避雷器参数及选型原则
避雷器如何正确选择适合的避雷器
避雷器如何正确选择适合的避雷器避雷器是一种非常重要的电力设备,它可用于保护各种电气设备和电力系统中的电路。
在选择适合的避雷器时,需要考虑许多因素,包括电气参数、应用需求和环境条件等。
下面将详细介绍如何正确选择适合的避雷器。
一、避雷器的分类按照使用场合的不同,避雷器可以分为低压避雷器、中压避雷器和高压避雷器,其中低压避雷器用于家庭电路和小型工商业用电,中压避雷器用于中压电力线路,而高压避雷器则用于高压输电线路的保护。
按照动作原理的不同,避雷器可以分为气体放电避雷器和压敏电阻避雷器两种类型。
气体放电避雷器是应用气体放电原理制作而成,内部充填着惰性气体。
当系统电压升高到一定程度时,避雷器内的气氛会被激发成等离子体,以达到放电保护的作用。
压敏电阻避雷器是应用陶瓷材料的电学特性制作而成,当系统电压上升到一定值时,避雷器内的压敏电阻将发生负阻特性,起到消耗过电压的能量的作用。
二、避雷器的参数选择适合的避雷器,需要考虑以下参数:1.额定电压:额定电压是避雷器能够承受的最高电压值,必须与电力系统中的额定电压匹配。
2.击穿电压:击穿电压是避雷器放电的电压值,也就是保护作用启动的电压值。
3.额定放电电流:额定放电电流是避雷器在击穿电压作用下的放电电流值。
4.容量:容量是避雷器所能承受的过电压的能量大小,必须与所保护的设备或电路的容量匹配。
三、选择适合的避雷器选择适合的避雷器需要考虑以下因素:1.电气参数的匹配:必须满足避雷器的电气参数与实际使用环境的需求相匹配。
2.环境条件的考虑:根据实际环境条件选择合适的避雷器,如避雷器应采用防水、防尘等防护措施,以便确保设备的正常运转。
3.使用寿命的要求:不同种类的避雷器有不同的使用寿命,应根据实际使用寿命的需求选择合适的避雷器。
4.价格和性价比:在满足性能的前提下,应根据自身需求和实际预算选择性价比较高的避雷器产品。
四、安装和使用正确的安装和使用是保证避雷器正常工作的关键。
在安装时,必须遵循厂家的安装说明书并严格按照图纸要求接线。
告诉你金属氧化物避雷器怎么选择
告诉你金属氧化物避雷器怎么选择金属氧化物避雷器的选择是电力系统主要的防雷装置之一。
只有正确选择避雷器,才能发挥其应有的防雷作用。
(一)无隙金属氧化物避雷器选型的一般要求如下:1.根据使用区域的气温、海拔、风速、污染、地震等条件,以及额定电压、最高电压,确定金属氧化物避雷器的环境条件,系统的额定频率和中性点应连接短路电流值和接地故障持续时间决定避雷器的系统运行条件。
2.根据保护对象确定避雷器的类型。
3.根据长期作用在避雷器上的最高电压,确定避雷器的连续工作电压。
4.根据避雷器安装现场临时过电压的幅值和持续时间,选择避雷器的额定电压。
5.估算避雷器的放电电流幅值,选择避雷器的标称放电电流。
6. 根据被保护设备的额定雷电冲击耐受电压和额定操作冲击耐受电压,按绝对配合的要求确定避雷器的雷电过电压保护等级和操作过电压保护等级。
7.估算避雷器的冲击电流和能量,选择避雷器的试验电流幅值、线路放电耐受试验水平和能量吸收能力。
8.根据避雷器安装位置的最大故障电流选择避雷器的泄压等级。
9.根据避雷器安装地点的环境污染程度,选择避雷器瓷套的泄漏比距离。
10.避雷器的机械强度应根据导线张力、风速、地震等条件选择。
11.当避雷器不能满足绝缘配合要求时,可采取适当降低其额定电压或额定放电电流水平或提高被保护设备的绝缘水平等补救措施。
(2)主要特性参数选择(1),连续工作电压Uc对于中性点直接接地系统的相间无间隙MOA,UC可选择不低于系统最高相电压。
在中性点间接接地系统中,如果单相接地故障能在10s内排除,其UC仍可以按不小于选择,但由于我国大多数中性点间接接地系统允许带接地故障运行2小时以上,所以UC可按以下选择原则:105内切除故障u.2u1/52h及以上,切除故障3~10kV 1.0~1.1L,35~66kV ueul,时间10s~2H,可选择2H以上,也可根据避雷器工频耐压特性曲线。
(3)。
额定电压ur ur是指避雷器两端最大允许工频电压的有效值。
避雷器的选择方法 、 民熔
避雷器的选择方法如何选择避雷器(1)按额定电压选择:避雷器的额定电压应与系统的额定电压一致。
(2)检查最大允许电压:检查避雷器安装处导线对地的最高电压是否不超过避雷器的最高工作电压。
导线对地最高电压与系统中性点是否接地和系统参数有关①中性点不接地系统:导体对地最高电压为系统电压的1.1倍,一般不存在问题。
②一般情况下,避雷器的最大工作电压等于线路电压。
③中性点直接接地系统:国内避雷器中性点直接接地系统中,最大工作电压为系统电压的0.8倍,按额定电压选择无问题。
(3)检查工频放电电压:①在中性点绝缘或阻抗接地系统中,工频放电电压应大于相电压的3.5倍。
中性点的放电电压应大于中性点电压的3倍。
②工频放电电压应大于最大工作电压的1.8倍。
避雷器又称避雷器、浪涌保护器、浪涌保护器、过电压保护器,主要包括电源防雷器和信号防雷器。
防雷装置通过现代电气等技术,可以防止雷电对设备的损坏。
避雷器中雷电的能量吸收主要是氧化锌压敏电阻和气体放电管。
1.在防雷装置保护达到理想效果的基础上,要注意“在正确的地方合理安装合适的避雷器”,避雷器的选择非常重要。
2.进入建筑物的各种设施之间的雷电流分配情况如下:约有50%的雷电流经外部防雷装置泄放入地,另有50%的雷电流将在整个系统的金属物质内进行分配。
这个*估模式用于估算在LPAOA区、LPZOB区和LPZ1区交界处作等电位连接的防雷器的通流能力和金属导线的规格。
该处的雷电流为10/35μs电流波形。
3.在各金属物质中雷电流的分配情况下:各部分雷电流幅值取决于各分配通道有的阻抗与感抗,分配通道是指可能被分配到雷电流的金属物质,如电力线、信号线、自来水管、金属构架等金属管级及其它接地,一般仅以各自的接地电阻值就可以大致估算。
在不能确定的情况下,可以认为接是电阻相等,即各金属管线平均分配电流。
2.在电力线架空引入,并且电力线可能被直击雷击中时,进入建筑物内保护区的雷电流取决于外引线路、防雷器放电支路和用户侧线路的阻抗和感抗。
氧化锌避雷器现场选用及安装规范
