、优化等。

本文将介绍数学中的随机算法设计与分析,并探讨其应用领域和挑战。

一、随机算法的定义和基本思想随机算法是一种通过引入随机性来解决问题的计算方法。

它与确定性算法不同,其执行结果在相同的输入情况下可能会有不同的输出。

随机算法的基本思想是利用随机数生成器生成一系列的随机数,并根据这些随机数进行计算和决策。

随机算法通常包括以下几个步骤:1. 随机数生成:通过随机数生成器生成随机数序列。

2. 初始化:对算法进行初始化,使其获得一个合理的起始状态。

3. 迭代计算:根据生成的随机数和当前状态进行计算,得到新的状态。

4. 终止条件判断:判断是否满足终止条件,如果满足则停止计算,否则返回步骤3。

二、蒙特卡罗方法蒙特卡罗方法是一种以随机采样的方式来解决问题的数值计算方法。

其基本思想是通过随机采样产生问题的一个随机样本,并利用这个样本的统计特征来估计问题的解。

蒙特卡罗方法的应用领域非常广泛,如计算机图形学中的光线跟踪算法、金融工程中的期权定价、物理学中的数值模拟等等。

该方法的优势在于能够处理复杂的数学模型和实际问题,但也存在着计算复杂度高、采样误差等问题。

三、马尔可夫链马尔可夫链是一种随机过程,具有马尔可夫性质。

它的基本思想是当前状态只与前一时刻的状态相关,与之前所有的状态无关。

在随机算法中,马尔可夫链常用于模拟和优化问题。

通过构建一个马尔可夫链模型,可以利用其平稳分布进行采样和估计。

马尔可夫链蒙特卡罗方法以及马尔可夫链蒙特卡罗近似算法是利用马尔可夫链进行随机采样和近似计算的重要技术。

四、遗传算法遗传算法是一种基于生物进化原理的优化算法。

其基本思想是通过模拟生物进化过程中的选择、交叉和变异等操作来搜索最优解。

遗传算法在解决复杂优化问题方面具有很大的优势。

计算机算法与复杂性理论

计算机算法与复杂性理论

计算机算法与复杂性理论计算机算法与复杂性理论是计算机科学领域中至关重要的一门学科。

本文将介绍计算机算法与复杂性理论的基本概念、原理以及在计算机科学中的应用。

一、算法的定义与分类算法是指解决问题的一系列有限指令的集合。

它根据输入数据,经过有限的计算步骤,得到期望的输出结果。

算法可以分为确定性算法和非确定性算法。

确定性算法是指在给定输入后,每一步都有确定性的处理过程,最后得到确定的输出结果。

而非确定性算法则存在多种可能的计算路径和输出结果。

二、复杂性理论与问题的可计算性复杂性理论是研究算法运行时间与所处理问题规模之间关系的学科。

它主要关注的是问题的难解性及其可计算性。

根据问题的可计算性,可以将问题分为可解问题和不可解问题。

可解问题指能找到一个算法来解决,而不可解问题则是指不存在算法能够解决。

三、时间复杂性和空间复杂性时间复杂性是指算法在解决问题时所需的时间代价。

空间复杂性则是指算法在解决问题时所需的额外存储空间。

这两个复杂性指标直接影响着算法的效率和资源利用情况。

在算法设计中需要综合考虑时间复杂性和空间复杂性,寻找一个合适的平衡点。

四、常见的算法与复杂性理论问题在实际应用中,有一些常见的算法与复杂性理论问题需要重点研究和解决。

比如最短路径问题、图着色问题、背包问题等。

这些问题涉及到的算法设计和复杂性分析都具有一定的挑战性,但它们的解决对于解决实际问题非常重要。

五、应用领域计算机算法与复杂性理论在各个领域都有广泛的应用。

在人工智能领域中,算法的设计与分析是实现智能决策和优化的基础。

在网络安全领域中,复杂性理论可以帮助研究者理解和分析密码学算法的安全性。

在金融领域中,高效的算法可以提高交易速度和准确性。

此外,在计算机图形学、数据挖掘等领域中也都有广泛的应用。

六、发展趋势与挑战随着计算机科学的不断发展,计算机算法与复杂性理论也面临着一些新的挑战。

例如,随着大数据时代的到来,处理大规模数据的算法效率需要进一步提升。

算法设计与分析知识点

算法设计与分析知识点

第一章算法概述1、算法的五个性质:有穷性、确定性、能行性、输入、输出。

2、算法的复杂性取决于:(1)求解问题的规模(N) , (2)具体的输入数据(I),( 3)算法本身的设计(A),C=F(N,I,A。

3、算法的时间复杂度的上界,下界,同阶,低阶的表示。

4、常用算法的设计技术:分治法、动态规划法、贪心法、回溯法和分支界限法。

5、常用的几种数据结构:线性表、树、图。

第二章递归与分治1、递归算法的思想:将对较大规模的对象的操作归结为对较小规模的对象实施同样的操作。

递归的时间复杂性可归结为递归方程:1 11= 1T(n) <aT(n—b) + D(n) n> 1其中,a是子问题的个数,b是递减的步长,~表示递减方式,D(n)是合成子问题的开销。

