正交各向异性介质平面问题的基本解
复合材料力学 第三章 各向异性弹性力学基础
S12 S 22 S 23 0 0 0
S12 S 23 S 22 0 0 0
0 0 0 S 44 0 0
0 0 0 0 S 66 0
0 0 0 0 0 S 66
由工程应变形式的展开式为:
五、各向同性(2个弹性常数)
E,
S11 S 12 S12 0 0 0 S12 S11 S12 0 0 0
S12 S 22
S13 S 23 S 33
0 0 0 S 44
0 0 0 0 S 55
对
称
0 0 0 0 0 S 66
由此可得:1)当采用材料主轴来描述正交异性体时,没有任 何拉剪耦合现象; 2)在非材料主轴系里,正交异性材料仍有耦合
现象。 纤维在横截面内按矩形排
列的单向纤维复合材料,宏观 而言则是一正交异性体。 共有9个弹性常数:
E1 , E2 , E3 , 12 , 31 , 23 , G23 , G31 , G12
1轴沿纤维方向,并有
ij ji
ij
没有对称性。
,而是
ij
Sij
ji
Ei
即
可展开为:
四、横观同性(5个弹性常数)
第三章 各向异性弹性力学基础
§3-1 各向异性弹性力学基本方程
基本未知量:
位移分量:u, v, w 应变分量: x , y , z , yz , zx , xy 应力分量: x , y , z , yz , zx , xy
基本方程:
1、平衡方程
ij, j f i 0
其中Sij为柔度系数,4、5和6即为剪应力23、31和12。 可见各向异性体一般具有耦合现象:正应力引起剪应变,剪 应力也可以引起正应变;反之亦然。
正交各向异性弹性力学平面问题的样条虚边界元法
界积分 方程或 直接得 到 一个线 性代数 方程 组 , 而完全避 开 了边界 奇异积 分 的计算 , 从 并能有 效 地克服边 界层 效应 问题 , 提高边 界及其 附近 区域 上解 的精 度 .这 种 方法 在 发 展 的过 程 中有 多 种名静 , 很不统 一 , 缺 乏较系统 的评 述 .作者把 这类 方法统称 为域 外奇 点法 .与 常规边 界元 且 法 一样 , 域外奇点 法 也有 直接法 和问接 法 之分 , 间接法 又可分 为连续 型 和离散 型两 种 .直接 而 域外 奇点 法是对 常规 直接边 界元法 的修 正 , 有些 文献 也静 之 为正 则边 界 元 法 .该 方法 同样 可 以采用加权 余量 法或 功 的互 等定 理等导 出以真实边 界上真 实物 理量 为基本未 知 量 的边界积 分
学、 高层建筑结构 、 桥粱结 构 .
40 0
维普资讯
苏
成
韩
大
建
力学 问题 - 薄板 弯 曲问题 [ J弹性力 学平 面 问题 _ 二维 波 动 问题 … 的 分 析 中 .至 于 、 、 l和 。 等 间接方 法 . 连续 型 间接域 外奇 点法 是对 常规 间接边 界元法 的修 正 .该法在 域外 虚 拟边界 ( 或域 外 某一 线段 ) 上连 续地 分布 一些 未知虚 拟量 , 然后 利用 基 本 解 的叠 加去 满 足 问题 的 边 界条 件 , 从 而建立 起相 应 的非 奇异虚 边 界积 分 方程 .它 们需通 过 数 值 方法 求解 , 一般 采 用类 似于 常规 边界 元法 的做 法 , 虚 拟边 界离 散 为若 干 虚边 界 元 , 积 分 方 程转 化 为线 性代 数 方 程 组来 求 把 将
第四章_各向异性介质中的光波详解
4.1.1 偏振光与自然光
光的传播与偏振
想一想
椭圆偏振光?
椭圆偏振光
4.1.1 偏振光与自然光
完全偏振光 线偏振光 圆偏振光 椭圆偏振光
自然光
在垂直光传播方向的平面上,所有方向均 有横振动,各个方向的振动幅度均相等,形成 如图所示的轴对称振幅分布。
4.1.1 偏振光与自然光
部分偏振光:自然光+完全偏振光
晶体光学与各向同性的光学: 相同:以麦克斯韦方程和物质方程为基础; 唯一不同:
D与E的关系。
晶体的介电张量
各向同性介质: D E 0r E 为常数
各向异性介质
D ij E 0 (r )ij E
xx yx
xy yy
xz yz
极化(偏振)与各向异性(双折射)
极化(偏振)与各向异性(双折射)
外加电场下,介质分子的极化与物质本身结构有关
无极分子
l
正负电荷被拉开距离
有极分子
重新排列
电荷=束缚电荷+自由电荷
E
/0
f
P 0
P 束缚电荷,与介质极化有关
偶极子
产 均匀
生 剩
介质
余
界面上 产生剩 余电荷
电 荷 非均 内部产
匀介 生剩余
量)
Dx Dy
0
xx yx
xy yy
xz yz
Ex Ey
Dz
zx zy zz Ez
0
xx yx
xy yy
xz yz
zx zy zz
J与E的关系
J J
x y
xx yx
xy yy
xz yz
Ex
Байду номын сангаас
正交各向异性薄板理论的新正交关系及其变分原理
中国科学G辑物理学力学天文学 2005, 35(1): 79~86 79正交各向异性薄板理论的新正交关系及其变分原理*罗建辉①**龙驭球②刘光栋①(①湖南大学土木工程学院, 长沙 410082; ②清华大学土木系, 北京 100084)摘要利用平面弹性问题与板弯曲问题的相似性理论, 将弹性力学新正交关系中构造对偶向量的思路推广到正交各向异性薄板弹性弯曲问题. 由混合变量求解法直接得到对偶微分方程. 所导出的对偶微分矩阵具有主对角子矩阵为零矩阵的特点. 发现了2个独立的、对称的正交关系. 利用正交各向异性薄板弹性弯曲理论的积分形式证明了这种正交关系. 在恰当选择对偶向量后, 弹性力学的新正交关系可以推广到正交各向异性薄板弹性弯曲理论. 利用积分形式导出了与微分形式对应的变分原理并提出了一个完整的泛函表达式.关键词弹性力学薄板理论对偶向量正交关系正交各向异性变分原理将Hamilton体系导入弹性力学求解, 钟万勰建立了弹性力学求解辛体系并提出了辛正交关系[1,2]. 对于二维弹性力学问题, 罗建辉等将原来的对偶向量[1]进行重新排序后, 提出了一种新的对偶向量和对偶微分矩阵[3]. 对于各向同性材料, 发现辛正交关系可以分解为2个独立的、对称的子正交关系, 新的正交关系包含辛正交关系[3]. 罗建辉等将新正交关系推广到各向同性三维弹性力学[4]和有一个方向材料正交的各向异性三维弹性力学[5]. 在弹性力学的求解体系中, 薄板和厚板弯曲理论的求解体系的研究也一直受到关注. 姚伟岸等研究了Reissner板弯曲的辛求解体系并提出了辛正交关系[6]. 罗建辉等采用与文献[6]排序不同的对偶变量, 导出了厚板弯曲的对偶求解体系[7]. 新正交关系被推广到厚板弯曲理论, 并从厚板势能原理出发, 采用换元乘子法导出了厚板Hamilton变分原理的能量泛2004-07-01收稿, 2004-12-20收修改稿*国家自然科学基金(批准号: 10272063)、教育部高等学校博士点基金(批准号: 20020003044)、清华大学基础研究基金(批准号: JC2002003)、高等学校全国优秀博士论文作者专项基金(批准号: 200242)资助项目** E-mali: luojianhui@80 中国科学 G 辑 物理学 力学 天文学 第35卷函.按照一般的思路, 厚板理论的子正交关系退化到薄板理论, 可以导出薄板理论的新正交关系. 但经过我们的研究发现, 直接退化的薄板理论正交关系并不成立. 产生这个结论的原因是显而易见的. 因为当厚板理论的对偶向量退化到薄板理论后, 对偶向量中的横向剪力不是独立的变量. 所以有必要对薄板理论对偶向量的选择和正交关系等问题进行研究. 钟万勰等提出了弯矩函数的概念, 建立了平面弹性问题与板弯曲问题的相似性理论, 构造了与传统对偶变量不同的对偶向量, 研究了各向同性薄板弯曲的求解辛体系并提出了辛正交关系[8]. 岑松等采用与文献[8]不同的对偶变量, 避免了相似性原理, 建立了薄板弯曲的对偶微分方程以及相应的变分原理泛函表达式[9]. 姚伟岸等基于相似性原理, 研究了正交各向异性薄板弯曲求解辛体系并提出了辛正交关系[10]. 但文献[10]建立的泛函表达式不完整, 没有包含与边界条件有关的项. 利用平面弹性问题与板弯曲问题的相似性理论, 罗建辉等将弹性力学的新正交关系推广到各向同性薄板弹性弯曲理论[11], 薄板弯曲的辛正交关系[8]分解为2个独立的、对称的子正交关系.本文将文献[3]构造对偶向量的思路应用于正交各向异性薄板弹性弯曲问题, 对文献[8]提出的对偶向量重新排序后, 提出了新的对偶向量, 建立了对应的对偶微分方程. 对偶微分矩阵的主对角子矩阵是零矩阵. 由于对偶微分矩阵的这一特点, 发现了辛正交关系[10]可以分解为2个独立的、对称的子正交关系. 文中从弹性力学求解体系的积分形式[12]出发, 证明了新正交关系的成立. 利用一种建立变分原理的新方法[12], 基于对偶微分方程和边界条件, 推导了对应的变分原理, 提出了一个包含边界条件的完整泛函表达式. 本文的研究表明, 在恰当选择对偶向量后, 弹性力学的新正交关系可以推广到正交各向异性薄板弹性弯曲理论.1 对偶向量和对偶微分方程矩形薄板的坐标如图1所示. 为了便于与文献[10]进行对比, 下文中有关的符号定义见文献[10, 13].曲率——挠度的关系是22222, ,.x y xy w w w x y x y∂∂∂===−∂∂∂∂κκκ (1)平衡微分方程为2222220xy y x M M M q x yxy∂∂∂−++=∂∂∂∂. (2)横向荷载q 的作用可以通过特解得到处理. 所以这里只考虑当q = 0时图1 矩形薄板第1期 罗建辉等: 正交各向异性薄板理论的新正交关系及其变分原理 81(2)式的齐次方程.正交各向异性板的物理方程为1112122266,,2y y x x y x xy xy M D D M D D M D =+=+=κκκκκ.(3)引用弯矩函数[10] ψx 和ψy , 弯矩与弯矩函数的关系为,,2y yx x y x xy M M M x y y x∂∂∂∂===+∂∂∂∂ψψψψ. (4) 容易看出(2)式的齐次方程已被满足. 若以对偶变量[10]T []x y y xy =νψψκκ (5)为基本变量, 则要由(1)式消去w 得变形协调方程为0,0y xy xy xxyxy∂∂∂∂+=+=∂∂∂∂κκκκ. (6) 将(4)代入(3)式可得 2121211662222,y y x x y xy D D D D x D y D x y∂∂⎛⎞∂∂=+−+=⎜⎟⎜⎟∂∂∂∂⎝⎠ψψψψκκ, (7)1222221y x y D D y D ∂=−∂ψκκ. (8)按文献[3]选取对偶向量的原则, 令新的对偶向量为 TT T[],b d =ννν (9)T T [],[].b x xy d y y ==ψκκψνν (10)由(6), (7)式得对偶微分方程为,=v Lv (11)式中,x⎡⎤∂==⎢⎥∂⎣⎦0B νL νD 0&, (12)2121211222221266222220,1D D D D D y y D D y D yD y ⎡⎤∂∂⎡⎤−−⎢⎥⎢⎥∂∂⎢⎥⎢⎥==⎢⎥∂⎢⎥∂∂−⎢⎥−⎢⎥∂∂⎣⎦∂⎢⎥⎣⎦B D . (13) 其他变量可由(1), (4)和(8)式得到. v b , v b 的分量以混合形式出现. 