氧化锌避雷器现场选用及安装规范一、氧化锌避雷器规范后的技术参数:电压等级参数备注220KVY10W-200/520或Y10W-204/532(大连法伏安)原则上220KV等级的MOA应使用防污型瓷外套MOA;110KV及以下等级宜采用复合绝缘外套MOA(采用复合外套时型号中含H)。
110KVY10W-100/260或Y10W-102/266(大连法伏安)220KV绕组中性点Y5W-108/281110KV绕组中性点Y1.5W-60/14435KVY5W-51/134或Y5W-52.7/13410KVY5WZ-17/4510KV电容器组Y5WR-17/42或Y5WR-17/4535KV中性点Y5W-51/134二、110KV及以上电压等级避雷器选用原则:1、全部选用无间隙氧化锌避雷器。
2、安装配套的带计数器型泄漏电流在线监测仪。
三、35KV及以下电压等级避雷器选用原则:1、用于室外安装的应统一选用无间隙氧化锌避雷器。
对已安装运行的无间隙MOA,若参数符合上述规范则坚持运行,若不符合则更换为复合外套无间隙MOA。
2、用于封闭柜内安装的应统一选用复合外套无间隙氧化锌避雷器。
PT柜内的避雷器统一更换为复合外套无间隙MOA,开关柜内不得安装避雷器。
2、35kV MOA必须加装配套的带放电计数器的泄漏电流在线监测仪,10kV MOA只加装配套的计数器。
四、现场安装及更换工作中应注意的事项1、主变绕组中性点避雷器的技术要求⑴对220KV变压器而言:220KV绕组中性点应采用Y5W¬—108/281型氧化锌避雷器,并联间隙选用300mm;110KV绕组中性点应选用Y1.5W¬—60/144型氧化锌避雷器,并联间隙选用140mm。
⑵对110KV变压器而言:中性点绝缘水平为60KV(LI325 AC140)的选用Y1.5W¬—60/144型氧化锌避雷器与140mm距离的水平间隙相并联;中性点绝缘水平为44KV(LI250 AC95)的选用Y1.5W¬—60/144型氧化锌避雷器与120mm距离的水平间隙相并联;中性点绝缘水平为35KV(LI185 AC85)的可用115mm距离的单独水平间隙进行保护。
35kv金属氧化物避雷器技术参数
35kv金属氧化物避雷器技术参数35kV金属氧化物避雷器是一种用于保护电力设备免受雷击和过电压损害的重要设备。
它具有很高的技术参数,以下将会对其技术参数进行详细介绍。
1. 额定电压:35kV金属氧化物避雷器的额定电压为35kV,这是指避雷器能够正常工作的最高电压。
超过这个电压,避雷器可能会损坏或无法正常工作。
2. 额定放电电流:避雷器的额定放电电流是指在额定电压下,避雷器能够承受的最大放电电流。
这个参数决定了避雷器对雷击过电压的抵抗能力,一般情况下,额定放电电流越大,避雷器的抵抗能力越强。
3. 高压持续时间:35kV金属氧化物避雷器能够承受的高压持续时间是指在额定电压下,避雷器能够承受的最长时间。
这个参数决定了避雷器的工作稳定性和耐久性,一般情况下,高压持续时间越长,避雷器的工作寿命越长。
4. 耐受重复雷击次数:避雷器的耐受重复雷击次数是指在一定时间内,避雷器能够承受的雷击次数。
这个参数决定了避雷器的使用寿命和可靠性,一般情况下,耐受重复雷击次数越多,避雷器的可靠性越高。
5. 阻止电压:35kV金属氧化物避雷器的阻止电压是指在额定电压下,避雷器能够将过电压降低到的最低电压。
这个参数决定了避雷器对过电压的抑制能力,一般情况下,阻止电压越低,避雷器的保护能力越强。
6. 接地电阻:避雷器的接地电阻是指避雷器接地装置的电阻大小。
接地电阻的大小直接影响到避雷器的接地效果,一般情况下,接地电阻越小,避雷器的接地效果越好。
7. 外形尺寸:35kV金属氧化物避雷器的外形尺寸是指避雷器的物理尺寸。
外形尺寸的大小决定了避雷器在安装和使用过程中的便捷性,一般情况下,外形尺寸越小,避雷器的安装和使用越方便。
8. 重量:避雷器的重量是指避雷器的物理重量。
重量的大小决定了避雷器的搬运和安装难度,一般情况下,重量越轻,避雷器的搬运和安装越方便。
9. 安装方式:35kV金属氧化物避雷器的安装方式包括室内安装和室外安装两种。
室内安装适用于小型电力设备,室外安装适用于大型电力设备。
避雷器主要特性及参数选择 图文 民熔
避雷器避雷器是电力系统中主要的防雷保护装置之一,只有正确地选择避雷器,方能发挥其应有的防雷保护作用。
1、无间隙金属氧化物避雷器的选择选择的一般要求如下:(1)、应按照使用地区的气温、海拔、风速、污秽以及地震等条件确定避雷器使用环境条件,并按系统的标称电压、系统最高电压、额定频率、中性点接地方式,短路电流值以及接地故障持续时间等条件确定避雷器的系统运行条件。
(2)、按照被保护的对象确定避雷器的类型。
(3)、按长期作用于避雷器上的最高电压确定避雷器的持续运行电压。
(4)、按避雷器安装地点的暂时过电压幅值和持续时间选择避雷器的额定电压。
(5)、估算通过避雷器的放电电流幅值,选择避雷器的标称放电电流。
(6)、根据被保护设备的额定雷电冲击耐受电压和额定操作冲击耐受电压,按绝缘配合的要求,确定避雷器的雷电过电压保护水平和操作过电压保护水平。
(7)、估算通过避雷器的冲击电流和能量,选择避雷器的试验电流幅值, 线路放电耐受试验等级及能量吸收能力。
(8)、按避雷器安装处最大故障电流,选择避雷器的压力释放等级。
(9)、按避雷器安装处环境污染程度,选择避雷器瓷套的泄漏比距。
(10)、按避雷器安装的引线拉力、风速和地震等条件,选择它的机械强度。
(11)、当避雷器不满足绝缘配合要求时,可采取适当降低其额定电压或标称放电电流等级或提高被保护设备的绝缘水平等补救措施。
2.主要特性参数选择(1)、持续运行电压Uc中性点直接接地系统的相对地无间隙金属氧化物避雷器,其Uc可按不低于系统最高相电压选取。
在中性点非直接接地系统,如单相接地故障能在10s以内切除,其Uc 何按不低于选取,但由于我国大部分中性点非直接接地系统中允许带接地故障运行2h以上,因此Uc可按以下原则选取:10s及以内切除故障U。
2U132h及以上切除故障3~ 10kV 1.0~ 1.1UL, 35~ 66kV Uc2UL至于10s~2h之间,可按2h以上选取,也可参照避雷器的工频电压耐受特性曲线选取。
避雷器选择
一、选用避雷器必须满足的要求是:避雷器的VS特性、V A特性要分别与被保护设备的VS 特性和V A特性正确配合;避雷器的灭弧电压与安装地点的最高工频相电压应正确配合。
