最新中考数学专题训练:定值和最值问题解析版
2021年中考数学复习专题8 最值与定值问题(精讲练习)
专题8 最值与定值问题一、选择题1.(2020·南通)如图,在△ABC 中,AB =2,∠ABC =60°,∠ACB =45°,D 是BC 的中点,直线l 经过点D ,AE ⊥l ,BF ⊥l ,垂足分别为E ,F ,则AE +BF 的最大值为(A )A . 6B .2 2C .2 3D .3 2【解析】如图,过点C 作CK ⊥l 于点K ,过点A 作AH ⊥BC 于点H ,在Rt △AHB 中,∵∠ABC =60°,AB =2,∴BH =1,AH = 3 ,在Rt △AHC 中,∠ACB =45°,∴AC =AH 2+CH 2 =(3)2+(3)2 = 6 ,可证△BFD ≌△CKD(AAS ),∴BF =CK ,延长AE ,过点C 作CN ⊥AE 于点N ,可得AE +BF =AE +CK =AE +EN =AN ,在Rt △ACN 中,AN <AC ,当直线l ⊥AC 时,AE +BF 最大值为 6 .2.如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,点O 是AB 的三等分点,半圆O 与AC 相切,M ,N 分别是BC 与半圆弧上的动点,则MN 的最小值和最大值之和是( B )A .5B .6C .7D .8【解析】如图,MN 最小值为OP -OF =83 -1=53;当N 在AB 边上时,M 与B 重合时,MN 经过圆心,经过圆心的弦最长,MN 最大值=103 +1=133,∴MN 长的最大值与最小值的和是6.3.(2020·潍坊)如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =4,以点O 为圆心,2为半径的圆与OB 交于点C ,过点C 作CD ⊥OB 交AB 于点D ,点P 是边OA 上的动点.当PC +PD 最小时,OP 的长为(B )A .12B .34C .1D .32【解析】如图,延长CO 交⊙O 于点E ,连接ED ,交AO 于点P ,此时PC +PD 的值最小.∵CD ⊥OB ,∴∠DCB =90°,又∠AOB =90°,∴∠DCB =∠AOB ,∴CD ∥AO ,∴BC BO =CD AO ,∵OC =2,OB =4,∴BC =2,∴24 =CD 3 ,解得CD =32 ;∵CD ∥AO ,∴EO EC=PO DC ,解得PO =34 . 二、填空题4.(2020·宜宾)如图,四边形ABCD 中,DA ⊥AB ,CB ⊥AB ,AD =3,AB =5,BC =2,P 是边AB 上的动点,则PC +PD 的最小值是__5 2 __.(第4题图) (第5题图)5.(2020·东营)如图,在Rt △AOB 中,OB =2 3 ,∠A =30°,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ(其中点Q 为切点),则线段PQ 长度的最小值为__2 2 __. 【解析】连接OP ,OQ ,作OP′⊥AB 于P′,∵PQ 是⊙O 的切线,∴OQ ⊥PQ ,∴PQ =OP 2-OQ 2 =OP 2-1 ,当OP 最小时,线段PQ 的长度最小,当OP ⊥AB 时,OP 最小,在Rt △AOB 中,∠A =30°,∴OA =OB tan A =6,在Rt △AOP ′中,∠A =30°,∴OP ′=12OA =3,∴线段PQ 长度的最小值=32-1 =2 2 .6.如图,在△ABC 中,AB =AC =5,BC =4 5 ,D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则△BDE 面积的最大值为__8__.【解析】过点C 作CG ⊥BA 于点G ,作EH ⊥AB 于点H ,作AM ⊥BC 于点M.∵AB =AC =5,BC =4 5 ,∴BM =CM =2 5 ,易证△AMB ∽△CGB ,∴BM GB =AB CB ,即25GB=545 ,∴GB =8,设BD =x ,则DG =8-x ,易证△EDH ≌△DCG(AAS ),∴EH =DG =8-x ,∴S △BDE =12 BD ·EH =12 x(8-x)=-12(x -4)2+8,当x =4时,△BDE 面积的最大值为8.三、解答题7.(2020·南京)如图①,要在一条笔直的路边l 上建一个燃气站,向l 同侧的A ,B 两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A′,线段A′B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线l上另外任取一点C′,连接AC′,BC′,证明AC+CB<AC′+C′B.请完成这个证明.(2)如果在A,B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.证明:(1)如图②,连接A′C′,∵点A,点A′关于l对称,点C在l上,∴CA=CA′,∴AC+BC=A′C+BC=A′B,同理可得AC′+C′B=A′C′+BC′,∵A′B<A′C′+C′B,∴AC+BC<AC′+C′B;(2)如图③,在点C处建燃气站,铺设管道的最短路线是ACDB(其中点D是正方形的顶点);如图④,在点C处建燃气站,铺设管道的最短路线是ACD+DE+EB(其中CD,BE都与圆相切).8.如图,在正方形ABCD中,点E,F分别在BC,CD上移动,但A到EF的距离AH 始终保持与AB长相等,问在E,F移动过程中:(1)∠EAF的大小是否有变化?请说明理由;(2)△ECF的周长是否有变化?请说明理由.解:(1)∠EAF的大小没有变化.理由如下:根据题意,知AB=AH,∠B=90°,又∵AH ⊥EF ,∴∠AHE =90°,∵AE =AE ,∴Rt △BAE ≌Rt △HAE(HL ),∴∠BAE =∠HAE ,同理,△HAF ≌△DAF ,∴∠HAF =∠DAF ,∴∠EAF =∠EAH +∠FAH =12 ∠BAH +12∠HAD =12 (∠BAH +∠HAD)=12∠BAD ,又∵∠BAD =90°,∴∠EAF =45°,∴∠EAF 的大小没有变化;(2)△ECF 的周长没有变化.理由如下:∵由(1)知,Rt △BAE ≌Rt △HAE ,△HAF ≌△DAF ,∴BE =HE ,HF =DF ,∴C △EFC =EF +EC +FC =EB +DF +EC +FC =2BC ,∴△ECF 的周长没有变化.9.(2020·连云港)如图,在平面直角坐标系xOy 中,反比例函数y =m x(x >0)的图象经过点A(4,32),点B 在y 轴的负半轴上,AB 交x 轴于点C ,C 为线段AB 的中点. (1)m =________,点C 的坐标为________;(2)若点D 为线段AB 上的一个动点,过点D 作DE ∥y 轴,交反比例函数图象于点E ,求△ODE 面积的最大值.解:(1)6,(2,0);(2)设直线AB 的解析式为y =kx +b ,把A(4,32),C(2,0)代入得 ⎩⎪⎨⎪⎧4k +b =32,2k +b =0,解得⎩⎨⎧k =34,b =-32,∴直线AB 的解析式为y =34 x -32 ;∵点D 为线段AB 上的一个动点,∴设D(x ,34 x -32 )(0<x <4),∵DE ∥y 轴,∴E(x ,6x ),∴S △ODE =12 x ·(6x -34 x +32)=-38 x 2+34 x +3=-38 (x -1)2+278 ,∴当x =1时,△ODE 的面积的最大值为278.。
重难点 二次函数中的线段、周长与面积的最值问题及定值问题(解析版)--2024年中考数学
重难点二次函数中的线段、周长与面积的最值问题及定值问题目录题型01利用二次函数解决单线段的最值问题题型02利用二次函数解决两条线段之和的最值问题题型03利用二次函数解决两条线段之差的最值问题题型04利用二次函数解决三条线段之和的最值问题题型05利用二次函数解决三角形周长的最值问题题型06利用二次函数解决四边形周长的最值问题题型07利用二次函数解决图形面积的最值问题类型一利用割补、拼接法解决面积最值问题类型二利用用铅垂定理巧求斜三角形面积最值问题类型三构建平行线,利用同底等高解决面积最值问题题型08利用二次函数解决定值问题题型01利用二次函数解决单线段的最值问题【解题思路】抛物线中的线段最值问题有三种形式:1.平行于坐标轴的线段的最值问题:常通过线段两端点的坐标差表示线段长的函数关系式,运用二次函数性质求解.求最值时应注意:①当线段平行于y轴时,用上端点的纵坐标减去下端点的纵坐标;②当线段平行于x轴时,用右端点的横坐标减去左端点的横坐标.在确定最值时,函数自变量的取值范围应确定正确.1(2022·辽宁朝阳·统考中考真题)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,-3),连接BC.(1)求抛物线的解析式及点B 的坐标.(2)如图,点P 为线段BC 上的一个动点(点P 不与点B ,C 重合),过点P 作y 轴的平行线交抛物线于点Q ,求线段PQ 长度的最大值.(3)动点P 以每秒2个单位长度的速度在线段BC 上由点C 向点B 运动,同时动点M 以每秒1个单位长度的速度在线段BO 上由点B 向点O 运动,在平面内是否存在点N ,使得以点P ,M ,B ,N 为顶点的四边形是菱形?若存在,请直接写出符合条件的点N 的坐标;若不存在,请说明理由.【答案】(1)y =x 2+2x -3,(-3,0)(2)94(3)-3,-32或(-2,1)或0,3-32【分析】(1)将A ,C 两点坐标代入抛物线的解析式求得a ,c 的值,进而得出解析式,当y =0时,求出方程的解,进而求得B 点坐标;(2)由B ,C 两点求出BC 的解析式,进而设出点P 和点Q 坐标,表示出PQ 的长,进一步得出结果;(3)要使以点P ,M ,B ,N 为顶点的四边形是菱形,只需△PMB 是等腰三角形,所以分为PM =BM ,PM =PB 和BP =BM ,结合图象,进一步得出结果.【详解】(1)解:把点A (1,0),C (0,-3)代入y =ax 2+2x +c 得:c =-3a +2×1+c =0 ,解得:c =-3a =1 ,∴抛物线解析式为y =x 2+2x -3;令y =0,则x 2+2x -3=0,解得:x 1=1,x 2=-3,∴点B 的坐标为(-3,0);(2)解:设直线BC 的解析式为y =kx +b k ≠0 ,把点B (-3,0),C (0,-3)代入得:b =-3-3k +b =0 ,解得:k =-1b =-3 ,∴直线BC 的解析式为y =-x -3,设点P m ,-m +3 ,则Q m ,m 2+2m -3 ,∴PQ =-m -3 -m 2+2m -3 =-m 2-3m =-m +322+94,∴当m =-32时,PQ 最大,最大值为94;(3)解:存在,根据题意得:PC =2t ,BM =t ,则PB =32-2t ,如图,当BM =PM 时,∵B (-3,0),C (0,-3),∴OB =OC =3,∴∠OCB =∠OBC =45°,延长NP 交y 轴于点D ,∵点P ,M ,B ,N 为顶点的四边形是菱形,∴PN ∥x 轴,BN ∥PM ,即DN ⊥y 轴,∴△CDP 为等腰直角三角形,∴CD =PD =PC ⋅sin ∠OCB =2t ×22=t ,∵BM =PM ,∴∠MPB =∠OBC =45°,∴∠PMO =∠PDO =∠MOD =90°,∴四边形OMPD 是矩形,∴OM =PD =t ,MP ⊥x 轴,∴BN ⊥x 轴,∵BM +OM =OB ,∴t +t =3,解得t =32,∴P -32,-32,∴N -3,-32;如图,当PM =PB 时,作PD ⊥y 轴于D ,连接PN ,∵点P ,M ,B ,N 为顶点的四边形是菱形,∴PN ⊥BM ,NE =PE ,∴BM =2BE ,∴∠OEP =∠DOE =∠ODP =90°,∴四边形PDOE 是矩形,∴OE =PD =t ,∴BE =3-t ,∴t =2(3-t ),解得:t =2,∴P (-2,-1),∴N (-2,1);如图,当PB =MB 时,32-2t =t ,解得:t =6-32,∴PN =BP =BM =6-32,过点P 作PE ⊥x 轴于点E ,∴PE ⊥PM ,∴∠EON =∠OEP =∠EPN =90°,∴四边形OEPN 为矩形,∴PN =OE ,PN ⊥y 轴,∵∠OBC =45°,∴BE =PE =PB ⋅sin ∠OBC =6-32 ×22=32-3,∴OE =OB -BE =3-32-3 =6-32,∴点N 在y 轴上,∴N 0,3-32 ,综上所述,点N 的坐标为-3,-32或(-2,1)或0,3-32 .【点睛】本题考查了二次函数及其图象的性质,用待定系数法求一次函数的解析式,等腰三角形的分类和等腰三角形的性质,菱形的性质等知识,解决问题的关键是正确分类,画出符合条件的图形.2(2021·西藏·统考中考真题)在平面直角坐标系中,抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点.与y 轴交于点C .且点A 的坐标为(-1,0),点C 的坐标为(0,5).(1)求该抛物线的解析式;(2)如图(甲).若点P 是第一象限内抛物线上的一动点.当点P 到直线BC 的距离最大时,求点P 的坐标;(3)图(乙)中,若点M 是抛物线上一点,点N 是抛物线对称轴上一点,是否存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)y =-x 2+4x +5;(2)P 52,354;(3)存在,M 的坐标为:(3,8)或(-3,-16)或(7,-16).【分析】(1)将A 的坐标(-1,0),点C 的坐(0,5)代入y =-x 2+bx +c ,即可得抛物线的解析式为y =-x 2+4x +5;(2)过P 作PD ⊥x 轴于D ,交BC 于Q ,过P 作PH ⊥BC 于H ,由y =-x 2+4x +5可得B (5,0),故OB =OC ,△BOC 是等腰直角三角形,可证明△PHQ 是等腰直角三角形,即知PH =PQ2,当PQ 最大时,PH 最大,设直线BC 解析式为y =kx +5,将B (5,0)代入得直线BC 解析式为y =-x +5,设P (m ,-m 2+4m +5),(0<m <5),则Q (m ,-m +5),PQ =-m -52 2+254,故当m =52时,PH 最大,即点P 到直线BC的距离最大,此时P 52,354 ;(3)抛物线y =-x 2+4x +5对称轴为直线x =2,设M (s ,-s 2+4s +5),N (2,t ),而B (5,0),C (0,5),①以MN 、BC 为对角线,则MN 、BC 的中点重合,可列方程组s +22=5+02-s 2+4s +5+t 2=0+52,即可解得M (3,8),②以MB 、NC 为对角线,则MB 、NC 的中点重合,同理可得s +52=2+02-s 2+4s +4+02=t +52,解得M (-3,-16),③以MC 、NB 为对角线,则MC 、NB 中点重合,则s +02=2+52-s 2+4s +5+52=t +02,解得M (7,-16).