筒形件拉深工艺计算
圆筒形件拉深尺寸计算和成形过程模拟
圆筒形件拉深尺寸计算和成形过程模拟摘要:在冲压生产中,拉深是广泛使用的工序。
通过拉深可获得筒形、阶梯形、锥形、球形等零件。
平板毛坯拉深成筒状开口零件时口部出现飞边卷口现象,对此进行切边设计。
关键词:筒形件;模具结构;拉深间隙Dynaform作为近年来板料成形数值模拟技术中常用的软件,可以预测成形过程中板料的破裂、起皱、回弹等,从而帮助设计人员显著减少模具开发设计时间及试模周期。
在利用该软件进行模拟分析时,应该采用理论计算和软件模拟共用,以找出合适的成形工艺。
带凸缘的圆筒形件是日常生活中常用的零件,如不锈钢的面盆、压力锅的锅盖等物品,均属于带凸缘的圆筒形件。
本文利用所给的拉深件,首先计算了拉深过程中的部分尺寸,而后在理论计算的基础上,结合Dynaform软件对零件的拉伸过程进行模拟,找出了较为合适的压边力,从而为后续拉深模具设计提供依据。
1、带凸缘圆筒形件拉深尺寸计算图1是带凸缘圆筒形件的零件图,其壁厚为2mm,材料为304不锈钢,精度为IT14级。
本文计算的拉深尺寸包括拉深毛坯的尺寸、拉深次数的计算、压边装置的使用与否以及压边力的计算。
1.1带凸缘圆筒形件毛坯尺寸的计算由图1,零件的厚度t=2mm,因此在计算毛坯尺寸时应采用中线尺寸计算。
该零件的相对直径dt/d=380/320=1.18,其中dt为凸缘直径,d为圆筒件底部直径,取修边余量δ=6mm。
由拉深毛坯尺寸的计算公式可知:根据图1,d4=380+2δ=392mm,r=6mm,d2=d+2r=332mm,H=98mm由此计算出防尘盖毛坯尺寸:1.2是否需要压边装置和拉深次数的计算本零件采用普通平面凹模拉深,毛坯不起皱条件为:t/D≥(0.09~0.17)(1-m)由图1和D可计算出:t/D=2/527=0.38%,总拉深系数m=d2/D=332/527=0.63。
因此(0.09~0.17)(1-m)=0.0333~0.0629,则t/D<(0.09~0.17)(1-m),因此该零件拉深时需使用压边圈。
圆筒形拉深件工序件尺寸计算
例:试对图所示圆筒形件进行拉深工艺计算,材料为L3,壁厚0.5mm 。
圆筒形拉深件解:1.确定修边余量Δh该件H =90mm ,H/d =1.8,查表2-37得Δh =5mm 。
则拉深高度H =90+5=95mm 。
2.计算毛坯直径由于板厚t 小于1mm ,故计算毛坯直径可直接用工件图所注尺寸计算,不需按中心层尺寸计算。
D =2222256.072.14r rd H d d --+=225.056.0505.072.19550450⨯-⨯⨯-⨯⨯+=146.53.确定拉深次数按毛坯相对厚度t/D =0.5/146.5=0.34%和工件相对高度H/d =95/50=1.9,查表4-15得拉深次数n =3。
初步确定需要三次拉深。
考虑到工件圆角半径为0.5mm ,故需增加一次整形工序。
4.计算各次工序件直径考虑到板料为软铝l3,拉深系数按表4-11中值减小1.5%计算,初步确定三次拉深的拉深系数分别为:m 1=0.54,m 2=0.77,m 3=0.79,初步计算各次拉深工序件直径为:1.489.6079.09.601.7977.01.795.14654.023312211=⨯===⨯===⨯==d m d d m d D m d第三次拉深直径已小于工件的直径,需调整各次的拉深系数,取m 1=0.55,m 2=0.78,m 3=796.078.055.05.1465021=⨯=m m D d因此得各次拉深工序件直径为:508.62796.08.626.8078.06.805.14655.023312211=⨯===⨯===⨯==d m d d m d D m d5.选取凸模与凹模的圆角半径An Tn Ai Ai A r r r r t d D r )8.0~7.0()8.0~7.0(5.55.0)505.146(8.0)(8.011===⨯-=-=-计算各次拉深凸模与凹模的圆角半径并取整结果为:mm r mmr mmr mmr mmr mmr T T T A A A 345456321321======6.计算各次工序件的高度将D =146.5;d 1=80.6、r 1=5;d 2=62.8、r 2=4;d 3=50、r 3=3分别代入如下公式:)56.072.1(4122nn n n n n d r r d d D H ++-= 可计算出:H 1=48.6mmH 2=71.5mmH 3=96.1mm计算拉深工序件的高度是为了设计再拉深模时确定压边圈的高度,再拉深模压边圈的高度应大于前道工序件的高度。
圆筒形件的拉深
1.1 拉深系数
1) 材料的力学性能
3) 材料的表面质量