递归元的递减方式~有两种:1、减法,即n -b,的形式。

2、除法,即n / b,的形式。

2、D(n)为常数c:这时,T(n) = 0(n P)。

D(n)为线形函数cn:r O(n) 当a. < b(NT(n) = < Ofnlog^n) "n = blljI O(I1P)二"A bl吋其中.p = log b a oD(n)为幕函数n x:r O(n x) 当a< D(b)II JT{ii) = O(ni1og b n) 'ia = D(b)ll].O(nr)D(b)lHJI:中,p= log b ao考虑下列递归方程:T(1) = 1⑴ T( n) = 4T(n/2) +n⑵ T(n) = 4T(n/2)+n2⑶ T(n) = 4T(n/2)+n3解:方程中均为a = 4,b = 2,其齐次解为n2。

对⑴,T a > b (D(n) = n) /• T(n) = 0(n);对⑵,•/ a = b2 (D(n) = n2) T(n) = O(n2iog n);对⑶,•/ a < b3(D(n) = n3) - T(n) = 0(n3);证明一个算法的正确性需要证明两点:1、算法的部分正确性。

计算机算法设计与分析(第5版)第1章

计算机算法设计与分析(第5版)第1章
• 其中I是问题的规模为n的实例,p(I)是实 例I出现的概率。
算法渐近复杂性
• T(n) , as n ; • (T(n) - t(n) )/ T(n) 0 ,as n; • t(n)是T(n)的渐近性态,为算法的渐近复杂性。 • 在数学上, t(n)是T(n)的渐近表达式,是T(n)略去低阶
问题求解(Problem Solving)
理解问题 精确解或近似解
选择数据结构 算法设计策略
设计算法 证明正确性
分析算法 设计程序
算法复杂性分析
• 算法复杂性 = 算法所需要的计算机资源 • 算法的时间复杂性T(n); • 算法的空间复杂性S(n)。 • 其中n是问题的规模(输入大小)。
算法的时间复杂性
项留下的主项。它比T(n) 简单。
渐近分析的记号
• 在下面的讨论中,对所有n,f(n) 0,g(n) 0。 • (1)渐近上界记号O • O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n n0有:
0 f(n) cg(n) } • (2)渐近下界记号 • (g(n)) = { f(n) | 存在正常数c和n0使得对所有n n0有:
• (1)最坏情况下的时间复杂性 • Tmax(n) = max{ T(I) | size(I)=n } • (2)最好情况下的时间复杂性 • Tmin(n) = min{ T(I) | size(I)=n } • (3)平均情况下的时间复杂性
• Tavg(n) = p(I )T (I ) size(I )n

for x > -1,
x ln(1 x) x 1 x

for any a > 0,
Hale Waihona Puke log b nlim

计算机算法设计与分析--第1章 算法概述

计算机算法设计与分析--第1章 算法概述
12
③确认算法。算法确认的目的是使人们确信这一算 法能够正确无误地工作,即该算法具有可计算性。 正确的算法用计算机算法语言描述,构成计算机程 序,计算机程序在计算机上运行,得到算法运算的 结果; ④ 分析算法。算法分析是对一个算法需要多少计算 时间和存储空间作定量的分析。分析算法可以预测 这一算法适合在什么样的环境中有效地运行,对解 决同一问题的不同算法的有效性作出比较; ⑤ 验证算法。用计算机语言描述的算法是否可计算、 有效合理,须对程序进行测试,测试程序的工作由 调试和作时空分布图组成。
16
算法描述
1. 从第一个元素开始,该元素可以认为已 经被排序 2. 取出下一个元素,在已经排序的元 素序列中从后向前扫描 3. 如果该元素(已排序)大于新元素, 将该元素移到下一位置 4. 重复步骤3,直到找到已排序的元素 小于或者等于新元素的位置 5. 将新元素插入到该位置中 6. 重复步骤2
15
1.3 算法示例—插入排序算法
算法的思想:扑克牌游戏
a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1
= = = = = = =
5,2,4,6,1,3 5,2,4,6,1,3 2,5,4,6,1,3 2,4,5,6,1,3 2,4,5,6,1,3 1,2,4,5,6,3 1,2,3,4,5,6
8
算法≠程序
算法描述:自然语言,流程图,程序设计
语言,伪代码 用各种算法描述方法所描述的同一算法, 该算法的功用是一样的,允许在算法的描述 和实现方法上有所不同。
本书中采用类C++伪代码语言描述算法
9
人们的生产活动和日常生活离不开算法, 都在自觉不自觉地使用算法,例如人们到 商店购买物品,会首先确定购买哪些物品, 准备好所需的钱,然后确定到哪些商场选 购、怎样去商场、行走的路线,若物品的 质量好如何处理,对物品不满意又怎样处 理,购买物品后做什么等。以上购物的算 法是用自然语言描述的,也可以用其他描 述方法描述该算法。

算法设计与分析(第2版)

算法设计与分析(第2版)