【详解】解:(1)将A 的坐标(-1,0),点C 的坐(0,5)代入y =-x 2+bx +c 得:0=-1-b +c 5=c ,解得b =4c =5 ,∴抛物线的解析式为y =-x 2+4x +5;(2)过P 作PD ⊥x 轴于D ,交BC 于Q ,过P 作PH ⊥BC 于H ,如图:在y =-x 2+4x +5中,令y =0得-x 2+4x +5=0,解得x =5或x =-1,∴B (5,0),∴OB =OC ,△BOC 是等腰直角三角形,∴∠CBO =45°,∵PD ⊥x 轴,∴∠BQD =45°=∠PQH ,∴△PHQ 是等腰直角三角形,∴PH =PQ2,∴当PQ 最大时,PH 最大,设直线BC 解析式为y =kx +5,将B (5,0)代入得0=5k +5,∴k =-1,∴直线BC 解析式为y =-x +5,设P (m ,-m 2+4m +5),(0<m <5),则Q (m ,-m +5),∴PQ =(-m 2+4m +5)-(-m +5)=-m 2+5m =-m -52 2+254,∵a =-1<0,∴当m =52时,PQ 最大为254,∴m =52时,PH 最大,即点P 到直线BC 的距离最大,此时P 52,354;(3)存在,理由如下:抛物线y =-x 2+4x +5对称轴为直线x =2,设M (s ,-s 2+4s +5),N (2,t ),而B (5,0),C (0,5),①以MN 、BC 为对角线,则MN 、BC 的中点重合,如图:∴s +22=5+02-s 2+4s +5+t2=0+52,解得s =3t =-3 ,∴M (3,8),②以MB 、NC 为对角线,则MB 、NC 的中点重合,如图:∴s +52=2+02-s 2+4s +4+02=t +52,解得s=-3t =-21 ,∴M (-3,-16),③以MC 、NB 为对角线,则MC 、NB 中点重合,如图:s +02=2+52-s 2+4s +5+52=t +02,解得s =7t =-11 ,∴M (7,-16);综上所述,M 的坐标为:(3,8)或(-3,-16)或(7,-16).【点睛】本题考查二次函数综合应用,涉及待定系数法、函数图象上点坐标的特征、等腰直角三角形、平行四边形等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度.3(2021·山东泰安·统考中考真题)二次函数y =ax 2+bx +4(a ≠0)的图象经过点A (-4,0),B (1,0),与y 轴交于点C ,点P 为第二象限内抛物线上一点,连接BP 、AC ,交于点Q ,过点P 作PD ⊥x 轴于点D .(1)求二次函数的表达式;(2)连接BC ,当∠DPB =2∠BCO 时,求直线BP 的表达式;(3)请判断:PQQB是否有最大值,如有请求出有最大值时点P 的坐标,如没有请说明理由.【答案】(1)y =-x 2-3x +4;(2)y =-158x +158;(3)PQ QB有最大值为45,P 点坐标为(-2,6)【分析】(1)将A (-4,0),B (1,0)代入y =ax 2+bx +4(a ≠0)中,列出关于a 、b 的二元一次方程组,求出a 、b 的值即可;(2)设BP 与y 轴交于点E ,根据PD ⎳y 轴可知,∠DPB =∠OEB ,当∠DPB =2∠BCO ,即∠OEB =2∠BCO ,由此推断△OEB 为等腰三角形,设OE =a ,则CE =4-a ,所以BE =4-a ,由勾股定理得BE 2=OE 2+OB 2,解出点E 的坐标,用待定系数法确定出BP 的函数解析式即可;(3)设PD 与AC 交于点N ,过B 作y 轴的平行线与AC 相交于点M .由A 、C 两点坐标可得AC 所在直线表达式,求得M 点坐标,则BM =5,由BM ⎳PN ,可得△PNQ ∽△BMQ ,PQ QB=PN BM =PN5,设P (a 0,-a 20-3a 0+4)(-4<a 0<0),则N (a 0,a 0+4)PQ QB =-a 20-3a 0+4-(a 0+4)5=-a 20-4a 05=-(a 0+2)2+45,根据二次函数性质求解即可.【详解】解:(1)由题意可得:a ⋅(-4)2+b ⋅(-4)+4=0a +b +4=0解得:a =-1b =-3 ,∴二次函数的表达式为y =-x 2-3x +4;(2)设BP 与y 轴交于点E ,∵PD ⎳y 轴,∴∠DPB =∠OEB ,∵∠DPB =2∠BCO ,∴∠OEB =2∠BCO ,∴∠ECB =∠EBC ,∴BE =CE ,设OE =a ,则CE =4-a ,∴BE =4-a ,在Rt △BOE 中,由勾股定理得BE 2=OE 2+OB 2,∴(4-a )2=a 2+12解得a =158,∴E 0,158,设BE 所在直线表达式为y =kx +e (k ≠0)∴k ⋅0+e =158,k ⋅1+e =0.解得k =-158,e =158. ∴直线BP 的表达式为y =-158x +158.(3)设PD 与AC 交于点N .过B 作y 轴的平行线与AC 相交于点M .由A 、C 两点坐标分别为(-4,0),(0,4)可得AC 所在直线表达式为y =x +4∴M 点坐标为(1,5),BM =5由BM ⎳PN ,可得△PNQ ∽△BMQ ,∴PQ QB=PN BM =PN 5设P (a 0,-a 20-3a 0+4)(-4<a 0<0),则N (a 0,a 0+4)∴PQ QB=-a 20-3a 0+4-(a 0+4)5=-a 20-4a 05=-(a 0+2)2+45,∴当a 0=-2时,PQQB 有最大值0.8,此时P 点坐标为(-2,6).【点睛】本题主要考查二次函数以及一次函数解析式的确定,函数图像的性质,相似三角形,勾股定理等知识点,熟练运用待定系数法求函数解析式是解题关键,本题综合性强,涉及知识面广,难度较大,属于中考压轴题.4(2020·辽宁阜新·中考真题)如图,二次函数y =x 2+bx +c 的图象交x 轴于点A -3,0 ,B 1,0 ,交y 轴于点C .点P m ,0 是x 轴上的一动点,PM ⊥x 轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的表达式;(2)①若点P 仅在线段AO 上运动,如图1.求线段MN 的最大值;②若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M ,N ,C ,Q 为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.【答案】(1)y =x 2+2x -3;(2)①94,②存在,Q 1(0,-32-1),Q 2(0,32-1)【分析】(1)把A (-3,0),B (1,0)代入y =x 2+bx +c 中求出b ,c 的值即可;(2)①由点P m ,0 得M (m ,-m -3),N m ,m 2+2m -3 ,从而得MN =(-m -3)-m 2+2m -3 ,整理,化为顶点式即可得到结论;②分MN =MC 和MC =2MN 两种情况,根据菱形的性质得到关于m 的方程,求解即可.【详解】解:(1)把A (-3,0),B (1,0)代入y =x 2+bx +c 中,得0=9-3b +c ,0=1+x +c .解得b =2,c =-3. ∴y =x 2+2x -3.(2)设直线AC 的表达式为y =kx +b ,把A (-3,0),C (0,-3)代入y =kx +b .得,0=-3k +b ,-3=b . 解这个方程组,得k =-1,b =-3. ∴y =-x -3.∵点P m ,0 是x 轴上的一动点,且PM ⊥x 轴.∴M (m ,-m -3),N m ,m 2+2m -3 . ∴MN =(-m -3)-m 2+2m -3 =-m 2-3m=-m +32 2+94.∵a =-1<0,∴此函数有最大值.又∵点P 在线段OA 上运动,且-3<-32<0∴当m =-32时,MN 有最大值94. ②∵点P m ,0 是x 轴上的一动点,且PM ⊥x 轴.∴M (m ,-m -3),N m ,m 2+2m -3 . ∴MN =(-m -3)-m 2+2m -3 =-m 2-3m(i )当以M ,N ,C ,Q 为顶点的四边形为菱形,则有MN =MC ,如图,∵C (0,-3)∴MC =(m -0)2+(-m -3+3)2=2m 2∴-m 2-3m =2m 2整理得,m 4+6m 3+7m 2=0∵m 2≠0,∴m 2+6m +7=0,解得,m 1=-3+2,m 2=-3-2∴当m =-3+2时,CQ =MN =32-2,∴OQ =-3-(32-2)=-32-1∴Q (0,-32-1);当m =-3-2时,CQ =MN =-32-2,∴OQ =-3-(-32-2)=32-1∴Q (0,32-1);(ii )若MC =2MN ,如图,则有-m 2-3m =22×2m 2整理得,m 2+4m =0解得,m 1=-4,m 2=0(均不符合实际,舍去)综上所述,点Q 的坐标为Q 1(0,-32-1),Q 2(0,32-1)【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用线段的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用菱形的性质得出关于m 的方程,要分类讨论,以防遗漏.5(2020·天津·中考真题)已知点A (1,0)是抛物线y =ax 2+bx +m (a ,b ,m 为常数,a ≠0,m <0)与x 轴的一个交点.(1)当a =1,m =-3时,求该抛物线的顶点坐标;(2)若抛物线与x 轴的另一个交点为M (m ,0),与y 轴的交点为C ,过点C 作直线l 平行于x 轴,E 是直线l 上的动点,F 是y 轴上的动点,EF =22.①当点E 落在抛物线上(不与点C 重合),且AE =EF 时,求点F 的坐标;②取EF 的中点N ,当m 为何值时,MN 的最小值是22?【答案】(1)抛物线的顶点坐标为(-1,-4);(2)①点F 的坐标为(0,-2-7)或(0,-2+7);②当m 的值为-32或-12时,MN 的最小值是22.【分析】(1)根据a =1,m =-3,则抛物线的解析式为y =x 2+bx -3,再将点A (1,0)代入y =x 2+bx -3,求出b 的值,从而得到抛物线的解析式,进一步可求出抛物线的顶点坐标;(2)①首先用含有m 的代数式表示出抛物线的解析式,求出C (0,m ),点E (m +1,m ).过点A 作AH ⊥l 于点H ,在Rt △EAH 中,利用勾股定理求出AE 的值,再根据AE =EF ,EF =22,可求出m 的值,进一步求出F 的坐标;②首先用含m 的代数式表示出MC 的长,然后分情况讨论MN 什么时候有最值.【详解】解:(1)当a =1,m =-3时,抛物线的解析式为y =x 2+bx -3.∵抛物线经过点A (1,0),∴0=1+b-3.解得b=2.∴抛物线的解析式为y=x2+2x-3.∵y=x2+2x-3=(x+1)2-4,∴抛物线的顶点坐标为(-1,-4).(2)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=-m-1.∴抛物线的解析式为y=x2-(m+1)x+m.根据题意,得点C(0,m),点E(m+1,m).过点A作AH⊥l于点H.由点A(1,0),得点H(1,m).在Rt△EAH中,EH=1-(m+1)=-m,HA=0-m=-m,∴AE=EH2+HA2=-2m.∵AE=EF=22,∴-2m=22.解得m=-2.此时,点E(-1,-2),点C(0,-2),有EC=1.∵点F在y轴上,∴在Rt△EFC中,CF=EF2-EC2=7.∴点F的坐标为(0,-2-7)或(0,-2+7).②由N是EF的中点,得CN=12EF=2.根据题意,点N在以点C为圆心、2为半径的圆上.由点M(m,0),点C(0,m),得MO=-m,CO=-m.∴在Rt△MCO中,MC=MO2+CO2=-2m.当MC≥2,即m≤-1时,满足条件的点N落在线段MC上,MN的最小值为MC-NC=-2m-2=22,解得m=-3 2;当MC<2,-1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC-MC=2-(-2m)=22,解得m=-1 2.∴当m的值为-32或-12时,MN的最小值是22.【点睛】本题考查了待定系数法求解析式,抛物线上的点的坐标满足抛物线方程等,解题的关键是学会利用参数解决问题,学会用转化的思想思考问题,属于中考常考题型..6(2023·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线y=14x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B3,0,C0,-3.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD ⊥AC 于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.写出所有使得以QF 为腰的△QEF 是等腰三角形的点Q 的坐标,并把求其中一个点Q 的坐标的过程写出来.【答案】(1)y =14x 2+14x -3(2)PD 取得最大值为45,P -2,-52 (3)Q 点的坐标为92,-1 或92,5 或92,74.【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线AC 的解析式为y =-34x -3,过点P 作PE ⊥x 轴于点E ,交AC 于点Q ,设P t ,14t 2+14t -3 ,则Q t ,-34t -3 ,则PD =45PQ ,进而根据二次函数的性质即可求解;(3)根据平移的性质得出y =14x -92 2-4916,对称轴为直线x =92,点P -2,-52 向右平移5个单位得到E 3,-52 ,F 0,2 ,勾股定理分别表示出EF 2,QE 2,QF 2,进而分类讨论即可求解.【详解】(1)解:将点B 3,0 ,C 0,-3 .代入y =14x 2+bx +c 得,14×32+3b +c =0c =-3解得:b =14c =-3 ,∴抛物线解析式为:y =14x 2+14x -3,(2)∵y =14x 2+14x -3与x 轴交于点A ,B ,当y =0时,14x 2+14x -3=0解得:x 1=-4,x 2=3,∴A -4,0 ,∵C 0,-3 .设直线AC 的解析式为y =kx -3,∴-4k -3=0解得:k =-34∴直线AC 的解析式为y =-34x -3,如图所示,过点P 作PE ⊥x 轴于点E ,交AC 于点Q ,设P t ,14t 2+14t -3 ,则Q t ,-34t -3 ,∴PQ =-34t -3-14t 2+14t -3 =-14t 2-t ,∵∠AQE =∠PQD ,∠AEQ =∠QDP =90°,∴∠OAC =∠QPD ,∵OA =4,OC =3,∴AC =5,∴cos ∠QPD =PD PQ =cos ∠OAC =AO AC=45,∴PD =45PQ =45-14t 2-t =-15t 2-45t =-15t +2 2+45,∴当t =-2时,PD 取得最大值为45,14t 2+14t -3=14×-2 2+14×-2 -3=-52,∴P -2,-52 ;(3)∵抛物线y =14x 2+14x -3=14x +12 2-4916将该抛物线向右平移5个单位,得到y =14x -92 2-4916,对称轴为直线x =92,点P -2,-52 向右平移5个单位得到E 3,-52 ∵平移后的抛物线与y 轴交于点F ,令x =0,则y =14×92 2-4916=2,∴F 0,2 ,∴EF 2=32+2+52 2=1174∵Q 为平移后的抛物线的对称轴上任意一点.则Q 点的横坐标为92,设Q 92,m ,∴QE 2=92-3 2+m +52 2,QF 2=92 2+m -2 2,当QF =EF 时,92 2+m -2 2=1174,解得:m =-1或m =5,当QE =QF 时,92-3 2+m +522=92 2+m -2 2,解得:m =74综上所述,Q 点的坐标为92,-1 或92,5 或92,74.【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.题型02利用二次函数解决两条线段之和的最值问题【解题思路】抛物线中的线段最值问题有三种形式:2. 两条线段和的最值问题:解决这类问题最基本的定理就是“两点之间线段最短”,解决这类问题的方法是:作其中一个定点关于已知直线的对称点,连接对称点与另一个定点,它们与已知直线的交点即为所求的点. 其变形问题有三角形周长最小或四边形周长最小等.【常见模型一】(两点在河的异侧):在直线L上找一点M,使PA+PB的值最小.方法:如右图,连接AB,与直线L交于点M,在M处渡河距离最短,最短距离为线段AB的长。
中考数学专题训练:定值和最值问题解析版