这样,即使在系统发生一相接地故障的情况下,避雷器也能可*地熄灭工频续流电弧,避免避雷器发生爆炸。
二、选择管型避雷器时应注意管型避雷器不能用作有绕组的电气设备的过电压保护,而只用于线路、发电厂和变电站进线的保护;管型避雷器遮断电流的上限应不小于安装处短路电流的最大值,下限不大于安装处短路电流的最小值。
三、阀型避雷器分普通型和磁吹型两大类,选择时应注意避雷器的保护比Kb数值大小要按照额定电压的大小来选择。
要注意校验避雷器的额定电压、工频放电电压、冲击放电电压及残压,要注意与被保护电气设备的距离。
四、选择氧化锌避雷器时,要计算或实测避雷器安装处长期的最大工作电压。
应使避雷器的额定电压大于或等于避雷器安装点的暂态工频过电压幅值。
注意残压与被保护设备绝缘水平的配合。
避雷器的选择方法
避雷器的选择方法避雷器如何选择1按额定电压选择:要求避雷器额定电压与系统额定电压一致;2校验最大允许电压:核对避雷器安装地点可能出现的导线对地最大电压,是否不超过避雷器的最大工作电压;导线对地最大电压与系统中性点是否接地及系统参数有关:①中性点不接地系统:导线对地最大电压为系统电压的1.1倍,所以一般没有问题;②中性点经消弧线圈或高阻抗接地系统:一般选择避雷器的最大工作电压等于线电压;③中性点直接接地系统:国产避雷器的中性点直接接地系统中其最大工作电压等于系统电压的0.8倍,所以按额定电压选择是没有问题的;3校验工频放电电压:①在中性点绝缘或经阻抗接地的系统中,工频放电电压应大于相电压的3.5倍;在中性点直接接地的系统中,工频放电电压应大于相电压的3倍;②工频放电电压应大于最大工作电压的1.8倍防雷器 ,又称避雷器、浪涌保护器、电涌保护器、过电压保护器等,主要包括电源防雷器和信号防雷器,防雷器是通过现代电学以及其它技术来防止被雷击中的设备的损坏;避雷器中的雷电能量吸收,主要是氧化锌压敏电阻和气体放电管;基于防雷器的防护想要取得理想的效果,应注重“在合适的地方合理地装设合适的防雷器”,防雷器的选择十分重要;⒈进入建筑物的各种设施之间的雷电流分配情况如下:约有50%的雷电流经外部防雷装置泄放入地,另有50%的雷电流将在整个系统的金属物质内进行分配;这个估模式用于估算在LPAOA区、LPZOB区和LPZ1区交界处作等电位连接的防雷器的通流能力和金属导线的规格;该处的雷电流为10/35μs电流波形;在各金属物质中雷电流的分配情况下:各部分雷电流幅值取决于各分配通道有的阻抗与感抗,分配通道是指可能被分配到雷电流的金属物质,如电力线、信号线、自来水管、金属构架等金属管级及其它接地,一般仅以各自的接地电阻值就可以大致估算;在不能确定的情况下,可以认为接是电阻相等,即各金属管线平均分配电流;⒉在电力线架空引入,并且电力线可能被直击雷击中时,进入建筑物内保护区的雷电流取决于外引线路、防雷器放电支路和用户侧线路的阻抗和感抗;如内外两端阻抗一致,则电力线被分配到一半的直击雷电流;在这种情况下必须采用具有防直击雷功能的防雷器;⒊后续的估模式用于估LPZ1区以后防护区交界处的雷电流分配情况;由于用户侧绝缘阻抗远远大于防雷器放电支路与外引线路的阻抗,进入后续防雷区的雷电流将减少,在数值上不需特别估算;一般要求用于后续防雷区的电源防雷器的通流能力在20kA8/20μs以下,不需采用大通流能力的防雷器;后续防雷区防雷器的选择应考虑各级之间的能量分配和电压配合,在许多因素难以确定时,采用串并式电源防雷器是个好的选择;串并式是根据现代雷电防护中许多应用场合、保护范围层次区分等特点提出的概念相对于传统的并式防雷器而言;其实质是经能量配合和电压分配的多级放电器与滤波器技术的有效结合;串并式防雷有如下特点:应用广泛;不但可以按常规进行应用,也适合保护区难以区别的场所;感生退耦器件在瞬态过电压下的分压、延迟作用,以帮助实现能量配合;减缓瞬态干扰的上升速率,以实现低残压与长寿命以及极快的响应时间;⒋防雷器的其它参数选择取决于各个被保护物所在防雷区的级别,其工作电压以安装在引电路中所有部件的额定电压为准;串并式防雷器还需注意其额定电流;⒌影响电子线雷电流分配的其它因素:变压器端接地电阻降低将使电子线中分配电流增大;供电线缆的长度的增加将使电力线中分配电流减少,并使几要导线中有平衡的电流分配;过短的电缆长度和过低的中性线阻抗将使电流不平衡,从而引起差模干扰;供电线缆并接多用户将降低有效阻抗,导致分配电流增大,在连成网状的供电状态下,雷临时性流主要流入电力线,这是多数雷损发生在电力线处的原因;;。
避雷器参数选择
复合外套氧化物避雷器参数选择1. 避雷器选型总体原则避雷器选型的一般原则如下。
(1) 根据被保护对象选择避雷器类型。
(2) 按系统中长期作用在避雷器上的最高电压确定避雷器的持续运行电压。
(3) 估算通过避雷器的雷电放电电流幅值,选择避雷器的标称放电电流。
(4) 根据被保护设备的额定雷电冲击耐受电压和操作冲击耐受电压,按照绝缘配合系数的要求,留够绝缘裕度,确定避雷器雷电冲击保护水平和操作冲击保护水平。
2、避雷器额定电压:施加避雷器端子间的最大允许工频电压有效值,按照此电压所设计的避雷器,能在所规定的动作负载试验中确定的暂时过电压下正确地工作。
(1)按IEC标准规定,避雷器在注入标准规定的能量后,必须能耐受相当于额定电压数值的暂时过电压至少10s。
(2)避雷器额定电压选择。
避雷器额定电压可按(下)式选择Ur > kUt (1)式中:Ur——避雷器额定电压,kV;k――切除短路故障时间系数,10s及以内切除故障k=1.0, 10s以上切除故障k=1.3;Ut——暂时过电压,kV在选择避雷器额定电压时,仅考虑单相接地、甩负荷和长线电容效应引起的暂时过电压,可按表3选取注* 4167即:10kV避雷器额定电压选17kV; 35kV避雷器额定电压选54KV3、避雷器的标称放电电流的选取避雷器的标称放电电流分IkA、1. 5kA、2. 5kA、5kA、10kA和20kA 共6个等级。
确定避雷器的额定电压后,对照《交流电力系统金属氧化物避雷器使用导则》中避雷器分类表,可查出相应的避雷器标称放电电流等级。
一般保护110kV一220kV设备的避雷器选10kA;保护35kV以下设备的避雷器选5kA;变压器中性点避雷器选1.5kA。
