三位半数字直流电压表的设计

合集下载

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim
【设计背景及意义】
随着科技的不断发展,数字电压表在各个领域的应用越来越广泛。

三位半数字电压表作为一种常见的测量仪器,具有高精度、高稳定性、易于操作等优点。

本文将介绍如何使用Multisim软件设计一款三位半数字直流电压表,以满足实际应用需求。

【设计原理】
三位半数字直流电压表的设计主要依据以下原理:
1.采用分压式电路实现电压测量;
2.利用模数转换器将模拟信号转换为数字信号;
3.通过数字显示电路将数字信号转换为直观的电压值。

【设计步骤】
1.打开Multisim软件,新建一个项目;
2.添加所需元器件,包括电阻、电容、二极管、晶体管、运算放大器等;
3.连接电路,构建分压式电压测量电路、模数转换电路和数字显示电路;
4.设置元器件参数,如电阻值、电容值等;
5.添加电源和信号源,设置电压值;
6.配置仿真参数,进行仿真实验;
7.分析仿真结果,优化电路设计。

【仿真结果及分析】
经过多次仿真实验,得到以下结果:
1.电压测量范围:0~100V;
2.电压测量精度:0.5%;
3.数字显示:三位半液晶显示屏;
4.响应速度:≤1秒。

通过分析仿真结果,可以看出设计的三位半数字直流电压表具备较高的精度和响应速度,能够满足大部分实际应用场景的需求。

【总结与展望】
本文通过Multisim软件设计了一款三位半数字直流电压表,详细介绍了设计原理、步骤及仿真结果。

在今后的工作中,可以进一步优化电路设计,提高电压表的性能,如降低功耗、扩大测量范围等。

三位半数字电压表课程设计报告

三位半数字电压表课程设计报告
当然,由于具体结构的不同,功能的强弱不同,每种表还有其各自复杂程度不同的特殊附加电路。根据小组讨论,制定了三种方案并选出最优,方案如下。
四、总体方案选择
方案一:采用MC14433,它是一个三位半A/D转换器且能进行实时数字显示;该系统可采用MC14433—三位半A/D转换器、MC1413七路达林顿驱动器阵列、CD4511 BCD七段锁存-译码-驱动器、能隙基准电源MC1403和共阴极LED发光数码管组成。其原理框图如下图4.1
Q3表示千位,Q3=‘0’代表千位数的数字显示为1,Q3=‘1’代表千位数的数字显示为0即最高位消隐,可以认为是最高位因出现无效零而自动消隐;
Q2表示被测电压的极性,Q2的电平为1,表示极性为正,即VX>0,Q2的电平为0,表示极性为负,即VX<0。显示数的负号由MC1413中的一只晶体管控制,符号位的‘—’阴极与千位数阴极接在一起,通过限流电阻RM使显示器的‘—’(即g段)点亮;当输入VX为正电压时,Q2输出为‘1’,符号控制位使达林顿驱动器导通,电阻RM接地,使‘—’旁路而熄灭。
MC14433基准电压UREF由外电路提供,即由RP电位器提供200mv或2v的基准电压。
MC1413用四个NPN管代替,它有两个作用:一是将位选输出的正方波反相变为负方波以便选入到LED的共阴极;二是增加驱动能力。
MC1403为一能隙基准电压源,通过RP可调节基准电压的大小。
整个电路的基本工作过程如下:
3:要求电路能进行交直流测量。
4:将设计方案进行比较与总体设计。
5:选出最优方案进行详细设计。
6:根据设计过程写出详细的课程设计报告。
7:总结心得体会完成课程设计任务。
8:按时交上课程设计报告。
三、数字电压表基本原理

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim三位半数字直流电压表是一种常用的测试仪器,用于测量直流电路中的电压值。

它具有简单易用、精度高、测量范围广等特点,被广泛应用于电子工程、电力工程、通信工程等领域。

在设计multisim 电路仿真软件时,三位半数字直流电压表也是必不可少的组成部分。

我们需要了解三位半数字直流电压表的原理。

它采用了数字显示技术,将测量到的电压值以数字形式显示在屏幕上。

一般情况下,三位半数字直流电压表的显示范围为0-1999,即可以显示0.000V-1.999V之间的电压值。

它通过测量电路中的电压,将模拟信号转换为数字信号,并通过显示器显示出来。

在multisim中设计三位半数字直流电压表,首先需要选择合适的元件进行连接。

常见的元件有电阻、电容、二极管等。

在连接电路时,需要注意保证电路的稳定性和准确性。

电路的稳定性可以通过合理选择元件值来实现,而准确性则需要根据实际需求来确定。

在连接电路之后,我们需要设置multisim的参数。

首先是设置电源电压,这是为了模拟实际电路中的电源情况,保证电路能够正常工作。

其次是设置测量范围,根据需要选择合适的范围。

最后是设置显示方式,可以选择数码管显示或液晶显示等方式。

完成电路的连接和参数设置后,我们可以进行仿真实验。

在multisim中,可以设置不同的输入电压值,观察三位半数字直流电压表的显示结果。

通过对比实际测量值和显示值,可以评估电路的准确性和稳定性。

除了基本的测量功能,三位半数字直流电压表还可以具备其他功能,如自动量程切换、峰值保持等。

这些功能可以通过添加适当的电路元件和控制电路来实现。

在multisim中,可以根据需要进行扩展和改进,使三位半数字直流电压表具备更多的功能和应用。

设计multisim电路仿真软件时,三位半数字直流电压表是一个不可或缺的元件。

它能够对直流电路中的电压进行准确测量,并以数字形式显示出来。

通过合理连接电路和设置参数,我们可以在multisim中模拟实际的测量过程,并评估电路的性能。

三位半数字电压表设计

三位半数字电压表设计

一、课程设计要求;采用中小规模集成电路、MC14433A/D转换器等电路进行设计三位半数字电压表。

要求如下:1、直流电压测量范围 1999—0001V;199.9—0.1V;19.99—0.01V;1.999—0.001V;2、交流电压测量范围 1999—199V;3、3位半数码显示。

