有机化合物光谱及波谱分析
第一章_有机化合物的波谱综合解析-3
红外光谱(i nfra r ed spectroscopy 缩写为IR )由于分子吸收了红外线的能量并导致分子内振动能级的跃迁而产生的记录信号。
IR 谱主要提供分子中官能团的结构信息。
横坐标:波数(σ)400~4000cm -1;表示吸收峰的位臵。
纵坐标:透过率(T %),表示吸收强度。
T ↓,表明吸收的越好,故曲线低谷表示是一个好的吸收带。
%100%0⨯=I IT I :表示透过光的强度;I 0:表示入射光的强度。
红外光谱官能团区(4000-1500 cm -1)由分子的伸缩振动导致,用于鉴定各种不同官能团产生红外光谱的必要条件:1.红外辐射光的频率与分子振动的频率相当,才能满足分子振动能级跃迁所需的能量,而产生吸收光谱。
2.只有能引起分子偶极矩的变化的振动才能产生IR 光谱。
完全对称的分子H 2、O 2、N 2不会产生红外吸收光谱。
H―C≡C―H 、R―C ≡C―R ,其C≡C (三键)振动也不能引起红外吸收。
指纹区(1500-650 cm-1)分子弯曲及伸缩振动吸收峰,多用于鉴定基团的结合方式官能团区(高频区)1500-4000 cm-1Y -H 伸缩振动区2500~3700 cm-1,Y= O、N、C。
Y≡Z 三键和累积双键伸缩振动区2100~2400 cm-1,主要是:C≡C、C≡N 三键和C=C=C、C=N=O 等累积双键的伸缩振动吸收峰。
Y=Z双键伸缩振动区1600~1800 cm-1,主要是:C=O、C=N、C=C等双键。
指纹区(低频区)650-1500 cm-1主要是:C-C、C-N、C-O等单键和各种弯曲振动的吸收峰,其特点是谱带密集、难以辨认。
红外谱图各主要官能团红外光谱的特征吸收峰频率3600-3200NH, OH d, br, s3300C CHstrong3100-3010 =C-H middle2960-2850 -C-H strong2260-21002700-CHO doubleC Cvariable1850-1690 C=OAcids, esters Ketones Aldehydes very strong1680-1620 or 1600-1500 C=C variable 1470-1350 bend C-H1000-700 bend alkenes benzene substituted type4000cm-1650cm-11300-1030 bend C-O C-N几个明显的红外特征峰-OH(醇和酚):-OH吸收处于3200~3650cm-1,由于-OH可形成分子间或分子内氢键,而氢键所引起的缔合对红外吸收峰的位臵、形状和强度都有重要影响。
有机化合物的波谱分析
第七章有机化合物的波谱分析(一)概述研究或鉴圧一个有机化合物的结构,需对该化合物进行结构表征。
其基本程序如下: 分离提纯一物理常数测左一元素分析一确立分子式一确泄其可能的构适式(结构表 征(参见 P11-12)(1)结构表征的方法传统方法:(化学法)① 元素左性.泄量分析及相对分子质量测泄 —— 分子式:② 官能团试验及衍生物制备——分子中所含官能团及部分结构片断: ③ 将部分结构片断拼凑 —— 完整结构; ④ 查阅文献,对照标准样,验证分析结果。
特点:需要较多试样(半微量分析,用样虽为10-100mg ),大虽:的时间(吗啡碱,1805- 1952年).熟练的实验技巧,高超的智慧和坚韧不拔的精神。
缺点:①分子有时重排,导致错误结论;② P 及一C=C 一的构型确定困难。
波谱法:① 质谱(最好用元素分析仪验证)——分子式:② 各种谱图(UV 、IR 、NMR. MS ) —— 官能团及部分结构片断; ③ 拼凑——完整结构; ④ 标准谱图——确认。
特点:样品用量少(v30mg ),不损坏样品(质谱除外),分析速度快,对'C 及一C=C 一的 构型确左比较方便。
光谱法已成为有机结构分析的常规方法。
但是化学方法仍不可少,它与光谱法相辅相成, 相互补充,互为佐证。
(2)波谱过程分子运动:平动、振动、转动、核外电子运动等9量子化的(能量变化秘续)A 每个分子中只能存在一定数量的转? 动.振动、电子跃迁能级波谱过程可表示为:有机分子+电磁波选择性吸收 仪器记录用电磁波照射有机分子时, 分子便会吸收那些与分子内 的能级差相当的电磁波,引 起分子振动、转动或电子运 动能级跃迁,即分子可选择 性地吸收电磁波使分子内能 提高用仪器记录分子对不 同波长的电磁波的吸收情 况,就可得到光谱。