作者简介
王晓东,男,1957年3月出生,福州大学计算机系教授,福建省计算机学会理事长。研究领域是算法设计与 算法评价,基于计算机络和信息安全的大规模问题求解算法与数据结构,信息可视化技术。几何计算,并行和分 布式算法设计,计算复杂性理论。先后主持了与算法设计与分析有关的国家自一然科学基金项目、国家优秀留学 回国人一员基金项目、福建省杰出人才基金项目和省自然科学基金项目等7个研究课题;获得国家科技进步二等奖 1项,省科技进步二等奖3项。主持国家精品课程“算法与数据结构”,和福建省优质硕士学位课程“算法设计与 分析”的课程建设,获2005年福建省教学成果一等奖。在国内外重要学术刊物上发表有创见性的论文50余篇;正 式出版《算法设计与分析》等学术著作7部,在算法复杂性研究方面取得了一系列理论研究成果和应用成果。例如, 在对著名的凸壳问题的计算复杂性研究成果中推广了关于判定树模型下问题的计算复杂性下界的著名的Ben-Or, 并应用于分析凸壳问题的计算复杂性,在较_般的情况下改进和完善了国际算法界知名学者Aggarwal、Steele和 Yao等提出的关于凸壳问题计算复杂性下界的结果。研究成果得到同行专家的好评并被国内权威刊物所引用。
内容提要
为了适应培养我国21世纪计算机各类人才的需要,结合我国高等学校教育工作的现状,立足培养学生能跟上 国际计算机科学技术的发展水平,更新教学内容和教学方法,提高教学质量,本书以算法设计策略为知识单元, 系统地介绍计算机算法的设计方法与分析技巧,以期为计算机科学与技术学科的Байду номын сангаас生提供广泛而坚实的计算机算 法基础知识。
目录
第1章算法引论 1.1算法与程序 1.2表达算法的抽象机制 1.3描述算法 1.4算法复杂性分析 小结 习题 第2章递归与分治策略 2.1递归的概念 2.2分治法的基本思想 2.3二分搜索技术

算法设计与分析习题解答(第2版)

算法设计与分析习题解答(第2版)