定值问题解析版1、如图,在平面直角坐标系x O y 中,矩形AOCD 的顶点A 的坐标是(0,4),现有两动点P 、Q ,点P 从点O 出发沿线段OC (不包括端点O ,C )以每秒2个单位长度的速度,匀速向点C 运动,点Q 从点C 出发沿线段CD (不包括端点C ,D )以每秒1个单位长度的速度匀速向点D 运动.点P ,Q 同时出发,同时停止,设运动时间为t 秒,当t=2秒时PQ=52. (1)求点D 的坐标,并直接写出t 的取值范围;(2)连接AQ 并延长交x 轴于点E,把AE 沿AD 翻折交CD 延长线于点F,连接EF ,则△A EF 的面积S 是否随t 的变化而变化?若变化,求出S 与t 的函数关系式;若不变化,求出S 的值. (3)在(2)的条件下,t 为何值时,四边形APQF 是梯形?【答案】解:(1)由题意可知,当t=2(秒)时,OP=4,CQ=2,在Rt△PCQ 中,由勾股定理得:PC=()2222PQ CQ 252-=-=4,∴OC=OP+P C=4+4=8。
又∵矩形AOCD ,A (0,4),∴D(8,4)。
t 的取值范围为:0<t <4。
(2)结论:△AEF 的面积S 不变化。
∵AOCD 是矩形,∴AD∥OE,∴△AQD∽△EQC。
∴CE CQ AD DQ =,即CE t 84t =-,解得CE=8t4t-。
由翻折变换的性质可知:DF=DQ=4-t ,则CF=CD+DF=8-t 。
S=S 梯形AOCF +S △FCE -S △AOE =12(OA+CF )•OC+12CF•CE-12OA•OE =12 [4+(8-t )]×8+12(8-t )•8t 4t --12×4×(8+8t 4t-)。
化简得:S=32为定值。
所以△AEF 的面积S 不变化,S=32。
(3)若四边形APQF 是梯形,因为AP 与CF 不平行,所以只有PQ∥AF。
初中数学定值定点最值问题
初中数学定值定点最值问题初中数学定值定点和最值问题是中考数学压轴题常考考点,对于定值定点问题可以采用特殊点,特殊值和特殊位置确定其值是多少,然后采用一般法去证明,最值问题一般是线段的和与差,最常用的方法是“化折为直”比如常见的“将军饮马问题”、“胡不归问题”、“阿氏圆问题”、“隐圆问题”。
例1.对于任意非零实数a,抛物线y=ax2+ax﹣6a总不经过点P(m+1,4﹣2m),则符合条件的点P的坐标为.变式1.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则写出符合条件的点P的坐标:.变式2.若对于任意非零实数a,抛物线y=ax2+ax﹣6a总不经过点P(m﹣2,m2﹣9),写出符合条件的点P的坐标:.变式3.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0,2x0﹣6),写出符合条件的点P的坐标:.变式4.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(m﹣3,m2﹣16),写出符合条件的点P的坐标:.变式5.若对于任意非零实数a,抛物线y=a(x+2)(x﹣1)总不经过点P(x0﹣3,x0﹣5)写出符合条件的点P的坐标:.变式6.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),写出符合条件的点P的坐标:.例2.已知抛物线y=ax2﹣2anx+an2+n+3的顶点P在一条定直线l上.求直线l的解析式;例3.我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y轴对称,则把该函数称之为“T函数”,其图象上关于y轴对称的不同两点叫做一对“T点”.若关于x的“T函数”y=ax2+bx+c(a>0,且a,b,c是常数)经过坐标原点O,且与直线l:y=mx+n(m≠0,n>0,且m,n是常数)交于M(x1,y1),N(x2,y2)两点,当x1,x2满足(1﹣x1)﹣1+x2=1时,直线l是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.例4.如图,已知P为正方形ABCD的外接圆的劣弧上任意一点,求证:为定值.例5.如图,在△ABC中,AB=5,AC=4,sin A=,BD⊥AC交AC于点D.点P为线段BD上的动点,则PC+PB的最小值为.例6.如图,在Rt△ABC中,∠A=90°,M为BC的中点,H为AB上一点,过点C作CG ∥AB,交HM的延长线于点G,若AC=8,AB=6,求四边形ACGH周长的最小值例7如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B(8,0).若点P为⊙O上的动点,且⊙O的半径为2,一动点E从点A出发,以每秒2个单位长度的速度沿线段AP匀速运动到点P,再以每秒1个单位长度的速度沿线段PB匀速运动到点B后停止运动,求点E的运动时间t的最小值.例8.已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.若点Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.例9.如图,A,B两点的坐标分别为A(4,3),B(0,﹣3),在x轴上找一点P,使线段P A+PB的值最小,则点P的坐标是.例10.如图,已知抛物线过点O(0,0),A(5,5),且它的对称轴为x=2,点B是抛物线对称轴上的一点,且点B在第一象限.当△OAB的面积为15时,P是抛物线上的动点,当P A﹣PB的值最大时,求P的坐标以及P A﹣PB的最大值.例11.如图1,在矩形ABCD中,AB=4,BC=6.点E是线段AD上的动点(点E不与点A,D重合),连接CE,过点E作EF⊥CE,交AB于点F.连接CF,过点B作BG⊥CF,垂足为G,连接AG.点M是线段BC的中点,连接GM.①求AG+GM的最小值;②当AG+GM取最小值时,求线段DE的长.例12.如图一所示,在平面直角坐标系中,抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE ⊥BC于点E,作PF∥AB交BC于点F.当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.。
精编中考数学压轴题动点产生的定值与最值问题8个专题讲解
中考数学压轴题动点产生的定值与最值问题8个专题讲解目录第 1 讲角为定值的常规解法第 2 讲角为定值的高级解法第3讲边为定值的动点问题第4讲线段的和或差为定值的动点问题第5讲比值为定值的动点问题第6讲乘积为定值的动点问题第7讲面积为定值的动点问题第8讲动点产生的几何最值问题第1讲角为定值的常规解法【几何法证明角为定值】(1)三角形内角和定理(2)三角形外角定理(3)等腰三角形底角相等(4)直角三角形两锐角互余(5)平行线的同位角相等、内错角相等、同旁内角互补(6)平行四边形的对角相等、邻角互补(7)等腰梯形底角相等(8)圆所涉及的角的关系:圆心角、圆周角、弦切角定理等【例】如图,平面内两条互相垂直的直线相交于点O,∠MON=90°,点A、B分别在射线O M、ON 上移动,AC是△BAO的角平分线,BD为∠ABN的角平分线,AC与B D的反向延长线交于点P.试问:随着点A、B位置的变化,∠APB的大小是否会变化?若保持不变,请求出∠APB 的度数;若发生变化,求出变化范围。
、【例】如图所示,O的直径A B=4,点P是A B延长线上的一点,过P点作O的切线,切点为C,连接AC.(1)若∠CPA=30°,求P C的长;(2)若点P在A B的延长线上运动,∠CPA的平分线交A C于点M,你认为∠CMP 的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP 的大小。
【代数法求角为定值】一般在直角坐标系中,可以用坐标的方法表示出边或角,从而求解具体角为定值的问题。
【例】如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t 秒(t>0),抛物线y = ax2 + bx + c 经过点O和点P,已知矩形A BCD的三个顶点为A(1,0),B(1,−5),D(4,0).(1)求c,b (用含t的代数式表示):(2)当4<t<5时,设抛物线分别与线段A B,CD交于点M,N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP 的值;②求△MPN的面积S与t的函数关系式,并求t为何值时,S=218;(3)在矩形A BCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”。
几何最值问题-2023年中考数学压轴题专项训练(全国通用)(解析版)
12023年中考数学压轴题专项训练1.几何最值问题一、压轴题速练1一、单选题1(2023·山东烟台·模拟预测)如图,在矩形ABCD 中,AB =8,AD =4,点E 是矩形ABCD 内部一动点,且∠BEC =90°,点P 是AB 边上一动点,连接PD 、PE ,则PD +PE 的最小值为()A.8 B.45 C.10 D.45-2【答案】A【分析】根据∠BEC =90°得到点的运动轨迹,利用“将军饮马”模型将PE 进行转化即可求解.【详解】解:如图,设点O 为BC 的中点,由题意可知,点E 在以BC 为直径的半圆O 上运动,作半圆O 关于AB 的对称图形(半圆O '),点E 的对称点为E 1,连接O 'E 1,则PE =PE 1,∴当点D 、P 、E 1、O '共线时,PD +PE 的值最小,最小值为DE 1的长,如图所示,在Rt △DCO '中,CD =8,CO '=6,∴DO '=82+62=10,又∵O 'E 1=2,∴DE 1=DO '-O 'E 1=8,即PD +PE 的最小值为8,故选:A .【点睛】本题考查线段和最短问题、轴对称的性质、勾股定理及圆周角定理,利用“将军饮马”模型将PE 进行转化时解题的关键.2(2023·安徽黄山·校考模拟预测)如图,在平面直角坐标系中,二次函数y =32x 2-32x -3的图象与x 轴交于点A ,C 两点,与y 轴交于点B ,对称轴与x 轴交于点D ,若P 为y 轴上的一个动点,连接PD ,则12PB +PD 的最小值为()2A.334B.32C.3D.543【答案】A【分析】作射线BA ,作PE ⊥BA 于E ,作DF ⊥BA 于F ,交y 轴于P ,可求得∠ABO =30°,从而得出PE =12PB ,进而得出PD +12PB =PD +EP ,进一步得出结果.【详解】解:如图,作射线BA ,作PE ⊥BA 于E ,作DF ⊥BA 于F ,交y 轴于P ,抛物线的对称轴为直线x =--322×32=12,∴OD =12,当x =0时,y =-3,∴OB =3,当y =0时,32x 2-32x -3=0,∴x 1=-1,x 2=2,∴A (-1,0),∴OA =1,∵tan ∠ABO =OA OB =13=33,∴∠ABO =30°,∴PE =12PB ,∴12PB +PD =PD +PE ≥DF ,当点P 在P 时,PD +PE 最小,最大值等于DF ,在Rt △ADF 中,∠DAF =90°-∠ABO =60°,AD =OD +PA =12+1=32,∴DF =AD ⋅sin ∠DAE =32×32-334,∴12PB +PD 最小=DF =334,故选:A .【点睛】本题以二次函数为背景,考查了二次函数与一元二次方程之间的关系,解直角三角形等知识,解决问题的关键是用三角函数构造12PB .3(2023秋·浙江金华·九年级统考期末)如图,正方形ABCD 的边长为4,点E 是正方形ABCD 内的动点,点P 是BC 边上的动点,且∠EAB =∠EBC .连结AE ,BE ,PD ,PE ,则PD +PE 的最小值为()3A.213-2B.45-2C.43-2D.215-2【答案】A【分析】先证明∠AEB =90°,即可得点E 在以AB 为直径的半圆上移动,设AB 的中点为O ,作正方形ABCD 关于直线BC 对称的正方形CFGB ,则点D 的对应点是F ,连接FO 交BC 于P ,交半圆O 于E ,根据对称性有:PD =PF ,则有:PE +PD =PE +PF ,则线段EF 的长即为PE +PD 的长度最小值,问题随之得解.【详解】解:∵四边形ABCD 是正方形,∴∠ABC =90°,∴∠ABE +∠EBC =90°,∵∠EAB =∠EBC ,∴∠EAB +∠EBA =90°,∴∠AEB =90°,∴点E 在以AB 为直径的半圆上移动,如图,设AB 的中点为O ,作正方形ABCD 关于直线BC 对称的正方形CFGB ,则点D 的对应点是F ,连接FO 交BC 于P ,交半圆O 于E ,根据对称性有:PD =PF ,则有:PE +PD =PE +PF ,则线段EF 的长即为PE +PD 的长度最小值,E∵∠G =90°,FG =BG =AB =4,∴OG =6,OA =OB =OE =2,∴OF =FG 2+OG 2=213,∴EF =OF -OE =213-2,故PE +PD 的长度最小值为213-2,故选:A .【点睛】本题考查了轴对称-最短路线问题,正方形的性质,勾股定理,正确的作出辅助线,得出点E 的运动路线是解题的关键.4(2022秋·安徽池州·九年级统考期末)如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,点P 为AC 边上的动点,过点P 作PD ⊥AB 于点D ,则PB +PD 的最小值为()4 A.154 B.245 C.5 D.203【答案】B【分析】作点B 关于AC 的对称点B ,过点B 作B D ⊥AB 于点D ,交AC 于点P ,点P 即为所求作的点,此时PB +PD 有最小值,连接AB ,根据对称性的性质,可知:BP =B P ,△ABC ≅△AB C ,根据S △ABB =S △ABC +S △AB C =2S △ABC ,即可求出PB +PD 的最小值.【详解】解:如下图,作点B 关于AC 的对称点B ,过点B 作B D ⊥AB 于点D ,交AC 于点P ,连接AB ,点P 即为所求作的点,此时PB +PD 有最小值,根据对称性的性质,可知:BP =B P ,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,∴AB =AC 2+BC 2=5,根据对称性的性质,可知:△ABC ≅△AB C ,∴S △ABB =S △ABC +S △ABC =2S △ABC ,即12×AB ⋅B D =2×12BC ⋅AC ,∴5B D =24,∴B D =245,故选:B .【点睛】本题考查了轴对称一最短路线问题,解题的关键是掌握轴对称的性质.5(2023秋·甘肃定西·八年级校考期末)如图所示,在△ABC 中,∠ABC =68°,BD 平分∠ABC ,P 为线段BD 上一动点,Q 为 边AB 上一动点,当AP +PQ 的值最小时,∠APB 的度数是()A.118°B.125°C.136°D.124°【答案】D【分析】先在BC 上截取BE =BQ ,连接PE ,证明△PBQ ≌△PBE SAS ,得出PE =PQ ,说明AP +PQ =AP +PE ,找出当A 、P 、E 在同一直线上,且AE ⊥BC 时,AP +PE 最小,即AP +PQ 最小,过点A 作AE ⊥BC 于点E ,交BD 于点P ,根据三角形外角的性质可得答案.【详解】解:在BC 上截取BE =BQ ,连接PE ,如图:∵BD 平分∠ABC ,∠ABC =68°,∴∠ABD =∠CBD =12∠ABC =34°,∵BP =BP ,∴△PBQ ≌△PBE SAS ,∴PE =PQ ,∴AP +PQ =AP +PE ,∴当A 、P 、E 在同一直线上,且AE ⊥BC 时,AP +PE 最小,即AP +PQ最小,过点A作AE ⊥BC 于点E ,交BD 于点P ,如图:∵∠AEB =90°,∠CBD =34°,∴∠APB =∠AEB +∠CBD =124°.