不饱和度亦称为分子中的环加双键数、缺氢指数、双键等价值等。
其定义为: 当一个化合物衍变为相应的绘后,与其同碳的饱和开链桂比较,每缺少2个氢为 1个不饱和度。
有机化合物波谱分析
有机化合物波谱分析有机化合物波谱分析是一种重要的手段,可用于确定有机物的分子结构和功能基团。
其中,核磁共振波谱(NMR)和红外光谱(IR)是两种常用的波谱技术。
本文将重点介绍这两种波谱分析技术的基本原理、应用和解读方法。
核磁共振波谱(NMR)是一种基于核自旋的波谱分析方法。
它通过测量核自旋与外加磁场相互作用导致的能量变化来获得信息。
核磁共振波谱图通常由若干个特征峰组成,每个峰对应于一种不同类型的核。
峰的位置称为化学位移,可以通过参考物质(如四氯化硅)来标定。
峰的形状和强度可以提供有关分子结构和相互作用的信息。
核磁共振波谱提供了关于有机分子的碳氢骨架以及官能团、取代基等信息,因此在有机化学和药物化学领域有广泛应用。
红外光谱(IR)是一种基于分子振动的波谱分析方法。
它通过测量物质吸收红外辐射的能量来获得信息。
由于不同分子具有不同的振动模式和结构,它们吸收红外辐射的方式也不同。
红外光谱图通常由一系列特征峰组成,峰的位置称为波数,可以用来标识不同的官能团和化学键。
峰的强度和形状可以提供关于分子的结构和取向的信息。
红外光谱在有机化学、聚合物化学和无机化学等领域都有广泛的应用。
在进行有机化合物波谱分析时,需要先对样品进行样品制备。
核磁共振波谱通常需要溶解样品,然后将溶液转移到核磁共振管中进行测量。
红外光谱则可以对固体、液体和气体样品进行测量,通常需要将样品制备成固体片或涂在透明载体上。
波谱仪器通常会提供相应的样品制备方法和参数设置。
在分析核磁共振波谱和红外光谱时,需要注意以下几个方面。
首先,对于核磁共振波谱,要正确解读峰的化学位移。
化学位移受到许多因素的影响,如官能团、电子效应、取代基等。
因此,需要结合文献和经验来确定不同类型核的化学位移范围。
其次,对于红外光谱,要正确解读峰的波数。
不同的官能团和化学键都有特定的波数范围,可以用来确定它们的存在。
最后,对于波谱图的解读,需要综合考虑各种信息,如位置、形状、强度和相对强度等。
(波普解析)有机化合物波谱解析
30
第二节 紫外光谱的基本知识 一、 分子轨道
分子轨道是由组成分子的原子轨道相互作用形成的。 分子成键轨道; 分子反键轨道
33
34
分子轨道的种类
(1) 原子A和B的s轨道相互作用,形成的分子轨道
(2)原子A和B的p轨道相互作用形成的分子轨道
35
(3)原子A的s轨道和原子B的p轨道相互作用形成的分子轨道
• 吸收光谱特征: 吸收峰→λmax 吸收谷→λmin 肩峰→λsh 末端吸收
43
(2)数据表示法
例如λ 溶m剂a2x 37nm(ε104) 或λ 2溶m3剂a7xnm(lgε4.0)
常用术语
生色团(发色团):分子结构中含有π电子的基团 产生π→ π* 跃迁和(或)n→ π*跃迁 跃迁,E较低
例: C=C;C=O;C=N;—N=N— ; —NO2
物质对电磁辐射的吸收性质常用吸收曲线来描述,即考察 物质对不同波长的单色光吸收的情况。
溶液对单色光的吸收程度遵守Lambert-Beer 定律。
A = acl
A 为吸光度(光密度), a为吸光系数, l 为吸收池厚度, c 为溶液的浓度。
29
•若溶液的浓度以mol L-1为单位时, Lambert-Beer 定律的吸 收系数(a) 表示,单位为L mol-1 cm-1,即摩尔吸光系数。 •对于相对分子质量未知的物质,常采用质量百分比浓度 (g/100ml),相应的系数称为百分吸收系数,以E1%1cm表示。 •以摩尔吸收系数 用得最普遍。
三甲基胺n →σ*跃迁的λ分别为173nm、183nm和227nm。
39
第二节 紫外光谱的基本知识
二、 电子跃迁类型
第八章有机化合物的波谱分析
1H核的I=1/2,当它围绕自旋轴转动时就产生了磁场,
因质子带正电荷,根据右手定则可确定磁场方向。
氢核在外磁场中的两种取向示意图 ΔE与外磁场感应强度(B0)成正比,如下图及关系式 所示:
图 8-6 质子在外加磁场中两个能级与外磁场的关系