5) 润滑条件
圆筒形件的拉深
2) 材料的相对厚度 t/D
及压边圈的使用 4)
拉深次数
6) 拉深速度
1.2 拉深次数的确定
圆筒形件的拉深
拉深件一般经过几次拉深才能达到最终 尺寸形状。如果拉深件总的拉深系数 m总 大 于第一次允许的极限拉深系数 m1,即: m总> m1。
冲压工艺与模具设计
1.1 拉深系数
圆筒形件的拉深
拉深系数表示拉深后圆筒形件的直 径 d 与拉深前毛坯(或半成品)的直径 D 之比。拉深系数表示拉深时板料的变 形程度,用符号 m 表示。M 是小于1的 系数,m 值越小,说明拉深时变形程度
越大。
1.1 拉深系数
圆筒形件的拉深工件总的Fra bibliotek形系数:圆 筒 形 件 的 多 次 拉 深
说明拉深该工件的实际变形程度比第一
次容许的极限变形程度要小,工件可以一次
拉成。否则需要多次拉深才能成形。
圆筒形件的拉深
1.3 各次拉深工序尺寸的确定
圆筒形件的拉深
1.3 各次拉深工序尺寸的确定
冲压工艺与模具设计
第一节 圆筒形零件拉深讲解
筒壁传力区拉裂: 由于拉应力超过抗拉强度引起板料断裂。
一、无凸缘圆筒形零件拉深 4、圆筒形零件拉深成形的缺陷及防止措施
1)凸缘变形区的起皱 主要决定于:
切向压应力σ3的大小,越大越容易失稳起皱; 凸缘区板料本身的抵抗失稳的能力。
凸缘宽度越大,厚度越薄,材料弹性模量和硬化模量越小, 抵抗失稳能力越差。
第n次拉深系数: mn=dn/dn-1
6、拉深系数的确定 1)拉深系数的概念
拉深系数m 表示拉深前后坯料(工序件)直径的变化率.
m 愈小,说明拉深变形程度愈大,相反变形程度愈小. 拉深件的总拉深系数等于各次拉深系数的乘积,即
若m 取得过小,会使拉深件起皱、断裂或严重变薄超差。 极限拉深系数: 工件在危险断面不至拉破时,所能达到的最小拉深系数mmin。
压料装置产生的压料力Fy大小应适当;
在保证变形区不起皱的前提下,尽量选用小的压料力。 理想的压料力是随起皱可能性变化而变。
9、圆筒形零件拉深的压料力和拉深力
2)拉深力与压力机的公称压力 ①拉深力F
按经验公式可计算出圆筒形件带压料装置和不带压料装置的 首次拉深和以后各次拉深的拉深力。 ②压力机的公称压力
②金属的流动过程 工艺网格实验 材料转移:高度、厚度发生变化。
③拉深变形过程
外力
凸缘产生内应力: 径向拉应力σ1;切向压应力σ3
凸缘塑性变形: 径向伸长,切向压缩,形成筒壁
直径为d高度为H的圆筒形件(H>(D-d)/2)
拉深单元变形动画
一、无凸缘圆筒形零件拉深
2、圆筒形零件拉深过程中坯料内的应力与应变状态 拉深过程中某一瞬间坯料所处的状态
当筒壁拉应力超过筒壁材料的抗拉强度时,拉深件就会在 底部圆角与筒壁相切处——“危险断面”产生破裂。
圆筒件的拉深系数
若某相邻两阶梯直径比值dn/dn-1小于相应圆筒 形件的极限拉深系数时,则由直径dn-1到dn按 凸缘件的拉深办法,其拉深顺序由小阶梯到大 阶梯依次拉深。
若mΣ>m(极限拉深系数),则该零件只 需拉深一次,否则必须多次拉深。
多次拉深时,拉深次数的确定:
取首次拉深系数为m1,则m1=d1/D,故d1=m1D 取第二次拉深系数为m2,则m2=d2/d1
故d2=m2d1=m1m2D … 第n次拉深时,工作直径则为:dn=m1m2m3……mnD 因而mΣ=m1m2m3…mn
工序图:
二、有凸有凸缘圆筒形件的拉深将毛坯拉深至某一时刻 达到零件所要求的凸缘直径dt时不再拉深。
毛坯直径为 :D d2t1 4d1h1 3.44d1r
当圆角半径rd=rp=r时,第一次拉深 系数为 :
m1
d1 D
1
d t1 d1
2
h1 4
d1
3.44 r d1
对于中小型零件(d t<200mm), 采用减小圆筒形部分直径、增加 高度来达到,而圆角半径rp和rd 在整个变形过程中基本保持不变。
用此方法制成的零件,表面质量较差, 容易在筒壁部分和凸缘上残留有中间工 序中形成的圆角部分弯曲和厚度的局部 变化的痕迹,所以最后要加一道整形工 序。
2.改变圆角半径并减小圆筒形直径
当工件的相对拉深高度h/d>h1/d1时,则该 工件就不能用一道工序拉深出来,而需 要两次或多次才能拉出。
以后各次拉深的拉深系数为mn=dn/dn-1。
(二)窄凸缘圆筒形件拉深
对 dt / d 1.11.4 之间的凸缘件称为窄凸缘件。
这类零件因凸缘很小,可以当作一般圆筒形件 进行拉深,只在倒数第二道工序时才拉出凸缘 或拉成具有锥形的凸缘,而最后通过校正工序 压成水平凸缘。
拉深毛坯工序尺寸计算实例
圆筒形件的拉深次数及工序尺寸确定
实例: 试确定如图所示零件(材料08钢,板厚 t =2mm)的 拉深次数和各拉深工序尺寸。