故选:D .5【点睛】本题主要考查了角平分线的定义,三角形全等的判定和性质,垂线段最短,三角形内角和定理与三角形的外角的性质,解题的关键是找出使AP +PQ 最小时点P 的位置.6(2022秋·重庆沙坪坝·八年级重庆市凤鸣山中学校联考期末)如图,E 为正方形ABCD 边AD 上一点,AE =1,DE =3,P 为对角线BD 上一个动点,则PA +PE 的最小值为()A.5B.42C.210D.10【答案】A【分析】连接EC 交BD 于P 点,根据“两点之间线段最短”,可知PA +PE 的最小值即为线段EC 的长,求出EC 的长即可.【详解】连接EC ,交BD 于P 点∵四边形ABCD 为正方形∴A 点和C 点关于BD 对称∴PA =PC∴PA +PE =PC +PE =EC根据“两点之间线段最短”,可知PA +PE 的最小值即为线段EC 的长.∵AE =1,DE =3∴AD =4∴DC =4∴CE =DE 2+CD 2=32+42=5∴PA +PE 的最小值为5故选:A【点睛】本题主要考查了正方形的性质和两点之间线段最短,这是一个将军饮马模型.熟练掌握正方形的性质并且能够识别出将军饮马模型是解题的关键.7(2023春·湖南张家界·八年级统考期中)如图,正方形ABCD 的边长为4,点M 在DC 上,且DM =1,N 是AC 上一动点,则DN +MN 的最小值为()A.4B.42C.25D.5【答案】D【分析】由正方形的对称性可知点B 与D 关于直线AC 对称,连接BM 交AC 于N ′,N ′即为所求在Rt △BCM 中利用勾股定理即可求出BM 的长即可.【详解】∵四边形ABCD 是正方形,∴点B 与D 关于直线AC 对称,6连接BD ,BM 交AC 于N ′,连接DN ′,∴当B 、N 、M 共线时,DN +MN 有最小值,则BM 的长即为DN +MN 的最小值,∴AC 是线段BD 的垂直平分线,又∵CD =4,DM =1∴CM =CD -DM =4-1=3,在Rt △BCM 中,BM =CM 2+BC 2=32+42=5故DN +MN 的最小值是5.故选:D .【点睛】本题考查的是轴对称-最短路线问题及正方形的性质,先作出D 关于直线AC 的对称点,由轴对称及正方形的性质判断出D 的对称点是点B 是解答此题的关键.8(2022秋·浙江杭州·九年级杭州外国语学校校考开学考试)如图,在平面直角坐标系中,二次函数y =-x 2+bx +3的图像与x 轴交于A 、C 两点,与x 轴交于点C (3,0),若P 是x 轴上一动点,点D 的坐标为(0,-1),连接PD ,则2PD +PC 的最小值是()A.4B.2+22C.22D.32+232【答案】A【分析】过点P 作PJ ⊥BC 于J ,过点D 作DH ⊥BC 于H ,根据2PD +PC =2PD +22PC =2PD +PJ ,求出DP +PJ 的最小值即可解决问题.【详解】解:连接BC ,过点P 作PJ ⊥BC 于J ,过点D 作DH ⊥BC 于H .∵二次函数y =-x 2+bx +3的图像与x 轴交于点C (3,0),∴b =2,∴二次函数的解析式为y =-x 2+2x +3,令y =0,-x 2+2x +3=0,解得x =-1或3,∴A (-1,0),令x =0,y =3,∴B (0,3),∴OB =OC =3,∵∠BOC =90°,∴∠OBC =∠OCB =45°,∵D(0,-1),∴OD =1,BD =4,∵DH ⊥BC ,∴∠DHB =90°,设DH =x ,则BH =x ,∵DH 2+BH 2=BD 2,7∴x =22,∴DH =22,∵PJ ⊥CB ,∴∠PJC =90°,∴PJ =22PC ,∴2PD +PC =2PD +22PC =2PD +PJ ,∵DP +PJ ≥DH ,∴DP +PJ ≥22,∴DP +PJ 的最小值为22,∴2PD +PC 的最小值为4.故选:A .【点睛】本题考查了二次函数的相关性质,以及等腰直角三角形的判定和性质,垂线段最短等知识,得到∠OBC =∠OCB =45°,PJ =22PC 是解题的关键.9(2022·山东泰安·统考中考真题)如图,四边形ABCD 为矩形,AB =3,BC =4.点P 是线段BC 上一动点,点M 为线段AP 上一点.∠ADM =∠BAP ,则BM 的最小值为()A.52 B.125 C.13-32 D.13-2【答案】D【分析】证明∠AMD =90°,得出点M 在O 点为圆心,以AO 为半径的圆上,从而计算出答案.【详解】设AD 的中点为O ,以O 点为圆心,AO 为半径画圆∵四边形ABCD 为矩形∴∠BAP +∠MAD =90°∵∠ADM =∠BAP∴∠MAD +∠ADM =90°∴∠AMD =90°∴点M 在O 点为圆心,以AO 为半径的圆上连接OB 交圆O 与点N∵点B 为圆O 外一点∴当直线BM 过圆心O 时,BM 最短∵BO 2=AB 2+AO 2,AO =12AD =2∴BO 2=9+4=13∴BO =13∵BN =BO -AO =13-2故选:D .【点睛】本题考查直角三角形、圆的性质,解题的关键是熟练掌握直角三角形和圆的相关知识.810(2022·河南·校联考三模)如图1,正方形ABCD 中,点E 是BC 的中点,点P 是对角线AC 上的一个动点,设AP =x ,PB +PE =y ,当点P 从A 向点C 运动时,y 与x 的函数关系如图2所示,其中点M 是函数图象的最低点,则点M 的坐标是()A.42,35B.22,35C.35,22D.35,42【答案】A【分析】根据图像,当P 与C 重合时,PB +PE =9即CB +CE =9,从而确定正方形的边长为6,根据将军饮马河原理,连接DE 交AC 于点G ,当点P 与点G 重合时,PE +PB 最小,且为DE 的长即点M 的纵坐标,利用相似三角形,计算AG 的长即为横坐标.【详解】如图,根据图像,当P 与C 重合时,PB +PE =9即CB +CE =9,∵点E 是BC 的中点,∴BC =6,连接DE 交AC 于点G ,当点P 与点G 重合时,PE +PB 最小,且为DE 的长即点M 的纵坐标,∵四边形ABCD 是正方形,AB =6,∴CE ∥AD ,AC =62+62=62,DE =62+32=35,∴△CGE ∽△AGD ,∴CG AG =CE AD =12,∴AC AG=32,∴AG =42,故点M 的坐标为(42,35),故A 正确.故选:A .【点睛】本题考查了正方形的性质,三角形相似的判定和性质,函数图像信息的获取,将军饮马河原理,熟练掌握正方形的性质,灵活运用三角形相似,构造将军饮马河模型求解是解题的关键.2二、填空题11(2023春·江苏宿迁·九年级校联考阶段练习)如图,矩形ABCD ,AB =4,BC =8,E 为AB 中点,F 为直线BC 上动点,B 、G 关于EF 对称,连接AG ,点P 为平面上的动点,满足∠APB =12∠AGB ,则DP 的最小值.【答案】210-22【分析】由题意可知,∠AGB =90°,可得∠APB =12∠AGB =45°,可知点P 在以AB 为弦,圆周角∠APB =45°的9圆上,(要使DP 最小,则点P 要靠近蒂点D ,即点P 在AB 的右侧),设圆心为O ,连接OA ,OB ,OE ,OP ,OD ,过点O 作OQ ⊥AD ,可知△AOB 为等腰直角三角形,求得OA =22AB =22=OP ,AQ =OQ =22OA =2,QD =AD -AQ =6,OD =OQ 2+QD 2=210,再由三角形三边关系可得:DP ≥OD -OP =210-22,当点P 在线段OD 上时去等号,即可求得DP 的最小值.【详解】解:∵B 、G 关于EF 对称,∴BH =GH ,且EF ⊥BG∵E 为AB 中点,则EH 为△ABG 的中位线,∴EH ∥AG ,∴∠AGB =90°,∵∠APB =12∠AGB ,即∠APB =12∠AGB =45°,∴点P 在以AB 为弦,圆周角∠APB =45°的圆上,(要使DP 最小,则点P 要靠近蒂点D ,即点P 在AB 的右侧)设圆心为O ,连接OA ,OB ,OE ,OP ,OD ,过点O 作OQ ⊥AD ,则OA =OB =OP ,∵∠APB =45°,∴∠AOB =90°,则△AOB 为等腰直角三角形,∴OA =22AB =22=OP ,又∵E 为AB 中点,∴OE ⊥AB ,OE =12AB =AE =BE ,又∵四边形ABCD 是矩形,∴∠BAD =90°,AD =BC =8,∴四边形AEOQ 是正方形,∴AQ =OQ =22OA =2,QD =AD -AQ =6,∴OD =OQ 2+QD 2=210,由三角形三边关系可得:DP ≥OD-OP =210-22,当点P 在线段OD 上时去等号,∴DP 的最小值为210-22,故答案为:210-22.【点睛】本题考查轴对称的性质,矩形的性质,隐形圆,三角形三边关系,正方形的判定及性质,等腰直角三角形的判定及性质,根据∠APB =12∠AGB =45°得知点P 在以AB 为弦,圆周角∠APB =45°的圆上是解决问题的关键.12(2023春·江苏连云港·八年级期中)如图,在边长为8的正方形ABCD 中,点G 是BC 边的中点,E 、F 分别是AD 和CD 边上的点,则四边形BEFG 周长的最小值为.【答案】2410【分析】作点G 关于CD 的对称点G ,作点B 关于AD 的对称点B ,连接B G ,根据两点之间线段最短即可解决问题.【详解】作点G 关于CD 的对称点G ,作点B 关于AD 的对称点B ,连接B G∵EB =EB ,FG =FG ,∴BE +EF +FG +BG =B E +EF +FG +BG ,∵EB +EF +FG ≥B G ,∴四边形BEFG 的周长的最小值=BG +B G ,∵正方形ABCD 的边长为8∴BG =4,BB =16,BG =12,∴B G =162+122=20,∴四边形BEFG 的周长的最小值为=4+20=24.故答案为:24.【点睛】本题考查轴对称求线段和的最短问题,正方形的性质,勾股定理,解题的关键是学会利用轴对称解决最短问题.13(2022·湖南湘潭·校考模拟预测)如图,菱形草地ABCD 中,沿对角线修建60米和80米两条道路AC <BD ,M 、N 分别是草地边BC 、CD 的中点,在线段BD 上有一个流动饮水点P ,若要使PM +PN 的距离最短,则最短距离是米.【答案】50【分析】作M 关于BD 的对称点Q ,连接NQ ,交BD 于P ,连接MP ,当P 点与P 重合时,MP +NP =MP +NP =NQ 的值最小,根据菱形的性质和勾股定理求出BC 长,即可得出答案.【详解】解:作M 关于BD 的对称点Q ,连接NQ ,交BD 于P ,连接MP ,当P 点与P 重合时,MP +NP =MP +NP =NQ 的值最小,∵四边形ABCD 是菱形,∴AC ⊥BD ,∠QBP =∠MBP ,即Q 在AB 上,∵MQ ⊥BD ,∴AC ∥MQ ,∴M 为BC 中点,∴Q 为AB 中点,∵N 为CD 中点,四边形ABCD 是菱形,∴BQ ∥CD ,BQ =CN ,∴四边形BQNC 是平行四边形,∴NQ =BC ,设AC 与BD 的交点为点O ,∵四边形ABCD 是菱形,∴AC ⊥BD,OC =12AC =30米,OB =12BD =40米,∴BC =OB 2+OC 2=50米,∴PM +PN 的最小值是50米.故答案为:50.11【点睛】本题考查了轴对称-最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P 的位置.14(2023春·江苏·九年级校考阶段练习)如图,正方形ABCD 的边长为4,⊙B 的半径为2,P 为⊙B 上的动点,则2PC -PD 的最大值是.【答案】2【分析】解法1,如图:以PD 为斜边构造等腰直角三角形△PDM ,连接MC ,BD ,连接PM 、DM ,推得2PC -PD=2PC -22PD =2PC -PM ,因为PC -PM ≤MC ,求出MC 即可求出答案.解法2:如图:连接BD 、BP 、PC ,在BD 上做点M ,使BM BP =24,连接MP ,证明△BMP ∼△BPD ,在BC 上做点N ,使BN BP=12,连接NP ,证明△BNP ∼△BPC ,接着推导出2PC -PD =22MN ,最后证明△BMN ∼△BCD ,即可求解.【详解】解法1如图:以PD 为斜边构造等腰直角三角形△PDM ,连接MC ,BD ,∴∠PDM =45,DM =PM =22PD ,∵四边形ABCD 正方形∴∠BDC =45°,DB DC=2又∵∠PDM =∠PDB +MDB ,∠BDC =∠MDB +MDC∴∠PDB =∠MDC在△BPD 与△MPC 中∠PDB =∠MDC ,DB DC=DP DM =2∴△BPD ∼△MPC∴PB MC=2∵BP =2∴MC =2∵2PC -PD =2PC-22PD =2PC -PM ∵PC -PM ≤MC ∴2PC -PD =2PC -PM ≤2MC =2故答案为:2.解法2如图:连接BD 、BP 、PC根据题意正方形ABCD 的边长为4,⊙B 的半径为2∴BP =2,BD =BC 2+CD 2=42+42=42∵BP BD =242=2412在BD 上做点M ,使BM BP=24,则BM =22,连接MP 在△BMP 与△BPD 中∠MBP =∠PBD ,BP BD =BM BP∴△BMP ∼△BPD∴PM PD =24,则PD =22PM ∵BP BC =24=12在BC 上做点N ,使BN BP=12,则BN =1,连接NP 在△BNP 与△BPC 中∠NBP =∠PBC ,BN BP =BP PC∴△BNP ∼△BPC∴PN PC=12,则PC =2PN ∴如图所示连接NM ∴2PC -PD =2×2PN -22PM =22PN -PM ∵PN -PM ≤NM ∴2PC -PD =22PN -PM ≤22NM在△BMN 与△BCD 中∠NBM=∠DBC ,BM BC =224=28,BN BD =142=28∴BM BC=BN BD ∴△BMN ∼△BCD∴MN CD=28∵CD =4∴MN =22∴22MN =22×22=2∴2PC -PD ≤22NM =2故答案为:2.【点睛】本题考查正方形的性质,相似三角形,勾股定理等知识,难度较大,熟悉以上知识点运用是解题关键.15(2023秋·广东广州·九年级统考期末)如图,四边形ABCD 中,AB ∥CD ,AC ⊥BC ,∠DAB =60°,AD =CD =4,点M 是四边形ABCD 内的一个动点,满足∠AMD =90°,则△MBC 面积的最小值为.【答案】63-4【分析】取AD 的中点O ,连接OM ,过点M 作ME ⊥BC 交BC 的延长线于点E ,过点O 作OF ⊥BC 于F ,交CD 于G ,则OM +ME ≥OF ,通过计算得出当O ,M ,E 三点共线时,ME 有最小值,求出最小值即可.【详解】解:如图,取AD 的中点O ,连接OM ,过点M 作ME ⊥BC 交BC 的延长线于点E ,过点O 作OF ⊥BC 于F ,交CD 于G ,则13OM +ME ≥OF ,∵AB ∥CD ,∠DAB =60°,AD =CD =4,∴∠ADC =120°,∵AD =CD ,∴∠DAC =30°,∴∠CAB =30°,∵AC ⊥BC ,∴∠ACB =90°∴∠B =90°-30°=60°,∴∠B =∠DAB ,∴四边形ABCD 为等腰梯形,∴BC =AD =4,∵∠AMD =90°,AD =4,OA =OD ,∴OM =12AD =2,∴点M 在以点O 为圆心,2为半径的圆上,∵AB ∥CD ,∴∠GCF =∠B =60°,∴∠DGO =∠CGF =30°,∵OF ⊥BC ,AC ⊥BC ,∴∠DOG =∠DAC =30°=∠DGO ,∴DG =DO =2,∴OG =2OD ⋅cos30°=23,GF =3,OF =33,∴ME ≥OF -OM =33-2,∴当O ,M ,E 三点共线时,ME 有最小值33-2,∴△MBC 面积的最小值为=12×4×33-2 =63-4.【点睛】本题考查了解直角三角形、隐圆、直角三角形的性质等知识点,点M 位置的确定是解题关键.16(2023春·全国·八年级专题练习)如图,在等边△ABC 中,BD ⊥AC 于D ,AD =3cm .