h E B 0 h 2
B 0 (8-4) 2
式中:γ称为磁旋比,是核的特征常数,对1H而言, 其值为2.675×108A·m2·J-1·s-1;h为Plank常量;ν无线电 波的频率。
因为只有吸收频率为ν的电磁波才能产生核磁共振, 故式(8-4)为产生核磁共振的条件。 ⑵核磁共振仪和核磁共振谱
被测样品溶解在CCl4、CDCl3、D2O等不含质子的溶 剂中,样品管在气流的吹拂下悬浮在磁铁之间并不停的旋 转,使样品均匀受到磁场作用。
化学键类型
伸 缩 振 动
-N-H sp C-H sp2 C-H sp3 C-H sp2 C-O sp3 C-O
化学键类型
特征频率/cm-1(化合物类型) 1680~1620(烯烃) 1750~1710(醛、酮) 1725~1700(羧酸) 1850~1800,1790~1740(酸酐) 1815~1770(酰卤) 1750~1730(酯) 1700~1680(酰胺) 1690~1640(亚胺、肟) 1550~1535,1370~1345(硝基化合物) 2200~2100(不对称炔烃) 2280~2240(腈)
低场
高场
外加磁场 B0
因而,质子核磁共振的条件应为:
B实 B 0(1 ) 2 2
(8-6)
对质子化学位移产生主要影响的屏蔽效应有两种: ①核外成键电子的电子云密度对所研究的质子产生的 屏蔽作用,即局部屏蔽效应。 ②分子中其它质子或基团的核外电子对所研究的质子 产生的屏蔽作用,即远程屏蔽效应(磁各向异性效应)。 综上所述,不同化学环境的质子,受到不同程度的屏 蔽效应,因而在核磁共振谱的不同位置出现吸收峰,这种 峰位置上的差异称为化学位移。
有机化学波谱分析
质谱的解析方法
谱图解析
01
根据质谱峰的位置和强度,确定有机分子的分子量和结构信息。
同位素峰分析
02
利用同位素峰的强度比推断有机分子的元素组成。
裂解模式分析
03
研究有机分子在质谱仪中的裂解行为,推断有机分子的结构特
征。
质谱在有机化学中的应用
有机分子鉴定
通过比较标准谱图和实验谱图,确定有机分子的 化学结构。
通过自动化和智能化的技术手段,实 现波谱分析与其他分析方法的快速、 高效联用,提高分析效率,减少人为 误差。
波谱分析在有机化学中的新应用
新材料表征
随着新材料研究的不断深入,波谱分析在新型有机材料如高 分子聚合物、纳米材料等的表征中发挥越来越重要的作用。
生物大分子研究
利用波谱分析技术,研究生物大分子如蛋白质、核酸等的结 构和功能,有助于深入了解生物体系的复杂性和相互作用的 机制。
通过有机化学波谱分析,可以确定有机化合物的分子量、官能团、化学键等结构信息,有助于深入了解 有机化合物的性质和反应机理。
有机化学波谱分析还可以用于有机化合物的定性和定量分析,为有机化合物的合成、分离、纯化等提供 有力支持。
有机化学波谱分析的发展趋势
随着科技的不断进步,有机化学波谱分析技术也在不 断发展,新的技术和方法不断涌现。
THANKS
感谢观看
高灵敏度检测
利用新型的信号处理技术和高精度的 检测设备,提高波谱分析的灵敏度和 分辨率,有助于更准确地鉴定有机化 合物的结构和性质。
波谱分析与其他分析方法的联用
联用技术
将波谱分析与其他分析方法如色谱、 质谱、核磁共振等联用,可以实现更 全面、准确的分析,提高复杂有机混 合物的分离和鉴定能力。
有机波谱分析总结
有机波谱分析总结有机波谱分析是有机化学中一项重要的分析技术,通过对有机化合物的波谱进行分析,可以确定其结构和功能基团,对于有机合成、药物研发等领域有着广泛的应用。
本文将对有机波谱分析的原理、常见波谱技术和分析方法以及应用进行总结。
一、有机波谱分析原理有机波谱分析主要基于分子中所包含的原子核和电子的转动、振动和电子能级跃迁引起的辐射吸收或发射现象。
通过测量分子在不同频率范围内所吸收或发射的辐射能量,可以得到不同类型的波谱。
有机波谱分析常用的波谱包括红外光谱、质谱、核磁共振谱和紫外可见光谱。
二、常见的有机波谱技术1.红外光谱(IR):红外光谱是根据有机化合物中的官能团和化学键所具有的振动频率的不同来进行分析的。
通过红外光谱可以确定有机化合物中的官能团,如羧酸、醇、醛等。
红外光谱具有非破坏性、操作简便的特点,广泛应用于有机合成、药物研发等领域。
2.质谱(MS):质谱是通过对有机化合物中分子离子和碎片离子质量进行测量来分析有机化合物的分子结构。