1. 确定切边余量δ:根据 h=200,h/d=200/88=2.28,查表并取δ=7mm。 2. 查询公式计算毛坯直径(也可以采用计算法):
第二次
h2
(D2
d
2 20
2r2 d 20
8r22 )
4d2
第三次
h3
(D2
d
2 30
2r3 d 30
8r32 )
4d3
式中:d1,d2,d3 为各次拉深的直径(中线值); r1,r2,r3 为各次半成品底部的圆角半径(中线值); d10,d20,d30 为各次半成品底部平板部分的直径; h1,h2,h3 为各次半成品底部圆角半径圆心以上的筒壁高度; D 为毛坯直径。
圆筒形件的拉深次数及工序尺寸确定
(2)半成品高度 hn :
各次拉深直径确定后,紧接着计算各次拉深后零件的高度。计算高度 前,应先定出各次半成品底部的圆角半径,取 r1=12,r2=8,r3=5(方法见 第10节)。计算各次半成品的高度可由求毛坯直径的公式推出。
第一次 h1 (D2 d120 2r1d10 8r12 ) 4d1
可知该零件需拉深 4 次才能成形。计算结果是否正确可用表 5-4 校核。零 件相对高度 h/d = 207/88 = 2.36 ,相对厚度为 0.7,从表中可知拉深次数在 3~4 之间,和推算法所得结果相符,零件的拉深次数确定为 4 次。
4. 半成品尺寸确定:半成品直径 dn、筒底圆角半径 rn 及筒壁高度 hn (1)半成品直径 dn :拉深次数确定后,再根据计算直径 dn 应等于工件 直径 d 的原则对各次拉深系数进行调整,使实际采用的拉深系数大于估算 拉深次数时所用的极限拉深系数。
课程设计带凸缘筒形件首次拉深的拉深模设计
课程设计带凸缘筒形件首次拉深的拉深模设计一、工艺分析1,冲压工艺方案的设定:考虑到零件的生产批量,经过分析得采用反拉深复合膜生产。
2,先剪切条料→落料→第一次拉深→……第四次拉深→修边。
二、工艺参数的计算 。
如上右图所示的拉深件。
(1) 查表4-6选取修边余量Δd 由d 凸d=7529=2.6 、 d 凸=75mm 得出Δd=2.2实际d 凸=75+2×2.2=79.4≈79 (2),初算毛坯直径。
根据公式(4-9a )得出:D =√d 12+4d 2h +2πr (d 1+d 2)+4πr 2+d 42−d 32,将d 1=20 d 2=29 d 3=38d 4=79 h=40 r=4 代入上式得出D=√202+4×29×40+2×3.14×4(20+29)+4×3.14×42+792−382 =√6472+4797≈106,其中6472为工件不包含凸缘部分的表面积,即零件实际需要拉深部分的面积。
(3),判断能否一次拉出。
由h d =4929=1.69 、d 凸d=7929=2.72 、 t D ×100=1106x100=0.94查表4-14得出h1d 1=0.17﹣0.21、而零件实际需要的为1.69、因此不能一次拉深完成。
(4),计算拉深次数及各工序的拉深直径。
,因此需要用试凑法计算利用表4-14来进行计算,但由于有两个未知数m和d td1拉深直径。
下面用逼近法来确定第一的拉深直径。
的值为由于实际拉深系数应该比极限拉伸系数稍大,才符合要求,所以上表中d td11.5、1.6、1.7的不合适。
因为当d t的值取1.4的时候,实际拉深系数与极限拉深系数接近。
故初定第一次d1拉深直径d1=56.因以后各次拉深,按表4-8选取。
故查表4-8选取以后各次的拉深系数为当m2=0.77时d2=d1×m2=56×0.77=43mm当m2=0.79时d3=d2×m3=43×0.79=34mm当m3=0.81时d4=d3×m4=34×0.81=27mm<29mm因此以上各次拉程度分配不合理,需要进行如下调整。
圆筒形件拉深工艺计算
拉深工艺与拉深模设计
圆筒形件拉深工艺计算
三、圆筒形件拉深的压料力与拉深力
2.拉深力与压力机公称压力 (2)压力机公称压力
单动压力机,其公称压力应大于工艺总压力Fz。 工艺总压力为 Fz F FY
注意: 当拉深工作行程较大,尤其落料拉深复合时,应使工艺
力曲线位于压力机滑块的许用压力曲线之下。
在实际生产中,可以按下式来确定压力机的公称压力 Fg : 浅拉深 Fg (1.6 ~ 1.8)Fz 深拉深 Fg (1.8 ~ 2.0)Fz
(1)工序件直径的确定
确定拉深次数以后,由表查得各次拉深的极限拉深系
数,适当放大,并加以调整,其原则是:
1)保证m1m2…mn= 2)使m1<m2<…mn
d D
最后按调整后的拉深系数计算各次工序件直径:
d1=m1D d2=m2d1
…
dn=mndn-1
拉深工艺与拉深模设计
圆筒形件拉深工艺计算
二、拉深次数与工序件尺寸
极限拉深系数[m]
从工艺的角度来看,[m]越小越有利于减少工序数。