二、方案设计及论证;方案设计一:本设计实际上是将被测模拟量转换为数字量,并进行实时数字显示,主要由以下几部分构成:量程转换电路、AC-DC转换电路、3位半A/D转换单元电路、基准电源单元电路、译码驱动单元以及数码管显示单元。

其中A/D转换器选用三位半MC14433,基准电源选用MC1403,译码驱动器则CD4511,另加四个共阴极LED发光数码管。

原理框图如下:方案设计二:电路中涉及到得集成电路有74LS47、ADC0804、AT89C51。

本电路采用LM7805集成稳压电路,电路由变压器、整流电路、滤波电路、稳压电路组成。

方案设计三:MEGA8单片机、OP07集成运算放大器、模拟开关CD4066、1602LCD 液晶显示器、三斜积分式A /D 转换器。

原理框图如下:方案比较:由于3位半双积分式A/D 转换器MC14433可以满足设计要求,其转换精度为读数的±0.05%±1字,并能很方便地判断出是否超欠量程,以便于量程的自动切换功能的实现,其中集成了双积分式A/D 转换器所有的CMOS 模拟电路和数字电路。

具有外接元件少,输入阻抗高,功耗低,电源电压范围宽,精度高等特点,并且具有自动校零和自动极性转换功能,只要外接少量的阻容件即可构成一个完整的A/D 转换器,另外价格只有10元多点,是较好的选择, MC1403集成精密稳压源作参考电压,MC1403的输出电压为 2.5V ,当输入电压在4.5~15V 范围内变化时,输出电压的变化不超过3mV ,一般只有0.6mV 左右,输出最大电流为10mA 因此选择方案一。

三位半LED数码显示电压表的原理分析

三位半LED数码显示电压表的原理分析

流过时&通有电流的偏转线圈在磁场中受力并带动指 考电压)独立模拟开关)逻辑控制)显示驱动)自动调零
针而发生偏转&当与弹簧反作用力矩平衡时&便获得读 功能等为一体的集成电路&其各脚功能如图 ! 所示*
数* 因此传统的磁电式表头在发射机的使用中&读数
-/*发光数码管采用共阳型管&在每个显示电路
受静电和外界电磁场的影响较大以及灵敏度较低)误 中&选用了 2 块分离的 8 段同型号 -/*发光数码管进
指标*
技术发展的必然趋势*
随着广播电视技术的发展& 数字技术逐步进入广 =:工作原理
播电视领域&在发射机上越来越多地应用 -/*数码显
三位半 -/*数码显示电压表是由一块 '%-6#"6
示表头显示其运行指标&取代了传统的磁电式表头作 集成电路和 2 块 -/*数码管以及少量外围元件组成&
发射机的指标显示*
! 中国有线电视"!"###"$下$ %&'()*'+',)-%).-/,0
中图分类号,(1283Y55文献标识码.55文章编号#""6 76"!!#!"##$"$ 下 7"2#8 7"!
%经验点滴%
三位半 (+"数码显示 电压表的原理分析
!廖光源罗正明
贵州省广播电影电视局七九四台贵州 六枝特区 YY$2""贵州省广播电影电视局七六一台贵州 贵阳 YY"""!
地板之间铺设隔离垫*
#6$ 使用过程中要特别防止活动地板的防静电喷

数管三位电压表电路0-100v

数管三位电压表电路0-100v

数管三位电压表电路0-100v
数显三位电压表是一种用于测量直流电压的电子仪器,其电路可以实现 0-100V 的电压测量范围,并通过数码管显示测量结果。

以下是一个简单的数显三位电压表电路的设计:
1. 电路原理图
该电路主要由 ADC 转换器、数码管驱动电路、数码管显示电路和电源电路等组成。

- ADC 转换器:采用 ADC0809 芯片,将输入的模拟电压信号转换为数字信号。

- 数码管驱动电路:采用 74HC595 芯片,将 ADC 输出的数字信号转换为数码管显示所需的段码。

- 数码管显示电路:采用三位共阳数码管,显示测量结果。

- 电源电路:采用 LM7805 芯片,将输入的 12V 直流电压转换为 5V 直流电压,为整个电路提供电源。

2. 电路工作原理
当输入电压信号接入电路时,ADC 转换器将模拟电压信号转换为数字信号,并将数字信号输出到数码管驱动电路。

数码管驱动电路将数字信号转换为数码管显示所需的段码,并将段码输出到数码管显示电路。

数码管显示电路根据段码显示测量结果。

3. 电路调试与测试
在电路设计完成后,需要进行调试和测试,以确保电路的正常工作。

可以使用示波器和万用表等仪器对电路进行测试,检查 ADC 转换器的转换精度、数码管的显示效果和电源电路的输出电压等。

以上是一个简单的数显三位电压表电路的设计,仅供参考。

具体的电路设计需要根据实际需求进行调整和优化。

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim(最新版)目录1.引言2.三位半数字直流电压表的原理3.multisim 软件的使用4.设计过程5.测试结果6.结论正文1.引言数字电压表是一种常用的电子测量仪器,可以测量直流电压、交流电压、脉冲电压等。

