线路型避雷器的选择及安装规范 图文 民熔
试析输电线路避雷器的选择及安装

试析输电线路避雷器的选择及安装雷击作为输电线路安全可靠运行的关键因素,做好线路防雷工作是相当重要的。
文章主要讲述了输电线路避雷器的选择,并提出了安装输电线路避雷器的一些建议。
标签:输电线路;避雷器;雷击;安装雷鸣闪电是自然中常见的现象,近年来环境条件不断恶化,因为雷击引起的输电线路跳闸问题也在增加,影响了输电设备的正常运行,也影响了人们的日常生活。
1 输电线路避雷器的选择目前,避雷器主要的结构形式主要有两种:无间隙型和有串联间隙型,其中串联间隙型又被分为外串联间隙型和内串联间隙型。
1.1 外串联间隙型避雷器外串联间隙型避雷器由本体和外串联间隙两个部分构成。
当线路正常工作时,本体不需要承受电压,不存在老化的问题,并且这种形式下的避雷器内部结构简单,只要保证间隙之间没有损坏,就能安全可靠运行。
外串联间隙型避雷器可以通过适当提高荷电率来降低残压值。
同时,因为串联间隙具有隔离的作用,当电阻片老化时,也不会影响到整条输电线路的正常运行[1]。
外串联间隙型避雷器的保护特性还取决于其外串联间隙的冲击放电电压值,但是外串联间隙的放电参数会因为气候的改变而改变,间隙冲击系数会随着间隙方式和结构形式的不同而存在着较大差异,在被雨水淋湿的情况下,工频放电电压能够满足预先设计值,但是雷电冲击放电电压值会超出预先设计值,因此,对于荒郊野外的输电线路来说,这种结构的避雷器的防雷效果较差。
1.2 内串联间隙型避雷器内串联间隙型避雷器内部采用的是带并联电阻的单个长间隙,这种间隙是近几年才通过实验证明能够稳定可靠运行的。
内串联间隙型避雷器的间隙不会受到外界环境的影响,放电稳定,阀片承担的电压值很小,是无间隙型避雷器的一半,能大大减缓老化,提高了防雷效果和使用寿命。
同时,这种避雷器的残压和冲击放电等保护特性比外串联间隙型避雷器和无间隙型避雷器都要好。
但是,内串联间隙型避雷器一旦密封性较差,就会给输电线路的运行带来安全问题,因此,这种避雷器最关键的问题是要做好密封。
避雷器的工作原理和参数 (图文) 民熔

避雷器避雷器是普遍采用的入侵波保护装置,也是应用最广泛的过电压限制器,它实质是过电压能量的吸收器。
它与被保护设备并联运行,当作用电压超过-一定幅值后避雷器总是先动作,通过它自身泄放掉大量的能量,限制过电压,保护电气设备。
避雷器放电后,避雷器两端的过电压消失,系统正常运行电压又继续作用在避雷器两端,在这一正常运行电压作用下,处于导通状态的避雷器中继续流过工频接地电流,该电流称为工频电流,它以电弧放电的形式出现。
工频续流的存在一方面使相导线对地的短路状态继续维持,系统无法恢复正常运行。
作为过电压保护装置,当电网电压升高达到避雷器规定的动作电压时,避雷器动作,释放电压负荷,将电网电压升高的幅值限制在- 定水平之下,从而保护设备绝缘所能承受的水平,现代避雷器除了限制雷电过电压外,还能限制-部分操作过电压,因此称之为过电压限制器是更为确切的。
避雷器工作原理避雷器设置在与被保护设备对地并联的位置,如图所示,各种避雷器均有一个共同的特性,即在高电压作用下呈现低阻状态,而在低电压作用下呈现高阻状态。
在发生雷击时,当雷电波过电压沿线路传输到避雷器安装点后,由于这时作用于避雷器上的电压很高,避雷器将动作,并呈低阻状态,从而限制过电压,同时将过电压引起的大电流泄放入地,使与之并联的设备免遭过电压的损害。