与文献[10]的H 矩阵比较, 由新对偶向量导出的L 矩阵的特点是其主对角子矩阵为零矩阵. 利用L 矩阵的这一特点, (11)式可以表示为,b d d b ==&&v Bv vDv . (14) 采用分离变量法求解, 设82 中国科学 G 辑 物理学 力学 天文学 第35卷()exp()y x =λv ψ, (15)式中λ是特征值, ψ是特征函数向量. 对应于新对偶向量, T T T[]b d =ψψψ. 由(14)式得,d b b d ==λλB ψψD ψψ. (16)2 一种新的正交关系定义11001⎡⎤=⎢⎥−⎣⎦J . (17) 对于任意的对偶变量v 和v *, 可以验证(18)~(21)式为恒等式.T1()*y***x d byxy xy y x x x∂∂∂=+−∂∂∂ψψκκκψv J v &, (18)2T1212111112222221+ 1 (),*y y ***d dy y y y *y y *x y D D D D D D y y D y y y⎛⎞∂∂⎛⎞⎜⎟=−+⎜⎟⎜⎟⎜⎟∂∂⎝⎠⎝⎠∂∂∂−+∂∂∂ψψκκκκψψκψv J Bv(19)T 1()*y ***xb dy xy y x x x x∂∂∂=−−+∂∂∂ψψκκκψv J v &, (20)T166()*****xx b bxyxy xy xy xy x D y y y∂∂∂=+−−∂∂∂ψψκκκκκψv J Dv . (21) 考虑图1所示矩形薄板, 在边界y = 0和y = b 处, 满足下列边界条件0x =κ或0y =ψ, (22)=0xy κ或0x =ψ. (23)由(19)和(21)式得T T 11()()****d d d d x y x y y y ∂∂−=−∂∂κψκψv J Bv v J Bv , (24)T T 11()+()****b b b b xy x xy x y y∂∂−=−∂∂κψκψv J Dv v J Dv . (25) 对(24)和(25)式积分得T T 110()()()bb b****d d d d x y x y dy −=−∫κψκψv J Bv v J Bv , (26)T T 11000()()()bb b****b b b b xy x xy x dy −=−∫κψκψv J Dv v J Dv . (27)第1期 罗建辉等: 正交各向异性薄板理论的新正交关系及其变分原理 83利用(14)和(22), (23)式, 由(26), (27)式分别得T T 11,,,,**d b d b 〈〉=〈〉v J v v J v &&, (28)T T 11,,,,**b d b d 〈〉=〈〉v J v v J v &&. (29)其中定义了运算110,,d by 〈〉=∫v J u vJ u . (30)由(15)式得,b b d d ==λλ&&vv vv , (31)******,b b d d ==λλ&&v v v v .(32)将(31), (32)式代入(28), (29)式得 T T11, , , , 0***d b d b 〈〉−〈〉=λλv J v v J v , (33)T T 11, , , , 0***d b d b −〈〉+〈〉=λλv J v v J v . (34)对于特征根λ和λ*, 若λ2−λ∗2 ⎯0, 由(33)和(34)式得T T11, , 0,, , 0**d b d b 〈〉=〈〉=v J v v J v . (35)以(15)代入(35)式得()T()T11e , ,0,e , ,0**x*x*d b d b λλλλ++〈〉=〈〉=ψJ ψψJ ψ. (36)由()e 0*x+≠λλ得新的正交关系TT11, ,0,, , 0**d b d b 〈〉=〈〉=ψJ ψψJ ψ. (37)由(37)式可得辛正交关系[10]T T11, , , , **d b d b J J 〈〉=〈〉ψψψψ. (38)对于正交各向异性薄板弯曲问题, 新的正交关系(37)式包含辛正交关系(38)式.3 混合变分原理对于对偶微分方程(14), 建立相应的变分原理是必要的. 下面将从微分形式出发, 利用积分形式[12]导出了与微分形式对应的变分原理.对于一般的曲线边界S , 边界条件为=0, 0s s n n −−=ψψψψ(在边界S ψ上), (39)=0, 0ns ns s s −−=κκκκ(在边界S κ上).(40)设对偶变量v *为任意对偶变量, 若对偶变量v 满足对偶微分方程(14)和边界条件(39), (40), 则()0*F ,=v v , (41)84 中国科学 G 辑 物理学 力学 天文学 第35卷T T11()[()()]d d [()()]d [()()]d .***d b d b d b A**n n s s s ns S **s ns ns n s s S F ,x y s s =−−−−−+−−−+−∫∫∫∫ψκψψκψψκψκκψκκv v v J v Bv v J v Dv &&(42)将(18)~(21)式代入(42)式得211121122122222()[ 1(+)21 +2**y y *****x xy y xy xy y y y y A***y yy y y y*y yD D F ,x x x x D D D D y y D y y y y ψψψψκκκκκκκκψψψψψψκκ∂∂⎛⎞∂∂=+++−−⎜⎟⎜⎟∂∂∂∂⎝⎠⎛⎞⎛⎞∂∂∂∂∂∂⎜⎟⎜⎟−++⎜⎟⎜⎟∂∂∂∂∂∂⎝⎠⎝⎠∫∫v v66()2()()]d d [()()]d [()()]d .****x xxy xy xy xy xy xy ****xy y y x x y xy x **n n ss s ns S **s ns ns n s s S D y y x yx y ss ψκψψκκκκκκκψκψκψκψψψκψψκψκκψκκ∂∂−+++∂∂∂∂−+−+∂∂−−+−−−+−∫∫ (43)为简单起见, 限定边界为直线段. 利用Green 公式, 得()+()d d [()()]d()d .****xy y y x x y xy x A ****xy y y x x y xy x S**n s s ns Sx y x y l m ss κψκψκψκψκψκψκψκψψκψκ⎡⎤∂∂++⎢⎥∂∂⎣⎦=+++=+∫∫∫∫(44)利用(44), (43)式化为12222661112112222()[+1(+)()221]2***y y y y ****x x y y xy xy y yA ****y y y y xy xy xy xy ***y y y y *x xxy xy D F ,x x x x D y y D D D D D D y yy y y y ψψψψψψκκκκκκκκκκκκκκψψψψψψκκ⎛⎞∂∂∂∂∂∂⎜⎟=+++−⎜⎟∂∂∂∂∂∂⎝⎠⎛⎞−−−+⎜⎟⎜⎟⎝⎠⎛⎞∂∂∂∂∂∂⎜⎟++++⎜⎟∂∂∂∂∂∂⎝⎠∫∫v v d d [()()]d ******n s n s n s s ns s ns s ns S x y s ψψκψκψκψκψκψκ−+−++−∫第1期 罗建辉等: 正交各向异性薄板理论的新正交关系及其变分原理 85()d .**s ns n s S s κψκψκ−+∫(45) 因为v 也包含在v *之中, 由(41)式得()0.F ,=v v (46)引入变分δ v = v *−v , 由(41)减(46)式得()()0*F ,F ,−=v v v v ,即21112121122226622 1(+)+21 ()22y y x x y y xy xy A y y y y y y y y y y y yxy xy xy xy x x x x D D D D D D y y D D y yy y ψδψψδψδκκδκκψδψδκκκδκδκκδψψψδψδκκκδκ∂∂∂∂⎡+++⎢∂∂∂∂⎣∂∂⎛⎞⎛⎞−−−⎜⎟⎜⎟⎜⎟∂∂⎝⎠⎝⎠∂∂∂∂⎛⎞++−+⎜⎟∂∂∂∂⎝⎠∫∫d d ()d [()()]d 0.x x xyxys ns n s Sn s n s n s s ns s ns s ns S x y s y y s κψψδψδκκδψκδψκδψκψδκψδκδψκψδκψδκ∂∂⎤++−+⎥∂∂⎦−+−++−=∫∫(47)对(47)式进行变分的逆运算, 得混合变分原理的变分表达式为0,=δΠ (48)22111211222266122222121 d d 22 ()d [()()]d ,y x xy y y Ay y x y xy xy s ns n s s n n ns s s S S D D D D D D x yD y D y y s s κψΠκψκψκψψψκκκψκψκκψψκψψ⎛⎞⎡=+−−⎜⎟⎣⎜⎟⎝⎠∂⎛⎞∂⎤−+−+⎜⎟⎥∂∂∂⎦⎝⎠−+−−+−∫∫∫∫&&(49)式中Π 的表达式包含文献[8, 10]的泛函表达式. 文献[8]对于各向同性薄板提出了一个完整的泛函表达式. 文献[10]的泛函表达式未包含有关边界条件的项. 本文提出了正交各向异性薄板完整的泛函表达式. 本文建立变分原理的方法是一种理性方法. 对(49)式进行变分, 可以推导出对偶微分方程(14)和边界条件(39),(40).4 结论对于基于新对偶变量的正交各向异性薄板求解体系, 本文得出了3点结果:(ⅰ) 建立了正交各向异性薄板对偶微分方程; (ⅱ) 导出了相应的薄板能量泛函;86 中国科学 G 辑 物理学 力学 天文学 第35卷(ⅲ) 提出了薄板两个子正交关系, 弹性力学的新正交关系已推广到正交各向异性薄板的弯曲问题.新的正交关系不但包含辛正交关系, 而且比其简洁. 新的正交关系成立的条件是220*−≠λλ. 这个条件的物理意义是对偶微分方程的基本解系关于x 坐标对称性. 对于一般的各向异性材料, 这一对称性将不成立, 所以新正交关系也不成立. 可以推测, 辛正交关系对于最一般的各向异性材料仍成立. 薄板求解体系的研究成果将为研究薄板的解析解和有限元解提供新的有效工具. 