随着科技的发展,数字电压表的设计和制造技术也在不断提高,使得数字电压表的性能和精度得到了极大的提升。

在本文中,我们将介绍一种三位半数字直流电压表的设计方法,该方法使用了multisim 软件进行仿真和设计。

2.三位半数字直流电压表的原理数字电压表的原理是基于模拟电压表和模数转换器的。

模拟电压表可以测量连续变化的模拟电压信号,而模数转换器则可以将模拟电压信号转换为数字电压信号。

数字电压表通常由一个模数转换器和一个数字显示器组成,模数转换器将模拟电压信号转换为数字电压信号,数字显示器则将数字电压信号显示出来。

三位半数字直流电压表是一种精度较高的数字电压表,它可以测量最大电压为±1.5V 的直流电压信号。

它的设计原理是基于三个半电池的电路,通过调整三个半电池的电压来实现对直流电压信号的测量。

3.multisim 软件的使用multisim 软件是一种电子电路仿真软件,它可以用来设计和仿真各种电子电路,包括放大器、滤波器、振荡器等。

在本文中,我们将使用multisim 软件来设计和仿真三位半数字直流电压表。

首先,我们需要在 multisim 软件中创建一个新的项目,然后添加所需的元器件,包括电源、电阻、电容、二极管、三极管等。

接下来,我们需要绘制电路图,并进行电路仿真。

在仿真过程中,我们可以通过观察电路的波形和参数来调整电路的性能和精度。

4.设计过程在设计三位半数字直流电压表时,我们需要考虑以下几个方面:首先,我们需要选择合适的元器件,包括模数转换器、电源、电阻、电容等。

这些元器件的选取应根据电路的性能要求和成本考虑。

其次,我们需要设计电路的拓扑结构,包括放大器、滤波器、模数转换器等。

CJ5135系列三位半直流电压电流数字面板表 说明书

CJ5135系列三位半直流电压电流数字面板表 说明书

CJ5135系列三位半直流电压电流数字面板表使用说明书CJ5135系列数显直流电压电流表具有精度高,稳定性好,抗干扰性能优越,显示清晰,工艺精良。

产品外观大方,小巧精致美观,品质优良。

产品特点:产品应用:CJ5135系列数显直流电压电流表,可广泛应用于各种仪器仪表,教学设备,电力电子,工业自动化控制设备,医疗器械,交直流稳压电源,教学设备等作为直流电参数显示部件,提升产品档次,为各类指针式仪表的首选更新换代品。

主要技术参数:(执行标准GB/14913-2002)1. 工作电源:DC 5V±5%单电源 或DC:9V 12V 24V,AC220V可定做2. 工作电流:≤50mA3. 基本量程:±199.9mV或±1.999V4. 输入阻抗:≥1MΩ5. 准确度:±(0.2%读数+2个字)6. 过量程显示:第一位显示"1"或"-1",后三位全不显示7. 工作温度:0-50℃8. 工作湿度:≤85%RH9. 显示字高:LED 0.56"10.外型尺寸:79×42×25(40)(mm)11.开孔尺寸:75×39(mm)12.其他性能:自动归零,自动极性转换.产品连接线说明:仪表接线及开孔尺寸如图所示:CJ5135系列接线图外形及安装尺寸以上接线图仅供参考,请以仪表壳体上的接线图为准温馨提示:本公司其它产品有:液晶显示的温度计,电压/电流面板表,数字调节仪,温控表,智能计数器,时间继电器,频率转速表,JD194系列电量变送器,CD194系列电力仪表,多功能电量测量仪表,DCDC电源模块,公司可根据客户要求定制非标产品.注意事项:1.仪表输入方式根据用户电路不同可分为两种,a:信号地、电源地、模拟地,如三地全部连接在一起就是“共地”,此种情况适用于采用独立工作电源的设备,稳定性好,抗干扰能力强;b:信号地独立,电源地和模拟地相连接,我们称为“浮地”,此情况适用于独立电源、差动放大信号输入设备;用户应根据实际用情况选择合适的输入方式。

智能仪器课程设计

智能仪器课程设计

智能仪器课程设计课程设计名称3位半数字电压表学生姓名、学号谭彩铭(0501170118)指导教师牛国柱2009-1-16课程设计要求设计一3位半直流数字电压表,满足下列要求1、量程为20mV,200mV,2V,20V,200V,测量精度要求0.1%2、3位半数码显示3、工作状态显示4、开机自检5、配简单键盘,如量程切换6、配微型打印机接口由实际操作中遇到的问题找解决方案实际搭建的数字电压表的量程为20mV,200mV,2V和8V,能完成量程的自动切换,并有各种量程状态以及超、欠量程的指示灯显示。

原理图附录一所示。

对应的完整汇编程序见附录三。

1 原理图总体思路由于采用3位半AD转换器TC14433,提供的基准电压为2V,可测电压量程为2V,故大于2V的待测电压衰减后输入,小于2V的待测电压放大后输入。

衰减和放大由51单片机控制控制模拟开关4051,4052来完成。

调试当中,发现若输入电压为负时,比例放大就不准确了,且相差较大,故又用运放和模拟开关搭建了一反相控制电路。

原理图当中,U15为用OP07搭建的电压跟随器,用于增大输入阻抗,减小输出阻抗,以减少对待测电压的影响。

U16为用OP07搭建的一反相器。

U1用于若发现待测电压为负,让待测电压反相后进入后续电路。

U6作用同U15。

U1用于控制是否将待测电压衰减1/4后进入后续电路。

U4和U7用于控制是否对电压进行衰减以及衰减多少。

U17作用同U15。

U2为用MC1403搭建的2V电压源,用于输出较准确的电压源给TC14433作为基准电压。

2 AD转换部分TC14433中,EOC与DU端相连,选择连续工作方式。

EOC与51单片机的中端口0相连,由中断方式采集数据。

中断0采集数据服务子程序如图2所示。

3 升降量程及量程状态指示灯显示程序控制升降量程即控制模拟开关4051和4052,是否对待测电压进行放大或衰减。

如何有效的控制量程的自动转换是一较难点,尤其是保证程序的健壮性。

最新三位半数字电压表

最新三位半数字电压表

三位半数字电压表四、设计原理及电路图(1)数字电压表原理框图如下:方案1的原理框图如图a所示;方案2的原理框图如图b所示;方案3的原理框图如图c所示。

图a图b图c鉴于选用方案一,由数字电压表原理框图可知,数字电压表由五个模块构成,分别是基准电压模块, 3 1/2位A/D电路模块,字形译码驱动电路模块,显示电路模块,字位驱动电路模块.各个模块设计如下:量程转换模块采用多量程选择的分压电阻网络,可设计四个分压电阻大小分别为900K Ω,90KΩ,9KΩ和1KΩ。

用无触点模拟开关实现量程的切换。

基准电压模块这个模块由MC1403和电位器构成, 提供精密电压,供A/D 转换器作参考电压.3 1/2位A/D电路模块Output直流数字电压表的核心器件是一个间接型A / D转换器,这个模块由MC14433和积分元件构成,将输入的模拟信号转换成数字信号。