在雷电侵入波消失后,线路又恢复了常传输的工频电压,这一工频电压相对雷电侵入波过电压来说是低的,于是避雷器将转变为高阻状态,接近于开路,此时避雷器的存在将不会对线路上正常工频电压的传输产生响应。
保护间隙结构及工作原理保护间隙:由两个电极组成。
当雷波浸入时,间隙首先击穿,工作母线接地,从而避免被保护设备上的电压升高,从而保护设备。
过电压消失后,间隙中仍存在工频连续电流。
由于间隙灭弧能力差,经常不能自动灭弧,导致断路器跳闸,这是保护间隙的主要缺陷。
因此,该间隙可用于自动重合闸。
保护间隙结构及工作原理结构及工作原理:常用的角形保护间隙如下图所示。
避雷器的分类及结构 图文 民熔

避雷器的分类及结构避雷器的分类及结构常用避雷器的形式有阀式、管式、保护间限金属氧化物等。
避雷器的介绍氧化锌避雷器HY5WS-17/50氧化锌避雷器10KV高压配电型A级复合避雷器产品型号: HY5WS- 17/50额定电压: 17KV产品名称:氧化锌避雷器直流参考电压: 25KV持续运行电压: 13.6KV方波通流容量: 100A防波冲击电流: 57.5KV(下残压)大电流冲击耐受: 65KA操作冲击电流: 38.5KV(下残压)注:高压危险!进行任何工作都必须先切断电流,严重遵守操作规程执行各种既定的制度慎防触电与火灾事故。
使用环境:a.海拔高度不超过2000米;b.环境温度:最高不高于+40C- -40C;C.周围环境相对湿度:平均值不大于85%;d.地震强度不超过8级;e.安装场所:无火灾、易燃、易爆、严重污秽、化学腐蚀及剧烈震动场所。
体积小、重量轻,耐碰撞运输无碰损失,安装灵活特别适合在开关柜内使用民熔 HY5WZ-17/45高压氧化锌避雷器10KV电站型金属氧化锌避雷器民熔 35KV高压避雷器HY5WZ-51/134户外电站型氧化锌避雷器复合型(1)阀式避雷器阀式避雷器主要分为普通阀式避雷器和磁吹阀式避雷器两大类。
普通阀式避雷器有FS和FZ两种系列;磁吹阀式避雷器有FCD和FCZ两种系列。
阀式避雷器型号中的符号含义如下:F-阀式避雷器;(2) S配(变)电作用; Z-电站用; Y-线路用: D-旋转电机用: C-具有磁吹放电间隙。
阀式避雷器主要由平板火花间隙与碳化硅电阻片(阀片)串联而成,装在密封的瓷管内,外壳有接线螺栓供安装用。
避雷器中的碳化硅电阻具有非线性特性,在正常电压时其阻值很大,过电压时其阻值随之变小。
阀式避雷器在正常的工频电压作用下火花间隙不被击穿,但在雷电波过电压下,避雷器的火花间隙被击穿;碳化硅电阻的阻值随之变得很小,雷电波巨大的雷电流顺利地通过电阻流入大地中,电阻阀片对尾随雷电流而来的工频电压呈现了很大的电阻,从而工频电流被火花间隙阻断,线路恢复正常运行。
线路避雷器的选择与安装 图文 民熔

线路避雷器的选择与安装目前.国外已广泛使用线路型合成绝缘氧化锌避雷器用于输电线路的防雷,取得了很好的效果。
随着我们国家科技的不断发展和进步,我国也对线路避雷器开始了研制和开发,目前线路避雷器已经广泛地应用于电力部门。
在电力配电线路中,常用的避雷器有:阀型避雷器、管型避雷器、氧化锌避雷器等,低压配电系统提倡选用低压氧化锌避雷器。
氧化锌阀片在正常运行电压下,阀片的电阻很高。
仅可通过微安级的泄漏电流。
氧化锌避雷器具有优异的非线性伏安特性。
残压随冲击电流波头时间的变化特性平稳,陡波响应特性好,没有间隙击穿特性和灭弧问题。
其电阻片单位体积吸收能量大,还可以并联使用,所以在保护超高压长距离输电系统和大容量电容器组特别有利。
对于低压配电网的保护也很适合,是低压配电网的主要保护措施。