拉深工艺与拉深模设计
圆筒形件拉深工艺计算
一、拉深系数与极限拉深系数
2.影响极限拉深系数的因素
(1)材料的组织与力学性能 (2)板料的相对厚度t / D
t/D
[m]
(3)拉深工作条件
1)模具的几何参数 2)摩擦润滑 3)压料圈的压料力
拉深工艺与拉深模设计
圆筒形件拉深工艺计算
二、拉深次数与工序件尺寸
1.拉深次数的确定 (2)推算方法
1)由表4.4.1或表4.4.2中查得各次的极限拉深系数; 2)依次计算出各次拉深直径,即
d1=m1D;d2=m2d1;…;dn=mndn-1; 3)当dn≤d时,计算的次数即为拉深次数。
拉深工艺
1.拉深特点: .应力分布 .容易出现拉裂 2.盒形件的首次拉深极限
非直壁旋转件的拉深
球形件变形特点
壁厚的变化
三个变形区域
1.胀形变形区 2.拉深变形区 3.凸缘变形区
抛物线形件拉深
分两类:以高径比h/d分类 1.浅抛物线拉深 2.深抛物线拉深
汽车灯罩的拉深
两道拉深筋的模具
液压拉深
对于复杂抛物线
胀形成形的特点(刚性)
胀形工艺方法(刚性凸模胀形)
1.压加强筋
பைடு நூலகம்
冲加强筋的胀形力
2.压凸包
翻边工艺
扩孔成形
圆孔翻边时的成形极限
改善圆孔翻边成形的措施:
1.提高材料的塑性 2.边缘无毛刺和硬化层 3.合理选择凸模 4.板料相对厚度大
圆孔翻边工艺
1.一次翻边成形
2.先拉深后翻边
外缘翻边
拉深次数
毛坯尺寸的确定
拉深力
压料力
拉深时压力机吨位的选择
注意事项:
起皱及原因
因素:
防止措施
1.采用压料 装置
2.采用反拉深
3.采用拉深筋 4.采用软模拉深
5.采用锥形凹模
拉裂
防裂措施
1.合理选用材料 2.正确确定凸凹模圆角半径
3.合理选取拉深系数 4.正确进行润滑
盒形零件的拉深
Table
Title Title Title Title Title Title Title O O O O O O Title O O O O O X Title O O O O O O Title O O O O O X Title O O O O O O
3-D Pie Chart
Text2 Text3
圆筒形拉深件毛坯尺寸计算
圆筒形拉深件毛坯尺寸计算4 . 2 直壁旋转体零件拉深工艺的设计圆筒形零件是最典型的拉深件,掌握了它的工艺计算方法后,其它零件的工艺计算可以借鉴其计算方法。
下面介绍如何计算圆筒形零件毛坯尺寸、拉深次数、半成品尺寸,拉深力和功,以及如何确定模具工作部分的尺寸等。
4.2.1 圆筒形拉深件毛坯尺寸计算 1.拉深件毛坯尺寸计算的原则(1)面积相等原则由于拉深前和拉深后材料的体积不变,对于不变薄拉深,假设材料厚度拉深前后不变,拉深毛坯的尺寸按“拉深前毛坯表面积等于拉深后零件的表面积”的原则来确定(毛坯尺寸确定还可按等体积,等重量原则)。
(2)形状相似原则拉深毛坯的形状一般与拉深件的横截面形状相似。
即零件的横截面是圆形、椭圆形时,其拉深前毛坯展开形状也基本上是圆形或椭圆形。
对于异形件拉深,其毛坯的周边轮廓必须采用光滑曲线连接,应无急剧的转折和尖角。
拉深件毛坯形状的确定和尺寸计算是否正确,不仅直接影响生产过程,而且对冲压件生产有很大的经济意义,因为在冲压零件的总成本中,材料费用一般占到60 %以上。
由于拉深材料厚度有公差,板料具有各向异性;模具间隙和摩擦阻力的不一致以及毛坯的定位不准确等原因,拉深后零件的口部将出现凸耳(口部不平)。
为了得到口部平齐,高度一致的拉深件,需要拉深后增加切边工序,将不平齐的部分切去。
所以在计算毛坯之前,应先在拉深件上增加切边余量(表42.1、4.2.2)。
表4.2.1无凸缘零件切边余量Δh(mm)[img=118,139]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设计.mht![/img]表4.2.2有凸缘零件切边余量ΔR(mm)[img=125,125]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设计.mht![/img]2.简单形状的旋转体拉深零件毛坯尺寸的确定(图4.2.1)对于简单形状的旋转体拉深零件求其毛坯尺寸时,一般可将拉深零件分解为若干简单的几何体,分别求出它们的表面积后再相加(含切边余量在内) 。
12.2 圆筒形零件的拉深工艺计算
D Dd t
rdn 0.6 ~ 0.8 rd ( n 1)
rp 0.7 ~ 1rd
各次工序件底部圆角半径取以下数值: r1=8mm,r2=5mm,r3=4mm,r4=3mm
第四章 拉深工艺与拉深模设计
例(续) (5)计算各次拉深高度 根据拉深前后表面积不变原则
Φ55.0