第1章算法引论11.1 算法与程序11.2 表达算法的抽象机制11.3 描述算法31.4 算法复杂性分析13小结16习题17第2章递归与分治策略192.1 递归的概念192.2 分治法的基本思想262.3 二分搜索技术272.4 大整数的乘法282.5 Strassen矩阵乘法302.6 棋盘覆盖322.7 合并排序342.8 快速排序372.9 线性时间选择392.10 最接近点对问题432.11 循环赛日程表53小结54习题54第3章动态规划613.1 矩阵连乘问题62目录算法设计与分析(第2版)3.2 动态规划算法的基本要素67 3.3 最长公共子序列713.4 凸多边形最优三角剖分753.5 多边形游戏793.6 图像压缩823.7 电路布线853.8 流水作业调度883.9 0-1背包问题923.10 最优二叉搜索树98小结101习题102第4章贪心算法1074.1 活动安排问题1074.2 贪心算法的基本要素1104.2.1 贪心选择性质1114.2.2 最优子结构性质1114.2.3 贪心算法与动态规划算法的差异1114.3 最优装载1144.4 哈夫曼编码1164.4.1 前缀码1174.4.2 构造哈夫曼编码1174.4.3 哈夫曼算法的正确性1194.5 单源最短路径1214.5.1 算法基本思想1214.5.2 算法的正确性和计算复杂性123 4.6 最小生成树1254.6.1 最小生成树性质1254.6.2 Prim算法1264.6.3 Kruskal算法1284.7 多机调度问题1304.8 贪心算法的理论基础1334.8.1 拟阵1334.8.2 带权拟阵的贪心算法1344.8.3 任务时间表问题137小结141习题141第5章回溯法1465.1 回溯法的算法框架1465.1.1 问题的解空间1465.1.2 回溯法的基本思想1475.1.3 递归回溯1495.1.4 迭代回溯1505.1.5 子集树与排列树1515.2 装载问题1525.3 批处理作业调度1605.4 符号三角形问题1625.5 n后问题1655.6 0\|1背包问题1685.7 最大团问题1715.8 图的m着色问题1745.9 旅行售货员问题1775.10 圆排列问题1795.11 电路板排列问题1815.12 连续邮资问题1855.13 回溯法的效率分析187小结190习题191第6章分支限界法1956.1 分支限界法的基本思想1956.2 单源最短路径问题1986.3 装载问题2026.4 布线问题2116.5 0\|1背包问题2166.6 最大团问题2226.7 旅行售货员问题2256.8 电路板排列问题2296.9 批处理作业调度232小结237习题238第7章概率算法2407.1 随机数2417.2 数值概率算法2447.2.1 用随机投点法计算π值2447.2.2 计算定积分2457.2.3 解非线性方程组2477.3 舍伍德算法2507.3.1 线性时间选择算法2507.3.2 跳跃表2527.4 拉斯维加斯算法2597.4.1 n 后问题2607.4.2 整数因子分解2647.5 蒙特卡罗算法2667.5.1 蒙特卡罗算法的基本思想2667.5.2 主元素问题2687.5.3 素数测试270小结273习题273第8章 NP完全性理论2788.1 计算模型2798.1.1 随机存取机RAM2798.1.2 随机存取存储程序机RASP2878.1.3 RAM模型的变形与简化2918.1.4 图灵机2958.1.5 图灵机模型与RAM模型的关系297 8.1.6 问题变换与计算复杂性归约299 8.2 P类与NP类问题3018.2.1 非确定性图灵机3018.2.2 P类与NP类语言3028.2.3 多项式时间验证3048.3 NP完全问题3058.3.1 多项式时间变换3058.3.2 Cook定理3078.4 一些典型的NP完全问题3108.4.1 合取范式的可满足性问题3118.4.2 3元合取范式的可满足性问题312 8.4.3 团问题3138.4.4 顶点覆盖问题3148.4.5 子集和问题3158.4.6 哈密顿回路问题3178.4.7 旅行售货员问题322小结323习题323第9章近似算法3269.1 近似算法的性能3279.2 顶点覆盖问题的近似算法3289.3 旅行售货员问题近似算法3299.3.1 具有三角不等式性质的旅行售货员问题330 9.3.2 一般的旅行售货员问题3319.4 集合覆盖问题的近似算法3339.5 子集和问题的近似算法3369.5.1 子集和问题的指数时间算法3369.5.2 子集和问题的完全多项式时间近似格式337 小结340习题340第10章算法优化策略34510.1 算法设计策略的比较与选择34510.1.1 最大子段和问题的简单算法34510.1.2 最大子段和问题的分治算法34610.1.3 最大子段和问题的动态规划算法34810.1.4 最大子段和问题与动态规划算法的推广349 10.2 动态规划加速原理35210.2.1 货物储运问题35210.2.2 算法及其优化35310.3 问题的算法特征35710.3.1 贪心策略35710.3.2 对贪心策略的改进35710.3.3 算法三部曲35910.3.4 算法实现36010.3.5 算法复杂性36610.4 优化数据结构36610.4.1 带权区间最短路问题36610.4.2 算法设计思想36710.4.3 算法实现方案36910.4.4 并查集37310.4.5 可并优先队列37610.5 优化搜索策略380小结388习题388第11章在线算法设计39111.1 在线算法设计的基本概念39111.2 页调度问题39311.3 势函数分析39511.4 k 服务问题39711.4.1 竞争比的下界39711.4.2 平衡算法39911.4.3 对称移动算法39911.5 Steiner树问题40311.6 在线任务调度40511.7 负载平衡406小结407习题407词汇索引409参考文献415习题1-1 实参交换1习题1-2 方法头签名1习题1-3 数组排序判定1习题1-4 函数的渐近表达式2习题1-5 O(1) 和 O(2) 的区别2习题1-7 按渐近阶排列表达式2习题1-8 算法效率2习题1-9 硬件效率3习题1-10 函数渐近阶3习题1-11 n !