质谱具有高灵敏度、高分辨率的特点,可以确定分子的组成和相对分子质量,对于有机化合物的鉴定具有重要意义。
3.核磁共振谱(NMR):核磁共振谱是根据核磁共振现象进行分析的。
通过测量有机化合物中原子核受到外加磁场影响的吸收或发射的辐射能量,可以得到有机化合物中原子核的位置、种类和环境。
核磁共振谱具有高分辨率、非破坏性和无辐射的特点,广泛应用于有机合成、物质鉴定和生物医学研究等领域。
4.紫外可见光谱(UV-Vis):紫外可见光谱是通过测量有机化合物在紫外可见光区域吸收或发射的辐射能量,以确定有机化合物的电子能级和共轭体系的存在与否。
紫外可见光谱具有高灵敏度和快速测量的特点,常用于有机合成、化学动力学和药物研发等领域。
三、有机波谱分析方法1.结构鉴定法:通过与已知化合物的波谱进行对比,确定未知化合物的结构。
结构鉴定法常用于核磁共振谱和质谱。
2.定量分析法:通过测定化合物在特定波长或波数处的吸光度或吸收峰面积,来确定有机化合物的含量。
四大名谱(光谱、质谱、色谱、波谱)
I大名谱(光谱、质谱、色谱、波谱)在检测领域,有四大名谱,分别为色谱、光谱、质谱、波谱,四大名谱都有各自的优缺点,为了能够最大限度的发挥每种分析仪器的最大优势,可将两种或三种仪器进行联用来分析样品,联用技术能够克服仪器单独使用时的缺陷。
是未来分析仪器发展的趋势所在。
四大名谱简介:质谱:分析分子或原子的质量,可以推测物质的组成,一般用于定性分析较多,也可定量。
色谱:是一种分离、定性分析与定量分析的手段,可分辨样品中的不同物质。
光谱:定性分析,确定样品中主要基团,确定物质类别。
从红外到X射线,都是光谱,其应用范围差别很大,是对分子或原子的光谱性质进行分析解析的。
波谱:通常指四大波谱,核磁共振(NMR),物质粒子的质量谱-质谱(MS),振动光谱-红外/拉曼(IR/Raman),电子跃迁-紫外⑴丫)。
1、质谱分析法> 质谱分析法是将不同质量的离子按质荷比(m/z)的大小顺序收集和记录下来,得到质谱图,用质谱图进行定性、定量分析及结构分析的方法。
> 质谱分析法是物理分析法,早期主要用于相对原子质量的测定和某些复杂化合物的鉴定和结构分析。
> 随着GC和HPLC等仪器和质谱仪联机成功以及计算机的飞速发展,使得质谱法成为分析、鉴定复杂混合物的最有效工具。
recorderJ质谱仪种类非常多,工作原理和应用范围也有很大的不同。
从应用角度,质谱仪可以分为下面几类:有机质谱仪:由于应用特点不同又分为:①气象色谱-质谱联用仪(GC-MS)在这类仪器中,由于质谱仪工作原理不同,又有气相色谱-四极质谱仪,气相色谱-飞行时间质谱仪,气相色谱-离子阱质谱仪等。
②液相色谱-质谱联用仪(LC-MS)同样,有液相色谱-四极质谱仪,液相色谱-离子阱质谱仪,液相色谱-飞行时间质谱仪,以及各种各样的液相色谱-质谱-质谱联用仪。
③其它有机质谱仪,主要有:基质辅助激光解吸飞行时间质谱仪(MALDI-TOFMS),傅里叶变换质谱仪(FT-MS)。
波谱分析第二章有机化合物紫外光谱解析
羰基吸收峰受取代基影响显著位移
醛酮均在270 —300nm有R吸收带,但略有差别。 酮: 270 —280nm, 醛: 280—300nm附近 酮比醛多一个烃基,由于超共轭效应π轨道能级降低, π*轨道能级升高, n→π* 跃迁需要较高的能量。
n→ * /nm n→π* /nm
到π*轨道,完成 n→π*跃迁。
→* 跃迁在120—130nm之间产生吸收 π→π* 跃迁在 —160 nm左右产生吸收
n→* 跃迁在 —180 nm左右产生吸收
孤立羰基化合物研究最多的是 n→π* 跃迁,谱带吸收在 270—300nm附近。低强度的宽谱带。 (=10~20)
R带位置的变化对溶剂很敏感
CH3Cl CH3OH CH3NH2
σ→σ* 164-154
150 173
n →σ* 174 183 213
σ*
E
n σ
波谱分析第二章有机化合物紫外光 谱解析
2.烯类化合物
单烯烃: σ→σ* 和π→π* 两种跃迁。
ΔΕπ→π*<ΔΕσ→σ* , 吸收带在200nm左右。
λmax/nm εmax CH2=CH2 π→π* 162 ~104 CH3CH=CHCH3 π→π* 178 ~104 环己烯 π→π* 176 ~104