即:油田配电线路选取标称电流为5kA.在确定避雷器的标称放电电流时,按照《交流无间隙金属氧化物避雷器》GBII032--2000附录K给出的各标称放电电流等级的避雷器每单位额定电压下典型的最大残压范围,用各设备额定雷电冲击电流的耐受电压值除以1. 4得到允许的最大残压值,再除以相应电压等级下选定的避雷器的额定电压值得到一个比值(这个比值为允许的最大值),在附录K中,查出相应的额定电压和雷电冲击保护水平栏中对应的最相近的放电电流等级,也可得到选定的避雷器标称放电电流等级。
避雷器参数
避雷器的电气参数[ 2007-1-7 16:51:00 | By: 35dtb ]1.系统额定电压(有效值)(kV):与电力系统标称电压相对应。
2.避雷器额定电压(有效值)(kV)(灭弧电压):保证避雷器能灭弧的最高工频电压允许值。
3.工频放电电压(有效值)(kV):避雷器在工频电压下将放电的电压值。
由于火花间隙击穿的分散性,它有一个上限值和下限值。
工频放电电压不能低于下限值,以避免在能量大的内过电压下动作,使避雷器损坏或爆炸。
工频放电电压也不能高于上限值,因在一定的结构下工频放电电压和冲击放电电压有一定的影响关系,工频放电电压高了将使冲击放电电压提高,影响保护效果。
4.冲击放电电压:在冲击电压作用下避雷器发生放电的电压值(幅值)。
5.残压:当波形为8/20μs,5kA或10kA的冲击电流流过避雷器时避雷器两端的电压降,以幅值表示。
此残压为避雷器雷电放电时加于并接的被保护设备上的电压,当然低一点好。
6.避雷器持续运行电压:加于避雷器两端允许持续运行的工频电压有效值。
7.避雷器的直流参考电压U1mA:使恒定的1mA电流流过避雷器时施加于避雷器两端的电压。
避雷器额定电压是施加到避雷器端子间的最大允许工频电压有效值,按照此电压设计的避雷器,能在所规定的动作负载试验中确定的暂时过电压下正确地工作。
它是表明避雷器运行特征的一个重要参数,但它不等于系统标称电压。
由于电力系统的标称电压使该系统相间电压的标幺值,而避雷器一般安装在相对地之间,正常工作时承受的是相电压和暂时过电压,并且避雷器有它本身的特点,因此其额定电压与电力系统的标称电压以及其他电器的额定电压有不同意义。
按照国际电工委员会(IEC99-4)及GB11032对无间隙金属氧化物避雷器的规定,避雷器在60度的温度下,注入标准规定的能量后,必须能耐受相当于额定电压数值的暂时过电压至少1s。
避雷器额定电压建议值:非直接接地系统及小阻抗接地系统:1s及以内切除故障,10kV选用13kV避雷器1s以上切除故障,10kV选用17kV避雷器直接接地系统:110kV选用102kV避雷器并联电容器装置保护用氧化锌避雷器的选型问题唐耀胜(桂林电力电容器总厂,桂林541004))摘要:从我国电力系统实际情况出发,结合避雷器选型的历史回顾和新版本的避雷器国家标准,提出了使电力系统安全、可靠运行的并联电容器装置用氧化锌避雷器的选型方法,对变电站中并联电容器装置的设计具有一定的参考价值。
【选型】防雷器如何选型、安装和配线?
在变压器低压电源输出端(即机房市电输入总配电箱处)配置安装三套电源SPD,最大通流容量50KA(10/350μs),保护水平小于4KV。若开关型SPD和限压型SPD做级联配合且间距太小时,应考虑串联装电源SPD,标称放电电流为40KA,最大放电电流为80KA,电压保护水平为小于2.5KV。
防雷器前的空开的选择原则是什么?
一般根据经验来定的。
B级 60kA~ 第一级 63A
C级 20kA~ 第二级 32A
D级 10kA~ 第三级 25 20 16A
电信机房防雷解决方案
概述:随着现代电子技术的不断发展,精密电子设备被广泛应用在各行业的计算机、通信网络的运行系统中。这些高精度的微电子计算机设备内置大量的CMOS半导体集成模块,导通过压、过流保护能力极其脆弱。(美国通用研究公司提供磁场脉冲超过0.07高斯,就可引起计算失效;磁场脉冲超过2.4高斯就可以引起集成电路永久性损坏。)无法保证在特定的空间遭受雷击时仍能安全运行。电信网络系统大多是高精密的电子设备,承受雷电流的能力较差,雷灾事故发生机率大;而且电信网络系统要求前天24小时畅通,工作站与服务器通过双绞线连接,一旦遭受雷击将严重影响网络正常工作,同时有硬件损坏和数据丢失的损失。所以对电信系统中心机房的采取雷电保护措施处理是非常有必要的。
确定方法:
当:B>A时 C小于等于A
当:B=A时 C小于A或不安装C
当:B<A时 C小于B或不安装C
2、避雷器连接线径选择应该根据所接入配电线路最大供电电流确定;其通过的电流应大于配电线路最大供电电流。如有避雷器上端有断路器,线径选择应和其匹配。
3、避雷器选型标准。请参考:国家标准 GB 50057-94(2000),GB50343-2004,GB 16895.22-2004等相关标准。
ABB避雷器的选型导则
© ABB Group October 28, 2024 | Slide 8
避雷器主要参数
避雷器的直流1mA参考电压Uref ➢ 直流参考电压:在避雷器通过直流参考电流时测
出的直流电压平均值。直流参考电流通常取1mA。 ➢ 0.75倍直流参考电压下漏电流。<50µA ➢ GB11032要求: 10kV避雷器大于24kV
➢ 线路放电等级1-5级
氧化锌避雷器能够吸收切空载长线过电压或重合闸过电压线路所释放 的能量,其能力大小规定用2ms方波电流和线路放电等级表征。线路放 电等级是依据波阻抗、电流持续时间、充电电压的不同来确定,波阻 抗0.8UR、电流持续时间3200us 、2.4Ur为放电等级5级。
➢ 能量吸收能力。
kV
kV
kA kV A
kV
YH5WS 10/30
10
8
5 30 75
15
பைடு நூலகம்
YH5WZ 10/27 10 8 5 国标要求
ABB产品型号 避雷器额定电压 持续运行电压 标称放电电流
kV
kV
kA
MWD07 YH5WZ 51/134 MWK44
8.75515
740.8 44
15010
YH5WZ 17/45
17
例如:10kV系统MWD15型避雷器 Ur =18.8 kV
© ABB Group October 28, 2024 | Slide 2
避雷器主要参数
避雷器持续运行电压Uc ➢ 允许持续地加在避雷器端子间的工频电压有效值。 ➢ 一般相当于避雷器额定电压的75%-80% ➢ 选择避雷器的主要基础。
避雷器全全参数及选型原则.