氧化锌避雷器介绍:民熔 HY5WS-17/50氧化锌避雷器10KV高压配电型A级复合避雷器产品型号: HY5WS- 17/50额定电压: 17KV产品名称:氧化锌避雷器直流参考电压: 25KV持续运行电压: 13.6KV方波通流容量: 100A防波冲击电流: 57.5KV(下残压)大电流冲击耐受: 65KA操作冲击电流: 38.5KV(下残压)注:高压危险!进行任何工作都必须先切断电流,严重遵守操作规程执行各种既定的制度慎防触电与火灾事故。
使用环境:a.海拔高度不超过2000米;b.环境温度:最高不高于+40C- -40C;C.周围环境相对湿度:平均值不大于85%;d.地震强度不超过8级;e.安装场所:无火灾、易燃、易爆、严重污秽、化学腐蚀及剧烈震动场所。
体积小、重量轻,耐碰撞运输无碰损失,安装灵活特别适合在开关柜内使用民熔 HY5WZ-17/45高压氧化锌避雷器10KV电站型金属氧化锌避雷器线路避雷器防雷的基本原理雷击杆塔时,—部分雷电流通过避雷线流到相邻杆塔,另一部分雷电流经杆塔流入大地,杆塔接地电阻呈暂态电阻特性,—般用冲击接地电阻来表征。
避雷器安装位置的选择 民熔

避雷器安装位置的选择
避雷器的安装方法有两种:上侧和下侧。
如果避雷器安装在跌落保险的上侧,配电变压器的防雷保护会减弱吗?经过多年的运行经验,避雷器安装在跌落保险的下侧或上侧时,其防雷效果是相同的。
避雷器安装位置不同,未发生雷击事故。
另外,根据《架空配电线路设计技术规范》,防雷装置应尽量靠近变压器安装。
一般认为距离不应超过10米。
近年来,为了方便供电部门的管理,各特种变压器用户都采用了高压计量箱装置。
计量箱一般安装在坠落保险的上方。
在实际运行中,避雷器安装在高压计量箱的上方,即要安装高压计量箱的用户必须安装一组隔离开关,然后通过计量箱进行坠落保险。
隔离开关的安装解决了安装在跌落保险上侧所带来的问题。
当一台变压器的避雷器发生故障或检修时,只需切断一台变压器的电源,就可以减少全线停电次数。
当单相接地故障发生时,可以减少单相接地故障的查找和处理时间。
因此,避雷器的安装位置应根据现场安装的电气设备确定。
城市变压器一般安装高压计量箱的隔离开关和避雷器,最好安装在跌落保险的上方。
如果市郊型变压器不设隔离开关,避雷器最好安装在跌落保险的下侧。
线路避雷器安装注意事项及运行维护 图文 民熔

直线塔使用空气间隙避雷器,安装应注意:避雷器的位置避雷器与被保护绝缘子的安全距离避雷器与带电体的距离钢架的选择与安装弧形电极的方向间隙的尺寸计数器的安装等买避雷器就到民熔电气购买安装注意事项1、线路避雷器在安装前应严格按照规程开展交接试验;2、安装支架伸出距离应满足避雷器与被保护绝缘子的安全距离大于最大间隙距离的要求,并留有一定裕度,防止避雷器对绝缘子金具放电,如220kV线路避雷器与接地体的空气距离不低于1.9m;3、线路避雷器安装支架可采用两根角钢靠背双并斜担在杆塔塔头主横担上或者采用槽钢、角钢结合的方式,采用的槽钢、角钢型号应满足避雷器承力要求,如安装220kV线路避雷器采用两根角钢应不低于L63×6,若采用槽钢、角钢结合的方式,槽钢不低于10号;4、线路避雷器安装时,为保障间隙距离的有效性,避雷器尾端弧形电极长轴方向应与下方导线垂直;5、线路避雷器纯空气间隙安装时应满足要求;6、线路避雷器的计数器应选择具有大盘径、粗指针的计数器,以易于塔下查看读取数据,安装时计数器面板朝下。
计数器安装时,通过软导线与避雷器接地端子相连,计数器朝向主横担侧,也可安装在杆塔塔头主横担上靠近避雷器侧的位置(打孔),但距避雷器的位置不应超过2m。