λmax =114+5×10+11×(48.0-1.7×11)-16.5×2=453.3nm εmax =1.74 × 104× 11=19.1× 104
波谱分析第二章有机化合物紫外光 谱解析
3.羰基化合物
(1)饱和羰基化合物: →* 、 π→π* 、 n→* 、 n→π*四种跃迁; 常常在发生π→π* 跃迁的同时,n 电子亦被激发而跃迁
有机化合物波谱分析
化学键伸缩振动频率只与化学键有关,是化学键的一个特征常数;
化学键的伸缩振动是在不停进行的,有三个显著特点:
伸缩振动能是量子化的,不连续的,因此就形成了 不同的能级。
单击此处添加大标题内容
伸缩振动的能级差 ,相当于红外光的能量 因此,用红外光照射有机样品时,化学键就会吸收一份能 量,实现振动能级的要跃迁。即: ν=ν。 即意味着:化学键以多大的频率振动就吸收多大频率的光, 在此频率处就形成一个吸收峰(表现为吸收带)。
4000-1400cm-1区域又叫官能团区. 该区域出现的吸 收峰,较为稀疏,容易辨认. 1400-400cm-1区域又叫指纹区. 这一区域主要是: C-C、C-N、C-O 等单键和各种弯曲振动的 吸收峰,其特点是谱带密集、难以辨认。(p299页表8-2)
1000 700 500 Y Y O单键 H面内弯曲振动 H弯曲振动
8.1 分子吸收光谱和分子结构
微粒性:可用光量子的能量来描述:
按量子力学,其关系为:
1
与E,v 成反比,即 ↓,v↑(每秒的振动次数↑),E↑。
3
2
在分子光谱中,根据电磁波的波长 ()划分为几个不同的区域,如下图所示:
上式表明:分子吸收电磁波,从低能级跃迁到高能级,其吸收光的频率与吸收能量的关系。
注意:
只有偶极矩(μ)发生变化的,才能有红外吸收。 如:H2、O2、N2 电荷分布均匀,振动不能引起红外吸收。 H―C≡C―H、R―C≡C―R,其C≡C(三键)振动 也不能引起红外吸收。 化学键极性越强,振动时偶极矩变化越大,吸收峰越强.
分子的振动方式
1
伸缩振动:
2
伸缩振动的特征及规律
吸收峰
有机波谱分析要点例题和知识点总结
有机波谱分析要点例题和知识点总结一、有机波谱分析简介有机波谱分析是有机化学中非常重要的分析手段,它能够帮助我们确定有机化合物的结构。
常见的有机波谱分析方法包括红外光谱(IR)、紫外可见光谱(UVVis)、核磁共振谱(NMR,包括氢谱 1H NMR 和碳谱 13C NMR)以及质谱(MS)。
二、红外光谱(IR)(一)原理分子中的化学键在不同频率的红外光照射下会发生振动和转动,从而产生吸收峰。
不同的官能团具有特定的吸收频率范围。
(二)要点1、官能团的特征吸收峰例如,羰基(C=O)在 1700 1750 cm⁻¹有强吸收峰;羟基(OH)在 3200 3600 cm⁻¹有宽而强的吸收峰。
2、影响吸收峰位置的因素包括诱导效应、共轭效应、氢键等。
(三)例题例 1:某化合物的红外光谱在 1720 cm⁻¹处有强吸收峰,可能含有什么官能团?答:可能含有羰基(C=O)。
三、紫外可见光谱(UVVis)(一)原理基于分子中的电子在不同能级之间跃迁产生吸收。
(二)要点1、生色团和助色团生色团如羰基、双键等能产生紫外吸收;助色团如羟基、氨基等能增强生色团的吸收。
2、影响吸收波长的因素包括共轭体系的大小、取代基的种类等。
(三)例题例 2:某化合物在 250 nm 处有强吸收,可能的结构是什么?答:可能具有共轭双键结构。
四、核磁共振谱(NMR)(一)氢谱(1H NMR)1、原理氢原子核在磁场中的自旋能级跃迁产生信号。
2、化学位移不同环境的氢原子具有不同的化学位移值。
例如,甲基上的氢通常在 08 12 ppm 处出峰。
3、峰的裂分相邻氢原子的个数会导致峰的裂分,遵循 n + 1 规律。
例题 3:一个化合物的氢谱在 12 ppm 处有一个三重峰,在 36 ppm 处有一个单峰,可能的结构是什么?答:可能是 CH₃CH₂OH。
(二)碳谱(13C NMR)1、化学位移不同类型的碳原子具有不同的化学位移范围。
有机化学--第七章 有机化合物的波谱分析
子垂直于化学键的振动,键角发生变化,键长不变。以亚甲基为例,
几种振动方式如图7–1所示。
图中“+”和“-” 号表示与纸面垂直 但方向相反的运动。