点P ,Q 分别为AB,AD 上的两个定点且BP =AQ =1cm ,点M 为线段BD 上一动点,连接PM ,QM ,则PM +QM 的最小值为cm .【答案】5【分析】如图所示,作点P 关于BD 的对称点P ,且点P 在BC 上,则PM +QM =P M+QM ,当P ,M ,Q 在同一条直线上时,有最小值,证明四边形PP QA 是平行四边形,P Q =AP =AB -BP ,由此即可求解.【详解】解:如图所示,作点P 关于BD 的对称点P ,∵△ABC 是等边三角形,BD ⊥AC ,∴∠ABD =∠DBC =12∠ABC =12×60°=30°,14∴点P 在BC 上,∴P M =PM ,则PM +QM =P M +QM ,当P ,M ,Q 在同一条直线上时,有最小值,∵点P 关于BD 的对称点P ,∠ABD =∠DBC =30°,∴PP ⊥BM ,BP =BP =1cm ,∴∠BP P =60°,∴△BPP 是等边三角形,即∠BP P =∠C =60°,∴PP ∥AC ,且PP =AQ =1cm ,∴四边形PP QA 是平行四边形,∴P Q =AP =AB -BP ,在Rt △ABD 中,∠ABD =30°,AD =3,∴AB =2AD =2×3=6,∴AP =P Q =P M +QM =PM +QM =AB -BP =6-1=5,故答案为:5.【点睛】本题主要考查动点与等边三角形,对称-最短路径,平行四边形的判定和性质的综合,理解并掌握等边三角形得性质,对称-最短路径的计算方法,平行四边形的判定和性质是解题的关键.17(2022秋·山东菏泽·九年级校考阶段练习)如图,在周长为12的菱形ABCD 中,DE =1,DF =2,若P 为对角线AC 上一动点,则EP +FP 的最小值为.【答案】3【分析】作F 点关于BD 的对称点F ,连接EF 交BD 于点P ,则PF =PF ,由两点之间线段最短可知当E 、P 、F 在一条直线上时,EP +FP 有最小值,然后求得EF 的长度即可.【详解】解:作F 点关于BD 的对称点F ,则PF =PF ,连接EF '交BD 于点P .∴EP +FP =EP +F P .由两点之间线段最短可知:当E 、P 、F '在一条直线上时,EP +FP 的值最小,此时EP +FP =EP +F P =EF .∵四边形ABCD 为菱形,周长为12,∴AB =BC =CD =DA =3,AB ∥CD ,∵AF =2,AE =1,∴DF =AE =1,∴四边形AEF D 是平行四边形,∴EF =AD =3.∴EP +FP 的最小值为3.故答案为:3.【点睛】本题主要考查的是菱形的性质、轴对称--路径最短问题,明确当E 、P 、F 在一条直线上时EP +FP 有最小值是解题的关键.18(2023春·上海·八年级专题练习)如图,直线y =x +4与x 轴,y 轴分别交于A和B ,点C 、D 分别为线段AB 、OB 的中点,P 为OA 上一动点,当PC +PD 的值最小时,点P 的坐标为.15【答案】(-1,0)【分析】直线y =x +4与x 轴,y 轴分别交于A 和B ,可求出点A ,B 的坐标,点C 、D 分别为线段AB 、OB 的中点,可求出点C 、D 的坐标,作点C 关于x 轴的对称点C ,连接C D 与x 轴的交点就是所求点P 的坐标.【详解】解:直线y =x +4与x 轴,y 轴分别交于A 和B ,∴当y =0,x =-4,即A (-4,0);当x =0,y =4,即B (0,4),∵点C 、D 分别为线段AB 、OB 的中点,∴C (-2,2),D (0,2),如图所示,过点C 关于x 轴的对称点C,∴C (-2,-2),∴直线C D 的解析式为:y =2x +2,当y =0,x =-1,即P (-1,0),故答案为:(-1,0).【点睛】本题主要考查一次函数与最短线段的综合,掌握对称中最短线段的解题方法是解题的关键.19(2023秋·黑龙江鸡西·九年级统考期末)如图,抛物线y =x 2-4x +3与x 轴分别交于A ,B两点(点A 在点B 的左侧),与y 轴交于点C ,在其对称轴上有一动点M ,连接MA ,MC ,AC ,则△MAC 周长的最小值是.【答案】32+10【分析】根据“将军饮马”模型,先求出A 1,0 ,B 3,0 ,C 0,3 ,由二次函数对称性,A ,B 关于对称轴对称,从而C △MAC =CA +CM +MA =CA +CM +MB ,AC =OA 2+OC 2=10,则△MAC 周长的最小值就是CM +MB 的最小值,根据两点之间线段最短即可得到CM +MB 的最小值为C ,M ,B 三点共线时线段CB 长,从而得到CB =OC 2+OB 2=32,即可得到答案.【详解】解:∵抛物线y =x 2-4x +3与x 轴分别交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,16∴当y =0时,0=x 2-4x +3解得x =1或x =3,即A 1,0 ,B 3,0 ;当x =0时,y =3,即C 0,3 ,由二次函数对称性,A ,B 关于对称轴对称,即MA =MB ,∴C △MAC =CA +CM +MA =CA +CM +MB ,∵AC =OA 2+OC 2=10,∴△MAC 周长的最小值就是CM +MB 的最小值,根据两点之间线段最短即可得到CM +MB 的最小值为C ,M ,B 三点共线时线段CB 长,∵CB =OC 2+OB 2=32,∴△MAC 周长的最小值为CA +CB =32+10,故答案为:32+10.【点睛】本题考查动点最值问题与二次函数综合,涉及“将军饮马”模型求最值、二次函数图像与性质、解一元二次方程、勾股定理求线段长等知识,熟练掌握动点最值的常见模型是解决问题的关键.20(2023秋·浙江温州·九年级校考期末)如图所示,∠ACB =60°,半径为2的圆O 内切于∠ACB.P 为圆O 上一动点,过点P 作PM 、PN 分别垂直于∠ACB 的两边,垂足为M 、N ,则PM +2PN 的取值范围为.【答案】6-23≤PM +2PN ≤6+23【分析】根据题意,本题属于动点最值问题-“阿氏圆”模型,首先作MH ⊥NP 于H ,作MF ⊥BC 于F ,如图所示,通过代换,将PM +2PN 转化为PN +12PM =PN +HP =NH ,得到当MP 与⊙O 相切时,MF 取得最大值和最小值,分两种情况,作出图形,数形结合解直角三角形即可得到相应最值,进而得到取值范围.【详解】解:作MH ⊥NP 于H ,作MF ⊥BC 于F ,如图所示:∵PM ⊥AC ,PN ⊥CB ,∴∠PMC =∠PNC =90°,∴∠MPN =360°-∠PMC -∠PNC -∠C =120°,∴∠MPH =180°-∠MPN =60°,∴HP =PM ⋅cos ∠MPH =PM ⋅cos60°=12PM ,∴PN +12PM =PN +HP =NH ,∵MF =NH ,∴当MP 与⊙O 相切时,MF 取得最大和最小,①连接OP ,OG ,OC ,如图1所示:可得:四边形OPMG 是正方形,∴MG =OP =2,在Rt △COG 中,CG =OG ⋅tan60°=23,∴CM =CG +GM =2+23,在Rt △CMF 中,MF =CM ⋅sin60°=3+3,∴HN =MF =3+3,即PM +2PN =212PM +PN =2HN =6+23;②连接OP ,OG ,OC ,如图2所示:可得:四边形OPMG 是正方形,17∴MG =OP =2,由上同理可知:在Rt △COG 中,CG =OG ⋅tan60°=23,∴CM =CG -GM =23-2,在Rt △CMF 中,MF =CM ⋅sin60°=3-3,∴HN =MF =3-3,即PM +2PN =212PM +PN =2HN =6-23,∴6-23≤PM +2PN ≤6+23.故答案为:6-23≤PM +2PN ≤6+23.【点睛】本题考查动点最值模型-“阿氏圆”,难度较大,掌握解决动点最值问题的方法,熟记相关几何知识,尤其是圆的相关知识是解决问题的关键.3三、解答题21(2022春·江苏·九年级专题练习)综合与探究如图,已知抛物线y =ax 2+bx +4经过A -1,0 ,B 4,0 两点,交y 轴于点C .(1)求抛物线的解析式,连接BC ,并求出直线BC 的解析式;(2)请在抛物线的对称轴上找一点P ,使AP +PC 的值最小,此时点P 的坐标是;(3)点Q 在第一象限的抛物线上,连接CQ ,BQ ,求出△BCQ 面积的最大值.【答案】(1)y =-x 2+3x +4;y =-x +4(2)32,52(3)8【分析】(1)将A -1,0 ,B 4,0 两点,代入抛物线解析式,可得到抛物线解析式,从而得到C 0,4 ,再设直线BC 的解析式为y =kx +b k ≠0 ,把点B 、C 的坐标代入,即可求解;(2)连接BC ,PB ,根据题意可得A 、B 关于抛物线的对称轴直线x =32对称,从而得到当P 在直线AB 上三点共线时,AP +CP 的值最小,把x =32代入直线BC 的解析式,即可求解;(3)过Q 作QD ⊥x 轴,交BC 于D ,设Q d ,-d 2+3d +4 ,其中0≤d ≤4,则D d ,-d +4 ,可得QD =-d 2+4d ,从而得到S ΔBCQ =12OB ×QD =-2d -2 2+8,即可求解;【详解】(1)解:(1)∵抛物线y =ax 2+bx +4经过A -1,0 ,B 4,0 两点,∴a -b +4=016a +4b +4=0,解得:a =-1b =3 ,18∴抛物线的解析式为y =-x 2+3x +4;∵抛物线与y 轴的交点为C ,∴C 0,4 ,设直线BC 的解析式为y =kx +b k ≠0 ,把点B 、C 的坐标代入得:4k +b =0b =4 ,解得:k =-1b =4 ,∴直线BC 的解析式为y =-x +4;(2)如图,连接BC ,PB ,∵y =-x 2+3x +4=-x -32 2+74,∴抛物线的对称轴为直线x =32,根据题意得:A 、B 关于抛物线的对称轴直线x =32对称,∴AP =BP ,∴AP +CP =BP +CP ≥BC ,即当P 在直线AB 上时,AP +CP 的值最小,∴当x =32时,y =-32+4=52,∴P 32,52 ,故答案是:32,52 ;(3)过Q 作QD ⊥x 轴,交BC 于D ,设Q d ,-d 2+3d +4 ,其中0≤d ≤4,则D d ,-d +4 ,∴QD =-d 2+3d +4 --d +4 =-d 2+4d ,∵B 4,0 ,∴OB =4,∴S ΔBCQ =12OB ×QD =-2d 2+8d =-2d -2 2+8,当d =2时,S ΔBCQ 取最大值,最大值为8,∴△BCQ 的最大面积为8;【点睛】本题主要考查了二次函数的图像和性质,利用数形结合思想和分类讨论思想是解题的关键.22(2023秋·江苏淮安·八年级统考期末)如图1,直线AB :y =-x +6分别与x ,y 轴交于A ,B 两点,过点B 的直线交x 轴负半轴于点C -3,0 .(1)请直接写出直线BC 的关系式:(2)在直线BC 上是否存在点D,使得S △ABD =S △AOD 若存在,求出点D 坐标:若不存请说明理由;(3)如图2,D 11,0 ,P 为x 轴正半轴上的一动点,以P 为直角顶点、BP 为腰在第一象限内作等腰直角三角形△BPQ ,连接QA ,QD .请直接写出QB -QD 的最大值:.19【答案】(1)y =2x +6(2)当D 185,665 或D -185,-65时,S △ABD =S △AOD (3)37【分析】(1)根据直线AB 与y 轴的交点,可求出点B 的坐标,再用待定系数法即可求解;(2)设D (a ,2a +6),分别用含a 的式子表示出出S △AOD ,S △ABD ,由此即可求解;(3)△BPQ 是等腰直角三角形,设P (m ,0)(m >0),可表示出QB ,再证Rt △BOP ≌Rt △PTQ (AAS ),如图所示,当点B ,R ,Q 在一条直线上时,QB -QD 的值最大,最大值为BR 的值,可求得点R 的坐标,根据勾股定理即可求解.【详解】(1)解:∵直线AB :y =-x +6分别与x ,y 轴交于A ,B 两点,令x =0,则y =6,∴B (0,6),且C -3,0 ,设直线BC 的解析式为y =kx +b ,∴b =6-3k +b =0,解得,k =2b =6 ,∴直线BC 的解析式为y =2x +6,故答案为:y =2x +6.(2)解:由(1)可知直线BC 的解析式为y =2x +6,直线AB 的解析式为y =-x +6,∴A (6,0),B (0,6),C (-3,0),∴OA =6,BO =6,OC =3,如图所示,点D 在直线BC 上,过点D 作DE ⊥x 轴于E ,∴设D (a ,2a +6),E (a ,0),∴S △ABC =12AC ·OB =12×(6+3)×6=27,S △ADC =12AC ·DE =12×(6+3)×a =92a ,S △AOD =12OA ·DE =12×6×a =3a ,∴S △ABD =S △ABC -S △ADC =27-92a ,若S △ABD =S △AOD ,则27-92a =3a ,当a >0时,27-92a =3a ,解得,a =185,即D 185,665 ;当a <0时,27+92a =-3a ,解得,a =-185,即D -185,-65 ;综上所述,当D 185,665 或D -185,-65时,S △ABD =S △AOD .(3)解:已知A (6,0),B (0,6),D (11,0),设P (m ,0)(m >0),∴在Rt △BOP 中,OB =6,OP =m ,∵△BPQ 是等腰直角三角形,∠BPQ =90°,∴BP =QP ;如图所示,过点Q 作QT ⊥x 轴于T ,20在Rt △BOP ,Rt △PTQ 中,∠BOP =∠PTQ =90°,∠BPO +∠QPA =∠QPA +∠PQT =90°,∴∠BPO =∠PQT ,∴∠BPO =∠PQT∠BOP =∠PTQ BP =QP,∴Rt △BOP ≌Rt △PTQ (AAS ),∴OP =TQ =m ,OB =PT =6,∴AT =OP +PT -OA =m +6-6=m ,∴AT =QT ,且QT ⊥x 轴,∴△ATQ 是等腰直角三角形,∠QAT =45°,则点Q 的轨迹在射线AQ 上,如图所示,作点D 关于直线AQ 的对称点R,连接QR ,BR ,AR ,A (6,0),B (0,6),D (11,0),∵△ATQ 是等腰直角三角形,即∠QAT =45°,根据对称性质,∴∠QAR =45°,∴RA ⊥x 轴,且△DQA ≌△RQA ,∴AR =AD =11-6=5,则R (6,5),如图所示,当点B ,R ,Q 在一条直线上时,QB -QD 的值最大,最大值为BR 的值;∴由勾股定理得:BR =62+(6-5)2=37,故答案为:37.【点睛】本题主要考查一次函数,几何的综合,掌握待定系数法求解析式,将军饮马问题,等腰直角三角形的性质,勾股定理是解题的关键.23(2023春·重庆沙坪坝·九年级重庆八中校考阶段练习)△ABC 中,∠B =60°.(1)如图1,若AC >BC ,CD 平分∠ACB 交AB 于点D ,且AD =3BD .证明:∠A =30°;(2)如图2,若AC <BC ,取AC 中点E ,将CE 绕点C 逆时针旋转60°至CF ,连接BF 并延长至G ,使BF =FG ,猜想线段AB 、BC 、CG 之间存在的数量关系,并证明你的猜想;(3)如图3,若AC =BC ,P 为平面内一点,将△ABP 沿直线AB 翻折至△ABQ ,当3AQ +2BQ +13CQ 取得最小值时,直接写出BPCQ的值.