线路避雷器的运行维护1.建立台账、运行记录并密切加以监视,雷雨季节及时记录雷击动作情况;同时还应建立必要的检修、试验、轮换制度,确保装置运行的可靠性。
2。
结合线路检修进行的运行维护工作包括:避雷器本体外观目测;串联间隙、上下电极测量和检查;高压电极和接地端连线检查;连接件检查;检查、记录计数器动作次数;检查在线或离线监测装置3。
运行3~5年后的线路避雷器可进行抽样试验,抽样避雷器进行直流试验,如抽样避雷器试验不满足要求,要求对同批次避雷器加大抽样比例,如仍出现一支不合格,应扩大同批次避雷器试验,确定是否能够继续运行。
4。
动作极为频繁(如20次)的避雷器应进行缩短周期进行直流试验,试验不合格应退出运行。
避雷器参数讲解(图文)民熔

避雷器参数1.标称电压Un被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。
2.额定电压Uc:能长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压有效值。
3.额定放电电流Isn:给保护器施加波形为8/20μs 的标准雷电波冲击10 此时,保护器所耐受的最大冲击电流峋值。
4.最大放电电流 Imax:给保护器施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。
5电压保护等级上升:保护器在下列试验中的最大值:点火电压的1kV/ys斜率;额定放电电流的残余电压。
6响应时间TA:主要反映保护器中特殊保护元件的动作灵敏度和击穿时间。
在一定时间内的变化取决于Du/dt或di/dt的斜率。
7数据传输速率vs:表示每秒传输的比特数,单位为BPS,是数据传输系统中正确选择防雷装置的参考值,防雷装置的数据传输速率取决于系统的传输方式。
8插入损耗AE:在给定频率下插入保护器前后的电压比。
9回波损耗ar:表示保护设备(反射点)反射的前波所占的比例,是直接衡量保护设备是否与系统阻抗兼容的参数。
10最大纵向放电电流:当8/20us波形的标准雷电波对地一次时,保护器能承受的最大冲击电流的峰值。
11最大横向放电电流:在线路间施加波形为8/20μs的标准雷电波一次时,保护器能承受的最大冲击电流的峰值。
12线路阻抗UN为流过线路阻抗的总和。
它通常被称为“系统电阻13峰值放电电流:有两种:额定放电电流LSN和最大放电电流Imax。
13泄漏电流:指在75或80额定电压UN 下流过保护器的直流电流。
从安全运行的角度看,避雷器额定电压的选择还应遵循以下原则:1)避雷器的额定电压应高于安装现场可能出现的工频暂态电压。
在110kV及以上中性点接地系统中,可按上述方法选择。
②在110kV及以下的中性点非直接接地系统中,电力部门规程规定在单相接地情况下允许运行2h,有时甚至在断续地产生弧光接地过电压情况下运行2h以上才能发现故障,这类系统的运行特点对氧化锌避雷器在额定电压下安全运行10s构成严重威胁。
线路避雷器安装示意图

2 绝缘子间隙避雷器
2.1 典型安装方式 1(正悬挂式安装)
辅助支架
绝缘子串
避雷器本体
导线 绝缘子支撑间隙
图 4 单回直线塔
绝缘子串
辅助支架 避雷器本体
导线 绝缘子支撑间隙
图 5 双回直线塔
辅助支架 绝缘子串
避雷器本体 跳线
绝缘子支撑间隙
图 6 双回耐张塔(内部悬挂)
辅助支架 绝缘子串
避雷器本体 绝缘子支撑间隙 跳线
1 空气间隙避雷器