字形译码驱动电路模块这个模块由MC4511构成 ,将二—十进制(BCD)码转换成七段信号。

显示电路模块这个模块由LG5641AH构成,将译码器输出的七段信号进行数字显示,读出A/D 转换结果。

(2)实验芯片简介:数字显示电压表将被测模拟量转换为数字量,并进行实时数字显示。

该系统(如图1 所示)可采用MC14433—三位半A/D 转换器、MC1413七路达林顿驱动器阵列、CD4511 BCD到七段锁存-译码-驱动器、能隙基准电源MC1403和共阴极LED发光数码管组成。

本系统是三位半数字电压表,三位半是指十进制数0000~1999。

所谓3位是指个位、十位、百位,其数字范围均为0~9,而所谓半位是指千位数,它不能从0变化到9,而只能由0变到l,即二值状态,所以称为半位。

各部分的功能如下:三位半A/D转换器(MC14433):将输入的模拟信号转换成数字信号。

基准电源(MC1403):提供精密电压,供A/D 转换器作参考电压。

译码器(MC4511):将二—十进制(BCD)码转换成七段信号。

三位半数字直流电压表的设计

三位半数字直流电压表的设计

三位半数字直流电压表的设计(总14页)-本页仅作为预览文档封面,使用时请删除本页-钦州学院数字电子技术课程设计报告三位半数字直流电压表的设计院系物理学院专业过程控制自动化学生班级 2010级1班姓名 xxxx学号 xxxx指导教师单位 xxxxx指导教师姓名 xxxx指导教师职称 xxxx2013年7月三位半数字直流电压表过程控制自动化专业2010级 xxx指导教师 xxx摘要:根据设计的指标和要求,结合平时所学的理论知识,设计出一个功能较齐全的数字直流电压表。

关键词:电压表、电路、设计、A/D转换器目录前言 (1)1设计技术指标与要求 (1)设计技术指标 (1)设计要求 (1)2 方案的设计及元器件清单 (1)3 电路的工作原理 (2)4 各部分的功能 (3)三位半位双积分A / D 转换器CC14433 的性能特点 (3)基准电源(CC1403) (3)译码器(MC4511) (4)显示电路模块 (5)驱动器 (5)显示器 (5)5系统电路总图及原理 (5)电路组成 (5)电路的工作原理及过程 (6)三位半A/D转换器MC14433 (7)七段锁存-译码-驱动器CD4511 (8)高精度低漂移能隙基准电源MC1403 (9)6电路连接测试 (9)7经验体会 (10)参考文献 (10)前言数字电压表(Digital Voltmeter),简称DVM,是采用数字化测量技术,把连续的模拟信号转换成不连续、离散的数字形式并加以显示的仪表。

数字电压表的类型很多,其输入电路、设计电路和显示电路基本相似,只是电压—数字转换方法不同。

因此,我们此次设计电压表就是为了了解电压表的原理,从而学会制作电压表。

而且通过电压表的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法。

1 设计技术指标与要求设计技术指标1. 量程:一档:+~0~-二档: +~0~-2. 用七段LED数码管显示读数,做到显示稳定、不跳变;3. 保持/测量开关:能保持某一时刻的读数;4. 指示值与标准电压表示值误差最低位在5之内。

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim【实用版】目录1.引言2.三位半数字直流电压表的原理3.Multisim 软件的使用4.电路设计与仿真5.结论正文1.引言在现代电子技术中,数字电压表已经成为了实验室和工程领域中必不可少的测量工具。

数字电压表相较于传统的模拟电压表,具有更高的精度、更小的体积和更方便的操作方式。

本文将介绍如何使用 Multisim 软件设计一款三位半数字直流电压表。

2.三位半数字直流电压表的原理数字电压表的原理是将连续的模拟电压量转换成不连续、离散的数字量并加以显示。

数字电压表的精度主要取决于 A/D 转换器的位数,位数越多,精度越高。

三位半数字电压表指的是电压表可以显示到小数点后三位半的精度。

3.Multisim 软件的使用Multisim 是一款电子设计自动化(EDA)软件,可以用于电路仿真、单片机控制等。

在本文中,我们将使用 Multisim 软件进行电路设计和仿真。

4.电路设计与仿真在 Multisim 软件中,我们首先需要绘制电路图,然后进行元器件封装和连接。

对于三位半数字直流电压表,我们需要设计一个 A/D 转换器、一个数字显示器和一些控制电路。

在设计过程中,我们需要选择合适的元器件和电路拓扑,以满足电压表的精度和稳定性要求。

接下来,我们需要对电路进行仿真。

在 Multisim 软件中,我们可以添加虚拟仪器,如电压源、电流源、示波器等,来模拟实际电路中的信号波形和电压值。

通过观察仿真结果,我们可以检验电路设计的正确性和有效性。

5.结论通过使用 Multisim 软件,我们可以方便地设计并仿真三位半数字直流电压表。

在设计过程中,我们需要注意选择合适的元器件和电路拓扑,以满足电压表的精度和稳定性要求。

直流数字电压表的设计仿真与制作

直流数字电压表的设计仿真与制作

学号:课程设计题目学院专业班级姓名指导教师年月日课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目: 直流数字电压表的设计仿真与制作初始条件:利用集成3位半或4位半的A/D转换器及显示译码驱动电路设计实现直流数字电压表的基本功能(也可以利用FPGA或单片机系统设计实现)。

要求完成的主要任务:(包括课程设计工作量及技术要求,以及说明书撰写等具体要求)1、课程设计工作量:1周内完成对数控电压源的设计、仿真、装配与调试。

2、技术要求:输入电压介于+—2v之间。

①用电阻、电位器构成一个简单的输入电压Vx调节电路;②用3位半MC14433/CD14433或4位半ICL7135ADC实现A/D转换;③设计4个或5个数码管的动态显示驱动电路实现测量电压的显示;④确定设计方案,按功能模块的划分分选择元、器件和中小规模集成电路,设计分电路,画出总体电路原理图,阐述基本原理。