金属氧化物避雷器的选择避雷器是电力系统中主要的防雷保护装置之一,只有正确地选择避雷器,方能发挥其应有的防雷保护作用。
1、无间隙金属氧化物避雷器的选择选择的一般要求如下:(1)、应按照使用地区的气温、海拔、风速、污秽以与地震等条件确定避雷器使用环境条件,并按系统的标称电压、系统最高电压、额定频率、中性点接地方式,短路电流值以与接地故障持续时间等条件确定避雷器的系统运行条件。
(2)、按照被保护的对象确定避雷器的类型。
(3)、按长期作用于避雷器上的最高电压确定避雷器的持续运行电压。
(4)、按避雷器安装地点的暂时过电压幅值和持续时间选择避雷器的额定电压。
(5)、估算通过避雷器的放电电流幅值,选择避雷器的标称放电电流。
(6)、根据被保护设备的额定雷电冲击耐受电压和额定操作冲击耐受电压,按绝缘配合的要求,确定避雷器的雷电过电压保护水平和操作过电压保护水平。
(7)、估算通过避雷器的冲击电流和能量,选择避雷器的试验电流幅值,线路放电耐受试验等级与能量吸收能力。
(8)、按避雷器安装处最大故障电流,选择避雷器的压力释放等级。
(9)、按避雷器安装处环境污染程度,选择避雷器瓷套的泄漏比距。
(10)、按避雷器安装的引线拉力、风速和地震等条件,选择它的机械强度。
(11)、当避雷器不满足绝缘配合要求时,可采取适当降低其额定电压或标称放电电流等级或提高被保护设备的绝缘水平等补救措施。
2、主要特性参数选择(1)、持续运行电压Uc中性点直接接地系统的相对地无间隙金属氧化物避雷器,其Uc可按不低于系统最高相电压选取。
在中性点非直接接地系统,如单相接地故障能在10s以切除,其Uc仍可按不低于选取,但由于我国大局部中性点非直接接地系统中允许带接地故障运行2h以上,因此Uc可按以下原如此选取:10s与以切除故障35~66kV Uc≥U LL,至于10s~2h之间,可按2h以上选取,也可参照避雷器的工频电压耐受特性曲线选取。
(2)、额定电压UrUr是指避雷器两端间的最大允许工频电压的有效值,是在60℃温度下注入规定能量后,能耐受额定电压Ur10s,随后在Uc下,耐受30min,能保持热稳定。
避雷器参数选择参考
避雷器参数选择参考
1.避雷器选型总体原则
避雷器选型的一般参照如下:
1.1.根据被保护对象来选择避雷器类型。
1.2.估算流过避雷器的雷电放电电流的幅值,依此选择避雷器的标
称放电电流。
1.3.按系统中长期作用于避雷器上的最高电压来确定避雷器的持
续运行电压。
1.4.按照被保护设备额定雷电冲击耐受电压值和操作冲击耐受电
压值,依据绝缘配合系数的要求,考虑绝缘裕度,从而确定避雷器的雷电冲击保护水平及操作冲击保护水平。
2.避雷器的额定电压:施加在避雷器端子间最大允许工频电压的有
效值,按照此电压所设计的避雷器,能够在所规定的动作负载试验中确定的暂时过电压下正常地工作。
2.1IEC标准规定,避雷器在注入标准规定的能量后,必须能耐
受相当于额定电压数值的暂时过电压至少10s。
2.2避雷器额定电压选择:
避雷器额定电压可按(下)式选择U r≥kU t (1)
式中:Ur:避雷器额定电压,kV;
K:切除短路故障时间系数,10s 及以内切除故障k=1.0,10s
以上切除故障k=1.3;
Ut:暂时过电压,kV。
3.避雷器的标称放电电流的选取
避雷器的标称放电电流分lkA、1.5kA、2.5kA、5kA、10kA和20kA 共6个等级。
在确定避雷器的额定电压之后,参照《交流电力系统金属氧化物避雷器使用导则》中的避雷器分类表,可查出相对应的避雷器标称放电电流等级。
一般保护110kV一220kV设备用避雷器选10kA;保护35kV 以下设备用避雷器选5kA;变压器中性点用避雷器选1.5kA。
5、避雷器与安装选型原则
避雷器的选择与安装雷鸣闪电,是常见的自然现象.由于社会经济的发展,一方面高楼林立,且越来越高,使地面与雷云之间的距离缩短;另方面,工厂、汽车等排出的废气越来越多,污染了空气,使空气中的微粒增加,既利于雷云的形成,也利于雷电流的传导.所以,多雷的珠江三角洲,雷越来越多、越来越强、越来越低,给人们的生产和生活带来极大的威胁。
每年因雷击造成的建筑物或设备的损坏越来越严重.不少单位、家庭都遭受雷电的威胁和侵袭,使人们逐步意识到防雷的重要性。
雷电灾害分直击雷和感应雷两种,建筑物上安装符合要求的避雷针(带),能比较有效地防止直击雷的侵害。
感应雷害是避雷针(带)所不能防御的.感应雷侵害的范围广,它不管建筑物的高矮,只要有电源线或讯号线引入的地方,数公里以外产生雷电,都有可能受到感应,使设备遭受损坏。
在电力配电线路中,常用的避雷器有:阀型避雷器、管型避雷器、氧化锌避雷器等,低压配电系统提倡选用低压氧化锌避雷器.氧化锌阀片在正常运行电压下,阀片的电阻很高,仅可通过微安级的泄漏电流。
但在强大的雷电流通过时,却呈现很低的电阻,使其迅速泄入大地,实现限压分流的目的.阀片上的残压几乎不随通过电流的大小而变化,时常维持在小于被保护电器的冲击试验电压,使设备的绝缘得到保护,雷电流过后又恢复到原绝缘状态。
氧化锌避雷器具有优异的非线性伏安特性,残压随冲击电流波头时间的变化特性平稳,陡波响应特性好,没有间隙击穿特性和灭弧问题。
其电阻片单位体积吸收能量大,还可以并联使用,所以在保护超高压长距离输电系统和大容量电容器组特别有利。
对于低压配电网的保护也很适合,是低压配电网的主要保护措施.在避雷器使用前,都应该对其有关技术参数进行测量,以确保避雷器安装质量.1绝缘电阻的测量对35kV及以下氧化锌避雷器用2500V兆欧表摇测,每节的绝缘电阻应不低于1000MΩ。
进口氧化锌避雷器每节的绝缘电阻一般按厂家的标准。
如日本明电舍规定:对ZSE-C2Z型294kV氧化锌避雷器应使用1000V 兆欧表,绝缘电阻不低于2000MΩ。