36.80 53.0 68.6
三、拉深件毛坯尺寸计算
1、确定依据: 体积不变原则:若拉深前后料厚不变,拉深 前坯料表面积与拉深后冲件表面积近似相 等,计算坯料尺寸。 相似原则:拉深前坯料形状与冲件断面形状相 似。但坯料的周边必须是光滑的曲线连接。
形状复杂的拉深件:
需多次试验,反复修改,最终确定坯料形状。
hn 0.25 Dk1k 2 ...k n d n 0.43 rn dn
d n 0.32 rn
各次工序拉深工件高度为: h1=35.8mm,h2=52.0mm, h3=67.6mm,h4=81mm
第四章 拉深工艺与拉深模设计
例(续) (6)工序件草图
82 Φ30.0 Φ34.6 Φ42.3
拉深件的模具设计顺序:
先设计拉深模,坯料形状尺寸确定后再设计冲裁模。
切边工序 :拉深件口部不整齐,需留切边余量。
2、简单旋转体拉深件坯料尺寸
1)将拉深件划分为若干 个简单的几何体; 2 )分别求出各简单几何 体的表面积; 3 )把各简单几何体面积 相加即为零件总面积; 4 )根据表面积相等原则, 求出坯料直径。
例4-1 图4-14所示圆筒形拉深件,材料08钢, 求毛坯尺寸 零件相对高度h/d=68/20=3.4,高度h>50mm, 查表4-3知,修边余量δ=6mm
拉深工序计算
(3)判断能否一次拉深 由 H/d = 58/28 = 2.07
(t/D)×100 = (2/113)×100 =1.77
df/d = 80/28 = 2.85 查表4-9 得首次拉深的极限拉深系数为:
m1min = 0.32, m = d/D = 28/113 = 0.25 由于m<m1min,该拉深件不能一次拉深成形。
d
t H
rg
r
d 图4-12 带凸缘圆筒形拉深件
1.窄凸缘圆筒形拉深件的拉深方法与计算 窄凸缘圆筒形拉深件的拉深方法如图4-13所示。前几道工 序先拉成无凸缘圆筒形件,最后两次拉深拉成口部带有锥 度和较大凸缘圆角的带凸缘件,然后再用一道工序将凸缘 校平。因此,窄凸缘圆筒形拉深件的拉深工序尺寸计算方 法与无凸缘圆筒形拉深件的拉深工序尺寸计算方法基本相 同,在此不在赘述。
d1=m1D=0.51×77=39.3(mm) →调整为d1=41(mm) d2=m2d1=0.75×39.3=29.5(mm)→调整为d2=31(mm) d3=m3d2=0.78×29.5=23(mm) →调整为d3=24.5(mm) d4=m4d3=0.80×23=18.4(mm) →调整为d4=20(mm) 拉深次数为4次。
(1)凸缘直径应在首次拉深时确定,以后各次拉深只是将 首次拉深拉入凹模的材料作重新分配。
(2)带凸缘拉深件首次拉深的变形程度比拉深系数相同的 无凸缘件的拉深小,因而允许取更小的拉深系数。表4-8 和4-9分别为带凸缘圆筒形拉深件首次拉深的最大相对高 度和最小拉深系数。
(3)首次拉深拉入凹模的材料应比实际需要量多5%~10%, 多拉入的材料在以后各次拉深中逐次返回到凸缘上。
D1 1132 802 362 1.05 802 362 115(mm)
5 带凸缘筒形件的拉深
机械工程学院模具教研室
带凸缘筒形件的拉深
1.拉深方法
图4-37
带凸缘圆筒形件的拉深
机械工程学院模具教研室
带凸缘筒形件的拉深
1.拉深方法 (2)宽凸缘圆筒形件的拉深 宽凸缘圆筒形件需多次拉 深时,拉深的原则是第一次拉深就必须使凸缘尺寸等于 拉深件的凸缘尺寸(加切边余量),以后各次拉深时凸 缘尺寸保持不变,仅仅依靠筒形部分的材料转移来达到 拉深件尺寸。因为在以后的拉伸工序中,即使凸缘部分 产生很小的变形,也会使筒壁传力区产生很大的拉应力, 从而使底部危险断面拉裂。
机械工程学院模具教研室
带凸缘筒形件的拉深
1.拉深方法
(1) 窄凸缘圆筒形件的拉深 窄凸缘圆筒形件是凸缘 宽度很小的拉深件,这类零件需多次拉伸时,由于凸缘 很窄,可先按无凸缘圆筒形件进行拉深,再在最后一次 工序用整形的方法压成所要求的窄凸缘形状。为了使凸 缘容易成形,在拉深的最后两道工序可采用锥形凹模和 锥形压料圈进行拉深,留出锥形凸缘,这样整形时可减 小凸缘区切向的拉深变形,对防止外缘开裂有利。例如, 如图4-37所示的窄凸缘圆筒形件,共需三次拉深成形, 第一次拉成无凸缘圆筒形工序件,在后两次拉深时留出 锥形凸缘,最后整形达到要求。
带凸缘圆筒形件拉深与无凸缘圆筒形件拉深的最大 区别在于首次拉深,现结合实例说明其工序尺寸计算程 序。
机械工程学院模具教研室
项目实施
工件名称:带凸缘外壳 生产批量:大批量
材料:08钢
材料厚度:2mm
项目任务:
1.对右图中的带凸缘筒形件进行拉深工艺分析? 2.确定拉深件的工艺方案,完成工艺计算? 3.完成拉深模具总体设计,初选压力机设备?