3、查阅至少5篇参考文献。

按《武汉理工大学课程设计工作规范》要求撰写设计报告书,全文用A4纸打印,图纸应符合绘图规范。

时间安排:1)第1-2天,查阅相关资料,学习设计原理。

2)第3-4天,方案选择和电路设计仿真。

3)第4-5天,电路调试和设计说明书撰写。

4)第6天,上交课程设计成果及报告,同时进行答辩。

指导教师签名:年月日系主任(或责任教师)签名:年月日目录课程设计任务书....................................................................................................... - 2 -1 Proteus软件简介................................................................................................... - 4 -2方案论证和确定.................................................................................................... - 6 -2.1 设计目标................................................................................................... - 6 -2.2 方案论证................................................................................................... - 6 -2.3 总体设计 .................................................................................................. - 8 -3 硬件系统的设计................................................................................................... - 9 -3.1 硬件系统设计原则................................................................................... - 9 -3.2 A/D转换电路........................................................................................... - 9 -3.2.1 双积分A/D转换器的工作原理.................................................... - 9 -3.2.2 ICL7135芯片介绍 ....................................................................... - 10 -3.3 电压反向电路.................................................................................. - 16 -3.4 数码显示模块电路................................................................................... - 18 -3.5 输入电路................................................................................................. - 20 -4 系统的软件设计................................................................................................. - 21 -4.1 应用软件设计原则................................................................................. - 21 -4.2 系统主程序设计..................................................................................... - 21 -5 制作与调试......................................................................................................... - 25 -5.1 调试........................................................................................................... - 25 -5.1.1 软件调试......................................................................................... - 25 -5.1.2 硬件调试....................................................................................... - 25 -8 原件清单............................................................................................................. - 28 -9参考文献.............................................................................................................. - 29 -1 Proteus软件简介Proteus软件是英国Labcenter electronics公司出版的EDA工具软件(该软件中国总代理为广州风标电子技术有限公司)。

数字电压表的设计

数字电压表的设计
2018/10/16 1
3. 数字电压表的测量原理与主要器件性能分析
直流数字电压表的核心器件是一个间接型A / D转换器: 3.1.双积分A/D转换器 1).转换方式 :V-T型间接转换ADC。输入的模拟电压信 号变换成易于准确测量的时间量,然后在这个时间宽度 里用计数器计时,计数结果就是正比于输入模拟电压信 号的数字量。 2).电路结构 :图-1是这种转换器的原理电路, ①积分器A1:定时信号控制开关S2,Qn为不同电平时, 极性相反的输入电压Vx和参考电压 VREF将分别加到积分 器的输入端,进行两次方向相反的积分,积分时间常数 τ=RC。 ②过零比较器A2:确定积分器的输出电压V0过零的时刻, V0≥0时比较器输出VC为低电平;当V0<0时,VC为高电平. 输出信号接至时钟控制门(G)作为关门和开门信号
Vi
8
1
7
2
6
3
5
4
MC1403
Vo GND
4.2. 标准电压源的连接和调整:
插上MC1403基准电源,用标准数字电压表检查输出是否为2.5V,然后 调整10KΩ电位器,使其输出电压为2.00V,调整结束后去掉电源线。
2018/10/16 9
4. 3. 总装测试的方法与步骤:
1)接线:按设计电路接好线路,并插上MC(TC)14433及MC1413等芯片。 2) 通电显示检查:接通+5V、-5V电源及地线,当输入端接地,此时显示 器将显示“000”值,否则,应依次检测电源正负电压,用示波器测量、 观察DS1~DS4 ,Q0~Q3波形,判别故障所在。 3) 电压粗测:调节输入电压VX 的高低,4位输出显示数码应相应变化,然 后进入下一步精调。 4)测量基准校正: 用标准数字万用表(示波器)测量输入电压,调节电位器,使

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim
三位半数字直流电压表是一种常用的电子测量仪器,用于测量直流电路中的电压。

在multisim软件中设计这样一款电压表,可以帮助工程师和电子爱好者更方便地进行电路仿真和测试。

在使用multisim软件进行电路设计时,首先需要选择合适的元件进行搭建电路。

对于三位半数字直流电压表来说,主要包括电压测量部分和显示部分。

电压测量部分需要使用电压分压器来将待测电压转换为适合测量的范围,同时还需要精准的运算放大器来放大信号。

显示部分则需要使用数模转换器将模拟电压转换为数字信号,并通过数码管或LCD显示屏来显示测量结果。

在设计过程中,需要考虑电路的稳定性、精度和抗干扰能力。

通过合理选择元件参数和设计电路结构,可以有效提高电压表的测量精度和稳定性,同时减小干扰对测量结果的影响。

在multisim软件中还可以进行仿真分析,验证设计的电路是否符合预期要求。

通过仿真可以检测电路中的潜在问题,并及时进行调整和优化,以确保电路的正常工作和准确测量。

总的来说,利用multisim软件设计三位半数字直流电压表可以帮助我们更好地理解电路原理,提高电路设计的效率和准确性。

希望通过不断学习和实践,能够更深入地掌握电子技术,为实际工程应用提供更好的支持和服务。

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim多位半数字直流电压表是一种能够测量电路中直流电压的仪器。