光伏电站避雷器选型及安装技术
光伏电站避雷器选型及安装技术光伏电站是将太阳能转化为电能的设备,它的建设和运营都需要注意安全问题。
雷击是导致光伏电站事故的常见问题之一。
因此,对于光伏电站来说,选择合适的避雷器并正确安装至关重要。
本文将从避雷器的选型和安装技术两个方面来介绍。
避雷器的选型1. 避雷器的种类及适用范围根据使用环境不同,避雷器的种类也有所不同。
常用的避雷器有瓷套避雷器、聚合物避雷器、氧化锌避雷器等。
瓷套避雷器适用于实心绝缘的配电设备,聚合物避雷器适用于电网补偿电容器和母线系统,氧化锌避雷器适用于中低电压配电网络。
对于光伏电站来说,常见的避雷器应为氧化锌避雷器,它的寿命长、工作稳定可靠。
2. 避雷器的性能参数在选择避雷器时,需要关注其性能参数。
常见的参数包括额定电压、击穿电压、放电电流、泄放电流等。
额定电压应符合电站的额定电压,击穿电压应大于电站的工作电压,放电电流应大于电站过电流能力。
泄放电流是衡量避雷器性能的重要指标,通常应小于避雷器允许泄放电流的上限。
3. 避雷器的品牌及质量选购时应选择品牌有保障、质量可靠的避雷器,防止因选材不当出现事故。
安装技术1. 避雷器的接地对于电气设备来说,良好的接地是确保安全的基础。
避雷器接地时应保证接地电阻小于规定值,通常应小于10欧姆。
接地点应选择在电站附近,不要设置在阳台或看台上。
2. 避雷器的安装位置避雷器安装位置的选择也很重要。
避雷器应安装在光伏电池板的上方离地1-2米高度处,与光伏电池板应有一定间隔。
避雷器的引下线应直通地线,与接地线电阻应小于规定的值。
3. 避雷器的接线避雷器的接线应符合相关标准,接线前应进行检查,确保接线的可靠性和符合规程。
4. 避雷器的维护避雷器在安装后还需定期检查,防止因浪漫、温度等因素造成的避雷器失效。
总结选择合适的避雷器并按照规定正确安装,可以有效避免因雷击造成的意外事故。
在光伏电站的建设和运营过程中,安全应是最重要的考虑因素之一。
避雷器的参数
避雷器的参数主要有以下一些:(本人意见直接看最后)主要参数1.标称电压Un:被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。
2.额定电压Uc:能长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压有效值。
3.额定放电电流Isn:给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。
4.最大放电电流Imax:给保护器施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。
5.电压保护级别Up:保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。
6.响应时间tA:主要反应在保护器里的特殊保护元件的动作灵敏度、击穿时间,在一定时间内变化取决于du/dt或di/dt的斜率。
7.数据传输速率Vs:表示在一秒内传输多少比特值,单位:bps;是数据传输系统中正确选用防雷器的参考值,防雷保护器的数据传输速率取决于系统的传输方式。
8.插入损耗Ae:在给定频率下保护器插入前和插入后的电压比率。
9.回波损耗Ar:表示前沿波在保护设备(反射点)被反射的比例,是直接衡量保护设备同系统阻抗是否兼容的参数。
10.最大纵向放电电流:指每线对地施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。
11.最大横向放电电流:指线与线之间施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。
12.在线阻抗:指在标称电压Un下流经保护器的回路阻抗和感抗的和。
通常称为“系统阻抗”。
13.峰值放电电流:分两种:额定放电电流Isn和最大放电电流Imax。
14.漏电流:指在75或80标称电压Un下流经保护器的直流电流。
从安全运行角度,避雷器的额定电压的选择还应遵守如下原则:①氧化锌避雷器的额定电压,应该使它高于其在安装处可能出现的工频暂态电压。
避雷器的选择方法 民熔
避雷器的选择方法避雷器如何选择(1)按额定电压选择:要求避雷器额定电压与系统额定电压一致。
(2)核验最大允许电压:核对避雷器安装地点可能出现的导线对地最大电压,是否不超过避雷器的最大工作电压。
导线对地最大电压与系统中性点是否接地及系统参数有关:①中性点不接地系统:导线对地最大电压为系统电压的1.1 倍,所以一般没有问题。
②中性点经消弧线圈或高阻抗接地系统一般选择避雷器的最大工作电压等于线电压。
③中性点直接接地系统:国产避雷器的中性点直接接地系统中其最大工作电压等于系统电压的0.8倍,所以按额定电压选择是没有问题的。
(3)校验工频放电电压:①在中性点绝缘或经阻抗接地的系统中,工频放电电压应大于相电压的3.5倍。
在中性点直接接地的系统中,工频放电电压应大于相电压的3倍。
②工频放电电压应大于最大工作电压的1.8倍防雷器,又称避雷器、浪涌保护器、电涌保护器、过电压保护器等,主要包括电源防雷器和信号防雷器,防雷器是通过现代电学以及其它技术来防止被雷击中的设备的损坏。
避雷器中的雷电能量吸收,主要是氧化锌压敏电阻和气体放电管。
基于防雷器的防护想要取得理想的效果,应注重“在合适的地方合理地装设合适的防雷器”,防雷器的选择十分重要。
进入建筑物的各种设施之间的雷电流分配情况如下:约有50%的雷1电流通过外部防雷装置排入地面,另外50%的雷电电流将分布在整个系统的金属材料中。
该估算模型用于估算避雷器的载流能力和LPOAA、lpzob和lpz1交界处金属导体的规格。