*分子的振动方式很多,但不是所有的振动都引起红外吸收, 只有偶极矩发生变化的振动,才能在红外光谱中出现相应的吸收峰。 无偶极矩变化的振动,为红外非活性振动,在红外光谱中不出现吸 收峰。如对称炔烃(RC≡CR)的C≡C伸缩振动无偶极矩变化,不引 起红外吸收。偶极矩变化大的振动,吸收峰强,如C=O伸缩振动。 综上所述,产生红外光谱的两个必要条件是: ν红外= ν振动;振动 过程中有偶极矩变化。
例2 化合物的分子式为C6H10,红外光谱如图7–3所示,
试推测该化合物的可能结构。
解: 由分子式计算不饱和度Ω=2,可能存在C=C、环或C≡C。观
察4000~1300cm-1区域光谱:3030cm-1处有强不饱和C—H伸缩振动 吸收,与1658cm-1 处的弱C=C伸缩振动吸收对应,表明有烯键存 在,且对称性强;~1380cm-1 处无吸收,表明不存在甲基。1300 cm-1以下区域的光谱:715 cm-1处的面外弯曲振动吸收,表明烯烃 为顺式构型。
m=I, I-1, …, -I
1 H的自旋量子数I为1/2,它在磁场中有两种取向,与磁
场方向相同的,用+1/2表示,为低能级;与磁场方向相
反的,用-1/2表示,为高能级。两个能级之差为△E,见
图7–4。
△E与外加磁场强度(H0)成正比,其关系式如下:
式中:γ 称为磁旋比,是物质的特征常数,对于质子其量值为 2.675×108A· 2·-1·-1; h为Plank常量; ν为无线电波的频率。 m J s
峰面积大小与质子数成正比,可由阶梯式积分曲线求
有机化合物波普解析 紫外光谱
• 概论
色谱分析:GC,HPLC,TLC 与裂解---色谱成分分析
波谱分析:UV,IR,NMR,MS(有机)----结构分析
• 色谱分析:具有高效分离能力可以把复杂有机混合物分离 成单一的纯组分
• 波谱分析:纯样品进行结构分析,特点是:微量化、测 量快、结果准确、重复性好。除MS之外,可回收样品
4. 电磁波与光谱区的关系
核与内层 电子跃迁
紫外及可见光谱 价电子跃迁
红外光谱 分子振动与转动
核磁共振谱 核自旋能级跃迁
UV-VIS电磁波谱:位于X射线与IR光区之间 有机化合物的UV吸收:200-400nm之间(近紫外)
VIS吸收:400-800nm之间(可见) 真空(远)U V :4 – 200 n m σ→ σ*跃迁吸收
∨ MS
∨
IR
∨
UV
• 本课程内容,目的及要求:
介绍:四谱与各种有机化合物结构的关系,各谱 的解析技术以及运用四谱综合进行有机化合物的 结构测定;
• 能解析一般的图谱,掌握各谱原理、各种化合物 谱图的特点及应用各谱解析未知化合物。
• 应了解各谱的长处及解决的结构类型; 应用多种谱图,互相取长补短。
第一节 基础知识
一、 电磁波的基本性质及分类
1.电磁辐射(电磁波,光) :以巨大速度通过空 间、不需要任何物质作为传播媒介的一种能量。
2.电磁辐射的性质:具有波、粒二向性。
• 波动性:
c
,
104
(m
(cm
)
1() 式(31-11)
• 粒子性: E h h c ( (式1-33)- 2)
光的波长越短(频率越高),其能量越大。
的吸收光谱在紫外-可见光区,紫外-可见光谱或分子的电子 光谱。
第六章 有机化合物的波谱分析
HO
H
CO
CC
H
HH CC CO
HO
通常 反式异构体 大于顺式异构体的:
。。。。。
。。。。。
反式异构体 max = 273nm(= 21000)
顺式异构体 max = 264nm(= 1400)
6.3 红外光谱 ( I R )Infrared Spectroscopy
物质吸收的电磁辐射如果在红外光区域,用红外光谱仪把产生的红外谱带记录下来,就得到红 外光谱图。 所有有机化合物在红外光谱区内都有吸收,因此,红外光谱的应用广泛,在有机化合物的结构 鉴定与研究工作中,红外光谱是一种重要手段,用它可以确证两个化合物是否相同,也可以确 定一个新化合物中某一特殊键或官能团是否存。 6.2.1 红外光谱图的表示方法 红外光谱图用波长(或波数)为横坐标,以表示吸收带的位置,用透射百分率(T%)为纵坐标 表示吸收强度。 横坐标 --- 波数(cm-1, 下方), 波长(mm,上方) 纵坐标 --- 吸光强度(A)或透过率(T,%) 谱区 --- 4000 – 600 cm-1
化学的迅速发展。
一、 电磁波的一般概念
• 光是电磁波,有波长和频率两个特征。电磁波包括了一个极广阔的区域,从波长只有千万
分之一纳米的宇宙线到波长用米,甚至千米计的无线电波都包括再内,每种波长的光的频