它一般由数码显示部分和模拟-数字转换部分组成。

在Multisim中,我们可以通过建立电路模型来设计并模拟一个三位半数字直流电压表。

我们需要选择合适的元件来构建电路模型。

在三位半数字直流电压表中,最重要的元件是模数转换器(ADC)和显示部分。

在Multisim 中可以通过搜索栏找到这些元件并将它们添加到工作区。

在电路模型中,我们需要引入一个待测电路的输入信号,并连接到ADC的输入引脚上。

可以选择一种直流电源作为输入信号,并使用电阻来限制电流大小,以防止ADC被烧坏。

同时,需要为ADC提供一个参考电压,该电压与输入电压的量程相关。

ADC会将模拟信号转换为数字信号,并输出给显示部分。

在显示部分,我们可以选择七段数码管来显示数字。

在Multisim中,可以找到七段数码管的元件,并将其添加到工作区。

将ADC的输出和数码管的输入进行连接。

在Multisim中,可以使用导线工具将两者连接起来。

此外,为了显示多个数字,可以选择多个数码管,并通过逻辑电路将它们连接在一起。

在设计电路模型时,需要注意以下几点:1.选择合适的ADC和七段数码管。

ADC的位数决定了电压的精确度,而七段数码管的个数决定了显示的范围。

2.为ADC提供合适的参考电压。

参考电压的选取需要根据待测电路的电压范围来确定。

3.使用合适的电阻来限制输入电流,以保护ADC不受损坏。

4.在连接元件时,要确保正确地连接输入和输出引脚,以便电路正常工作。

完成电路模型的设计后,可以进行仿真。

在Multisim中,可以通过点击“仿真”按钮启动仿真过程。

仿真过程将模拟电路中的信号变化,并将结果显示在数码管上。

通过以上步骤,我们可以在Multisim中设计一个三位半数字直流电压表。

设计完成后,可以通过仿真来测试其在不同电压下的显示情况,以验证电路的正确性和稳定性。

总结起来,使用Multisim来设计一个三位半数字直流电压表需要选择合适的元件,构建电路模型,并进行仿真。

三位半数字电压表

三位半数字电压表

三位半数字电压表
三位半数字电压表是一种电子测量仪器,它能够以数字形式显示电压值。

这种电压表的特点是其显示部分由三位完整显示位和一位半显示位组成,其中最高位(千位)只能是0或1,因此称为半位。

这种设计允许电压表显示从0.0001 V到1999V的电压范围。

在电子和电气工程中,三位半数字电压表是一种常用的工具,用于测量直流电压和交流电压。

它们通常具有较高的精确度和稳定性,而且操作简单,读数方便。

这些电压表通常由模拟电路和数字电路两部分组成:模拟部分负责放大和滤波输入的电压信号,数字部分则负责将模拟信号转换为数字信号,并进行显示。

三位半数字电压表的设计和制造需要考虑到诸如精度、分辨率、响应时间、温度漂移等因素。

为了确保测量结果的准确性,这些电压表通常会采用高质量的电子元件,并且会通过严格的生产和测试流程。

在实际应用中,三位半数字电压表可以用于各种场合,包括实验室研究、工业生产、故障诊断以及教学演示等。

用户可以根据需要选择不同量程的电压表,以满足不同的测量需求。

随着技术的发展,四位半甚至更多位数的数字电压表已
经问世,它们能够提供更高的精度和更宽的测量范围,满足更专业的测量需求。

不过,三位半数字电压表由于其平衡的性能和合理的价格,依然在许多场合保持着其应用价值。

三位半的数字电压表的最大计数容量

三位半的数字电压表的最大计数容量

三位半的数字电压表是一种常见的电子测量仪器,用于测量电路中的电压值。

它的最大计数容量是指它能够显示的最大数字值,通常用数字位数来表示,比如"1999"表示最大计数容量为1999。

在实际测量中,我们经常会碰到一些问题和疑惑,比如它的最大计数容量对测量结果有什么影响?如何选择合适的最大计数容量?本文将围绕这些问题展开讨论。

一、最大计数容量的概念三位半的数字电压表是一种典型的"0.5+3位"的表,它的最大计数容量通常为1999。

这意味着它可以显示的最大数字为1999,即在直流电压测量范围内,最大可以显示的电压为1999V。

当测量值超出了最大计数容量时,电压表通常会显示"1"或"OL",表示超出了测量范围。

最大计数容量是数字电压表的重要参数之一,关系到它的测量范围和精度。

二、最大计数容量对测量结果的影响最大计数容量的大小直接影响到数字电压表的测量范围和分辨率。

通常情况下,最大计数容量越大,测量范围越广,但分辨率越低;最大计数容量越小,测量范围越窄,但分辨率越高。

在实际测量中,我们需要根据被测电压的范围和精度要求来选择合适的最大计数容量。

以测量直流电压为例,如果被测电压范围在0-10V之间,选择最大计数容量为1999的数字电压表就可以满足测量要求;如果被测电压范围在0-100V之间,就需要选择最大计数容量更大的数字电压表,比如6000或xxx。

这是因为如果选择了最大计数容量过小的电压表,就无法正常测量超出范围的电压值,影响测量的准确性和可靠性。

三、如何选择合适的最大计数容量在选择数字电压表时,要根据具体的测量需求和预算来合理选择最大计数容量。

一般来说,选择最大计数容量时需要考虑以下几个因素:1. 测量范围:根据被测电压的范围来选择合适的最大计数容量。

若测量范围超出了最大计数容量,则会导致溢出,无法正常测量。

2. 分辨率:最大计数容量越大,分辨率越低,反之亦然。

3位半数字电压表

3位半数字电压表

目录第一章三位半数字电压表的设计方案题目及设计目的 (2)设计要求 (2)方案设计 (2)三位半数字电压表的设计思想 (4)第二章三位半数字电压表设计过程三位半数字电压表特点 (4)TC7107的介绍 (5)TC7107的性能特点 (6)TC7017的功能 (6)第三章电路仿真电路仿真 (7)第四章实验总结实验总结 (8)一:三位半数字电压表的设计案题目及设计目的1、题目:三位半位数字电压表2、设计目的:通过电子技术的综合设计,熟悉一般电子电路综合设计过程、设计要求、应完成的工作内容和具体的设计方法,同时复习、巩固以往的模电、数电内容。

设计要求采用课程或实验内容中所使用的元器件,设计一个三位半数字电压表,三位半是指个位、十位、百位的范围为0-9,而千位只有0和1两个状态,称为半位。

所以数字电压表测量范围为0001-1999。

数字电压表主要部分是A/D转换器,显示方法通常采用动态扫描(工作时四个数码管轮流点亮,利用人眼的视觉残留特性能够得到整体效果,当扫描频率过低时显示的数码会有闪烁感)方式,但需要字形译码驱动电路和字位驱动电路。

1.任务要求:2.基本要求:3.直流电压测量范围(0~200V)测量误差小于1%4.附加5.交流电压测量范围(0~200V)测量误差小于1%6.自动量程转换7.通过查阅资料,实现设计要求,写出实现原理,画出原理框图,描述其功能,并给出数字电压表电路原理图。