希望本文的工作对正交各向异性薄板弯曲问题特征函数展开直接解法的研究有所帮助.参 考 文 献1 钟万勰. 弹性力学求解新体系. 大连: 大连理工大学出版社, 19952 钟万勰. 互等定理与共轭辛正交关系. 力学学报, 1992, 24(4): 432~4373 罗建辉, 刘光栋. 各向同性平面弹性力学求解新体系正交关系的研究. 计算力学学报, 2003, 20(2): 199~2034 罗建辉, 刘光栋, 尚守平. 各向同性弹性力学求解新体系正交关系的研究. 固体力学学报, 2004, 25(1): 98~1005 罗建辉, 刘光栋. 弹性力学的一种正交关系. 力学学报, 2003, 35(4): 489~4936 姚伟岸, 隋永枫. Reissner 板弯曲的辛求解体系. 应用数学和力学, 2004, 25(2): 159~1657 罗建辉, 岑松, 龙志飞, 等. 厚板Hamilton 求解体系及其变分原理与正交关系. 工程力学, 2004, 31(2): 34~398 钟万勰, 姚伟岸. 板弯曲求解新体系及其应用. 力学学报, 1999, 31(2): 173~1849 岑松, 龙志飞, 罗建辉, 等. 薄板Hamilton 求解体系及其变分原理. 工程力学, 2004, 21(3): 1~6 10 姚伟岸, 苏滨, 钟万勰. 基于相似性原理的正交各向异性板弯曲 Hamilton 体系. 中国科学, E 辑, 2001, 31(4): 342~34711 罗建辉, 龙驭球, 刘光栋. 薄板理论的正交关系及其变分原理. 力学学报, 2004, 36(5): 527~532 12 Luo J H, Liu G D, Shang S P. Research on a systematic methodology for theory of elasticity. Applied Mathematics and Mechanics, 2003, 24(7): 853~86213姚伟岸, 钟万勰. 辛弹性力学. 北京: 高等教育出版社, 2002。
正交各向异性介质反射系数精确解
2020年10月第55卷 第5期 *北京市海淀区学院路29号中国地质大学(北京)地球物理与信息技术学院,100083。
Email:lujun615@163.com本文于2020年1月2日收到,最终修改稿于同年6月24日收到。
本项研究受国家自然科学基金项目“六分量地震波场的模拟与观测”(U1839208)、“沁水盆地高煤阶煤层气井产能控制因素与增产机理研究”(U1910205)及中国石化股份公司研发项目“三维三分量VSP关键处理技术研发与应用”(P18070-5)联合资助。
·综合研究·文章编号:1000-7210(2020)05-1060-13正交各向异性介质反射系数精确解张雪莹① 孙鹏远② 马学军③ 芦 俊*④ 李梦琦④(①中国地质大学(北京)能源学院,北京100083;②东方地球物理公司物探技术研究中心,河北涿州072751;③中国石化西北油田分公司勘探开发研究院,乌鲁木齐830011;④中国地质大学(北京)地球物理与信息技术学院,北京100083)张雪莹,孙鹏远,马学军,芦俊,李梦琦.正交各向异性介质反射系数精确解.石油地球物理勘探,2020,55(5):1060-1072.摘要 中国陆相沉积岩大多具有薄互层特征,当受到构造运动的影响时,会发育垂向或近似垂向的高角度裂缝,呈现出典型的正交各向异性,可看作是VTI和HTI各向异性的叠置。
研究正交各向异性介质的AVO响应特征对裂缝型储层的精细刻画有重要的意义。
针对VTI背景介质中发育的一组直立裂缝诱导的正交各向异性,采用Tsvankin提出的各向异性参数构建刚度系数矩阵,再根据Christoffel方程和边界条件推导了精确反射系数和透射系数的计算方法。
理论模型试算表明:①若P波从低阻抗各向同性介质入射至高阻抗正交各向异性介质,背景介质VTI各向异性强度的增大会导致PP波反射系数增大、PS1波和PS2波的反射系数减小;而随着裂缝弱度的增强会导致PP波反射系数的减小、PS1波和PS2波的反射系数的增大。
平面正交各向异性体材料参数识别算法及软件设计
如 果选ቤተ መጻሕፍቲ ባይዱ取结 构 的位 移 为 目标 变 量 , 目标 函数 则
可 以表示 为 :
Fs ( ):∑ s,s ≥q () ) ∈R, 2 P
其 中 , 测量 位 移 的数 量 ; 识别 材 料 参 数 p为 q为 的数 量 。 方程 ( ) 函数 () 义为 : 2中 s定
出的参数识 别方法是 有效的。
关键词 :平面正交各 向异性体 ;边界元 法;参数识 别
中图分 类号 :T 3 1 P 1 文献标识码 :A 文章编号 :10 0 9 (0 0 0 0 3 0 0 3— 99 2 1 )5— 0 5— 5
1 引 言
正交 各 向异 性材 料 ( 特别 是 先 进 复 合 材 料 ) 在 现代 工程结 构 中得 到 了广 泛 的应 用 , 准确 的材 料 其 参数 对工程 设计 与评 价具 有很 重要 的作 用 。融 合 测 量技术 、 数值 分析 方 法 和 优 化技 术 的参 数 识别 技 术 是获取 这 些 材 料 参 数 的 有 效 途 径 … 。材 料 参 数 识
r; () ts分别 为 边界 上 的位移 和 面 力 ; 1 s和 () ,
平 面正交 各 向异 性 体 在 荷 载作 用 下 , 以根 据 可
日() G s影 响矩 阵 。 s和 () 方程 ( ) 解产 生 的位移 1和应力 , 是边 界元 法 1求 1 , 这 求 解 正 问题 过 程 。另 一 方 面 , 根据 测 量 位 移 反求 材 料 参数 s即材 料 参数 识 别 问题 , 是 基 于 边界 元 , 这 法 求解 反 问题过 程 。材料参 数 识别 问题 可 以转 化成
2 平 面正交各 向异性体参数识别的数 学模 型
10_各向异性介质中的平面波
Ay Bx y0 x 0 Ay B y y0 y0 Ay B z y 0 z 0
称C
Az B x z 0 x 0 Az B y z 0 y0 Az B z z 0 z 0
为 并矢 。所以在三维空 间,标量用一个元素表示,矢量用三 个元素
其运算法则是夹在中间两个单 位矢量按 标积运算。 并矢的一次标积 A B , 并矢的二次标积 A : B ,其运算法则是夹在中间的两个单位矢量先按标积
// (1 )k x k z // (1 )k y k z 0 2 k 2 2 2 // z // kx ky
k
2 2
// 2 k k k z 2 //
波方程
寻常波解
k 2 2
2 k 2 0 0
0 k 2 2 0
,由此得到
vp / k 1/
E 0 x // (1 )k y k z E 0 y 0 2 E 0 z // k z 2 2 2 // kx ky z // 1 k x k z
D x xx D y yx D z zx
B x xx B y yx B z zx
xy xz E x yy yz E y E zy zz z
k E0 k x E0x k y E0y k z E0z ( 1 ε // )k z E0z ε
0 0
0
【doc】正交各向异性材料弹性本构关系分析
正交各向异性材料弹性本构关系分析一1997拒航空发动机第1期正交各向异性材料弹性本构关系分析张晓霞(沈阳建西孬,11OO15)32}3周柏卓(沈阳航空发罚罚面,110015)要:首先给出了正穸各向异性对科在材科主轱坐标最中弹性萃构关系.并由此导出了材科不同方向的弹性毫教之间的关系关键词0匪銮鱼里星嗡讨料三堕笪黾材料单晶材料..查塑苎量壁堡曼泊橙比剪切模量II1引言符号表正应力分量剪应力分量正应变分量剪应变分量方向弹性模量坐标轴问的剪切模量i:Y向作用拉(压)应力引起j方向缩(伸)的泊松比对于各向同性材料,正应力只产生正应变:剪应力分量只产生相应的剪应变分量.与各向同性材料不同,各向异性材料的正应力不仅产生正应变,而且也产生剪应变;同样,剪应力除了产生剪应变外,还要产生正应变;剪应力分量除了产生与之对应的剪应变分量外,还要产生其它的剪应变分量.这种耦合效应是由各向异性材料的物理特性所决定的. 完全各向异性材料的物理特性需要由21个独立的弹性常数来描述.在航空发动机上,用于制造涡轮叶片等高温构件的定向结品材料和单晶材料是正交各向异性的.正交各向异性材料是指通过这种材料的任意一点都存在三个相互垂直的对称面,垂直_丁对称面的方向称为弹性主方向. 在弹性主方向上,材料的弹性特性是相同的. 平行于弹性主方向的坐标轴为弹性主轴或材料主轴,用l_2和3表示这三个材料主轴.2弹性本构方程在正交各向异性材料的材料主轴坐标系中表示应力分量和应变分量或它们的增量. 应力分量与应变分量是不耦合的,其弹性应力应变关系由广义虎克定律确定".=【Cl{…………………?(1))=【c1扣}=【D】{£) (2)其中:㈦【"£,,;}=【l_O-"r"f2r"r;lDL=lc_L..;收稿日期:1996—06—27一/,n,=三EG1997征航空发动机第1期一(3)其中由于弹性矩阵的对称性有:£.u】I=u¨.E2n:£】",ElI,=£",因此,(3)式12个常数中只有9个是独立的求(3)式的逆矩阵.即可得到(2)式中的弹性系数与工程常数之间的关系为=:等鳇鲁每=G,d,^=G11d=G.……(4)其中:逝嚣3应力和应变坐标变换由弹性力学可知,一点的应力状态可由该点的三个相互垂直方向的3个正应力分量和6个剪应力分量表示.由剪应力互等定理可知,这6个剪应力分量中只有3个是独立的这9-t"应力分量组成一个二阶对称的应力张量: 同理,一点的9个应变分量组成一个二阶对称的应变张量,用矩阵分别记为fO-fr][]=l,flrJ通常.总体坐标系与材辩坐标系并不重合在总体坐标系中,正应力分量和剪应力分量之问,剪应力分量和剪应力分量之阅相互耦台.其应力应变关系可通过材料坐标系下应力应变关系的旋转变换得到设[fm,n,].[Zmn]和[Z:mss]分别为总体坐标轴x.Y和Z在材料坐标系中的方向余弦.则坐标变换矩阵H]为『,,用]【'mlL,3m】",J若材料坐标系中的应力张量和应变张量分别记为[]和[£].则应力张量和应变张量的转轴公式分别为【]=】[L【】 (5)]=【【州【棚 (6)[0]:】L】………………………?-(7)【.】=【[】【】…….展开(5)式,并写成矩阵的形式变换矩阵.则{}=【丁1,{}……………….同理展开(6).(7)和(8)式,得:{}=[{}……………{0}:[{…………………{0}:[,{…………………一其中变换矩阵………(8)令[列为….