1.1 典型安装方式 1(悬挂式安装)
辅助支架
绝缘子串
导线 空气间隙
避雷器本体
图 1 单回直线塔
辅助支架
绝缘子串
导线 空气间隙
避雷器本体
图 2 双回直线塔
1.2 典型安装方式 2(坐式安装)
绝缘子串
导线 空气间隙
避雷器本体
辅助支架
图 3 单回直线塔(常见于 500kV 及以上)
图 7 双回耐张塔(外部悬挂)
2.2 典型安装方式 2(倒悬挂式安装)
辅助支架
绝缘子串
拉线
导线 绝缘子支撑间隙
避雷器本体
图 8 单回直线塔(常见于 kV 及以上)
辅助支架
绝缘子串
拉线
导线
避雷器本体
绝缘子支撑间隙
图 9 双回耐张塔(常见于 500kV 及以上)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线路型避雷器的选择及安装规范本文对线路避雷器的国内外现状和研究进展进行了综述。
线路避雷器已大量地安装在从配电到500kV(部分800kV)系统电压的架空输电线路上,它是降低线路雷击跳闸率的有效手段,从而提高系统的可靠性。
在大多数情况下,线路避雷器是合成外套的避雷器。
小型化、智能化及高压化将会是线路避雷器今后的发展方向。
随着线路避雷器的国际电工委员会(IEC)标准和国际大电网会议(CIGRE)导则的即将发布,外串间隙线路避雷器(EGLA)的应用将更加广泛。
线路避雷器的应用也给输电线路的电压等级升级及紧凑型输电线路的建设带来了机遇。
避雷器:氧化锌避雷器简单介绍
氧化锌避雷器
HY5WS-17/50氧化锌避雷器
10KV高压配电型
A级复合避雷器
产品型号: HY5WS- 17/50
额定电压: 17KV
产品名称:氧化锌避雷器
直流参考电压: 25KV
持续运行电压: 13.6KV
方波通流容量: 100A
防波冲击电流: 57.5KV(下残压)
大电流冲击耐受: 65KA
操作冲击电流: 38.5KV(下残压)
注:高压危险!进行任何工作都必须先切断电流,严重遵守操作规程执行各种既定的制度慎防触电与火灾事故。
使用环境:
a.海拔高度不超过2000米;
b.环境温度:最高不高于+40C- -40C;
C.周围环境相对湿度:平均值不大于85%;
d.地震强度不超过8级;
e.安装场所:无火灾、易燃、易爆、严重污秽、化学腐蚀及剧烈震动场所。
体积小、重量轻,耐碰撞运输无碰损失,安装灵活特别适合在开关柜内使用
民熔HY5WZ-17/45高压氧化锌避雷器
10KV电站型金属氧化锌避雷器
民熔35KV高压避雷器
HY5WZ-51/134户外电站型
氧化锌避雷器复合型
避雷器(linearrester)通常是适用于电力线路以降低瞬态雷电冲击时绝缘子闪络危险的一种避雷器。
必要时,也可以用于保护线路绝缘子之外的任何其它电器设备。
线路避雷器运行时它与线路绝缘子并联,当线路遭受雷击时,能有效地防止雷电直击输电线路所引起的故障和雷电绕击输电线路所引起的故障。
架空输电线路是电力系统的重要组成部分,由于其分布范围广,极易遭受雷击。
从目前运行情况看,在国内外雷击仍然是输电线路的主要危害。
线路避雷器是降低线路雷击跳闸率的有效手段,从而提高系统的可靠性。
从我国十多年线路避雷器运行情况看,线路避雷器对降低雷击跳闸率和事故率,减少线路维护工作量,具有良好的效果。
同时使用线路避雷器可降低线路的雷电闪络率,可使输电线路的电压等级升级(如225kV 的架空输电线路成功地升级到400kV),并实现了输电线路的紧凑化。
对于许多的电力企业而言,处理雷电引起的事故,寻求提高电力的质量和可靠性已经成为一个很重要的问题。