方案设计利用成熟芯片Tc7107实现电压的测量,用四位数码管显示出最后的转换电压结果。

优点:可直接驱动LED数码管,内部设有参考电压、独立模拟开关、逻辑控制、显示驱动、自动调零功能等。

数字电压表原理框图如下:三位半数字电压表的设计思想数字电压表的位数是指完整显示位,即能够显示0-9十个数字的位。

所谓三位半数字电压表,即只有3位完整显示位,而其最高位只能显示0或1,故称为半位。

数字电压表一般由模拟电路与数字电路两大部分组成,模拟部分包括输入放大器、A/D转换器和基准电压源;数字部分包括计数器、译码器、逻辑控制器、振荡器和显示器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钦州学院数字电子技术课程设计报告三位半数字直流电压表的设计院系物理学院专业过程控制自动化学生班级2010级1班姓名xxxx学号xxxx指导教师单位xxxxx指导教师xxxx指导教师职称xxxx2013年7月三位半数字直流电压表过程控制自动化专业2010级xxx指导教师xxx摘要:根据设计的指标和要求,结合平时所学的理论知识,设计出一个功能较齐全的数字直流电压表。

关键词:电压表、电路、设计、A/D转换器目录前言 (1)1设计技术指标与要求 (1)1.1 设计技术指标 (1)1.2 设计要求 (1)2 方案的设计及元器件清单 (1)3 电路的工作原理 (2)4 各部分的功能 (3)4.1 三位半位双积分 A / D 转换器CC14433 的性能特点 (3)4.2 基准电源(CC1403) (3)4.3 译码器(MC4511) (4)4.4 显示电路模块 (5)4.5 驱动器 (5)4.6 显示器 (5)5 系统电路总图及原理 (5)5.1 电路组成 (5)5.2 电路的工作原理及过程 (6)5.2.1 三位半A/D转换器MC14433 (7)5.2.2 七段锁存-译码-驱动器CD4511 (8)5.2.3 高精度低漂移能隙基准电源MC1403 (9)6 电路连接测试 (9)7 经验体会 (10)参考文献 (10)前言数字电压表(Digital Voltmeter),简称DVM,是采用数字化测量技术,把连续的模拟信号转换成不连续、离散的数字形式并加以显示的仪表。

数字电压表的类型很多,其输入电路、设计电路和显示电路基本相似,只是电压—数字转换方法不同。

因此,我们此次设计电压表就是为了了解电压表的原理,从而学会制作电压表。

而且通过电压表的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法。

1 设计技术指标与要求1.1 设计技术指标1. 量程:一档:+1.999V~0~-1.999V 二档: +19.99V~0~-19.99V2. 用七段LED数码管显示读数,做到显示稳定、不跳变;3. 保持/测量开关:能保持某一时刻的读数;4. 指示值与标准电压表示值误差最低位在5之。

1.2 设计要求1. 画出电路原理图(或仿真电路图);2. 元器件及参数选择;3. 编写设计报告写出设计的全过程,附上有关资料和图纸,有心得体会。

2 方案设计及元器件清单选用A/D转换芯片MC14433、CC4511、MC1413、MC1403实现电压的测量,用四位数码管显示出最后的转换电压结果。

缺点是工作速度低,优点是精度较高,工作性能比较稳定,抗干扰能力比较强。

具体的元器件清单如表1所示。

表一元器件清单3电路的工作原理1.直流数字电压表的核心器件是一个间接型A / D 转换器 它首先将输入的模拟电压信号变换成易于准确测量的时间量 然后在这个时间宽度里用计数器计时 计数结果就是正比于输入模拟电压信号的数字量,并进行实时数字显示。

该系统可采用MC14433——3位半A/D 转换器、MC1413 七路达林顿驱动器阵列、CC4511BCD 到七段锁存-译码-驱动器、能隙基准电源 MCl403 和共阴极 LED 发光数码管组成。

2.本系统是 3位半数字电压表,3位半是指十进制数 0000~1999。

所谓 3 位是指个位、十位、百位,其数字围均为 0~9,而所谓半位是指千位数,它不能从 0 变化到 9,而只能由 0 变到 l ,即二值状态,所以称为半位。

数字电压表原理框图如图1所示。

图1 数字电压表原理框图4 各部分的功能4.1 三位半位双积分A / D 转换器CC14433 的性能特点CC14433 是CMOS 双积分式三位半A / D 转换器,它是将构成数字和模拟电路的约7700 多个MOS 晶体管集成在一个硅芯片上,芯片有24 只引脚 采用双列直插式,其引脚排列与功能如图2 所示。

图2 CC14433引脚排列引脚功能说明:VAG (1 脚):被测电压VX 和基准电压VR 的参考地VR (2 脚):外接基准电压(2V 或200mV )输入端VX (3 脚):被测电压输入端R1(4 脚)R1/C1(5 脚)、C1(6 脚):外接积分阻容元件端C1=0.1μF(聚酯薄膜电容器),R1=470KΩ(2V 量程);R1=27KΩ(200mV 量程)。

C01(7 脚)C02(8 脚):外接失调补偿电容端 典型值0.1μF。

DU(9 脚):实时显示控制输入端。

若与EOC(14 脚)端连接 则每次A / D转换均显示。

CP1(10 脚)CPo(11 脚):时钟振荡外接电阻端 典型值为470KΩ。

VEE (12 脚):电路的电源最负端 接 5V。

VSS (13 脚):除CP 外所有输入端的低电平基准(通常与1 脚连接)。

EOC(14 脚):转换周期结束标记输出端 每一次A / D 转换周期结束(EOC输出一个正脉冲)宽度为时钟周期的二分之一。

OR(15 脚):过量程标志输出端 。

DS4到DS1 (16到19 脚):多路选通脉冲输入端,DS1 对应于千位,DS2 对应于百位,DS3 对应于十位,DS4 对应于个位。

Q0到Q3 (20到23 脚):BCD 码数据输出端,DS2、DS3、DS4 选通脉冲期间 输出三位完整的十进制数,在DS1 选通脉冲期间 输出千位0 或1 及过量程、欠量程和被测电压极性标志信号。