雷电电流为10/35μs。
2在每个金属材料中雷电电流分布的情况下:每个部分的雷电电流幅值取决于每个分配通道的阻抗和电感。
配电通道是指可能分布到雷电电流中的金属材料,如电源线、信号线、水管、金属框架等接地,只能根据各自的接地电阻值粗略估算。
在不确定的情况下,可以认为连接的电阻是相等的,即每个金属管道的平均电流分布。
2当电源线架空引入,可能直接受雷击时,进入建筑物保护区的雷电电流取决于出线、避雷器放电支路和用户侧线路的阻抗和电感电抗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属氧化物避雷器的选择避雷器是电力系统中主要的防雷保护装置之一,只有正确地选择避雷器,方能发挥其应有的防雷保护作用。
1、无间隙金属氧化物避雷器的选择选择的一般要求如下:(1)、应按照使用地区的气温、海拔、风速、污秽以及地震等条件确定避雷器使用环境条件,并按系统的标称电压、系统最高电压、额定频率、中性点接地方式,短路电流值以及接地故障持续时间等条件确定避雷器的系统运行条件。
(2)、按照被保护的对象确定避雷器的类型。
(3)、按长期作用于避雷器上的最高电压确定避雷器的持续运行电压。
(4)、按避雷器安装地点的暂时过电压幅值和持续时间选择避雷器的额定电压。
(5)、估算通过避雷器的放电电流幅值,选择避雷器的标称放电电流。
(6)、根据被保护设备的额定雷电冲击耐受电压和额定操作冲击耐受电压,按绝缘配合的要求,确定避雷器的雷电过电压保护水平和操作过电压保护水平。
(7)、估算通过避雷器的冲击电流和能量,选择避雷器的试验电流幅值,线路放电耐受试验等级及能量吸收能力。
(8)、按避雷器安装处最大故障电流,选择避雷器的压力释放等级。
(9)、按避雷器安装处环境污染程度,选择避雷器瓷套的泄漏比距。
(10)、按避雷器安装的引线拉力、风速和地震等条件,选择它的机械强度。
(11)、当避雷器不满足绝缘配合要求时,可采取适当降低其额定电压或标称放电电流等级或提高被保护设备的绝缘水平等补救措施。
2、主要特性参数选择(1)、持续运行电压Uc页16 共页1 第中性点直接接地系统的相对地无间隙金属氧化物避雷器,其Uc可按不低于系统最高相电压选取。
在中性点非直接接地系统,如单相接地故障能在10s以内切除,其Uc仍可按不低于选取,但由于我国大部分中性点非直接接地系统中允许带接地故障运行2h以上,因此Uc可按以下原则选取:10s及以内切除故障2h及以上切除故障3~10kV 1.0~1.1U,35~66kV Uc≥U LL至于10s~2h之间,可按2h以上选取,也可参照避雷器的工频电压耐受特性曲线选取。
(2)、额定电压UrUr是指避雷器两端间的最大允许工频电压的有效值,是在60℃温度下注入规定能量后,能耐受额定电压Ur10s,随后在Uc下,耐受30min,能保持热稳定。
(3)、暂时过电压U T暂时过电压UT是确定避雷器额定电压之依据,在选择U时,主要考虑单T相接地,甩负荷和长线电容效应所引起的工频电压升高,幅值可按下列条件选取。
①中性点非直接接地系统:3~10kV U=1.1Um T35~66kV,U=Um T②中性点直接接地系统:220kV ~110线路侧页16 共页2 第(4)、相对地避雷器的额定电压相对地避雷器的额定电压可按表1确定。
(5)、工频电压耐受时间特性避雷器的工频电压耐受时间特性,是其在吸收了规定的过电压能量之后耐受暂时过电压的能力。
中性点直接接地系统中用的避雷器,或是带接地故障自动切除装置系统中用的避雷器,可耐受等于其额定电压的暂时过电压10s,若暂时过电压作用时间长,其耐受的幅值就低,反之就高。
故若暂时过电压作用时间短于或大于10s或其幅值低于或高于避雷器的额定电压,即可用该避雷器的工频耐受时间特性曲线进行校核。
(6)、标称放电电流国标GB11032《金属氧化物避雷器技术规范》规定的避雷器标称放电电流IB,如表2所列。
(7)、保护水平与绝缘配合系数雷电过电压保护水平是下面两项较高者:①标称放电电流下的最大残压。
页16 共页3 第指油浸绝缘类电器,其它类电气设备可1.15(②陡坡冲击电流下的最大残压除以)。
有不同系数操作过电压的保护水平是操作冲击电流下的最大残压。
按惯用法进行绝缘配合时,设备的绝缘水平与避雷器保护水平比值为配合系数。
、雷电过电压配合系数:11.25 避雷器紧靠被保护设备时>1.4 避雷器非紧靠被保护设备时>1.152、操作过电压配合系数>页16 共页4 第避雷器的选择与安装雷鸣闪电,是常见的自然现象。
由于社会经济的发展,一方面高楼林立,且越来越高,使地面与雷云之间的距离缩短;另方面,工厂、汽车等排出的废气越来越多,污染了空气,使空气中的微粒增加,既利于雷云的形成,也利于雷电流的传导。
所以,多雷的珠江三角洲,雷越来越多、越来越强、越来越低,给人们的生产和生活带来极大的威胁。
每年因雷击造成的建筑物或设备的损坏越来越严重。
不少单位、家庭都遭受雷电的威胁和侵袭,使人们逐步意识到防雷的重要性。
雷电灾害分直击雷和感应雷两种,建筑物上安装符合要求的避雷,能比较有效地防止直击雷的侵害。
感应雷害是避雷针(带)所不能防针(带)御的。
感应雷侵害的范围广,它不管建筑物的高矮,只要有电源线或讯号线引入的地方,数公里以外产生雷电,都有可能受到感应,使设备遭受损坏。
在电力配电线路中,常用的避雷器有:阀型避雷器、管型避雷器、氧化锌避雷器等,低压配电系统提倡选用低压氧化锌避雷器。
氧化锌阀片在正常运行电压下,阀片的电阻很高,仅可通过微安级的泄漏电流。
但在强大的雷电流通过时,却呈现很低的电阻,使其迅速泄入大地,实现限压分流的目的。