(9)…(IO)…fl1)…(12)2I22■,222'2'2rain,2^^'+'mn''+'+ram2^+''州+(J,It1nJ,+n,/. …………………………(131211,●●●●●●●●●j ,,Z,l一"r●_11l00000上o000上0..0.一0.E一E上B...一.一一...上'一一.00,...—.........—.........—,................,. .一晶~""f+●l~1997年航空发动机第1期I2lf,2¨2222n,n~22_'+''+''',l|^+,l|'''+月'c+rd.分别将(1)式和(10)式代人(11)式,(2)式和(12)式代人(9)式得总体坐标系下正交各向异性材料的应力应变关系矩阵为:【c1=【【c]【…………………-(15)【D]=[.【D】_[ (16)4定向结晶材料弹性常数定向结晶材料具有横观各向同性性质即如果取结晶轴为材料坐标轴3,则在与3轴垂直的平面内材料性能相同.这种材料的独立的弹性系数降为5个.若用工程常数表示. 井考虑到弹性模量E=E..泊松比==s,=a,,剪切模量G=G,则应应变关系矩阵(3)式变为:一000一—,all000占0000}00【J_200一0【J"000士"(3a)=.=:=i1d=Gld=d=G..J在(3a)式中,剪切模量G是不独立的,可用1—2平面内的弹性模量E和泊松比.表示.通过绕结晶轴旋转变换得:G.:!"2(1)剪切摸量G.的直接测量较困难,通常测量与结晶轴成45.夹角方向的拉伸弹性模量E 并由此导出剪切摸量G使总体坐标轴x与材料坐标轴1重合,z轴与3轴成45.夹角,则z轴方向的弹性模量即为E将其方向余弦代人总体坐标系的应力应变关系(15)式中得:1G=毒E一击E一亡E+E……J】"J^J6单晶材料弹性常数在单晶材料的三个材料主轴方向上.材料的弹性特性分别相等,令三个方向的弹性模量E=E=E.=E泊松比.===2=u==.剪切摸量,G=G=G=G,则在材料主轴坐标系中,单晶材料的应力应变关系矩阵(3)式变为:一穹耋堂爹晶材料的弹性系数与[Cl:工程常数之间的关系为: ..=:=ii:;;.(1一.)E.E,d'—(I-,u,~)E—,-2,un2E.锋(4a)一坐一一u000£££一兰一一u000£££一一一1000.EEE,1000_l_00l.....l.o.o.石1(3b)由(4)式可得单晶树科的弹性系数为^吼f,●ir●●l一.一E一'0o.一一上一一£.....一一r●●●●●●●●Jr.●●●11997拒航空发动机第1期.==:1=:=G(45)在总体坐标系中,单晶材料的弹性常数是总体坐标系方向的函数,用表示坐标轴3与轴z的夹角;表示轴1与轴x,z平面的夹角.则坐标变换矩阵[]为:lCOStZCOcosasinfl—sinal【—s|nCO0f (I9)IsiNa~osinasinflc0I将(19)式代人总体坐标系下的应力应变关系矩阵(15)式可得到总体坐标系下的弹性系数:Ez,.G盯,Grz和Gzx.:一f三一(COS~a+SEE\EGJ. ……………………………….……………"(20)u一(2+2一£G)sinco(1一sinos所i面…………………………………………………? (2I)u一(2+2一E/G)s~nasia肛os卢.一I-(2+2,u-E'G)sin=a(cos~a+sin=asin:flcos2f1) ….…………….-….…..….…一…………? (22,:¨l_+4f一n,pco~p…(23)GG.EG,一_L:+4f等一1sin2asc…(24)G,G£G…+4f一1.n~acoc0).G—G\£G,'单晶材料有三个独立的弹性常数.这三个常数可由材料主轴方向的弹性模量E.泊松比"和剪切模量G组成.对单品材料,通常给出在[100],[110]和[111]方向的弹性模量E, E.和E,而不直接测量剪切模量G.将=45.,=O代人(20)式得剪切模量与[110]方向的弹性模量之间的关系为:j42—2一GElj,,一—i (26)将=54.7356..F=45.代人(2O)式得剪切模量与[111]方向的弹性模量之闸妁关系为l31—2"一Gi一彳 (27)由(26)种(27)式可得单品材料[100].[110]和[111]方向的弹性模量之间的关系为:141.一3E一………'(.)用(28)式预测了俄罗斯某单晶材料和美国单晶材料PW A1480[110]方向的弹性模量.其结果见表1和表2由表1可见.俄罗斯的这种单晶材料对f28)式符合得很好,其最大误差只有一2.07%;而单晶材料PW A1480对(28)式符合得较差,当温度较低时.误差是负的.当温度较高时.误差是正的.其虽大误差达到19.6.袁1某单晶材料弹性横■E(GPa)温度I:℃)实测值硬测值误差()20226.2225.1—0.48800184.2182.7—086900174.5174.3—0.1210001653161.9—2.07图1表示单晶材料PW A1480在=90..54.7356.和45.时.弹性模量E随转角的变化规律当=45.时,E达到最大值.图2表示在=54.7356.时.弹性模量E.E和E随转角的变化规律.图3表示单品材料PW A1480在一90.,54.7356.和45.时,泊松比随转角的变化规律.当fl=45.时,达到最小值图4表示在一90.时,泊松比和随1997伍航空发动机第l期最2单晶材料PW A]480弹性模量(GPa) 温度(_f)宴制填预测值误差() 42722131876—1524760174.416O.9—77587l149615644.58 9821331147310701093917109.7l960-.ff一,~,卜』./I\L:}_015如456D75舶'^咄.fReqd~,c')图1弹性横量EJ--a=90'一口=54.7'\l—a=45.O如朽种7j^'kRoI-师')转角的变化规律.当:45.时,zx选到晶大值,达到最小值从罔4可以看出.泊松比柏最小值小于零.这表示在z方向单向拉伸时,在Y方向不是收缩,而是膨胀;此时zx达到最大值,值达到0.8左右.+表示横截面积的收缩情况.图5表示单品材料PW A1480在一90.,54.7356.和45.时,剪切模量G随转角口的变化规律当一45.时,G达到最小值网6表示在a=54.7356.时,剪切模量GG和G随转角的变化规律._I/\},,/i\—.,/,7.,r,}一/1]a=54l:备广O巧舯.j鲫^ⅡgkRotlfl~川'】图2弹性模量E,EriEz}}}一.._一Lvj,【lL———J0I530印75钟AagtcorR~Jiaa'I图3泊松=r?国4泊松比村和20}一言0^昌na鲁.,廿0_,∞;一暑u呈∞言t¨¨0o名2善吣¨00目H.q口01997拄航空发动机第1期小结号:宅=i三^ⅡeRJttati~.图5剪切模置G1)E,和G是单晶材料最基本的3个独立的弹性常数,如果用(26)式和(27)式决定G,可能得到不同的结果.2)单品材料只有两个方向的弹性模量是独立的,任何第三个方向的弹性模量都可由这两个方向的弹性模量表示.[100]方向的弹性模量和泊松比以及与这个轴不平行也不垂直方向的弹性模量构成单品材料三个独立的弹性常数.3)单品材料PwA148O对(28)式符合得较In7.1'j,.-l/~-i!--GxY/GI一0l5舯'5∞90^n山.fRoI-衄'J母6剪切模置GG和GⅡ差.最大误差达到19.6%.4)单品材料的剪切模量对方向很敏感如果方向偏差10.,剪切模量的偏差可达20%.参考文献1张允真一曹富新弹性力学及其有限元法中国铁道山版社,19832GA.Swanson.I.LiaskD.M.NissleyLife PredictionandConstitutiveModelsF0tEngine HotSectionAnisortoplcMaterialsPrpgram,NASA——CR——1749521{'.虏暑_。
特殊正交各向异性体的边界元法分析
标表示作用力的方向 , 而第二个下标表 示 由作用力 引起伸缩的方 式 () 1 中系 数 GtP) ( 的值 与 P点处 边 界 的几何 形 状有 关。 向 。 对 于 平 面应 变 问 题 , 度 系数 S 只需 用 S 一 S3 3/ 3 代 柔 i S3 S 替 光滑边界情况有 : 即可。
的基本解即可进行求解。
现代工程技 术 中广泛 地应 用 了正 交各 向异 性材 料 , 如建 诸
2 个弹性常数来描述 。 1 当各 向异性体具 有对称的 内部构造 时, 的弹性特性也呈现 它
这时 物体 中存在 对称方 向 , 相对该方 向的弹性特 筑、 船舶、 航空等行业 中对正交各向异性材料 的研 究分析与应用 。 出某种对称性 , 在较复杂的复合材料结构 中, 往往会 出现多种不 同材质材料组合 性也是相同的。假定物体 的每 一点都 存在 相互垂 直的 弹性对称
特 殊 正 交各 向异 性 体 的边 界 元 法 分析
米 东
摘 要 : 出 了对 于 正 交各 向 异 性体 , 指 当材 料 主 轴 与 坐 标 轴 不 重 合 时 , 于 弹 性 问 题 的 基 本 解 不再 适 用 , 了解 决 这 一 问 关 为
题, 特提 出坐标转换的方法, 以求应用边界元法解决材料 主轴 与坐标轴 不一致 的问题。 关键词 : 正交各 向异性体 , 本构关 系, 边界 元法
的问题 , 时在应用边 界元 方法对其 进行 数值 分析 时 , 要注 意 面 , 作正 交各 向异 性体 , 此 需 称 这时有三个正交的弹性主轴。 材料主轴与坐标 轴是否 重合 的问题 , 二者不 重合 , 若 则基 本解 不
一
般情况 , 设坐 标面 与弹性 对称 面一致 , 则坐标 轴 即成为材
正交各向异性(Orthotropic)
正交各向异性(Orthotropic)
正交各向异性(Orthotropic)
如果弹性体内每⼀点都存在这样⼀个平⾯,和该⾯对称的⽅向具有相同的弹性性质,则称该平⾯为物体的弹性对称⾯。
(弹性对称⾯是指弹性模量的对称⾯,⽐如各向同性,弹性模量在⼀点沿各个⽅向相等,横观各向同性,弹性模量在⼀点绕着轴旋转任意⾓度,保持不变。
既然各向同性和位置⽆关,那么对称也和位置⽆关)
垂直于弹性对称⾯的⽅向称为物体的弹性主⽅向。
若设yz为弹性对称⾯,则x轴为弹性主⽅向。
正交各向异性材料是指通过这种材料的任意⼀点都存在三个相互垂直的对称⾯
Wood is an example of an orthotropic material. Material properties in three perpendicular directions (axial, radial, and circumferential) are different.