的阶4习题1-12 平均情况下的计算时间复杂性4算法实现题1-1 统计数字问题4算法实现题1-2 字典序问题5算法实现题1-3 最多约数问题6算法实现题1-4 金币阵列问题8算法实现题1-5 最大间隙问题11第2章递归与分治策略14 习题2-1 Hanoi 塔问题的非递归算法14习题2-2 7个二分搜索算法15习题2-3 改写二分搜索算法18习题2-4 大整数乘法的 O(nm log(3/2))算法19习题2-5 5次 n /3位整数的乘法19习题2-6 矩阵乘法21习题2-7 多项式乘积21习题2-8 不动点问题的 O( log n) 时间算法22习题2-9 主元素问题的线性时间算法22习题2-10 无序集主元素问题的线性时间算法22习题2-11 O (1)空间子数组换位算法23习题2-12 O (1)空间合并算法25习题2-13 n 段合并排序算法32习题2-14 自然合并排序算法32习题2-15 最大值和最小值问题的最优算法35习题2-16 最大值和次大值问题的最优算法35习题2-17 整数集合排序35习题2-18 第 k 小元素问题的计算时间下界36习题2-19 非增序快速排序算法37习题2-20 随机化算法37习题2-21 随机化快速排序算法38习题2-22 随机排列算法38习题2-23 算法qSort中的尾递归38习题2-24 用栈模拟递归38习题2-25 算法select中的元素划分39习题2-26 O(n log n) 时间快速排序算法40习题2-27 最接近中位数的 k 个数40习题2-28 X和Y 的中位数40习题2-29 网络开关设计41习题2-32 带权中位数问题42习题2-34 构造Gray码的分治算法43习题2-35 网球循环赛日程表44目录算法设计与分析习题解答(第2版)算法实现题2-1 输油管道问题(习题2-30) 49算法实现题2-2 众数问题(习题2-31) 50算法实现题2-3 邮局选址问题(习题2-32) 51算法实现题2-4 马的Hamilton周游路线问题(习题2-33) 51算法实现题2-5 半数集问题60算法实现题2-6 半数单集问题62算法实现题2-7 士兵站队问题63算法实现题2-8 有重复元素的排列问题63算法实现题2-9 排列的字典序问题65算法实现题2-10 集合划分问题(一)67算法实现题2-11 集合划分问题(二)68算法实现题2-12 双色Hanoi塔问题69算法实现题2-13 标准二维表问题71算法实现题2-14 整数因子分解问题72算法实现题2-15 有向直线2中值问题72第3章动态规划76习题3-1 最长单调递增子序列76习题3-2 最长单调递增子序列的 O(n log n) 算法77习题3-7 漂亮打印78习题3-11 整数线性规划问题79习题3-12 二维背包问题80习题3-14 Ackermann函数81习题3-17 最短行驶路线83习题3-19 最优旅行路线83算法实现题3-1 独立任务最优调度问题(习题3-3) 83算法实现题3-2 最少硬币问题(习题3-4) 85算法实现题3-3 序关系计数问题(习题3-5) 86算法实现题3-4 多重幂计数问题(习题3-6) 87算法实现题3-5 编辑距离问题(习题3-8) 87算法实现题3-6 石子合并问题(习题3-9) 89算法实现题3-7 数字三角形问题(习题3-10) 91算法实现题3-8 乘法表问题(习题3-13) 92算法实现题3-9 租用游艇问题(习题3-15) 93算法实现题3-10 汽车加油行驶问题(习题3-16) 95算法实现题3-11 圈乘运算问题(习题3-18) 96算法实现题3-12 最少费用购物(习题3-20) 102算法实现题3-13 最大长方体问题(习题3-21) 104算法实现题3-14 正则表达式匹配问题(习题3-22) 105算法实现题3-15 双调旅行售货员问题(习题3-23) 110算法实现题3-16 最大 k 乘积问题(习题5-24) 111算法实现题3-17 最小 m 段和问题113算法实现题3-18 红黑树的红色内结点问题115第4章贪心算法123 习题4-2 活动安排问题的贪心选择123习题4-3 背包问题的贪心选择性质123习题4-4 特殊的0-1背包问题124习题4-10 程序最优存储问题124习题4-13 最优装载问题的贪心算法125习题4-18 Fibonacci序列的Huffman编码125习题4-19 最优前缀码的编码序列125习题4-21 任务集独立性问题126习题4-22 矩阵拟阵126习题4-23 最小权最大独立子集拟阵126习题4-27 整数边权Prim算法126习题4-28 最大权最小生成树127习题4-29 最短路径的负边权127习题4-30 整数边权Dijkstra算法127算法实现题4-1 会场安排问题(习题4-1) 128算法实现题4-2 最优合并问题(习题4-5) 129算法实现题4-3 磁带最优存储问题(习题4-6) 130算法实现题4-4 磁盘文件最优存储问题(习题4-7) 131算法实现题4-5 程序存储问题(习题4-8) 132算法实现题4-6 最优服务次序问题(习题4-11) 133算法实现题4-7 多处最优服务次序问题(习题4-12) 134算法实现题4-8 d 森林问题(习题4-14) 135算法实现题4-9 汽车加油问题(习题4-16) 137算法实现题4-10 区间覆盖问题(习题4-17) 138算法实现题4-11 硬币找钱问题(习题4-24) 138算法实现题4-12 删数问题(习题4-25) 139算法实现题4-13 数列极差问题(习题4-26) 140算法实现题4-14 嵌套箱问题(习题4-31) 140算法实现题4-15 套汇问题(习题4-32) 142算法实现题4-16 信号增强装置问题(习题5-17) 143算法实现题4-17 磁带最大利用率问题(习题4-9) 144算法实现题4-18 非单位时间任务安排问题(习题4-15) 145算法实现题4-19 多元Huffman编码问题(习题4-20) 147算法实现题4-20 多元Huffman编码变形149算法实现题4-21 区间相交问题151算法实现题4-22 任务时间表问题151第5章回溯法153习题5\|1 装载问题改进回溯法(一)153习题5\|2 装载问题改进回溯法(二)154习题5\|4 0-1背包问题的最优解155习题5\|5 最大团问题的迭代回溯法156习题5\|7 旅行售货员问题的费用上界157习题5\|8 旅行售货员问题的上界函数158算法实现题5-1 子集和问题(习题5-3) 159算法实现题5-2 最小长度电路板排列问题(习题5-9) 160算法实现题5-3 最小重量机器设计问题(习题5-10) 163算法实现题5-4 运动员最佳匹配问题(习题5-11) 164算法实现题5-5 无分隔符字典问题(习题5-12) 165算法实现题5-6 无和集问题(习题5-13) 167算法实现题5-7 n 色方柱问题(习题5-14) 168算法实现题5-8 整数变换问题(习题5-15) 173算法实现题5-9 拉丁矩阵问题(习题5-16) 175算法实现题5-10 排列宝石问题(习题5-16) 176算法实现题5-11 重复拉丁矩阵问题(习题5-16) 179算法实现题5-12 罗密欧与朱丽叶的迷宫问题181算法实现题5-13 工作分配问题(习题5-18) 183算法实现题5-14 独立钻石跳棋问题(习题5-19) 184算法实现题5-15 智力拼图问题(习题5-20) 191算法实现题5-16 布线问题(习题5-21) 198算法实现题5-17 最佳调度问题(习题5-22) 200算法实现题5-18 无优先级运算问题(习题5-23) 201算法实现题5-19 世界名画陈列馆问题(习题5-25) 203算法实现题5-20 世界名画陈列馆问题(不重复监视)(习题5-26) 207 算法实现题5-21 部落卫队问题(习题5-6) 209算法实现题5-22 虫蚀算式问题211算法实现题5-23 完备环序列问题214算法实现题5-24 离散01串问题217算法实现题5-25 喷漆机器人问题218算法实现题5-26 n 2-1谜问题221第6章分支限界法229习题6-1 