【答案】(1)见解析(2)BC =AB +CG ,理由见解析(3)213+33913【分析】(1)过点D 分别作BC ,AC 的垂线,垂足为E ,F ,易得DE =DF ,由∠B =60°,可得DE =DF =32BD ,由AD =3BD ,求得sin A =DE AD=12,可证得∠A =30°;(2)延长BA ,使得BH =BC ,连接EH ,CH ,易证△BCH 为等边三角形,进而可证△BCF ≌△HCE SAS ,可得BF =HE ,∠BFC =∠HEC ,可知∠AEH =∠CFG ,易证得△AEH ≌△CFG SAS ,可得AH =CG ,由BC =BH =AB +AH =AB +CG 可得结论;(3)由题意可知△ABC 是等边三角形,如图,作CM ⊥CA ,且CM =32CA ,作CN ⊥CQ ,且CN =32CQ ,可得CM CA=CN CQ =32,QN =CQ 2+CN 2=132CQ ,可知△ACQ ∽△MCN ,可得MN =32AQ ,由3AQ +2BQ +13CQ =232AQ +BQ +132CQ =2MN +BQ +QN ≥2BM 可知点Q ,N 都在线段BM 上时,3AQ +2BQ+13CQ 有最小值,过点C 作CR ⊥BM ,过点M 作MT ⊥BC 交BC 延长线于T ,可得CR =CQ ⋅sin ∠CQN =313CQ ,QR =CQ ⋅cos ∠CQN =213CQ ,可证△CBR ∽△MBT ,得BR CR =BT MT ,设BC =a 由等边三角形的性质,可得CM =32a ,进而可得CT =CM ⋅cos30°=334a ,MT =CM ⋅sin30°=34a ,结合BR CR=BTMT 可得:BQ +213CQ 313CQ =a +334a 34a ,可得BQ CQ =213+33913,由翻折可知,BP =BQ ,可求得BP CQ的值.【详解】(1)证明:过点D 分别作BC ,AC 的垂线,垂足为E ,F ,∵CD 平分∠ACB ,DE ⊥BC ,DF ⊥AC ,∴DE =DF ,又∵∠B =60°,∴DE =BD ⋅sin60°=32BD ,则DE =DF =32BD ,又∵AD =3BD ,∴sin A =DE AD =32BD3BD=12,∴∠A =30°;(2)BC =AB +CG ,理由如下:延长BA ,使得BH =BC ,连接EH ,CH ,∵∠ABC =60°,BH =BC ,∴△BCH 为等边三角形,∴CB =CH ,∠BCH =60°,∵CE 绕点C 逆时针旋转60°至CF ,∴CE =CF ,∠ECF =60°,则∠BCH -∠ACB =∠ECF -∠ACB ,∴∠ECH =∠FCB ,∴△BCF ≌△HCE SAS ,∴BF =HE ,∠BFC =∠HEC ,则∠AEH =∠CFG ,∵BF =FG ,∴BF =HE =FG ,又∵E 为AC 中点,∴AE =CE =CF ,∴△AEH ≌△CFG SAS ,∴AH =CG ,∴BC =BH =AB +AH =AB +CG ;(3)∵∠ABC =60°,AC =BC ,∴△ABC 是等边三角形,如图,作CM ⊥CA ,且CM =32CA ,作CN ⊥CQ ,且CN =32CQ ,则CM CA=CN CQ =32,QN =CQ 2+CN 2=132CQ ,∴sin ∠CQN =CN QN =313,cos ∠CQN =CQ QN =213,则∠ACM =∠QCN =90°,∴∠ACM -∠ACN =∠QCN -∠ACN ,则∠ACQ =∠MCN∴△ACQ ∽△MCN ,∴MN AQ =CM CA=32,即:MN =32AQ ,∴3AQ +2BQ +13CQ =232AQ +BQ +132CQ =2MN +BQ +QN ≥2BM即:点Q ,N 都在线段BM 上时,3AQ +2BQ +13CQ 有最小值,如下图,过点C 作CR ⊥BM ,过点M 作MT ⊥BC 交BC 延长线于T ,则∠BRC =∠BTM =90°,CR =CQ ⋅sin ∠CQN =313CQ ,QR =CQ ⋅cos ∠CQN =213CQ ,又∵∠CBR =∠MBT ,∴△CBR ∽△MBT ,∴BR CR=BT MT ,∵△ABC 是等边三角形,设BC =a ∴∠ACB =60°,AC =BC =a ,则CM =32a ,∵∠ACM =90°,∴∠MCT =30°,则CT =CM ⋅cos30°=334a ,MT =CM ⋅sin30°=34a ,则由BR CR=BT MT 可得:BQ +213CQ 313CQ =a +334a34a ,整理得:133BQ CQ +23=4+333,得BQ CQ=213+33913,由翻折可知,BP =BQ ,∴BP CQ =BQ CQ=213+33913.【点睛】本题属于几何综合,考查了解直角三角形,等边三角形的判定及性质,全等三角形的判定及性质,相似三角形的判定及性质,旋转的性质以及费马点问题,掌握费马点问题的解决方法,添加辅助线构造全等三角形和相似三角形是解决问题的关键.24(2023春·江苏·八年级专题练习)定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D 、E 分别在边AB 、AC 上,AD =AE ,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .(1)观察猜想线段PM 与PN 填(“是”或“不是”)“等垂线段”.(2)△ADE 绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.(3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若DE =2,BC =4,请直接写出PM 与PN 的积的最大值.。
2024年中考数学重难点《几何最值问题》题型及答案解析
重难点几何最值问题中考数学中《几何最值问题》部分主要考向分为五类:一、将军饮马类最值二、动点辅助圆类最值三、四点共圆类最值四、瓜豆原理类最值五、胡不归类最值几何最值问题虽然在中考数学中经常考察的是将军饮马类和辅助圆类,剩余几种虽然不经常考察,但是考到的时候难度都比较大,所以也需要理解并掌握不同类型的几何最值问题的处理办法,这样到考到的时候才能有捷径应对。
考向一:将军饮马类最值一动”“两定异侧普通一动”“两定同侧普通动”两定“一动”两定“两两动”“两定同侧两动”“两定异侧满分技巧将军饮马:。
1.(2023•绥化)如图,△ABC是边长为6的等边三角形,点E为高BD上的动点.连接CE,将CE绕点C 顺时针旋转60°得到CF.连接AF,EF,DF,则△CDF周长的最小值是3+3.【分析】分析已知,可证明△BCE≌△ACF,得∠CAF=∠CBE=30°,可知点F在△ABC外,使∠CAF =30°的射线AF上,根据将军饮马型,求得DF+CF的最小值便可求得本题结果.【解答】解:∵△ABC是等边三角形,∴AC=BC=6,∠ABC=∠BCA=60°,∵∠ECF=60°,∴∠BCE=60°﹣∠ECA=∠ACF,∵CE=CF,∴△BCE≌△ACF(SAS),∴∠CAF=∠CBE,∵△ABC是等边三角形,BD是高,∴∠CBE=∠ABC=30°,CD=AC=3,过C点作CG⊥AF,交AF的延长线于点G,延长CG到H,使得GH=CG,连接AH,DH,DH与AG 交于点I,连接CI,FH,则∠ACG=60°,CG=GH=AC=3,∴CH=AC=6,∴△ACH为等边三角形,∴DH=CD•tan60°=,AG垂直平分CH,∴CI=HI,CF=FH,∴CI+DI=HI+DI=DH=3,CF+DF=HF+DF≥DH,∴当F与I重合时,即D、F、H三点共线时,CF+DF的值最小为:CF+DF=DH=3,∴△CDF的周长的最小值为3+3.故答案为:3+3.2.(2023•德州)如图,在四边形ABCD中,∠A=90°,AD∥BC,AB=3,BC=4,点E在AB上,且AE=1.F,G为边AD上的两个动点,且FG=1.当四边形CGFE的周长最小时,CG的长为.【分析】先确定FG和EC的长为确定的值,得到四边形CGFE的周长最小时,即为CG+EF最小时,平移CG到C'F,作点E关于AD对称点E',连接E'C'交AD于点G',得到CG+EF最小时,点G与G'重合,再利用平行线分线段成比例求出C'G'长即可.【解答】解:∵∠A=90°,AD∥BC,∴∠B=90°,∵AB=3,BC=4,AE=1,∴BE=AB﹣AE=3﹣1=2,在Rt△EBC中,由勾股定理,得EC===,∵FG=1,∴四边形CGFE的周长=CG+FG+EF+EC=CG+EF+1+,∴四边形CGFE的周长最小时,只要CG+EF最小即可.过点F作FC'∥GC交BC于点C',延长BA到E',使AE'=AE=1,连接E'F,E'C',E'C'交AD于点G',可得AD垂直平分E'E,∴E'F=EF,∵AD∥BC,∴C'F=CG,CC'=FG=1,∴CG+EF=C'F+E'F≥E'C',即CG+EF最小时,CG=C'G',∵E'B=AB+AE'=3+1=4,BC'=BC﹣CC'=4﹣1=3,由勾股定理,得E'C'===5,∵AG'∥BC',∴=,即=,解得C'G'=,即四边形CGFE的周长最小时,CG的长为.故答案为:.考向二:动点辅助圆类最值满分技巧动点运动轨迹为辅助圆的三种类型:一.定义法——若一动点到定点的距离恒等于固定长,则该点的运动轨迹为以定点为圆心,定长为半径的圆(或圆弧)二.定边对直角模型原理:直径所对的圆周角是直角思路构造:若一条定边所对的“动角”始终为直角,则直角顶点运动轨迹是以该定边为直径的圆(或圆弧)三.定边对定角模型原理:在同圆或等圆中,同弧所对的圆周角相等思路构造:若一条定边所对的“动角”始终为定角,则该定角顶点运动轨迹是以该定角为圆周角,该定边为弦的圆(或圆弧)1.(2023•徐州)如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为.【分析】由折叠性质可知AC=AC'=3,然后根据三角形的三边不等关系可进行求解.【解答】解:∵∠C=90°,CA=CB=3,∴,由折叠的性质可知AC=AC'=3,∵BC'≥AB﹣AC',∴当A、C′、B三点在同一条直线时,BC'取最小值,最小值即为,故答案为.2.(2023•黑龙江)如图,在Rt△ACB中,∠BAC=30°,CB=2,点E是斜边AB的中点,把Rt△ABC绕点A顺时针旋转,得Rt△AFD,点C,点B旋转后的对应点分别是点D,点F,连接CF,EF,CE,在旋转的过程中,△CEF面积的最大值是4+.【分析】线段CE为定值,点F到CE距离最大时,△CEF的面积最大,画出图形,即可求出答案.【解答】解:∵线段CE为定值,∴点F到CE的距离最大时,△CEF的面积有最大值.在Rt△ACB中,∠BAC=30°,E是AB的中点,∴AB=2BC=4,CE=AE=AB=2,AC=AB•cos30°=2,∴∠ECA=∠BAC=30°,过点A作AG⊥CE交CE的延长线于点G,∴AG=AC=,∵点F在以A为圆心,AB长为半径的圆上,∴AF=AB=4,∴点F到CE的距离最大值为4+,∴,故答案为:.3.(2023•大庆模拟)如图,AB是⊙O的直径,AB=4,C为的三等分点(更靠近A点),点P是⊙O上个动点,取弦AP的中点D,则线段CD的最大值为()A.2B.C.D.【分析】如图,连接OD,OC,首先证明点D的运动轨迹为以AO为直径的⊙K,连接CK,当点D在CK的延长线上时,CD的值最大,利用勾股定理求出CK即可解决问题.【解答】解:如图,连接OD,OC,∵AD=DP,∴OD⊥P A,∴∠ADO=90°,∴点D的运动轨迹为以AO为直径的⊙K,连接CK,AC,当点D在CK的延长线上时,CD的值最大,∵C为的三等分点,∴∠AOC=60°,∴△AOC是等边三角形,∴CK⊥OA,在Rt△OCK中,∵∠COA=60°,OC=2,OK=1,∴CK==,∵DK=OA=1,∴CD=+1,∴CD的最大值为+1,故选:D.考向三:四点共圆类最值满分技巧对角互补的四边形必有四点共圆,即辅助圆产生模型原理:圆内接四边形对角互补∴FD=,在四边形ACBF中,∠ACB=∠AFB=90°,∴A、C、B、F四点共圆,∴∠ACF=∠ABF=45°,∠CAB=∠CFB,∵∠PCD=45°∴∠ACP=∠FCD,又∵△ABE∽△FBD,∴∠BAE=∠BFD,∴∠CAP=∠CFD,∴△CAP∽△CFD,∴,在四边形ACBF中,由对角互补模型得AC+CB=,∴CF=∴,∴AP=1,∴PE=2,故答案为:2考向四:瓜豆原理类最值满分技巧瓜豆原理的特征和结论:∴AB=CD=6,∠B=∠BCD=90°,∵∠BET=∠FEG=45°,∴∠BEF=∠TEG,∵EB=ET,EF=EG,∴△EBF≌△ETG(SAS),∴∠B=∠ETG=90°,∴点G在射线TG上运动,∴当CG⊥TG时,CG的值最小,∵BC=,BE=,CD=6,∴CE=CD=6,∴∠CED=∠BET=45°,∴∠TEJ=90°=∠ETG=∠JGT=90°,∴四边形ETGJ是矩形,∴DE∥GT,GJ=TE=BE=,∴CJ⊥DE,∴JE=JD,∴CJ=DE=3,∴CG=CJ+GJ=+3,∴CG的最小值为+3,故答案为:+3.2.(2023•宿城区二模)如图,矩形ABCD中,AD=6,DC=8,点E为对角线AC上一动点,BE⊥BF,,BG⊥EF于点G,连接CG,当CG最小时,CE的长为.【分析】过点B作BP⊥AC于点P,连接PG,则可得△ABE∽△PBG,进而可知∠BPG为定值,因此CG⊥PG时,CG最小,通过设元利用三角函数和相似比可表示出PG、CP,即可求出结果.【解答】解:如图,过点B作BP⊥AC于点P,连接PG,∵,∠ABC=∠EBF,∴△ABC∽△EBF,∴∠CAB=∠FEB,∵∠APB=∠EGB=90°,∴△ABP∽△EBG,∴=,∠ABP=∠EBG,∴∠ABE=∠PBG,∴△ABE∽△PBG,∴∠BPG=∠BAE,即在点E的运动过程中,∠BPG的大小不变且等于∠BAC,∴当CG⊥PG时,CG最小,设此时AE=x,∵,∴PG=,∵CG⊥PG,∴∠PCG=∠BPG=∠BAC,∴,代入PG=,解得CP=x,∵CP=BC•sin∠CBP=BC•sin∠BAC=,∴x=,∴AE=∴CE=,故答案为:.考向五:胡不归类最值满分技巧胡不归模型解决步骤:模型具体化:如图,已知两定点A、B,在定直线BC上找一点P,使从B走道P,再从P走到A的总时间最小解决步骤:由系数k·PB确定分割线为PBPA在分割线一侧,在分割线PB另一侧依定点B构α角,使sinα=k,α角另一边为BD过点P作PQ⊥BD,转化kPB=PQ过定点A作AH⊥BD,转化(PA+k·PB)min=AH,再依“勾股法”求AH的长即可。
2023年九年级中考数学专题练习 二次函数的最值问题(含解析)