对于具有⼀个弹性对称⾯的弹性体,其弹性常数由21个将减少为13个。
对于具有⼆个弹性对称⾯的弹性体,其弹性常数由13个将减少为9个。
假如弹性体有3个弹性对称⾯,本构⽅程不会出现有新的变化。
因此,如果相互垂直的3个平⾯中有两个弹性对称⾯,则第三个必为弹性对称⾯。
⼆个弹性对称⾯的弹性体本构⽅程表明:如果坐标轴与弹性主⽅向⼀致时,正应⼒仅与正应变有关,切应⼒仅与对应的切应变有关,因此拉压与剪切之间,以及不同平⾯内的剪切之间将不存在耦合作⽤。
这种弹性体称为正交各向异性弹性体,其独⽴的弹性常数为9个。
基于杂交基本解的正交各向异性材料热传导问题有限元法
文章编号: 1009 − 444X (2020)04 − 0305 − 09基于杂交基本解的正交各向异性材料热传导问题有限元法仇文凯 ,王克用(上海工程技术大学 机械与汽车工程学院,上海 201620)摘要:采用基于杂交基本解的有限元法(HFS-FEM )对二维正交各向异性材料进行热传导分析. 单元域内和单元边界上的温度分布由两个温度场独立描述. 采用基本解的线性组合来近似单元内部温度场,采用标准一维线单元形函数来定义网线温度场. 利用修正变分泛函和散度定理导得相应的有限元列式,通过2个算例与ABAQUS 结果对比,验证了该方法具有有效性. 数值结果表明,该方法在单元形状极度扭曲情形下仍能保持良好的精度,这是区别于传统有限元法的显著特点.关键词:热传导;有限元法;基本解;坐标变换;正交各向异性材料中图分类号: O 343.1 文献标志码: AHybrid Fundamental-Solution-Based FEM for Heat ConductionProblems in Orthotropic MaterialsQIU Wenkai ,WANG Keyong( School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China )Abstract :A heat conduction analysis of two-dimensional orthotropic materials was carried out by the hybrid fundamental-solution-based finite element method (HFS-FEM). Temperature distributions within the element domain and on the element boundary were independently described by two temperature fields. A linear combination of fundamental solutions was utilized to approximate the intra-element temperature field while standard one-dimensional shape functions were employed to define the frame temperature field. By virtue of the modified variational functional and divergence theorem, the resultant finite element formulation was derived. The effectiveness of the proposed method was verified by comparing two numerical examples with ABAQUS result. The numerical results demonstrate that the proposed method can still keep excellent accuracy even when the element shape degenerates to a situation of extreme distortion. This is one of marked features which differs from conventional finite element methods.Key words :heat conduction ;finite element method (FEM );fundamental solution ;coordinate transformation ;orthotropic materials材料按照性质和内部结构,一般可分为各向同性材料和各向异性材料. 各向同性材料具有简单、优良的特性,在材料工程领域得到广泛的应用[1 − 3]. Wang 等[1]采用基于杂交基本解的有限元收稿日期: 2020 − 06 − 01基金项目: 上海市自然科学基金资助项目(19ZR1421400)作者简介: 仇文凯(1994−),男,在读硕士,研究方向为杂交有限元法. E-mail :*****************通信作者: 王克用(1975−),男,副教授,博士,研究方向为Trefftz 有限元法和多孔介质传热. E-mail :*******************第 34 卷 第 4 期上 海 工 程 技 术 大 学 学 报Vol. 34 No. 42020 年 12 月JOURNAL OF SHANGHAI UNIVERSITY OF ENGINEERING SCIENCEDec. 2020方法(HFS-FEM)研究各向同性材料的热传导问题. Gao[2]提出一种求解各向同性材料热传导问题的无网格边界元方法. 目前,在汽车、造船、机械加工、航空航天、军工等工程领域中,许多各向同性材料还不能满足性能需求,因此,研究各向异性材料仍具有重要的理论和实际意义.在热传导问题[4 − 5]中,各向异性材料可分为一般各向异性材料和正交各向异性材料[6 − 9]. 各向异性材料的导热系数在各个方向上是不同的:一般各向异性材料导热系数张量中的所有元素都不为零,而正交各向异性材料导热系数张量中只有主对角线上的元素不为零. 根据导热系数的不同形式,正交各向异性材料可以进一步细分为常系数或变系数两种情况. 目前,关于用边界元法研究正交各向异性热传导问题的报道有很多. Perez 等[10]研究一般积分方程公式并用于求解均匀正交各向异性位势问题. Divo等[11]推导正交各向异性问题基本解的形式. Zhou等[12]针对二维正交各向异性位势问题,建立一个新的势导数边界积分方程,称为自然边界积分方程(NBIE). 通过边界元法以及其他数值方法分析此类问题已经开展了许多工作,而利用杂交基本解有限元法分析正交各向异性热传导问题的报道却非常少.杂交基本解有限元法是基于杂交Trefftz法的一种高效数值方法. Trefftz方法是由Trefftz于1926年提出的,利用满足控制方程的叠加函数来求解边值问题. 随后,Jirousek等[13]于1977年提出杂交Trefftz有限元法,将边界概念推广到单元间边界,并在单元内部构造满足非齐次Lagrange方程的坐标函数. 目前,杂交Trefftz有限元法已成功地应用于许多工程问题,如位势问题[14 − 15]、平面弹性问题[16]、夹杂分析[17 − 18]、接触问题[19]、轴对称问题[20 − 21]等. Wang等[22]采用杂交Trefftz有限元法(HT-FEM),以T-完备函数作为内部插值函数,研究轴对称位势问题. Wang等[23]基于完备解系提出分析正交各向异性位势问题的杂交Trefftz 有限元模型. 王克用等[24]利用杂交完备解有限元法分析功能梯度材料位势问题. 刘博等[25]利用含有特解的Poisson方程分析杂交Trefftz有限元法的轴对称问题. 杂交基本解有限元法的原始思想由Kompiš等[26]提出,其利用基本解近似位移场和应力场,并利用网线函数来实现相邻单元之间的连接. 高可乐等[27]采用杂交基本解有限元法分析考虑体力项的轴对称弹性问题,与杂交Trefftz 完备解有限元法相比,该方法可避免T-完备函数项选取困难,直接利用基本解来构造满足控制微分方程的单元内部插值函数. 此外,与边界元法相比,该方法消除了积分奇异性的缺点,在网格畸变方面表现出良好性能[28].本文基于文献[10 − 12, 23]的研究工作,利用杂交基本解有限元法分析正交各向异性材料的热传导问题.1 问题描述及基本方程u Qk=[k11k12k21k22]设为温度;为内部热源;k为各向异性材料的导热系数张量,,二维各向异性k12=k21=0k11 k22 0Q=0当,,时,式(1)可表示为式(2)即为二维正交各向异性热传导问题的控制方程. 考虑Dirichlet和Neumann两类边界条件,为¯u¯q n x n yΓ=Γu∪Γq 式中:和分别为给定的温度和热流;和分别为边界上任意点外法线向量的分量;为求解区域的整个边界.2 假定温度场与杂交Trefftz有限元法类似,杂交基本解有限元法采用两套假定的温度场来建立有限元模型,包括非协调单元内部温度场和辅助协调网线场. 精确满足控制方程的单元内部温度场,可保证单元内各点的计算精度,而相邻单元之间则由独立定义在单元边界上的辅助协调网线场连接,与杂交Trefftz有限元法不同的是,单元内部温度场由已知的基本解而不是T-完备函数构造.· 306 ·上海工程技术大学学报第 34 卷2.1 非协调单元内部温度场对于正交各向异性热传导问题,非协调的单元内部温度场可以表示为n s c e j N e (x ,y j )Ωe Γe 式中:为每个单元的源点个数;为待定参数;为二维正交各向异性热传导问题的基本解;为边界包围的单元域. 问题的基本解[10 − 12]应完全满足方程其中r =√(x P −x Q )2k 11+(y P −y Q )2k 22x P y P x Q y Q 式中:、和分别为场点坐标;和分别为源点坐标. x 向和y 向的采用以下关系确定源点的布局,为x c x b λ式中:为单元形心;为单元边界上的点;为无量纲参数. 特殊单元的源点分布如图1所示.中心点yxu e = N e c e (单元域内场)~~u e = N e d e (辅助网线场)源点节点图 1 两个假定温度场及其源点Fig. 1 Two assumed temperature fields with source points2.2 辅助协调网线温度场为保证相邻2个单元之间的连续性,在单元边界上建立一个辅助协调的网线温度场,为Ne (x )d e 式中:为形函数向量;为由单元的节点自由度组成的向量. 两节点单元边上的形函数如图2所示.12−1(1 + ξ)2−1(1 − ξ)2ξ = −1ξ = 0ξ = +1N 2~N 1~图 2 两节点单元边上的形函数Fig. 2 Shape functions on each two-node side of an element沿单元每两节点边上的温度分布为N 1 N 2ξ∈[−1,1]其中,和为在自然坐标系中定义的一维形函数,可表示为相应地,热流可表示为其中3 杂交基本解有限元列式3.1 修正的变分泛函∏m =∑e∏me∏me热传导问题总的杂交变分泛函可以通过得到,其中每个单元上的泛函可表示为第 4 期仇文凯 等:基于杂交基本解的正交各向异性材料热传导问题有限元法· 307 ·K ε=G T εH −1εG εP ε式中:为单元刚度矩阵;为等效的节点矢量.3.2 刚体运动的恢复为保证矩阵满秩,在计算单元内部场变量时,需要恢复舍弃的刚体运动项. 为获得单元内任意点的真实温度,根据现有研究[1, 18 − 19]提出的方法,可以很容易地恢复单元内温度场中舍弃的刚体运动项. 因此,温度的最终表达式为c 0u e ˜u ei 式中:为刚体运动参数,该参数可由单元所有节点处的和的最小二乘匹配确定,可写成c 0进一步地,刚体运动参数可表示为m 式中:为单元节点数.4 数值算例ε为定量理解计算精度,对任意变量f 引入相对误差(),可得f HFS −FEM f reference 式中:和分别为杂交基本解有限元解和参考解.为方便表达,算例中所有参数都采用无量纲(没有单位的物理量)的形式表示.4.1 方形区域内的热传导k 11=1k 22=2u =0u =10q =10在第1个算例中,考虑边长为0.1的正方形区域,其中材料的导热系数为和. 对正方形区域左右边界分别施加温度和;上部边界施加热流,下部边界假设为绝热;将整个模型划分为16个四节点四边形单元进行求解计算,如图3所示.yq = −10u = 0u = 10q = 0x4 × 4网格图 3 正方形区域、边界条件和有限元网格Fig. 3 Square domain, boundary conditions andfinite element mesh· 308 ·上 海 工 程 技 术 大 学 学 报第 34 卷γ=e /l γ=0为验证杂交基本解有限元法对网格畸变的不敏感性,定义5种网格变形方案,畸变参数()分别为0.1、0.3、0.5、0.7和0.9,与规则网格(,不变形)的计算结果对比如图4所示. 温度u 和热流q x ε(u )ε(q x )分量的相对误差如图5所示. 