0-1背包问题的栈式分支限界法229习题6-2 用最大堆存储活结点的优先队列式分支限界法231习题6-3 团顶点数的上界234习题6-4 团顶点数改进的上界235习题6-5 修改解旅行售货员问题的分支限界法235习题6-6 解旅行售货员问题的分支限界法中保存已产生的排列树237 习题6-7 电路板排列问题的队列式分支限界法239算法实现题6-1 最小长度电路板排列问题一(习题6-8) 241算法实现题6-2 最小长度电路板排列问题二(习题6-9) 244算法实现题6-3 最小权顶点覆盖问题(习题6-10) 247算法实现题6-4 无向图的最大割问题(习题6-11) 250算法实现题6-5 最小重量机器设计问题(习题6-12) 253算法实现题6-6 运动员最佳匹配问题(习题6-13) 256算法实现题6-7 n 后问题(习题6-15) 259算法实现题6-8 圆排列问题(习题6-16) 260算法实现题6-9 布线问题(习题6-17) 263算法实现题6-10 最佳调度问题(习题6-18) 265算法实现题6-11 无优先级运算问题(习题6-19) 268算法实现题6-12 世界名画陈列馆问题(习题6-21) 271算法实现题6-13 骑士征途问题274算法实现题6-14 推箱子问题275算法实现题6-15 图形变换问题281算法实现题6-16 行列变换问题284算法实现题6-17 重排 n 2宫问题285算法实现题6-18 最长距离问题290第7章概率算法296习题7-1 模拟正态分布随机变量296习题7-2 随机抽样算法297习题7-3 随机产生 m 个整数297习题7-4 集合大小的概率算法298习题7-5 生日问题299习题7-6 易验证问题的拉斯维加斯算法300习题7-7 用数组模拟有序链表300习题7-8 O(n 3/2)舍伍德型排序算法300习题7-9 n 后问题解的存在性301习题7-11 整数因子分解算法302习题7-12 非蒙特卡罗算法的例子302习题7-13 重复3次的蒙特卡罗算法303习题7-14 集合随机元素算法304习题7-15 由蒙特卡罗算法构造拉斯维加斯算法305习题7-16 产生素数算法306习题7-18 矩阵方程问题306算法实现题7-1 模平方根问题(习题7-10) 307算法实现题7-2 集合相等问题(习题7-17) 309算法实现题7-3 逆矩阵问题(习题7-19) 309算法实现题7-4 多项式乘积问题(习题7-20) 310算法实现题7-5 皇后控制问题311算法实现题7-6 3-SAT问题314算法实现题7-7 战车问题315算法实现题7-8 圆排列问题317算法实现题7-9 骑士控制问题319算法实现题7-10 骑士对攻问题320第8章NP完全性理论322 习题8-1 RAM和RASP程序322习题8-2 RAM和RASP程序的复杂性322习题8-3 计算 n n 的RAM程序322习题8-4 没有MULT和DIV指令的RAM程序324习题8-5 MULT和DIV指令的计算能力324习题8-6 RAM和RASP的空间复杂性325习题8-7 行列式的直线式程序325习题8-8 求和的3带图灵机325习题8-9 模拟RAM指令325习题8-10 计算2 2 n 的RAM程序325习题8-11 计算 g(m,n)的程序 326习题8-12 图灵机模拟RAM的时间上界326习题8-13 图的同构问题326习题8-14 哈密顿回路327习题8-15 P类语言的封闭性327习题8-16 NP类语言的封闭性328习题8-17 语言的2 O (n k) 时间判定算法328习题8-18 P CO -NP329习题8-19 NP≠CO -NP329习题8-20 重言布尔表达式329习题8-21 关系∝ p的传递性329习题8-22 L ∝ p 330习题8-23 语言的完全性330习题8-24 的CO-NP完全性330习题8-25 判定重言式的CO-NP完全性331习题8-26 析取范式的可满足性331习题8-27 2-SAT问题的线性时间算法331习题8-28 整数规划问题332习题8-29 划分问题333习题8-30 最长简单回路问题334第9章近似算法336习题9-1 平面图着色问题的绝对近似算法336习题9-2 最优程序存储问题336习题9-4 树的最优顶点覆盖337习题9-5 顶点覆盖算法的性能比339习题9-6 团的常数性能比近似算法339习题9-9 售货员问题的常数性能比近似算法340习题9-10 瓶颈旅行售货员问题340习题9-11 最优旅行售货员回路不自相交342习题9-14 集合覆盖问题的实例342习题9-16 多机调度问题的近似算法343习题9-17 LPT算法的最坏情况实例345习题9-18 多机调度问题的多项式时间近似算法345算法实现题9-1 旅行售货员问题的近似算法(习题9-9) 346 算法实现题9-2 可满足问题的近似算法(习题9-20) 348算法实现题9-3 最大可满足问题的近似算法(习题9-21) 349 算法实现题9-4 子集和问题的近似算法(习题9-15) 351算法实现题9-5 子集和问题的完全多项式时间近似算法352算法实现题9-6 实现算法greedySetCover(习题9-13) 352算法实现题9-7 装箱问题的近似算法First Fit(习题9-19) 356算法实现题9-8 装箱问题的近似算法Best Fit(习题9-19) 358算法实现题9-9 装箱问题的近似算法First Fit Decreasing(习题9-19) 360算法实现题9-10 装箱问题的近似算法Best Fit Decreasing(习题9-19) 361算法实现题9-11 装箱问题的近似算法Next Fit361第10章算法优化策略365 习题10-1 算法obst的正确性365习题10-2 矩阵连乘问题的 O(n 2) 时间算法365习题10-6 货物储运问题的费用371习题10-7 Garsia算法371算法实现题10-1 货物储运问题(习题10-3) 374算法实现题10-2 石子合并问题(习题10-4) 374算法实现题10-3 最大运输费用货物储运问题(习题10-5) 375算法实现题10-4 五边形问题377算法实现题10-5 区间图最短路问题(习题10-8) 381算法实现题10-6 圆弧区间最短路问题(习题10-9) 381算法实现题10-7 双机调度问题(习题10-10) 382算法实现题10-8 离线最小值问题(习题10-11) 390算法实现题10-9 最近公共祖先问题(习题10-12) 393算法实现题10-10 达尔文芯片问题395算法实现题10-11 多柱Hanoi塔问题397算法实现题10-12 线性时间Huffman算法400算法实现题10-13 单机调度问题402算法实现题10-14 最大费用单机调度问题405算法实现题10-15 飞机加油问题408第11章在线算法设计410习题11-1 在线算法LFU的竞争性410习题11-4 多读写头磁盘问题的在线算法410习题11-6 带权页调度问题410算法实现题11-1 最优页调度问题(习题11-2) 411算法实现题11-2 在线LRU页调度(习题11-3) 414算法实现题11-3 k 服务问题(习题11-5) 416参考文献422。