机械工程学院模具教研室
1-上模座;2-凹模;3-凸模 ;4推件板;5-打杆;6-模柄 ;7-紧固螺钉M10; 8-紧固螺钉M12;9-导柱; 10-导套;11-推杆;12-推板 ;13-紧固螺钉M12; 14-紧固螺栓;15-空心垫板 ;16-定位板;17-螺母;18下模座;19-压边圈.
有凸缘圆筒形件的拉深
有凸缘圆筒形件的拉深山东建筑大学备课纸三、有凸缘圆筒形件的拉深(一) 一次成形拉深极限,首先要讨论的问题:如何判断有凸缘筒形件能否一次拉出, ,在拉深有凸缘筒形件时,采用相同毛坯直径和相同工件直径时,可拉深出不同凸Dd1缘直径d和不同高度h的工件。
显然,工件t高度和凸缘直径都影响着实际变形程度,当工件凸缘直径越小,高度越大,其变形程度也越大。
因此用一般的m=d/D不能表11 达在拉深不同的d和h时的实际变形程度。
t,,筒形件第一次拉深的许可变形程度可用相应于d/d不同比值的最t1 大相对高度h/d来表示(表4-9)。
11 当工件的相对拉深高度h/d>h1/d1时,则该工件就不能用一道工序拉深出来,需要两次或多次才能拉出。
(二)窄凸缘圆筒形件拉深,d/d=1.1~1.4 t,其拉深系数确定、拉深工艺计算与无凸缘的圆筒形件相同。
,因凸缘很小,可以当作一般圆筒形件进行拉深,只在倒数第二道工序时才拉出凸缘或拉成锥形凸缘,最后校正成水平凸缘。
,若 h/d?1时,则第一次即可拉成口部具有锥形凸缘的圆筒形,最后校正凸缘即可。
(三)宽凸缘圆筒形件的多次拉深, 宽凸缘件的拉深原则:凸缘不能减小,一次成型。
第页山东建筑大学备课纸, 假若零件的拉深系数大于表4-10所给的第一次拉深系数极限值, 则该零件可一次拉成。
,,或者零件的相对高度小于表4-9所给的第一次拉深的最大相对高度值,则该零件可一次拉成。
宽凸缘件多次拉深工艺通常有两种情况:中小型零件( d <200mm): t减小圆筒形直径并增加其高度,r和r基本不变。
pd制成的零件,表面质量较差,容易在筒壁部分和凸缘上残留有中间工序中形成的圆角部分弯曲和厚度的局部变化的痕迹,所以最后要加一道整形工序大型零件( dt ,200mm),厚料改变圆角半径r和r并减小圆筒形直径,高度基本不变。
pd制成的零件表面光滑平整,而且厚度均匀,不存在中间拉深工序中圆角部分的弯曲和局部变薄的痕迹。
【材料成型工艺--锻压】2.4圆筒拉深件的拉深工序计算
5、润滑条件及模具情况
压边圈和凹模的表面光滑并进行润滑,间隙正常,均可改 善金属流动条件,有助于m减小。
凸凹模间隙过小,材料收到过大的挤压作用,并使摩 擦阻力增加,不利于减小极限拉深系数;过大,影响拉深 件精度。
6、拉深方式(是否压边 ) 有压边圈时,不易起皱,m值可取得小些。
不用压边圈时,m要取大些。
5.确定各次拉深直径
查 表 取 各 次 拉 深 极 限 拉 深 系 数 ( 小 值 ) 为 m1=0.50 、 m2=0.75 、 m3=0.78、m4=0.80,则各半成品直径为:
d1=0.5×78=39mm
;
d2=0.75×39=29.3mm
;
d3=0.78×29.3=22.8mm ;
d4=0.80×22.8=18.3mm 。
4.确定拉深次数 :先判断能否一次拉出。
零件总的拉深系数m总:m总=d/D=20/78=0.256 查表得极限拉深系数m1=0.50~0.53, 由于m总=0.256<<m1=0.50~0.53,因此不能一次拉出。 采用查表法确定拉深次数:
由t/D×100=1.28,h/D=3.7查表得拉深次数n=4
极限拉深系数的确定
根据最大拉应力和危险截面抗拉强度,用公式计算,但 误差大。通常通过实验得到。
为了提高工艺稳定性和零件质量,零件每一次的拉深系数必
须大于极限拉深系数[m]的值。
影响拉深系数的因素
1、材料性能
屈强比 s / b ↓延伸率↑→拉深成形性能↑拉深系数↓
2、毛坯相对厚度
材料相对厚度 t/D ↑→拉深系数↓
dn d n 1
m1m2 mn1mn
拉深系数m表示拉深前后坯料(工序件)直径的变化率。 是衡量拉深变形程度的一个重要的工艺参数。
第四讲拉深模工作部分计算跟拉深工艺设计-
1、无凸缘和有凸缘拉深工艺的主要区别是什么?