从图4中可以看出,即使对于γ = 0.9的极度扭曲网格,的最大值仍低于0.6%,且低于3%,这在工程实践中是可以接受的. 不同畸变程度下相同点的温度结果见表1.(a) γ = 0.1(b) γ = 0.3(c) γ = 0.5(d) γ = 0.7(e) γ = 0.9el图 4 网格畸变方案Fig. 4 Mesh distortion schemes1.0γ(a) 温度 u 的相对误差0.10.20.30.40.50.60.70.80.90.80.60.40.20Point 1 (0.050, 0.025)Point 2 (0.025, 0.025)Point 3 (0.035, 0.075)Point 4 (0.075, 0.075)Point 5 (0.015, 0.045)γ(b) 热流分量 q x 的相对误差0.10.20.30.40.50.60.70.80.94.03.53.02.52.01.51.00.50Point 1 (0.050, 0.025)Point 2 (0.025, 0.025)Point 3 (0.035, 0.075)Point 4 (0.075, 0.075)Point 5 (0.015, 0.045)q x 图 5 温度u 和热流分量的相对误差u q xFig. 5 Relative errors of temperature and heat flux component综上表明,该方法具有对网格畸变不敏感的优点. 将利用有限元软件ABAQUS 在划分841个单元网格时的计算结果作为参考解,杂交基本解有限元法在16个单元网格下的计算结果与之对比,两者能够较好地吻合,如图6所示.4.2 带圆孔的三角陀螺区域内的热传导在此算例中,研究包含圆孔的三角陀螺域的热传导,如图7所示. 模型中,圆孔半径0.1,小弧半径0.1,大弧半径0.4. 外边界上给定温度为u = 20,内边界上给定温度为u = 0. 考虑两种网格划分,分第 4 期仇文凯 等:基于杂交基本解的正交各向异性材料热传导问题有限元法· 309 ·k 11=1k 22=3别包含147和1 960个四节点四边形单元. 材料的导热系数为和. 三角陀螺域的温度云图如图8所示. 在粗网格下(含147个单元),杂交基本解有限元计算结果与ABAQUS 计算结果相差不大. 而与1 960个单元下的ABAQUS 计算结果相比,该方法可以在不牺牲精度的前提下,用粗网格(147个单元)计算出几乎相同的结果,这表明了该方法的有效性.q x q y 热流分量和云图分别如图9和图10所示.结果表明,用147个单元的杂交基本解有限元计算结果与用1 960个单元的ABAQUS 解更接近.对比表明,在相同条件下杂交基本解有限元法表现出更好的性能.5 结 语本文利用基于杂交基本解有限元法研究正交各向异性介质中的热传导问题. 该方法采用基本解的线性组合来近似单元域内的温度场,并引入定义在单元边界上的网线场来保证单元间的连续性. 借鉴文献[10 − 12]的工作,构建正交各向异性热传导问题的基本解,通过修正变分泛函,将两个假定的温度场关联起来,并利用高斯散度定理和驻值定理,从而导得单元刚度方程. 该方法在处理一些工程问题和物理问题时,由于其高效灵活的特点受到广泛关注和应用.数值算例表明,该方法具有计算精度高,对网格畸变不敏感且收敛速度快的优势. 虽然该方法解决了稳态正交各向异性热传导问题,但是仍然可以方便地推广至瞬态情形.表 1 不同网格畸变下选定5个点的温度结果Table 1 Results of temperatures at selected five points under different mesh distortions坐标γ=0γ=0.1γ=0.3γ=0.5γ=0.7γ=0.9(0.05,0.025) 5.077 8 5.077 1 5.078 8 5.080 9 5.080 1 5.059 6(0.025,0.025) 2.538 6 2.547 8 2.550 8 2.552 5 2.552 3 2.548 7(0.035,0.075) 3.636 1 3.639 3 3.633 2 3.643 9 3.647 1 3.626 8(0.075,0.075)7.627 57.620 57.628 07.621 67.627 57.635 6(0.015,0.045)1.541 51.540 81.540 11.543 01.547 21.550 9NT1110.0009.1678.3337.5006.6675.8335.0004.1673.3332.5001.6670.8330.000(a) ABAQUS 841网格(b) HFS-FEM 16网格10.0009.1678.3337.5006.6675.8335.0004.1673.3332.5001.6670.8330.000图 6 方形区域温度云图Fig. 6 Cloud maps of temperature in square domainu = 20147网格1 960网格u = 0R 1R 2R 3xy图 7 三角陀螺域,边界条件及有限元网格Fig. 7 Trigonometric gyroscopic domain, boundary conditionsand finite element mesh· 310 ·上 海 工 程 技 术 大 学 学 报第 34 卷(a) ABAQUS 147网格(b) HFS-FEM 147网格(c) ABAQUS 1 960网格20.000NT11NT1118.33316.66715.00013.33311.66710.0008.3336.6675.0003.3331.6670.00020.00018.33316.66715.00013.33311.66710.0008.3336.6675.0003.3331.6670.00020.00018.33316.66715.00013.33311.66710.0008.3336.6675.0003.3331.6670.000图 8 三角陀螺域温度云图Fig. 8 Cloud maps of temperature in the trigonometric gyroscopic domain(a) ABAQUS 147网格(b) HFS-FEM 147网格(c) ABAQUS 1 960网格315.036260.176205.316150.45595.59540.735−14.125−68.986−123.846−178.706−233.566−288.426−343.287387.894323.319258.744194.168129.59365.0180.443−64.133−128.708−193.283−257.859−322. 434−387.009387.894323.319258.744194.168129.59365.0180.443−64.133−128.708−193.283−257.859−322.434−387.009HFL, HFL1(Avg: 75%)HFL, HFL1(Avg: 75%)图 9 三角陀螺域热流分量q x 云图q x Fig. 9 Cloud maps of heat flux component in the trigonometric gyroscopic domain第 4 期仇文凯 等:基于杂交基本解的正交各向异性材料热传导问题有限元法· 311 ·参考文献:WANG H, QIN Q H. Hybrid FEM with fundamentalsolutions as trial functions for heat conduction simulation [J ] . Acta Mechanica Solida Sinica ,2009,22(5):487 − 498.[ 1 ]GAO X W. A meshless BEM for isotropic heat conductionproblems with heat generation and spatially varying conductivity [J ] . International Journal for Numerical Methods in Engineering ,2006,66(9):1411 − 1431.[ 2 ]KASSAB A J, DIVO E. A generalized boundary integralequation for isotropic heat conduction with spatially varying thermal conductivity [J ] . Engineering Analysis with Boundary Elements ,1996,18(4):273 − 286.[ 3 ]WANG Z, YAN P, GUO Z, et al. BEM/FDM conjugateheat transfer analysis of a two-dimensional air-cooled turbine blade boundary layer [J ] . Journal of Thermal Science ,2008,17(3):199 − 206.[ 4 ]DUDA P, Institute of Thermal Power Engineering, Facultyof Mechanical Engineering, et al. Finite element method formulation in polar coordinates for transient heat conduction problems [J ] . Journal of Thermal Science ,[ 5 ]2016,25(2):188 − 194.MERA N S, ELLIOTT L, INGHAM D B, et al. Acomparison of boundary element method formulations for steady state anisotropic heat conduction problems [J ] .Engineering Analysis with Boundary Elements ,2001,25(2):115 − 128.[ 6 ]PEREZ M M, WROBEL L C. Use of isotropicfundamental solutions for heat conduction in anisotropic media [J ] . International Journal of Numerical Methods for Heat and Fluid Flow ,1993,3(1):49 − 62.[ 7 ]GAO X W. Source point isolation boundary elementmethod for solving general anisotropic potential and elastic problemswithvaryingmaterialproperties [J ].Engineering Analysis with Boundary Elements ,2010,34(12):1049 − 1057.[ 8 ]WANG H M, QIN Q H, KANG Y L. A new meshlessmethod for steady-state heat conduction problems in anisotropic and inhomogeneous media [J ] . Archive of Applied Mechanics ,2005,74(8):563 − 579.[ 9 ]PEREZ M M, WROBEL L C. A general integral equationformulation for homogeneous orthotropic potential problems [J ] . Engineering Analysis with Boundary[10]763.936661.674559.412457.151354.889252.627150.36548.104−54.158−156.420−258.682−360.944−463.205821.233710.815600.397489.980379.562269.144158.72748.309−62.109−172.526−282. 