算法设计与分析中的复杂性理论研究

算法设计与分析中的复杂性理论研究

算法设计与分析中的复杂性理论研究一、引言算法设计与分析中的复杂性理论研究是计算机科学领域中的一个重要分支。

它主要研究如何对不同类型的算法进行分类和评估,以便选择最优算法来解决特定的计算问题。

在计算机科学的应用领域中,对于一些需要处理大数据量或者实时响应的问题,算法设计与分析中的复杂性理论研究显得尤为重要。

二、算法复杂性的形式化定义算法复杂性是对算法计算耗时和空间占用的度量。

一个好的算法需要在最短的时间内提供最优的解决方案。

在算法复杂度的分析过程中,主要采用渐进记号法,其中O符号表示算法的上界,即最坏情况下所需的比较次数或移动次数的最大值;Ω符号表示下界,即最好情况下所需的比较次数或移动次数的最小值;θ符号表示上下界相等的情况。

三、算法时间复杂性分析算法时间复杂性分析是算法设计与分析中的重要内容,它主要关注的是算法在解决问题时所需要的时间开销。

常见的时间复杂度分类有:常数复杂度O(1)、线性复杂度O(n)、对数复杂度O(log n)、指数复杂度O(k^n)等等。

举个例子,对于搜索算法,假设需要搜索n个元素,其中一个算法的时间复杂度为O(n),另一个算法的时间复杂度为O(log n)。

显然,后者的时间复杂度更低,因此更适合用来解决大规模搜索问题。

四、算法空间复杂性分析算法空间复杂性分析主要关注的是算法在执行过程中所需的存储空间,常见的空间复杂度分类有:常数空间复杂度O(1)、线性空间复杂度O(n)、对数空间复杂度O(log n)等等。

通常来说,一个算法的空间复杂度越低,所用内存越少,效率越高。

当然,在实际的应用中,还需要考虑计算机的硬件性能、数据存储方式、算法实现方式等因素,从而确定最优的算法和运行环境。

五、NP完全性理论在算法设计与分析中,存在一类特殊的问题,即NP完全问题。

这类问题的特点是:其解法实现很难,而验证其解答的正确性却相对较易。

NP完全问题包括:旅行商问题、背包问题、子集和问题等等。

针对NP完全问题的求解,目前并无完美的解决方案。

算法设计与分析(第3版)