率不一样,但光速都一样:即 3×1010cm/s。
光的频率与波长
波长与频率的关系为: υ= c /λ
υ=频率,单位:赫(HZ);
K 吸收带为 n π * 跃迁引起的吸收带,其特点为吸收峰很强,εmax > 10000。共轭双键增加, λmax 向长波方向移动,εmax 也随之增加。
B 吸收带为苯的 n π * 跃迁引起的特征吸收带,为一宽峰,其波长在 230~270nm 之间,中 心再 254nm,ε 约为 204 左右。
08有机化合物的波谱分析-第八章
倍频区
官能团特征区
指纹区
8.3. 有机化合物的红外光谱 烷烃:
~2850
~1370 ~1470
~720
2850~3000 cm-1 1450~1470 -1 1370~1380 –1 720~725 -1
C-H 伸缩振动
-CH3 –CH2-剪式弯曲振动 CH3-平面摇摆弯曲振动 (注意分裂峰) -CH2-平面摇摆弯曲振动(n>=4)
δ =7.27 受屏蔽作用较强,δ =1.7-3
3、氢键的影响 氢键的形成削弱了氢键质子的屏蔽, ——共振吸收 移向低场。
8.6 自旋偶合和自旋裂分:
1.磁等价质子和磁不等价质子
2. 自旋偶合和自旋裂分:
裂分——同一类质子吸收峰增多的现象 自旋偶合——邻近原子核之间的相互干扰 自旋裂分——因自旋偶合而引起的谱线增多
2、磁各向异性效应 分子中某些基团电子云的分布不是球形对称时,
在外加磁场作用下,它对邻近的1H核产生一个各向异 性的磁场,因此使分子中处于不同空间位置的氢核受 到不同程度的屏蔽作用,此为磁各向异性效应。
处于受屏蔽区域的1H其δ 值变小(高场),处于去 屏蔽区域的1H其δ变大(低场) 。
δ =5.25
取代情况
1650~3000 cm-1(泛频)
其它:
C=O:
~1700cm-1
红外光谱应用:
(1)确证两个化合物是否相同。 (2)确定一个化合物中是否存在某一特殊键或官能团
推测结构:
(二) 核磁共振谱 (NMR)
• 核磁共振的原理 • 屏蔽效应和化学位移 • 自旋偶合和自旋裂分 • 有机化合物的核磁共振谱 (1HNMR)
a对b的干扰:a质子自旋产生的磁场有两种取向:一种与
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)n→σ*跃迁
所需能量较大。 吸收波长为150~250nm,大部分在远紫外区,近紫外区 仍不易观察到。 含非键电子的饱和烃衍生物(含N、O、S和卤素等杂原 子)均呈现n→σ * 跃迁。
n→σ*
电子跃迁
吸收
跃迁能较小
紫外区边端 (λmax≈200nm)
末端吸收
n→σ*跃迁的特点:
1). 含有氧, 氮, 硫, 卤素(都具有未成键电子对)等的化 合物都有n→σ*引起的吸收.
1.价电子类型
有机化合物的紫外—可见吸收光谱是三种电子跃迁的结果: σ键电子(单键)
有机分子 价电子类型
π键电子(不饱和键)
未成键n电子(或称非键电子, 如氧,氮,硫,卤素等)
s
H
C H
O
p
n
2.电子跃迁类型
分子轨道理论:成键轨道—反键轨道。
s*
E
K E,B
R
p*
n
p
s
当外层电子吸收紫外或可见辐射后,就从基态向激发态(反 键轨道)跃迁。主要有四种跃迁所需能量Δ Ε 大小顺序为:
σ→σ* 电子跃迁 能级 间隔大
吸收
波长短,能量高的远 紫外光(λmax<150nm)
σ→σ*跃迁的特点:
允许跃迁,吸收强度强, ε≈104 饱和化合物,常用作溶剂
(2)π→π*跃迁
所需能量较小,吸收波长处于远紫外区的近紫外端或近 紫外区,ε max一般在104L·mol-1·cm-1以上,属于强吸收。
Ch2:有机化合物光谱和波谱分析
§2.2紫外吸收光谱法
ultraviolet spectrometry, UV
一、认识紫外吸收光谱 formation of UV 紫外吸收光谱是由于分子中价电子的跃迁而产生的。
分子中价电子经紫外或可见光照射时,电子从低能级跃迁 到高能级,此时电子就吸收了相应波长的光,这样产生的吸收 光谱叫紫外光谱。
c ν= λ
ν : Hz c 8 c : 光速 (3×10 m/s) E = hν =h λ λ : m
= hcν
※ 频率与波长成反比, 即波长越长, 频率越低, 波数越小 ※ 光量子的能量(E)与波长成反比, 而与频率及波数成正比.