阀片上的残压几乎不随通过电流的大小而变化,时常维持在小于被保护电器的冲击试验电压,使设备的绝缘得到保护,雷电流过后又恢复到原绝缘状态。
残压随冲击电流波头时间的变氧化锌避雷器具有优异的非线性伏安特性,化特性平稳,陡波响应特性好,没有间隙击穿特性和灭弧问题。
其电阻片单位体积吸收能量大,还可以并联使用,所以在保护超高压长距离输电系统和大容量电容器组特别有利。
对于低压配电网的保护也很适合,是低压配电网的主要保护措施。
页16 共页5 第以确保避雷器安装都应该对其有关技术参数进行测量,在避雷器使用前,质量。
绝缘电阻的测量1兆欧表摇测,每节的绝缘电阻应2500V35kV及以下氧化锌避雷器用对Ω。
不低于1000M进口氧化锌避雷器每节的绝缘电阻一般按厂家的标准。
如日本明电舍规兆欧表,绝缘电阻不氧化锌避雷器应使用1000V型ZSE-C2Z294kV 定:对2000MΩ。
低于 2 测量直流和泄漏电流U 测量直流电压目的是为了检查其非U电压下的泄漏电流,及75%1mA1mA线性特性及绝缘性能。
《规程》规直流时,被试避雷器两端的电压值。
U1mA为试品通过1mA电压下的0.75U与初始值比较,变化应不大于±5%。
定:1mA电压值U1mA1mA%时,合格的氧化锌避雷25A。
也就是说,在电压降低泄漏电流应不大于50μAμ以下。
μA降至50器的泄漏电流大幅度降低,从1000U 若就可能是避雷器阀片0.75U下泄漏电流明显增大,电压下降或1mA1mA受潮老化或瓷质有裂纹。
测量时,为防止表面泄漏电流的影响,应将瓷套表面的温度系数约为U擦净或加屏蔽措施,并注意气候的影响。
一般氧化锌阀片1mA%,必要时可进1U1mA 约降低)%/℃,即温度每增高0.05~0.1710℃,(行换算。
3 运行电压下交流泄漏电流测量及(全电流)4型检测仪可以测得运行电压下避雷器的泄漏电流-用LCD Px等。
其有功分量(阻性电流)和无功分量(容性电流)、功率损耗页16 共页6 第阻性电流幅值增加很试验研究表明:当氧化锌避雷器阀片受潮或老化时,快,因此监测阻性电流可以有效地监测避雷器绝缘状况。
应停电进行检2倍初始值时,《规程》规定:当泄漏电流有功分量增加到氧化查。
国内有些单位自己制定了某些判断标准,如有的单位规定,当330kV,氧化锌避雷器的阻性电流~220kV0.3mA、110锌避雷器的阻性电流峰值超过或测量值较初始值明显增加时,应进行停电试验,以判断绝缘0.2mA峰值超过优劣。
很容易受到尤其在多雷区单独架设的低压线路,低压架空线路分布很广,雷击。
同时,低压架空线直接引入用户时,低压设备绝缘水平很低,人们接触的机会又多,因此必须考虑雷电沿着低压线侵入屋内的防雷保护措施。
其具体措施如下:接线的配电变压器,宜在低压侧装一组阀/YYY/Y或)(13~10kV型避雷器或保护间隙。
变压器低压侧为中性点不接地的情况,应在中性点处装设击穿保险器;处,安装一组低压避)对于重要用户,宜在低压线路引入室内前50m (2雷器,入室后再装一组低压避雷器;)对于一般用户,可在低压进线第一支持物处,装一组低压避雷器或3 (Ω;击穿保险器,亦可将接户线的绝缘子铁脚接地,其工频接地电阻不应超过30)对于易受雷击的地段,直接与架空线路相连接的电动机或电度表,(4也可以采用通讯设,2mm间隙距离可采用1.5~宜加装低压避雷器或间隙保护,放电间隙保护。
备上用的500V目的是把雷电电压峰值限制在电器可以承电源避雷器原则上与负载并联,受的范围内。
在比较筛选合格的避雷器后,在安装时还应考虑线路敷设和接地页16 共页7 第处理问题。
根据保护对象,对雷电压敏感情况,适度考虑屏蔽处理。
屏蔽是指利用各种屏蔽体来阻挡、衰减施加在电子设备上的电磁干扰和过电压能量。
屏蔽可以大到整栋楼层,小到设备机房、电缆线等。
测量结果表明:电缆屏蔽一端接地,可将高频干扰电压降低一个数量级,屏蔽两端接地,可降低两个数量级。
因此,屏蔽处理是线路敷设和避雷器安装必不可少的一项内容。
对于必须提供良好的接地装置,使雷电流迅速流向大地。
避雷器安装后,通信系统的直接接地,计算机网络系统的逻辑接地,与电源的工作接地、安全接地应该作等电位处理。
感应雷所造成的由广东省各市雷电灾害调查统计表中各项调查数据可知,经济损失,远比直击雷造成的损失大得多。
因此,在完善建筑物防直击雷设施的同时,亦应着重考虑设备的防感应雷设施,达到综合防雷要求,将雷电所带来的经济损失降到最低程度页16 共页8 第并联电容器装置保护用氧化锌避雷器的选型问题1 以往只考虑操作过电压和雷电过电压水平的避雷器选型及弊端国家标准规定,系统供电端电压应略高于系统的标称电压(或额定电压)Un的K倍,即K=Um/Un(Um是系统最高电压)。
电气设备的绝缘应能在Un下长期运行。
220kV及以下系统的K为1.15,330kV及以下系统的K=1.1。
避雷器设计的初期也遵守上述原则。
氧化锌避雷器之前是SiC避雷器。
10kV及以下SiC避雷器的灭弧电压设计是定在系统最高运行电压的1.1倍;35kVSiC避雷器的灭弧电压等于系统最高电压;110kV及以上SiC避雷器的灭弧电压为系统最高电压的80%。
对应以上的倍数分别有110%避雷器、100%避雷器和80%避雷器。
我国使用氧化锌避雷器初期,其额定电压是以SiC避雷器的灭弧电压为参考作设计的。
早期的6kV、10kV和35kV避雷器均遵守上述原则,如:Y5WR-7.6/26、Y5WR-12.7/45、Y5WR-41/130。
而最大长期工频工作电压为系统最高相电压,如Y5WR-12.7/45为:2 保证在单相接地过电压下运行且电力系统安全情况下的避雷器选型及必要性页16 共页9 第从安全运行角度,避雷器的额定电压的选择还应遵守如下原则:①氧化锌避雷器的额定电压,应该使它高于其在安装处可能出现的工频暂态电压。