2023年中考数学专题练习--二次函数的最值问题1.如图,抛物线 212y x bx c =-++ 与 x 轴交于 A 、 B 两点,与 y 轴交于点 C ,且 2OA = , 3OC = .(1)求抛物线的解析式;(2)已知抛物线上点 D 的横坐标为 2 ,在抛物线的对称轴上是否存在点P ,使得 BDP ∆ 的周长最小?若存在,求出点 P 的坐标;若不存在,请说明理由.2.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y 与x 之间的函数关系式;(2)写出每天的利润W 与销售单价x 之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?3.阿静家在新建的楼房旁围成一个矩形花圃,花圃的一边利用20米长的院墙,另三边用总长为32米的离笆恰好围成.如图,设AB 边的长为x 米,矩形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)当x为何值时,S有最大值?并求出最大值.4.在环境创优活动中,某居民小区要在一块靠墙(墙长25米)的空地上修建一个矩形养鸡场,养鸡场的一边靠墙,如果用60m长的篱笆围成中间有一道篱笆的养鸡场,设养鸡场平行于墙的一边BC的长为x(m),养鸡场的面积为y(m2)(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)养鸡场的面积能达到300m2吗?若能,求出此时x的值,若不能,说明理由;(3)根据(1)中求得的函数关系式,判断当x取何值时,养鸡场的面积最大?最大面积是多少?5.市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=40时,y=120;x =50时,y=100.在销售过程中,每天还要支付其他费用500元.(1)求出y与x的函数关系式,并写出自变量x的取值范围;(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;(3)当销售单价为多少元时,该公司日获利最大.最大获利是多少元.6.抛物线y1=x2+bx+c与直线y2=2x+m相交于A(1,4)、B(﹣1,n)两点.(1)求y1和y2的解析式;(2)直接写出y1﹣y2的最小值.7.某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种新型商品成本为20元/件,第x天销售量为p件,销售单价为q元.经跟踪调查发现,这40 p-与x成正比,前20天(包含第20天),q与x的关系满足关系式天中50=+;从第21天到第40天中,q是基础价与浮动价的和,其中基础价保持q ax30不变,浮动价与x成反比,且得到了表中的数据:的值为;直接写出这天中p与x的关系式为;(2)从第21天到第40天中,求q与x满足的关系式;(3)求这40天里该网店第几天获得的利润最大?最大为多少?8.如图,一次函数y=kx+2的图象分别交y轴,x轴于A,B两点,且tan∠ABO=1,抛物线y=-x2+bx+c经过A,B两点.2(1)求k的值及抛物线的解析式.(2)直线x=t在第一象限交直线AB于点M,交抛物线于点N,当t取何值时,线段MN的长有最大值?最大值是多少?(3)在(2)的情况下,以A,M,N,D为顶点作平行四边形,求第四个顶点D 的坐标,并直接写出所有平行四边形的面积,判断面积是否都相等.9.如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为15米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S.(1)求S与x的函数关系式;(2)并求出当AB的长为多少时,花圃的面积最大,最大值是多少?10.如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH∠AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,∠AEF的面积最大?11.2021年春节,不少市民响应国家号召原地过年.为保障市民节日消费需求,某商家宣布“今年春节不打烊”,该商家以每件80元的价格购进一批商品,规定每件商品的售价不低于进价且不高于100元,经市场调查发现,该批商品的日销售量y (件)与每件售价x(元)满足一次函数关系,其部分对应数据如下表所示:(2)当每件商品的售价定为多少元时,该批商品的日销售利润最大?日销售最大利润是多少?12.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y箱与销售价x元/箱之间的函数关系式.(2)当每箱苹果的销售价x为多少元时,可以使获得的销售利润w最大?最大利润是多少?13.某环保器材公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元,经销过程中测出销售量y(万件)与销售单价x(元)存在如图所示的一次函数关系,每年销售该种产品的总开支z(万元)(不含进价)与年销量y(万件)存在函数关系z=10y+42.5.(1)求y关于x的函数关系式;(2)写出该公司销售该种产品年获利w(万元)关于销售单价x(元)的函数关系式;(年获利=年销售总金额一年销售产品的总进价一年总开支金额)当销售单价x为何值时,年获利最大最大值是多少?(3)若公司希望该产品一年的销售获利不低于57.5万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围.在此条件下要使产品的销售量最大,你认为销售单价应定为多少元?14.我市某工艺厂设计了一款成本为10元 / 件的工艺品投放市场进行试销,经过调查,得到如下数据:(2)若用 W( 元 ) 表示工艺厂试销该工艺品每天获得的利润,试求 W( 元 ) 与 x( 元 / 件 ) 之间的函数关系式.(3)若该工艺品的每天的总成本不能超过2500元,那么销售单价定为多少元时,工艺厂试销工艺品每天获得的利润最大,最大是多少元?15.已知抛物线y =x 2﹣bx +c (b ,c 为常数)的顶点坐标为(2,﹣1).(1)求该抛物线的解析式;(2)点M (t ﹣1,y 1),N (t ,y 2)在该抛物线上,当t <1时,比较y 1与y 2的大小;(3)若点P (m ,n )在该抛物线上,求m ﹣n 的最大值.16.地摊经济开放以来,小王以每个40元的价格购进一种玩具,计划以每个60元的价格销售,后来为了尽快回本决定降价销售.已知这种玩具销售量 y (个)与每个降价 x (元)( 020x << )之间满足一次函数关系,其图象如图所示.(1)求y 与x 之间的函数解析式.(2)该玩具每个降价多少元时,小王获利最大?最大利润是多少元?17.如图,抛物线y=23 x 2+bx+c 经过点B (3,0),C (0,﹣2),直线l :y=﹣ 23x ﹣23交y 轴于点E ,且与抛物线交于A ,D 两点,P 为抛物线上一动点(不与A ,D 重合).(1)求抛物线的解析式;(2)当点P 在直线l 下方时,过点P 作PM∠x 轴交l 于点M ,PN∠y 轴交l 于点N ,求PM+PN 的最大值.(3)设F 为直线l 上的点,以E ,C ,P ,F 为顶点的四边形能否构成平行四边形?若能,求出点F 的坐标;若不能,请说明理由.18.如图,抛物线 2y ax bx c =++ 的图象过点 (10)(30)(03)A B C ﹣,、,、, .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得∠PAC 的周长最小,若存在,请求出点P 的坐标及∠PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得 PAM PAC S S ∆∆= ?若存在,请求出点M 的坐标;若不存在,请说明理由.19.如图,抛物线y =12 x 2+bx+c 与直线y = 12x+3分别相交于A,B 两点,且此抛物线与x 轴的一个交点为C ,连接AC,BC.已知A(0,3),C(-3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB-MC|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ∠PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与∠ABC相似?若存在,请求出所有符合条件的点P的坐标;若还在存在,请说明理由.20.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S∠AOP=4S BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ∠x轴,交抛物线于点D,求线段DQ长度的最大值.答案解析部分1.【答案】(1)解:2OA = ,∴ 点 A 的坐标为 (2,0)- .3OC = ,∴ 点 C 的坐标为 ()0,3 .把 ()2,0- , ()0,3 代入 212y x bx c =-++ ,得0223b cc =--+⎧⎨=⎩, 解得 123b c ⎧=⎪⎨⎪=⎩ . ∴ 抛物线的解析式为 211322y x x =-++ .(2)解:存在. 把 0y = 代入 211322y x x =-++ , 解得 12x =- , 23x = ,∴ 点 B 的坐标为 ()3,0 .点 D 的横线坐标为 2211223222∴-⨯+⨯+= .故点 D 的坐标为 ()2,2 .如图,设 P 是抛物线对称轴上的一点,连接 PA 、 PB 、 PD 、 BD ,PA PB = ,BDP ∴∆ 的周长等于 BD PA PD ++ ,又BD 的长是定值,∴ 点 A 、 P 、 D 在同一直线上时, BDP ∆ 的周长最小,由 ()2,0A - 、 ()2,0A - 可得直线 AD 的解析式为 112y x =+ , 抛物线的对称轴是 12x =, ∴ 点 P 的坐标为 15,24⎛⎫⎪⎝⎭,∴ 在抛物线的对称轴上存在点 15,24P ⎛⎫⎪⎝⎭,使得 BDP ∆ 的周长最小.【解析】【分析】(1)由题意先求出A 、C 的坐标,直接利用待定系数法即可求得抛物线的解析式;(2)根据题意转化 PA PB = ,BD 的长是定值,要使 BDP ∆ 的周长最小则有点A 、 P 、 D 在同一直线上,据此进行分析求解.2.【答案】(1)解:设y 与x 之间的函数关系式为y=kx+b (k≠0),由所给函数图象可知,{130k +b =50150k +b =30, ,解得 {k =−1b =180,.故y 与x 的函数关系式为y=﹣x+180 (2) 解:∵y=﹣x+180,∴W=(x ﹣100)y=(x ﹣100)(﹣x+180) =﹣x 2+280x ﹣18000 =﹣(x ﹣140)2+1600, ∵a=﹣1<0,∴当x=140时,W 最大=1600,∴售价定为140元/件时,每天最大利润W=1600元【解析】【分析】(1)由图像可知 销售单价x(元/件)与每天销售量y(件)之间满足 一次函数关系,设出该函数的一般式,再将(130,50)与(150,30)代入即可得出关于k,b 的二元一次方程组,求解得出k,b 的值,从而得出函数解析式;(2)每件商品的利润为(x-100)元,根据总利润等于单件的利润乘以销售的数量即可得出 W=(x ﹣100)y ,再将(1)整体代入,然后配成顶点式即可得出答案。
2022年中考专题讲义:定弦定角最值问题(学生版+解析版)
中考专题讲义:定弦定角最值问题(学生版)【例1】如图,△ABC 中,AC =3,BC =24,∠ACB =45°,D 为△ABC 内一动点,⊙O 为△ACD 的外接圆,直线BD 交⊙O 于P 点,交BC 于E 点,弧AE =CP ,则AD 的最小值为( )A .1B .2C .2D .2441-【例2】如图,AC =3,BC =5,且∠BAC =90°,D 为AC 上一动点,以AD 为直径作圆,连接BD 交圆于E 点,连CE ,则CE 的最小值为( )A .213-B .213+C .5D .916【练】如图,在△ABC 中,AC =3,BC =24,∠ACB =45°,AM ∥BC ,点P 在射线AM 上运动,连BP 交△APC 的外接圆于D ,则AD 的最小值为( )A .1B .2C .2D .324-【例3】如图,⊙O 的半径为2,弦AB 的长为32,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的面积的最大值是( )A .3612+B .336+C .3312+D .346+【练】如图,⊙O 的半径为1,弦AB =1,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( )A .21B .22C .23D .43【例4】如图,边长为3的等边△ABC ,D 、E 分别为边BC 、AC 上的点,且BD =CE ,AD 、BE 交于P 点,则CP 的最小值为_________【例5】如图,A (1,0)、B (3,0),以AB 为直径作⊙M ,射线OF 交⊙M 于E 、F 两点,C 为弧AB 的中点,D 为EF 的中点.当射线绕O 点旋转时,CD 的最小值为__________C PED CB A【练】如图,AB 是⊙O 的直径,AB =2,∠ABC =60°,P 是上一动点,D 是AP 的中点,连接CD ,则CD 的最小值为__________针对练习:1.如图,在动点C 与定长线段AB 组成的△ABC 中,AB =6,AD ⊥BC 于点D ,BE ⊥AC 于点E ,连接DE .当点C 在运动过程中,始终有22 AB DE ,则点C 到AB 的距离的最大值是_________2.如图,已知以BC 为直径的⊙O ,A 为BC 中点,P 为AC 上任意一点,AD ⊥AP 交BP 于D ,连C D .若BC =8,则CD 的最小值为___________BA BO B中考专题讲义:定弦定角最值问题(教师版)【例1】如图,△ABC 中,AC =3,BC =24,∠ACB =45°,D 为△ABC 内一动点,⊙O 为△ACD 的外接圆,直线BD 交⊙O 于P 点,交BC 于E 点,弧AE =CP ,则AD 的最小值为( )A .1B .2C .2D .2441-【解析】:∵∠CDP =∠ACB =45°∴∠BDC =135°(定弦定角最值)如图,当AD 过O 1时,AD 有最小值∵∠BDC =135°∴∠BO 1C =90°∴△BO 1C 为等腰直角三角形∴∠ACO 1=45°+45°=90°∴AO 1=5又O 1B =O 1C =4∴AD =5-4=1【例2】如图,AC =3,BC =5,且∠BAC =90°,D 为AC 上一动点,以AD 为直径作圆,连接BD 交圆于E 点,连CE ,则CE 的最小值为( )A .213-B .213+C .5D .916解析:连接AE ,B∵AD 为⊙O 的直径∴∠AEB =∠AED =90°∴E 点在以AB 为直径的圆上运动当CE 过圆心O 1时,CE2-.【练】如图,在△ABC 中,AC =3,BC =24,∠ACB =45°,AM ∥BC ,点P 在射线AM 上运动,连BP 交△APC 的外接圆于D ,则AD 的最小值为( )A .1B .2C .2D .324-解析:连接CD∴∠P AC =∠PDC =∠ACB =45°∴∠BDC =135°如图,当AD 过圆心O 1时,AD 有最小值∵∠BDC =135°∴∠BO 1C =90°∴O 1B =O 1C =4又∠ACO 1=90°∴AO 1=5∴AD 的最小值为5-4=1【例3】如图,⊙O 的半径为2,弦AB 的长为32,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的面积的最大值是( )A .3612+B .336+C .3312+D .346+答案:B.解析:构造直径BE ,连接AE ,易求∠E =60°=∠P ,∴∠C =30°,要使△ABC 的面积最大,则点C 到AB 的距离最大,∵AB =ACB =30°,∴点C 在⊙M 上,且∠AMB =60°,当点C 为优弧AB 的中点时,点C 到AB 的距离最大,此时△ABC 为等腰三角形,CN =3,S △ABC =12×3)=6+【练】如图,⊙O 的半径为1,弦AB =1,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( )A .21B .22C .23D .43答案:D.解析:连OA 、OB ,依题意易知△ABO 为正三角,∴∠O =60°,即∠P =30°,又AP ⊥AC ,即∠C =60°,构过A 、B 、C 三点的圆,即C 点在优弧AB 上,∴当C 点为优弧AB 的中点时,△ABC.C【例4】如图,边长为3的等边△ABC ,D 、E 分别为边BC 、AC 上的点,且BD =CE ,AD 、BE 交于P 点,则CP 的最小值为_________解析:如图,AB =3,∠APB =120°,CP【例5】如图,A (1,0)、B (3,0),以AB 为直径作⊙M ,射线OF 交⊙M 于E 、F 两点,C 为弧AB 的中点,D 为EF 的中点.当射线绕O 点旋转时,CD 的最小值为__________【解析】:连接DM .∵D 是弦EF 的中点,∴DM ⊥EF ,∴点D 在以A 为圆心的,OM 为直径的圆上运动;当CD 过圆心A 时,CD 有最小值,连接CM ,∵C 为弧AB 的中点.∴CM ⊥AB ,∴CD1 .【练】如图,AB 是⊙O 的直径,AB =2,∠ABC =60°,P 是上一动点,D 是AP 的中点,连接CD ,则CD 的最小值为__________PED CB A解析:连接OD ,∵D 为弦AP 的中点∴OD ⊥AP∴点D 在以AO 为直径的圆上运动,当CD 过圆心O 1时,CD 有最小值,过点C 作CM ⊥AB 于M ,∵OB =OC ,∠ABC =60°,∴△OBC 为等边三角形,∴OM =12,CM,∴O 1C. ∴CD12.针对练习:1.如图,在动点C 与定长线段AB 组成的△ABC 中,AB =6,AD ⊥BC 于点D ,BE ⊥AC 于点E ,连接DE .当点C 在运动过程中,始终有22=AB DE ,则点C 到AB 的距离的最大值是_________解析:连OE 、O D .∵DE AB ,∴∠DOE =90°,即∠CBE =45°, 又BE ⊥AC ,∴∠C =45°,又AB =6,构过点A 、B 、C 三点的⊙O 1,BAA BB则点C一定在优弧AB上,故当C为优弧AB的中点时,C到AB的距离最大,其值为3+.2.如图,已知以BC为直径的⊙O,A为BC中点,P为AC上任意一点,AD⊥AP交BP于D,连C D.若BC=8,则CD的最小值为___________【解析】:连OE、OD,∵BC为直径的⊙O,且A为BC中点,∴∠P=45°,又AP⊥AD,∴∠ADP=45°,即∠ADB=135°,又AB=A、B、D的圆弧,即优弧AB,设其对应圆的圆心为O1,连C O1,则CD的最小值为:-3.O。