二、电子能级跃迁类型
ultraviolet spectrometry of organic compounds
学习指南
1.理解“四谱”产生的基本原理及有机分 子在不同谱中表现出的行为特征。 2.掌握紫外光谱中max和核磁共振谱中σ的 计算。 3.熟悉各类化合物中“四谱”中的主要数 据。 4.掌握个谱的解析方法,能熟练解析各谱, 获得准确的有机分子结构。
Ch2:有机化合物光谱和波谱分析
§2.1概述
1.紫外吸收光谱:电子跃迁,共轭体系 2.红外吸收光谱:分子振动,官能团及分 子骨架 3.核磁共振波普:自旋能态跃迁,官能团 及分子骨架 4.质谱:质荷比,相对分子质量,分子式
1.紫外光谱图表示
e
1
4 2 3 300 λ 350 400nm
250
mber-Beer定律
I。 A lg kbc I
2.吸收曲线的讨论:
①同一种物质对不同波长光的吸光度 不同。吸光度最大处对应的波长称为最
大吸收波长λ max
②不同浓度的同一种物质,其吸收曲 线形状相似λ max不变。而对于不同物质, 它们的吸收曲线形状和λ max则不同。 ③吸收曲线可以提供物质的结构信息,并作为物质定性分析的 依据之一。
讨论:
④不同浓度的同一种物质,在某一定波长下吸光度 A
有差异,在λ max处吸光度A 的差异最大。此特性可作作
为物质定量分析的依据。
⑤在λ max处吸光度随浓度变化的幅度最大,所以测定
最灵敏。吸收曲线是定量分析中选择入射光
紫外吸收光谱的波长范围是100-400nm(纳米), 其中 100-200nm 为远紫外区(这种波长的光能够被空气中的氮、氧、 二氧化碳和水所吸收,因此只能在真空中进行研究,故这个区域 的吸收光谱称真空紫外),200-400nm为近紫外区, 一般的紫 外光谱是指近紫外区。波长在400~800nm范围的称为可见光谱。 常用的分光光度计一般包括紫外及可见两部分,波长在200~ 800nm(或200~1000nm) 波长范围:100-800 nm.
(1) 不饱和烃π →π *跃迁 乙烯π →π *跃迁的λ max为162nm,ε max为: 1×104
L·mol-1·cm-1。 K带——共轭非封闭体系的p p* 跃迁 C=C
H c H
发色基团, 但 p p*200nm。
H c H
max=162nm 助色基团取代 p
-NR2 40(nm) -OR 30(nm) -Cl
n→π * ≤ π →π * ≤ n→σ
*
< σ →σ
*
(1)σ→σ*跃迁
所需能量最大;σ 电子只有吸收远紫外光的能量才能发 生跃迁; 饱和烷烃的分子吸收光谱出现在远紫外区; 吸收波长λ <200 nm; 例:甲烷的λ max为125nm , 乙烷λ max为135nm。 只能被真空紫外分光光度计检测到; 作为溶剂使用;
p(K带)发生红移。
CH3 5(nm) 5(nm)
取代基
-SR
红移距离 45(nm)
π→π* 电子跃迁
跃迁能小于 σ→σ* 跃迁
吸收
紫外区至 可见光区 (λmax>160nm)
π→π* 跃迁的特点:
1). 允许跃迁, 吸收强度强 2). 孤立双键的π→π* 跃迁大多在约200nm左右有吸收, ε>104 3). 共轭双键的π→π* 跃迁的吸收>200nm, ε>104 ---由共轭体系的π→π* 跃迁所产生的吸收带称为 K(德语共轭的)带
2). 含S, I, N(电负性较小)等化合物, n电子能级更高一 些, λmax可能出现在近紫外区(220~250nm).
3). 含F, Cl, O(电负性较大)等化合物, n电子能级较低, λmax可能出现在远紫外区.
(1) 远紫外光区: 100-200nm
(2) 近紫外光区: 200-400nm
(3)可见光区:400-800nm 可用于结构鉴定和定量分析。 电子跃迁的同时,伴随着振动转 动能级的跃迁;带状光谱。
4. 电磁波与辐射能
光: 是一种电磁波, 具有波动性和粒子性.
波动性 – 传播运动过程中突出, 表现在光的偏振, 干涉, 衍射 粒子性 – 与物质相互作用时突出, 表现在光电效 应, 光的吸收和散射