2、多次拉深中每次的拉深高度在实际生产中如何控制?
第四章 拉深工艺与拉深模设计
无压料一次拉深成形的凹模结构
a)圆弧形 b)锥形 c)渐开线形 d)等切面形
第四章 拉深工艺与拉深模设计
无压料多次拉深的凸、凹模结构
第四章 拉深工艺与拉深模设计
有压料多次拉深的凸、凹模结构
5.拉深件的底与壁、凸缘与壁、矩形件四 角的圆角半径应满足:
≥t,R≥2t,r≥3t。 否则,应增加整形工序。
第四章 拉深工艺与拉深模设计
6.拉深件不能同时标注内外形尺寸;带台阶的拉深件,其高 度方向的尺寸标注一般应以底部为基准。
带台阶拉深件的尺寸标注
第四章 拉深工艺与拉深模设计
四、拉深件的材料
第四章 拉深工艺与拉深模设计
二、拉深模间隙
一般采用单边间隙Z 表示。 1.无压料圈的拉深模
末次拉深或精密拉深件: 中间各次或不太精密的拉深件: 2.有压料圈的拉深模
按表4-21决定。 3. 精度要求较高的拉深零件
Z=(0.9~0.95)t
负间隙拉深
第四章 拉深工艺与拉深模设计
三、凸、凹模的结构
1. 不用压料的拉深模凸、凹模结构 1 不用压料的一次拉深成形时所用的凹模结构形式 2 无压料多次拉深的凸、凹模结构 2.有压料的拉深模凸、凹模结构
壁部划伤
模具不光滑;润滑剂不干净
第四章 拉深工艺与拉深模设计
2、因板料拉深变形本质决定,不易解决
质量问题 起皱或破裂
原因和解决措施 拉深变形太大或材料强度原因,
采用多次拉深或换用材料
拉深凸耳 拉深弹复
材料流动各向异性,可留出修边余量 零件的弹性变形,选用屈强比小的材料。
4.4拉深工艺计算
dn dn1
二. 拉深系数
总拉深系数概念
总拉深系数m等于工件直 径dn与毛坯直径D之比,即:
m dn D
总拉深系数与各次拉深系数的关系
m
dn D
d1 D
d2 d1
d3 d2
d n1 d n2
dn d n1
m1m2 m3 mn1mn
拉深件总拉深系数等于各次拉深系数的乘积。
不平部分 ∴在计算毛坯时,应加上修边余量。
一. 毛坯尺寸计算
修边余量的确定:根据经验数值
一. 毛坯尺寸计算
简单旋转体拉深件的毛坯计算
将拉深件划分为若干个简单的几何体: 1、2、3三部分
分别求出各简单几何体的表面积: 采用久里金法则
一. 毛坯尺寸计算
久里金法则:
任何形状的母线绕某轴旋转一周所构 成的旋转体的表面积,等于该母线的长度 与该母线形心绕该轴旋转所得周长的乘积。 即:
③确定拉深次数 坯料相对厚度为
t 2 100% 2.03% 2% D 98.2
三. 拉深次数
根据t/D=2.03%,查表4.3得各次极限拉深系数 m1=0.50,m2=0.75,m3=0.78,m4=0.80。 故d1=m1D=0.50×98.2mm=49.2mm
d2=m2d1=0.75×49.2mm=36.9mm d3=m3d2=0.78×36.9mm=28.8mm d4=m4d3=0.8×28.8mm=23mm 此时d4=23mm<28mm,所以应该4次拉深成形。
H 76 1 75 2.7 d 30 2 28
查表4.2得修边余量 h 6mm
三. 拉深次数
坯料直径为 D d 2 4d(H h) 1.72dr 0.56r 2 代已知条件入上式得D=98.2mm
阶梯形零件拉深工艺计算
例 试对图示零件进行拉深工艺计算。
该零件材料为08,板厚为2mm 。
分析:该零件为无底的阶梯筒形件,为了能够采用拉深方法制取工序件,则需补上完整的底部。
考虑到板料厚度较大,取r p =3t =6mm ,由表查得修边余量为2mm 。
则整形后的工序件如图所示,再经切底与修边便可制成所需零件。
解:求毛坯尺寸D =110mm板料相对厚度为t/D =2/110=1.8%。
拉深方法一:最后拉出大端直径首先判断大端直径是否能最后拉出。
求拉成大端直径所需的凸缘直径:mm r rd dh d D d f 94156.058172.1235845856.072.14222''2=⨯-⨯⨯-⨯⨯+=--+== d 1/ d f ′=d 1/ D ′=58/94=0.62≥m 1然后按多次拉深宽凸缘件进行计算,共需三次拉深,拉深系数分别为m t =0.43,m 2=0.75,m 3=0.78。
加上落料、整形、修边、切底工序,总共需八道工序。
拉深方法二:大端直径首先拉出首先由毛坯直径拉出大端直径,拉深系数为56/110=0.53。
由于大小端直径比28/58=0.48,小于m 2=0.73~0.75,故不能由大端直径直接拉出小端直径,中间需增加两次拉深。
所取拉深系数为m2=0.76、m3=0.77、m4=0.82。
两种拉深方法的比较:采用方法一时的中间工序件的高度要比方法二低的多,则拉深模的凸模与压边圈的高度可随之降低,结果使模具总体尺寸可减小许多,模具成本也降低了。