VDD,整个电路的正电源端。

4.2 基准电源(CC1403)提供精密电压,供A/D 转换器作参考电压,如图3所示。

图3 基准电源CC14034.3 译码器(MC4511)将二—十进制(BCD)码转换成七段信号,如图4所示。

图4 译码器(MC4511)4.4 显示电路模块这个模块由LG5641AH构成,将译码器输出的七段信号进行数字显示,读出A/D 转换结果。

如图5所示。

图5 显示电路模块4.5 驱动器(MC1413)驱动显示器的a,b,c,d,e,f,g 七个发光段,驱动发光数码管(LED)进行显示。

4.6 显示器将译码器输出的七段信号进行数字显示,读出A/D转换结果。

5系统电路总图和原理5.1 电路组成将设计的各个单元电路进行级联,得到数字电子钟系统电路原理图如图6所示。

图6 三位半直流数字电压表接线图5.2 电路的工作原理及过程三位半数字电压表通过位选信号DS1~DS4进行动态扫描显示,由于MC14433电路的A/D转换结果是采用BCD码多路调制方法输出,只要配上一块译码器,就可以将转换结果以数字方式实现四位数字的LED发光数码管动态扫描显示。

DS1~DS4输出多路调制选通脉冲信号。

DS选通脉冲为高电平时表示对应的数位被选通,此时该位数据在Q0~Q3端输出。

每个DS选通脉冲高电平宽度为18个时钟脉冲周期,两个相邻选通脉冲之间间隔2个时钟脉冲周期。

DS和EOC的时序关系是在EOC 脉冲结束后,紧接着是DS1输出正脉冲。

以下依次为DS2,DS3和DS4。

其中DS1对应最高位(MSD),DS4则对应最低位(LSD)。

在对应DS2,DS3和DS4选通期间,Q0~Q3输出BCD全位数据,即以8421码方式输出对应的数字0~9.在DS1选通期间,Q0~Q3输出千位的半位数0或l及过量程、欠量程和极性标志信号。

在位选信号DS1选通期间Q0~Q3的输出容如下:Q3表示千位数,Q3=0代表千位数的数宇显示为1,Q3=1代表千位数的数字显示为0。

Q2表示被测电压的极性,Q2的电平为1,表示极性为正,即UX>0;Q2的电平为0,表示极性为负,即UX<0。

显示数的负号(负电压)由MC1413中的一只晶体管控制,符号位的“-”阴极与千位数阴极接在一起,当输入信号UX为负电压时,Q2端输出置0,Q2 负号控制位使得驱动器不工作,通过限流电阻RM 使显示器的“-”(即g 段)点亮;当输入信号UX 为正电压时,Q2端输出置1,负号控制位使达林顿驱动器导通,电阻RM 接地,使“-”旁路而熄灭。

小数点显示是由正电源通过限流电阻RDP 供电燃亮小数点。

若量程不同则选通对应的小数点。

过量程是当输入电压UX 超过量程围时,输出过量程标志信号OR ----。

当Q3=0,Q0=1时,表示Ux 处于过量程状态;当Q3=1,Q0=1时,表示Ux 处于欠量程状态。

当OR ---- = 0 时,|UX|>1999,则溢出。

|UX|>UR 则OR ---- 输出低电平。

当OR ---- = 1时,表示|UX|<UR 。

平时OR 输出为高电平,表示被测量在量程。

MC14433的OR ----端与MC4511的消隐端BI ____ 直接相连,当UX 超出量程围时,OR ____输出低电平,即OR --- = 0 →BI ---- = 0 ,MC4511译码器输出全0,使发光数码管显示数字熄灭,而负号和小数点依然发亮。

5.2.1 三位半A /D 转换器MC14433在数字仪表中,MC14433电路是一个低功耗三位半双积分式A/D 转换器。

和其它典型的双积分A/D 转换器类似,MC14433A/D 转换器由积分器、比较器、计数器和控制电路组成。

如果必要设计应用者可参考相关参考书。

使用MC14433时只要外接两个电阻(分别是片RC 振荡器外接电阻和积分电阻RI)和两个电容(分别是积分电容CI 和自动调零补偿电容C0)就能执行三位半的A/D 转换。

MC14433部模拟电路实现了如下功能:(1)提高A/D 转换器的输入阻抗,使输入阻抗可达l00MΩ以上;(2)和外接的RI 、CI 构成一个积分放大器,完成V/T 转换即电压—时间的转换;(3)构造了电压比较器,完成“0”电平检出,将输入电压与零电压进行比较,根据两者的差值决定极性输出是“1”还是“0”。

比较器的输出用作部数字控制电路的一个判别信号;(4)与外接电容器C0构成自动调零电路。

除“模拟电路”以外,MC14433 部含有四位十进制计数器,对反积分时间进行3位半BCD 码计数(0~1999),并锁存于三位半十进制代码数据寄存器,在控制逻辑和实时取数信号(DU)作用下,实现A/D 转换结果的锁定和存储。

借助于多路选择开关,从高位到低位逐位输出BCD码Q0~Q3,并输出相应位的多路选通脉冲标志信号DS1~DS4实现三位半数码的扫描方式(多路调制方式)输出。

MC14433部的控制逻辑是A/D 转换的指挥中心,它统一控制各部分电路的工作。

根据比较器的输出极性接通电子模拟开关,完成A/D转换各个阶段的开关转换,产生定时转换信号以及过量程等功能标志信号。

在对基准电压VREF 进行积分时,控制逻辑令4位计数器开始计数,完成A/D 转换。

MC14433部具有时钟发生器,它通过外接电阻构成的反馈,井利用部电容形成振荡,产生节拍时钟脉冲,使电路统一动作,这是一种施密特触发式正反馈RC 多谐振荡器,一般外接电阻为360kΩ时,振荡频率为100kHz;当外接电阻为470kΩ时,振荡频率则为66kHz,当外接电阻为750kΩ时,振荡频率为50kHz。

相关文档
最新文档