944−393.362−503.780821.233710.815600.397489.980379.562269.144158.72748.309−62.109−172.526−282 944−393.362−503.780HFL, HFL2(Avg: 75%)HFL, HFL2(Avg: 75%)(a) ABAQUS 147网格(b) HFS-FEM 147网格(c) ABAQUS 1 960网格图 10 三角陀螺域热流分量q y 云图q y Fig. 10 Cloud maps of heat flux component in trigonometric gyroscopic domain· 312 ·上 海 工 程 技 术 大 学 学 报第 34 卷Elements ,1992,10(4):323 − 332.DIVO E, KASSAB A J. A generalized boundary-elementmethod for steady-state heat conduction in heterogeneous anisotropic media [J ] . Numerical Heat Transfer, Part B: Fundamentals ,1997,32(1):37 − 61.[11]ZHOU H L, TIAN Y, YU B, et al. The natural boundaryintegral equation of the orthotropic potential problem [J ] .Engineering Analysis with Boundary Element ,2016,62:186 − 192.[12]JIROUSEK J, LEON N. A powerful finite element forplate bending [J ] . Computer Methods in Applied Mechanics and Engineering ,1977,12(1):77 − 96.[13]WANG K Y, ZHANG L Q, LI P C. A four-node hybrid-Trefftz annular element for analysis of axisymmetric potential problems [J ] . Finite Elements in Analysis and Design ,2012,60:49 − 56.[14]王克用, 岑皓, 李培超. 位势问题Trefftz 有限元法的研究进展[J ] . 上海工程技术大学学报,2017,31(3):204 −209.[15]WANG K Y. A four-node hybrid-Trefftz plane elasticityelement with fundamental analytical solutions [J ] .Advanced Materials Research ,2011,279:194 − 199.[16]SHE Z, WANG K Y, LI P C. Hybrid Trefftz polygonalelements for heat conduction problems withinclusions/voids [J ] . Computers & Mathematics with Applications ,2019,78(6):1978 − 1992.[17]SHE Z, WANG K Y, LIU H. Thermal analysis of ellipticalfiber-reinforced composites by the hybrid Trefftz finite element method [J ] . International Journal of Heat and Mass Transfer ,2019,144:118596.[18]WANG K Y, QIN Q H, KANG Y L, et al. A directconstraint-Trefftz FEM for analysing elastic contact problems [J ] . International Journal for Numerical Methods in Engineering ,2005,63(12):1694 − 1718.[19]ZHOU J C, WANG K Y, LI P C, et al. Hybrid fundamentalsolution based finite element method for axisymmetric potential problems [J ] . Engineering Analysis with Boundary Elements ,2018,91:82 − 91.[20]高可乐, 王克用. 轴对称热弹性问题杂交基本解Trefftz有限元分析[J ] . 上海工程技术大学学报,2020,34(1):54 − 58, 75.[21]WANG K Y, HUANG Z M, LI P C, et al. Trefftz finiteelement analysis of axisymmetric potential problems in orthotropic media [J ] . Applied Mathematics and Mechanics ,2013,34(5):462 − 469.[22]WANG K Y, LI P C, WANG D Z. Trefftz-type FEM forsolving orthotropic potential problems [J ] . Latin American Journal of Solids and Structures ,2014,11(14):2537 − 2554.[23]王克用, 李培超. 变系数位势问题的Trefftz 有限元法[J ] . 上海工程技术大学学报,2014,28(1):58 − 62,67.[24]刘博, 王克用, 王明红. 轴对称Poisson 方程的Trefftz 有限元解法[J ] . 应用数学和力学,2015,36(2):140 − 148.[25]KOMPIŠ V, BÚRY J. Hybrid-Trefffz finite elementformulations based on the fundamental solution [C ] //Proceedings of IUTAM Symposium on Discretization Methods in Structural Mechanics, Solid Mechanics and its Applications. Dordrecht: Springer, 1999: 181-187.[26]高可乐, 王克用, 李培超. 考虑体力的轴对称弹性问题杂交基本解有限元法[J ] . 轻工机械,2020,38(1):5 − 11,17.[27]CAO L L, WANG H, QIN Q H. Fundamental solutionbased graded element model for steady-state heat transfer in FGM [J ] . Acta Mechanica Solida Sinica ,2012,25(4):377 − 392.[28](编辑:韩琳)第 4 期仇文凯 等:基于杂交基本解的正交各向异性材料热传导问题有限元法· 313 ·。
地震学讲稿_11 各向异性介质中的平面波
图11.1 点源在各向异性介质中产生的波前面。
波前面法向射线方向偏振方向 第11章 各向异性介质中的平面波 介质中一点的物理性质如果与方向有关, 该介质被称为各向异性介质. 微观晶体的物性一般是各向异性的. 如果晶体的排列杂乱无章, 宏观上就会表现出各向同性. 地球介质的各向异性主要表现在地壳与上地幔, 以及地球的内核. 孔隙及微破裂的定向排列, 结晶体的优势方向排列都会表现出地震波速宏观各向异性. 各向异性介质中的地震波传播理论比各向同性的要复杂的多, 描述介质弹性性质的参数也多. 但是,地球介质的宏观各向异性给地震波传播造成的影响比较微弱, 大多数观测结果缺乏有力的各向异性证据. 随着地震观测仪器精度与动态范围、观测手段的提高,各向异性的研究越来越受到重视。
内核相对于地幔差速转动的发现就依赖于内核的各向异性模型。
首先我们看一个简单的例子,以此认识各向异性介质中波的复杂性。
假设介质是均匀各向异性的。
设地震波由一点发出,由于波向不同方向传播的相速度是不相同的,在特定的时间后形成的波前面(等相位面)不再是一个圆球,而是一个曲面。
如图(11.1)所示,射线的方向是能量传播的方向,能量传播的速度叫群速度。
波前面法向是相位传播的方向,也是波幔度方向,整个波前面是平面波等相位面的包络。
从图中可以看出,射线与波前面并不垂直,能量传播的方向、相位传播的方向以及波的偏振方向不在同一个方向,即使是P 波也可能如此。
11.1 相速度、群速度、偏振 我们用简谐平面波来演示上述特征。
设简谐平面波的位移形式为())(exp ),(x s g u ⋅--=t i t x ω,或写成分量形式())(exp ),(x s ⋅--=t i g t x u i i ω (11.1)其中波幔度矢量css ˆ=,c 为相速度,sˆ为幔度单位矢量(等相位面传播的方向),是给定的已知量。
相速度c 是与幔度单位矢量sˆ有关的待定量。
g 为位移偏振矢量,与坐标无关,是与幔度单位矢量s ˆ有关的待定矢量。
哈密顿体系下正交各向异性板弯曲的求解
Science &Technology Vision 科技视界0引言目前很多文献讨论各向异性板的弯曲问题的方法。
如张福范[1]用三角级数解正交各向异性板弯曲问题,冯立华[2]用利兹法求解正交各向异性矩形板的弯曲,王克林[3]用级数和叠加解得到正交各向异性板弯曲问题的解,张承宗[4]用复级数展开法求解了各向异性板的横向弯曲问题,王震[5]用傅立叶级数法求解了各种边界条件下的正交各向异性板弯曲问题。
上述一些方法中在求解不同矩形板的问题时不够系统而且要硬性事先选取弯曲挠度。
本文将基于哈密顿体系来对正交各向异性板的弯曲问题进行推理直接可以获得弯曲解的表达方式进而获取一种较普遍适用的解法。
本文首先由板弯曲方程导入哈密顿体系,将问题的求解转入求解推导出的哈密顿对偶方程,将问题的解通过本征值和本征函数来表示,在求解本征向量时会依据本征值特点选取简洁的本征向量,并能够有规律并简洁的表述问题的解。
1哈密顿体系的导入本文在弹性力学基本方程的基础上来进行导入哈密顿体系。
1.1板弯曲的挠度函数方程为:D 11ə4w əx 4+2(D 12+2D 66)ə4w əx 2əy 2+D 22ə4w əy 4=q (1.1)其中,w 表示板的挠度,q 为横向外载荷,D 11,D 22,D 12,D 66为板的弯曲刚度。
板内弯矩扭矩、剪力以及等效剪力分别表示M x =-(D 11ə2w əx 2+D 12ə2w əy 2),M y =-(D 12ə2w əx 2+D 22ə2w əy 2),M xy =-(2D 66ə2w əx əy)(1.2)Q x =-əəx (D 11ə2w əx 2+(D 12+2D 66)ə2w əy 2),Q y =-əəy ((D 12+2D 66)ə2w əx 2+D 22ə2w əy 2)(1.3)V x =Q x +əM xy əy =-(D 11ə3w əx 3+(D 12+4D 66)ə3w əx əy 2),V y =Q y +əM xy əx =-((D 12+4D 66)ə3w əx 2əy +D 22ə3w əy 3)(1.4)T =-V x =D 11ə3w əx 3+(D 12+4D 66)ə3w əx əy 2(1.5)1.2以[w ,φx ,T ,M x ]T 为对偶变量的方程设v =[w ,φx ,T ,M x ]T ,对x 求偏导,并结合(1.2)我们得到:w ·=əw əx =ϕx ,ϕ·x =ə2w əx 2=-(D 12D 11ə2w əy 2+M x D 11)(2.1)类似地,我们得到:T ·=-((D 22-D 122D 11)ə4w əy 4-D 12D 11ə2M x əy 2)+q ,M ·x =4D 66ə2φxəy 2-T (2.2)其中,转角ϕx =əw əx.上面方程可以写成如下的矩阵形式:v ·=Hv+f (2.3)其中,H =A C B -A T[],f =[00q0]T ,A=01-D 12D 11ə2əy 2[],B =-d 1ə4əy 4d 3ə2əy 2[],C =000-1D 11[]B=B T,C=C TA T=0-D 12D 11ə2əy210[],d 1=D 22-D 122D 11,d 3=4D 66v =[w ,φx ,T ,M x ]T 为板的状态向量,f =[00q 0]T 为外力向量.“·”表示对x 求偏导。
正交各向异性功能梯度材料涂层基底结构的平面断裂问题
能梯度 材料 中裂 纹垂 直 于 边 界 的研 究 并 不多 . 根据 文献 [ 1 对 金 属 陶 瓷 功 能 梯 度 材 料 ( S /N 0 1] P Z I 10 F GMSa dP Z Ic 1 GMs 热 断 裂顺 序 的试 n S /n o 7 8F ) 验研 究 , 材料 失败 的顺 序是 : 先 是在冷 却过程 中出 首 现 的垂 直 于边界 的裂 纹 , 次 是 在 加 热过 程 中在梯 其 度层 出现 的横 向裂纹 , 最终 是 裂 纹 的扩 展 与合 并导
因子 的 影 响 .