算法设计与分析(第3版)
在为各种算法设计策略选择用于展示其设计思想与技巧的具体应用问题时,该教材有意重复选择某些经典问 题,使读者能体会到一个问题可以用多种设计策略求解。同时,通过对解同一问题的不同算法的比较,更容易体 会到每一个具体算法的设计要点。随着该教材内容的逐步展开,读者也将进一步感受到综合应用多种设计策略可 以更有效地解决问题。
该教材采用面向对象的Java语言作为表述手段,在保持Java优点的同时,尽量使算法的描述简明。为了加深 对知识的理解,各章配有难易适当的习题,以适应不同程度读者练习的需要。
作者简介
王晓东,男,1957年出生,山东人,中共党员,现任福建工程学院副院长、教授、博士生导师。先后担任福 州大学计算机系主任、数学与计算机科学学院院长,2007年8月起担任泉州师范学院副院长,2014年8月起任现 职。
全书共分11章。该教材以算法设计策略为知识单元,介绍了计算机算法的设计方法与分析技巧。
成书过程
修订过程
出版工作
该教材是为了适应培养中国21世纪计算机各类人才的需要,结合中国高等学校教育工作的现状,立足培养学 生能跟上国际计算机科学技术的发展水平,更新教学内容和教学方法,提高教学质量的基础上编写而成。
谢谢观看
该教材由王晓东编著。在编写过程中,得到教育部高等学校计算机类专业教学指导委员会的支持。福州大学 “211工程”计算机与信息工程重点学科实验室为该教材的写作提供了设备与工作环境。南京大学宋方敏教授和 福州大学傅清祥教授审阅了全书,提出了改进意见。
2014年1月1日,该教材由清华大学出版社出版。
内容简介
该教材以算法设计策略为知识单元,介绍了计算机算法的设计方法与分析技巧。 全书共分11章。 在第1章中首先介绍算法的基本概念,接着简要阐述算法的计算复杂性和算法的描述,然后围绕设计算法常用 的基本设计策略组织第2章至第10章的内容。 第2章介绍递归与分治策略,这是设计有效算法最常用的策略。 第3章是动态规划算法,以具体实例详述动态规划算法的设计思想、适用性以及算法的设计要点。 第4章介绍贪心算法,这也是一种重要的算法设计策略,它与动态规划算法的设计思想有一定的,但其效率更 高。按贪心算法设计出的许多算法能导致最优解。 第5章和第6章分别介绍回溯法和分支限界法。这两章所介绍的算法适合于处理难解问题。 第7章介绍概率算法,对许多难解问题提供高效的解决途径,是有较高实用价值的算法设计策略。 第8章介绍NP完全性理论。首先介绍计算模型、确定性和非确定性图灵机,然后进一步介绍NP完全性理论。 第9章介绍了解NP难问题的近似算法,这是计算机算法领域的热门研究课题,具有较高的实用价值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 对于相同的输入,随机算法的执行时间也可能随不 同的运行过程而不同。
8.1 随机算法引言
随机算法的优点:
– 1、执行时间和空间,小于同一问题的已知最好的确定性算法; – 2、实现比较简单,容易理解。
很多确定性的算法,其性能很坏。可用随机选择的方 法来改善算法的性能。
某些方面可能不正确,对特定的输入,算法的每一次 运行不一定得到相同结果。出现这种不正确的可能性 很小,以致可以安全地不予理睬。
例:用随机投点法计算值 设有一半径为r的圆及其外切四边形。向该正
方形随机地投掷n个点。设落入圆内的点数为k。 由于所投入的点在正方形上均匀分布,因而所 投 足入 够的 大点 时落 ,入k与圆n内之的比概就率逼为近这一概4rr率。22 。所4 从以而当n
4k
n
7.4 数值概率算法
public double darts(int n)
}
unsigned int random(unsigned long low,unsigned long high)
{
seed = MULTIPLIER * seed + INCREMENT;
return ((seed >> 16) % (high – low) + low);
7.4 数值概率算法
7.1 随机算法引言
确定性的算法 :
– 算法的每一个计算步骤都是确定的, – 对于相同的输出,每一次执行过程都会产生相同的
输出。
随机算法:非形式描述
– 随机算法为使用随机函数产生器的算法。算法中的 一些判定依赖于随机函数产生器的输出。
– 随机算法对于相同的输入,在不同的运行过程中会 得到不同的输出。
7. k = split(A,low,high); /* 按元素A[low]把数组划分为两个 */
7.3 随机数发生器
产生随机数的公式:
d0 dn
d b d n1 c
an
dn
/
65536
n 1,2,
产生0~65535的随机数 a1, a2 , 序列,
b、c、d为正整数,称为所产生的随机序列的种子。
常数b、c,对所产生的随机序列的随机性能有很大的 关系,b通常取一素数。
7.3 随机数发生器
7.2 随机算法的类型
3、拉斯维加斯(Las Vegas)算法:要么给 出问题的正确答案,要么得不到答案。反复求 解多次,可使失效的概率任意小。
4、蒙特卡罗(Monte Carlo)算法:总能得到 问题的答案,偶然产生不正确的答案。重复运 行,每一次都进行随机选择,可使不正确答案 的概率变得任意小。
7.2 随机算法的类型
数值概率算法 拉斯维加斯(Las Vegas)算法 蒙特卡罗(Monte Carlo)算法 舍伍德(Sherwood)算法。
7.2 随机算法的类型
1、数值概率算法:用于数值问题的求解。所 得到的解几乎都是近似解,近似解的精度随着 计算时间的增加而不断地提高。
2、舍伍德(Sherwood)算法:很多具有很好 的平均运行时间的确定性算法,在最坏的情况 下性能很坏。引入随机性加以改造,可以消除 或减少一般情况和最坏情况的差别。
#define MULTIPLIER 0x015A4E35L;
#define
INCREMENT 1;
static unsigned long seed;
void random_seed(unsigned long d)
{
if (d==0)
seed = time(0);
else
seed = d;
时,舍伍德算法有很好的性能。 对所有输入实例而言,运行时间相对均匀。时间复杂性
与确定性算法的时间复杂性相当 .
7.5 舍伍德(Sherwood)算法
随机快速排序算法 算法9.1 随机选择枢点的快速排序算法 输入:数组A,数组元素的的起始位置low,终止位置high 输出:按非降顺序排序的数组A 1. template <class Type> 2. void quicksort_random(Type A[],int low,int high) 3. { 4. random_seed(0);/* 选择系统当前时间作为随机数种子 */ 5. r_quicksort(A,low,high); /* 递归调用随机快速排序算法 */ 6. }
间变坏
7.5 舍伍德(Sherwood)算法
二、舍伍德算法的基本思想
– 消除不同输入实例对算法性能的影响,使随机算法对 规模为的每一个实例,都有:TB ( x ) T A ( n ) s ( n )
三、期望运行时间:
T B ( n ) TB (x) / | X n | xX n
T B ( n ) T A ( n ) s ( n )当s(n)与 T A ( n ) 相比很小可以忽略
{ // 用随机投点法计算值
int k=0;
for (int i=1;i <=n;i& x=dart.fRandom();
double y=dart.fRandom();
if ((x*x+y*y)<=1) k++;
}
return 4*k/(double)n;
}
7.5 舍伍德(Sherwood)算法
7.5 舍伍德(Sherwood)算法
1. void r_quicksort(Type A[],int low,int high)
2. {
3. int k;
4. if (low<high) {
5. k = random(low,high);/* 产生low到high之间的随机数k */
6. swap(A[low],A[k]);/* 把元素A[k]交换到数组的第一个位置*/
一、确定性算法的平均运行时间 TA(x) :确定性算法对输入实例的运行时间。 Xn :规模为的所有输入实例全体。
算法的平均运行时间:T A ( n ) TA (x) / | X n |
存在实例 x X n,TA ( x ) T A ( n ) 。 xXn
例:快速排序算法 当输入数据均匀分布时,运行时间是 ( n log n ) 。 当输入数据按递增或递减顺序排列时,算法的运行时
相关文档
最新文档