而有选择地应用避雷器能使架空线路防雷性能得到显著改善。
事实上,全线安装避雷器可以使线路跳闸率趋于零。
1 线路避雷器的结构类型和选择
1.1 线路避雷器的结构类型线路避雷器的基本结构主要为无间隙和外串间隙,其中外串间隙又分为绝缘支撑件间隙和纯空气间隙。
绝缘配合或使用效果均证明有间隙、无间隙线路避雷器能有效防止绝缘子串闪络事故
线路避雷器按外套材料可分为瓷外套线路避雷器和合成外套线路避雷器;按电压等级又分为配电线路避雷器和输电线路避雷器;按功能又分为主要用于限制雷电过电压的线路避雷器、主要用于限制操作过电压的线路避雷器或兼有限制雷电过电压及操作过电压的线路避雷器。
在大多数情况下,线路避雷器是合成外套的避雷器。
无间隙线路避雷器主要用于限制雷电过电压及操作过电压;带外串联间隙线路避雷器[ExternallyGapped Line Arrester(EGLA)],由复合外套金属氧化物避雷器本体和串联间隙两部分构成,主要用于限制雷电过电压及(或)部分操作过电压。
EGLA这一名称源自国际电工委员会避雷器委员会(IEC/TC37)第四维护工作组(MT4)所召开的几次研讨会。
运行经验表明,无间隙金属氧化物避雷器的损坏主要是电网电压所致。
近十几年来,国内外采用外串金属氧化物避雷器,大大提高了金属氧化物避雷器承受电网电压的能力,又具有更好的保护水平,因此EGLA是应用最广泛的线路避雷器。
无间隙避雷器由于可靠性较高,具有保护裕度大、绝缘配合分散性小的优势,在中国使用量上也占有一定的优势。
1.2 线路避雷器的选择与安装系统中安装线路避雷器的基本原因有两个,一个最普通的目的是减少或消除因绝缘子闪络的雷电引起的故障,另外一个原因是消除因操作过电压所引起的绝缘子闪络。
在这两种情况下通常都要对系统进行研究以便确定避雷器的最佳安装位置,以完成我们所需的结果。
对于操作过电压控制,线路避雷器只需安装在操作过电压超过绝缘子串操作过电压耐受水平的地方,这可能是沿整个输电线路仅仅几个地方,因此线路型避雷器的操作过电压保护范围可达百公里级。
对于雷电过电压(包括反击和绕击)控制,线路避雷器的保护范围就是避雷器安装塔本身,不存在外延的保护范围,因此几乎每个输电杆塔都要安装线路避雷器并且有时每相上都要安装线路避雷器
选择线路避雷器时应考虑的因素如下:安装线路避雷器的目的,是为了减少操作过电压还是为了减少雷电过电压或者兼顾两者;系统的标称电压和可能的暂态过电压;对于非屏蔽系统,最高处的相作为屏蔽,最高处的线路避雷器与其它位置的线路避雷器可能不同;落雷密度与历年绝缘子闪络比例;电线杆塔接地质量;预期的闪络比例及系统有效故障电流等。
输电线路避雷器将继续是高压避雷器工业最活跃的领域,这是因为线路避雷器能够并且确实能改善雷电引起的停电事故。
有时在选择线路避雷器时除了要考虑避雷器的所有正常参数外,必须额外考虑其能量吸收能力。
全线安装线路避雷器虽可以使线路跳闸率趋于零,但其经济效益不一定最佳,在雷击频繁杆段均安装线路避雷器,选择多雷区且易遭雷击的杆、段中被雷击频度最大的杆塔,才能达到良好的防雷效果。
安装数量、相别的原则是:安装在易绕击相,并根据易绕击的相数确定数量,既提高杆塔的反击耐雷水平又减少绕击跳闸,尽量按安装一相考虑,接地电阻较大的,则考虑安装二相或三相。
表3是美国电力科学研究院(EPRI)为减少电力线路雷电而安装线路避雷器的对策表。
从表3我们可以发现,在输电线路中安装线路避雷器可以有效地减少感应过电压、绕击及反击所引起的绝缘子闪络。