关 键 词 : 交各 向异 性 功 能 梯 度 材 料 ; 异 积 分 方 程 ; 力 强度 因子 ; 纹 ; 层基 底 结 构 正 奇 应 裂 涂
分 类 号 : 中图) 3 6 3 ( 0 0 ( 0 4 . 8 2 0 MR) 4 7R 文献标志码 : A
第02章各向异性弹性力学基础
工程应力
yxx
xy y
xz yz
zx zy z
工程应变
x
xy
xz
yx
y
yz
zx
zy
z
几何关系方程
x
u x
,
y
v y
,
z
w , z
yz
w y
v ; z
zx
u z
w ; x
xy
v x
u . y
变形协调方程 (1)
6个应变分量是通过3 个位移分量表示的,因此, 6个应变分量不是互不相 关的,之间存在必然联系:
物理方程
(本构关系) Hooke 定理:
x
y
C11 C 21
C12 C 22
C13 C 23
C14 C 24
C15 C 25
C16 C 26
x y
z yz
C
31
C 41
C 32 C 42
C 33 C 43
C 34 C 44
C 35 C 45
C 36
C 46
z yz
C46 4 6
1 2
C55
2 5
C56 5 6
1 2
C66
2 6
2.2.1有一个弹性对称面的材料
如果物体内每一 点都有这样一个平面, 在此平面的对称点上 弹性性能相同,这样 的材料就具有一个弹 性对称面。弹性主轴 概念。
如取xoy坐标面与弹性对称面平行,取A与A’ 为相互对称点,则它们的弹性性能相同。即将z 轴转到z’轴时,应力应变关系不变。
0
0
c c013
c23 0
c33 0
0 c44
基于基本解方法的正交各向异性钢筋混凝土板弯曲问题计算与分析
中图分类号:TP13
文献标志码:A
文章编号:2096-2789(2020)01-0107-02
目前对混凝土板弯曲问题的大多研究都是依靠有限 元软件和进行相关实验进行分析。黄丽华等人 [1] 对加固 前后及不同 CFRP 加固层数的动力性能进行了分析和计 算。文章运用基本解方法对正交各向异性钢筋混凝土板 在均布荷载条件下挠度和弯矩进行计算,并结合计算结 果进行进一步分析,验证了计算结果的准确性。
(11) 当为常数时,特解:
(12) 公式:x 和 y 为 p 点的坐标。公式(11)的待定系 数由下列方程组确定:
(3) 经过坐标变换后为双调和方程,表示为如下:
(4)
式中:
。
1.2 基本解方法基本方程 考虑齐次双调和方程问题:
边界条件: φ=b1(边界 B1),аφ/аn(边界 B2) 则 φ 的基本解可取:
Abstract:In this paper, the basic solution method is used to calculate the deflection and bending moment of orthotropic reinforced concrete slab under uniformly distributed load. The results can provide reference for the design of concrete structure. Key Words:basic solution,reinforced concrete slab,deflection,bending moment
将其变成非齐次双调和方程的形式,取线性坐标变换:
ζ=mx+ny,η=ax+by
正交各向异性功能梯度材料反平面断裂力学分析
其 中 为材料 梯度参 数 , ) ( 。和( ) 为 Y =0处 。
的剪 切模 量 。
前, 大多数关于功能梯度材料的研究工作都集中于各
向同性体 , 但事 实上 功 能梯 度材 料 很 少 是 各 向 同性 的¨ 。近年来 , ] 已有学 者对正交异性 功能梯度材 料 的 反平面 问题进 行了研究 。如 文献 [ ] 2 中采用 了:
维普资讯
第2 8卷
第 4期
太
原
科
技
大
学
学
报
V l2 N ・ o・8 o4
A g2 0 u .0 7
20 0 7年 8月
J U N L O A Y A N V R IY O C E C N E HN L G O R A FT I U N U I E ST FS I N E A D T C O O Y
文章 编号 :6 3 0 7 20 )4- 3 1— 4 17 —2 5 (0 7 0 0 2 0
正 交 各 向异 性 功 能 梯 度 材 料 反 平 面 断 裂 力 学 分 析
隋 中合 , 李俊林
( 太原科技大学应用科 学学院, 太原 002 ) 304
摘 要 : 究 了无限大正交各 向异性 功能梯 度材料含 有限长 Gi t 纹受反平 面剪切载荷的力学 研 rfh裂 f i
其中:o J()为零 阶第 一类 B s l es 函数 , e 函数 ( ) 由如 下第 二类 Fehl r o d m积分 方程 控制 :
可。引入如下关于 的 Fu e 余弦变换 , : or r i 令
( )= ( ) 。 (X c s S) () 6
( + ( M , d = 』 , (r r ) 。 7 / / ) )
005二维正交各向异性(例子教程)
二维正交各向异性问题一、 前处理1、选择项目图1、选择项目类型如图1所示,启动SciFEA,选择“项目”下的“新建项目”菜单,弹出如下对话框,填写项目名称,点击“问题类型”中的二维正交各向异性选项,点击“OK”完成项目类型的选择。
2、设置材料参数和边界条件(1)选择“前处理”中的“材料参数”图2(a)、材料参数图2(b)、材料参数如图2所示,填写材料参数如图中所示数值,填写完成后,点击“保存”后退出。
(2)选择“前处理”中的“边界条件”图3、边界条件如图3所示填写边界条件如图中所示数值,填写完成后,点击“保存”后退出。
3、建模、施加边界条件和设置材料属性(1)启动GiD图4、启动GiD如图4所示,点击“前处理”-〉“弹性力学”-〉“二维正交各向异性”。
(2)建模第一步,画线。
图5、创建直线如图5所示,点击“Geometry”-〉“create”-〉“line”紧接着,在命令行中输入坐标:(0,0)、(0,2.18)、(11.9,0),(11.9,2.18)。
图6、命令窗口图7、连接点对话框在连接点处的对话框中,点击“JION”连接这两个点为一点,以下相同。
这样创建出来的线框模型如下图8所示第二步,生成1个面图9、创建面如图9所示,点击“Geometry”—〉“create”—〉“NURBS surface”—〉“By Contour”,启动面的创建。
图10、选择线来创建面如图10所示,选择四条边来创建平面。
(3)施加边界条件图11、选择“sci”图12 图13 如图11所示,点击“Date”—〉“Problem type”—〉“sci”,然后如图12所示,在弹出的对话框中点击“OK”,最后点击“Date”—〉“Condition”启动边界条件填写。
第一步,施加边界条件图14图15在对话框中选择“line-ortho2da”(如图14),然后在“u-1”、“v-1”栏中填写“-1”,在“u-D”、“v-D”中输入0,再点击“Assign”选择图形15中所示绿线,单击“Finish”。
基本解法模拟正交各向异性弹性力学问题
基本解法模拟正交各向异性弹性力学问题
王璐璐;谷岩;赵维加
【期刊名称】《青岛大学学报(自然科学版)》
【年(卷),期】2016(029)002
【摘要】将基本解法首次用于模拟正交各向异性弹性力学问题,讨论了虚假边界的选取对计算结果的影响.数值算例结果与精确解的对比表明,该算法精度高,收敛速度快,较少的节点便能达到较高的计算精度.
【总页数】6页(P17-21,28)
【作者】王璐璐;谷岩;赵维加
【作者单位】青岛大学数学科学学院,青岛266071;青岛大学数学科学学院,青岛266071;青岛大学数学科学学院,青岛266071
【正文语种】中文
【中图分类】O342
【相关文献】
1.正交各向异性弹性力学问题的无网格解 [J], 孙培育;田利瑞;刘政
2.基于电路模拟解决多杆机构弹性动力学建模问题 [J], 孙伟;赵匀;李斌
3.正交各向异性体的弹性力学平面问题 [J], 侯宇;何福保
4.求解正交各向异性板粘弹性力学问题的广义时间Laplace变换—有限元复合法[J], 李江;张恒
5.正交各向异性弹性力学平面问题的样条虚边界元法 [J], 苏成;韩大建
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正交各向异性介质平面问题的基本解
正交各向异性介质体的平面问题,首先要明确的是其存在的基本物理规律,即紫外线在介质内的传播路线是依照光的折射率在各向异的方向而变化的。
考虑的基本问题就是在介质内可以得到哪些类型的波导解,以及这些解的性质如何。
从经典电磁理论出发,介质上波导解的性质完全由折射率所决定,即折射率(ε)、内在电容(μ)和外空气电容(ε0)。
在正交各向异性介质中,折射率是在横向和纵向上存在不同变体的,因此得到的波导解会存在一定的各向异性。
针对这个问题,可以采用电磁场积分的方法,解得一维正交各向异性介质的基本解,包括TE型和TM型的解。
TE型波导中,场线状态呈圆柱形分布,且其各向异性特性体现在横向和纵向受强度的不同程度。
TM型波导将电场和磁场的分布呈球体的分布状态,并且在横向和纵向上磁畴和电畴都是有差别的。
基于上述推导,我们可以得出结论:一维正交各向异性介质上,存在TE型和TM型的基本波导解,其横向和纵向的磁畴和电畴存在不同程度的强度差别。
而这种差别就是正交各向异性介质的特性。