因此在进行阶梯筒形件工艺计算时,应优先考虑采用大端直径最后拉出的工序顺序。
无论采用上述两种方法中的哪一种方法,当两阶梯之间需增加拉深次数时,如果板料相对厚度值较小,仍可考虑采用首次拉深多拉入材料的拉深方法。
因为其变形特点与宽凸缘件多次拉深是相同的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目:如图,求图示的筒形件的毛坯展开尺寸,
拉深次数,各次成品尺寸。
材料:10号钢。
料厚:2mm 。
附表:采用或不采用压边圈条件
解:由题意及图可知,此工件料厚21m m m m δ=>,因此零件按中线尺寸计算。
即 圆筒直径D=28mm ,圆角半径r=4mm ,h=75mm 。
1、 在实际计算中,要增加修边余量h ∆,
由
75 2.728
h D ==,查表8-15得
当H=50~100mm 时,2~6h m m ∆=取6h m m ∆=。
2、 计算毛坯展开尺寸
如图,d=28mm ,h=75mm ,81H h h m m =+∆=,r=4mm 。
由公式8-54得
D =
814
=
- 98.26m
m =
3、 确定是否采用压力圈
2
1001002.035
98.26
t D
⨯=
⨯=
略大于2,为保证拉深件质量,根据上面附表,第一次拉深时,采用压边圈。
查表8-14得,第一次许用极限拉深系数[]10.5m =,
由[]11d m D
=得,[]110.598.2649.13d m D mm ==⨯=
1
2
1001004.071.5
49.13
t d ⨯=
⨯=
>,由上面附表知,不需要压边。
随着D 减小,100t D
⨯增大,以后各次都不需要压边。
4、 确定拉深次数
由
2100100 2.03598.26
t D ⨯=
⨯=,查表8-14得
首次拉深的极限拉深系数 []10.5m =。
工件总的拉深系数 280.28598.26
d m D =
=
=
因[]1m m <,故工件不能一次拉深成形。
由表8-14得,第二、三、四、五……次的极限拉深系数
[]20.75m =,[]30.78m =,[]40.82m =,[]50.85m =…… [][][]1230.50.750.780.2925m m m m =⨯⨯=> [][][][]12340.50.750.780.820.24m m m m m =⨯⨯⨯=<
需要进行四次拉深。
5、 确定各次拉深系数
由各次的拉深极限系数,算出各次拉深系数
[]11d m D
=
,[]221
d m d =
,[]332
d m d =
,[]443
d m d =
,
[][][][]412340.2498.2623.57d m m m m D mm ==⨯=,
显然423.5728d mm mm =<,说明允许的变形未用足。
为保证428d d m m ==,应对各次的拉深系数做适当调整,使其均大于相应的极限拉深系数。
经计算调整后,各次实际拉深系数为
10.56m =,20.78m =,30.80m =,40.82m =,
则调整后各次拉深直径为
110.5698.2655d m D m m ==⨯= ()155257d m m '=+=
2210.785542.9d m d mm ==⨯= ()242.9244.9d m m '=+= 3320.8042.934.3d m d mm ==⨯= ()334.3236.3d m m '=+
=
428d mm = ()428230d m m '=+=
6、 各次拉深半成品的制件高度
根据拉深件圆角半径计算公式
1
d r = 及()1
0.6~0.8n
n d
d
r r -=,
得各次半成品底部半径圆角为
1
7.50.8d m m r ==⨯
2
7.560.8d mm r ==⨯
3
650.8d mm r ==⨯
4
540.8d mm r ==⨯
根据多次拉深后工件的高度计算公式 ()
2
0.250.430.32n n d n n
n d n
n D d d r d r h d ⎛⎫
=⨯-+⨯+ ⎪⎝⎭
计算各次拉深后筒形件的高度
()2198.30.25550.43550.327.534.8557.5
55mm h ⎛⎫=⨯-+⨯+⨯= ⎪⎝⎭
()2298.30.2542.90.4342.90.32648.342.96
42.9mm h ⎛⎫=⨯-+⨯+⨯= ⎪⎝⎭
()2398.30.2534.30.4334.30.32564.134.35
34.3mm h ⎛⎫=⨯-+⨯+⨯= ⎪⎝⎭
481H m m h == 135.8m m h =',2
49.3m m h =',365.1m m h =', 482m m h ='
7、 第一、二、三、四次拉深工序成形件尺寸如下。