中考数学《最值问题》及参考答案
中考数学《最值问题》及参考答案一、轴对称求最小值1.如图,四边形ABCD是边长为6的正方形,△ABC是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的值最小,求这个最小值.2.四边形ABCD中,∠BAD=122°,∠B=∠D=90°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数.3.如图,∠AOB =45°,OC为∠AOB内部一条射线,点D为射线OC上一点,OD=√2,点E、F分别为射线0A、OB上的动点,求△DEF周长的最小值.二、垂线段最短求最值4.如图,矩形ABCD中,AD=3,AB=4,M为线段BD上一动点,MP⊥CD于点P,MQ⊥BC于点Q,求PQ 的最小值.5.如图,边长为6的等边三角形ABC中,E是对称轴AD上一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动的过程中,求DF的最小值.6.如图所示,在RtΔABC中,∠C=90°,AC=4,BC=3,P为AB上一动点(不与A、 B重合),作PE ⊥AC于点E,PF⊥BC于点F,连接EF,求EF的最小值.7.如图,在ΔABC中,∠BAC=90,AB=6,BC=10,BD平分∠ABC,若P,Q分别是BD,AB上的动点,求PA+PQ的最小值.8.如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE,P,N分别为AC,BE上的动点,连接AN, PN,若DF=5,AC=9,求AN+PN的最小值.二、两点之间,线段最短求最值9.如图,等边△ABC的边长为4,过点B的直线l⊥AB,且△ABC与△A´B´C´公关于直线l对称,D为线段BC´上一动点,求AD+CD的最小值是( )10.如图,在长方形ABCD中,AB=3,AD=4,动点P满足S△PCD=14S长方形ABCD´,求点P到A,B两点的距离之和PA+PB的最小值.三、三角形三边的关系求最值问题11.如图,在平面直角坐标系中,平行四边形ABCD的坐标分别为A(-1,0)、B(0,2)、 C(4,2)、D(3,0),点P是AD边上的一个动点,若点A关于BP的对称点为A´,求则A´C的最小值.参考答案1.析:连接BP.因为点B 与点D 关于直线AC 对称,所以PB=PD .所以PD+PE =PB+PE≥BE,所以PD+PE 的最小值即为BE 的长.BE =AB =6,则PD+PE 的值最小为6.2.析:如图,延长AB 到A ´使得BA ´=AB,延长AD 到A ´使得DA"=AD,连接A ´A"与BC 、CD 分别交于点M 、N.∵∠ABC=∠ADC=90° ∴ A 、A ´关于BC 对称,A 、A"关于CD 对称,此时ΔAMN 的周长最小∵BA=BA ´,MB ⊥ AB ∴MA =MA ´同理:NA=NA" ∴∠A ´=∠MAB,∠A"=∠NAD∵∠AMN =∠A ´+∠MAB =2∠A ´,∠ANM =∠A"+∠NAD =2∠A"∴∠AMN +∠ANM = 2(∠A ´+∠A")∵∠BAD=122° ∴ ∠A ´+LA"=180°-∠BAD=58° ∴∠AMN +∠ANM=2x58°=116∴∠MAN =180-116°=64°3.析:作点D 作关于OA 的对称点P,点D 关于OB 的对称点Q,连接PQ,与OA 的交点为点E,与OB 的交点为点F.△DEF 的最小周长为DE +EF +QF =PE+EF+QF =PQ连接OP 、OQ,则OP=0Q=√2 ∵∠POQ =2∠AOB=90°∴ΔOPQ 是等腰直角三角形∴PQ =√2OD=2∴ΔDEF 的周长的最小值是2.4.析:如图,连接CM∵MP ⊥CD 于点P,MQ ⊥BC 于点Q ∴∠CPM =∠CQM=90°∴四边形ABCD 是矩形∴BC=AD=3,CD=AB=4,∠BCD=90°∴四边形PCQM 是矩形,PQ =CM∴BD =√32+42=5当CM ⊥BD 时,CM 最小,则PQ 最小,此时,S △BCD =1 2BD ·CM=12BC ·CD ∴PQ 的最小值为125.5.析:取线段AC 的中点G,连接EG∵ΔABC 为等边三角形,AD 为△ABC 的对称轴∴CD=CG=1 2AB=3,∠ACD =60° ∵ ∠ECF =60°∴∠FCD =∠ECG在ΔFCD 和ΔECG 中,FC =EC,∠FCD=∠ECG,DC=GC∴ΔFCD ≌AECG ∴DF =GE当EG ⊥AD 时,EG 最短,即DF 最短∵点G 为AC 的中点,EG=DF=1 2CD=32 6.析: 连接CP.∵∠C=90,AC=3,BC =4 ∴AB =√32+42=5∵PE ⊥AC,PF ⊥BC,∠C=90°∴四边形CFPE 是矩形∴EF =CP由垂线段最短可得CP ⊥AB 时,线段EF 的值最小S △ABC=1 2BC ·AC=12AB ·CP ∴1 2×4×3=12×5·CP ∴CP =2.4 7.如图,作点Q 关于直线BD 的对称点Q ´∵BD 平分∠ABC ∴点Q 在BC 上连接PQ ´,则PA+PQ 的最小值即为PA+PQ ´的最小值∴当A 、P 、Q ´三点共线且AQ ´⊥BC 时,PA+PQ 的值最小过点A 作AM ⊥BC 于点M,则PA+PQ 的最小值即为AM 的长∵AB=6,BC=10 ∴AC ²=10²-6²=64 ∴AC=8∵ S △ABC =1 2AM ·BC=1 2AB ·AC ∴AM=AB·AC BC =48 10=4.88.析:连接AD ,与BE 交于点O∵四边形ABDE 是正方形 ∴BE ⊥AD,OD =OA ,点A 与点D 关于直线BE 对称 求PN + AN 的最小值,只需D ,N ,P 在同一条直线上,由于P ,N 分别是AC 和BE 上的动点,过点D 作DP ⊥AC 于P 交BE 于点 N ,此时PN + AN =PN+ND=PD ,由△ABC ≌ △BDF 可知,BF= AC = 9,BC=DF=5,易知四边形DFCP 是矩形,CF=PD=BF+BC=9+5=149.析:如图,连接AD∵△ABC 是边长为4的等边三角形 ∴AB =BC=4,∠ABC=60° ∵△ABC 与△ A ´B ´C ´关于直线l 对称∴A ´B=BC,∠AB ´C ´=60°∴∠CBC ´=60°=∠A ´BD∴△BCD ≌△BA ´D(SAS)∴A ´D=CD ∴CD +AD =AD +A ´D当A 、D 、A ´三点共线时,AD+A ´D 最小,此时CD+AD 最小,最小为4+4=8.10.析:如图,设APC 的CD 边上的高是h.∵S △PCD =1 2S 长形ABCD ,AD=4 ∴1 2·CD ·h =1 4CD ·AD ∴h=12AD=2 ∵动点P 在与CD 平行且与CD 的距离是2的直线l 上连接AC 交直线l 于点P ´∵l//CD,AD=4,四边形ABCD 是长方形 ∴l ⊥AD,l ⊥BC∴直线l 是BC 边的垂直平分线 ∴BP ´=CP ´∴AP ´+BP ´=AP ´+CP ´ ∴ AC 的长是最短距离∴AC=√32+4=5,PA +PB 的最小值为5.11.析:连接BA ´∵AB=√5,BC =4若点A 关于BP 的对称点为A ´ ∴BA ´=BA=√5在△BA ´C 中,A ´C ≥BC-BA ´,即AC ´≥4-√5∴AC ´的最小值为4-√5。
2023年九年级数学中考专题训练——二次函数的最值 (附答案))
2023年中考专题训练——二次函数的最值1.已知,二次函数23y ax bx =+-的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于C 点,点A 的坐标为()1,0-,且OB OC =. (1)求二次函数的解析式;(2)当04x ≤≤时,求二次函数的最大值和最小值分别为多少? (3)设点C '与点C 关于该抛物线的对称轴对称.在y 轴上是否存在点P ,使PCC '△与POB 相似,且PC 与PO 是对应边?若存在,求出点P 的坐标;若不存在,请说明理由.2.如图1,抛物线2323333y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,过点B 作直线BD ∥直线AC ,交抛物线y 于另一点D ,点P 为直线AC 上方抛物线上一动点.(1)求线段AB 的长.(2)过点P 作PF y ∥轴交AC 于点Q ,交直线BD 于点F ,过点P 作PE AC ⊥于点E ,求233PE PF +的最大值及此时点P 的坐标. (3)如图2,将抛物线2323333y x x =--+向右平移3个单位得到新抛物线y ',点M 为新抛物线上一点,点N 为原抛物线对称轴一点,直接写出所有使得A 、B 、M 、N 为顶点的四边形是平行四边形时点N 的坐标,并写出其中一个点N 的坐标的求解过程. 3.已知二次函数2y x bx c =+-的图象经过点(3,0),且对称轴为直线1x =.(1)求b c +的值;(2)当43x -≤≤时,求y 的最大值;(3)平移抛物线2y x bx c =+-,使其顶点始终在二次函数221y x x =--上,求平移后所得抛物线与y 轴交点纵坐标的最小值.4.已知关于x 的一元二次方程()()121x x m --=+(m 为常数).(1)若它的一个实数根是方程()2140x --=的根,则m =_____,方程的另一个根为_____; (2)若它的一个实数根是关于x 的方程()240x m --=的根,求m 的值; (3)若它的一个实数根是关于x 的方程()240x n --=的根,求m n +的最小值.5.如图,抛物线23y ax bx =++交x 轴于()3,0A ,()1,0B -两点,交y 轴于点C ,动点P 在抛物线的对称轴上.(1)求抛物线的解析式;(2)当以P ,B ,C 为顶点的三角形周长最小时,求点P 的坐标及PBC 的周长;(3)若点Q 是平面直角坐标系内的任意一点,是否存在点Q ,使得以A ,C ,P ,Q 为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由.6.平面直角坐标系中,二次函数y =ax 2+bx +c 的顶点为(32,﹣254),它的图象与x 轴交于点A ,B (点A 在点B 左侧).(1)若AB =5,交y 轴于点C ,点C 在y 轴负半轴上. ①求二次函数的解析式;②若自变量x 的值增加4时,对应的函数值y 增大,求满足题意的自变量x 的取值范围. (2)当-1≤x ≤1时,函数值y 有最小值为﹣a 2,求a 的值(其中a 为二次函数的二次项系数).7.已知直线1y kx =+经过点()2,3,与抛物线2y x bx c =++的对称轴交于点1,2n ⎛⎫⎪⎝⎭(1)求k ,b 的值;(2)抛物线2y x bx c =++与x 轴交于()()12,0,0x x 且2139x x ≤-<,若22123p x x =-,求p 的最大值;(3)当12x -<<时,抛物线2y x bx c =++与直线1y kx =+有且只有一个公共点,直接写出c 的取值范围.8.如图,直线:l y m =-与y 轴交于点A ,直线:a y x m =+与y 轴交于点B ,抛物线2y x mx =+的顶点为C ,且与x 轴左交点为D (其中0m >).(1)当12AB =时,在抛物线的对称轴上求一点P 使得BOP △的周长最小;(2)当点C 在直线l 上方时,求点C 到直线l 距离的最大值; (3)若把横坐标、纵坐标都是整数的点称为“整点”.当2021m =时,求出在抛物线和直线a 所围成的封闭图形的边界上的“整点”的个数.9.如图,在平面直角坐标系中,抛物线2y x bx c =++经过A (0,﹣1),B (4,1).直线AB 交x 轴于点C ,P 是直线AB 下方抛物线上的一个动点.过点P 作PD ⊥AB ,垂足为D ,PE ∥x 轴,交AB 于点E .(1)求抛物线的函数表达式;(2)当△PDE 的周长取得最大值时,求点P 的坐标和△PDE 周长的最大值;(3)把抛物线2y x bx c =++平移,使得新抛物线的顶点为(2)中求得的点P .M 是新抛物线上一点,N 是新抛物线对称轴上一点,直接写出所有使得以点A ,B ,M ,N 为顶点的四边形是平行四边形的点M 的坐标,并把求其中一个点M 的坐标的过程写出来.10.如图,抛物线2y x bx c =-++过点()3,2A ,且与直线72y x =-+交于B 、C 两点,点B 的坐标为()4,m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ∠=︒?若存在,求点Q 的坐标;若不存在,请说明理由.11.如图,抛物线24y ax bx =++交x 轴于3,0,()(,0)4A B -两点,与y 轴交于点C ,连接,AC BC .M 为线段OB 上的一个动点,过点M 作PM x ⊥轴,交抛物线于点P ,交BC 于点Q . (1)求抛物线的表达式;(2)过点P 作PN BC ⊥,垂足为点N .求线段PN 的最大值.(3)试探究点M 在运动过程中,是否存在这样的点Q ,使得以,,A C Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标:若不存在,请说明理由.12.如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B . (1)求抛物线的解析式(2)若直线y =mx +n 经过B 、C 两点,求直线BC 的解析式; (3)在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标及此时距离之和的最小值13.在平面直角坐标系xOy 中,已知抛物线y =ax 2-2ax -1(a <0). (1)抛物线的对称轴为,抛物线与y 轴的交点坐标为;(2)试说明直线y =x -2与抛物线y =ax 2-2ax -1(a <0)一定存在两个交点; (3)若当-2≤x ≤2时,y 的最大值是1,求当-2≤x ≤2时,y 的最小值是多少?14.如图,抛物线2y ax bx =+经过点()3,33A -、()12,0B . (1)求抛物线的解析式; (2)试判断OAB 的形状;(3)曲线AB 为抛物线上点A 到点B 的曲线,在曲线AB 上是否存在点P 使得四边形OAPB 的面积最大,若存在,求点P 的坐标;若不存在,请说明理由.15.如图,在平面直角坐标系中,二次函数y =ax 2+bx ﹣6的图象交坐标轴于A (﹣2,0),B (3,0)两点,抛物线与y 轴相交于点C ,抛物线上有一动点P 在直线BC 下方. (1)求这个二次函数的解析式;(2)是否存在点P ,使△POC 是以OC 为底边的等腰三角形?若存在,求出P 点坐标; (3)动点P 运动到什么位置时,△PBC 面积最大.求出此时P 点坐标和△PBC 的最大面积.16.已知抛物线y =x 2﹣bx +c (b ,c 为常数)的顶点坐标为(2,﹣1). (1)求该抛物线的解析式;(2)点M (t ﹣1,y 1),N (t ,y 2)在该抛物线上,当t <1时,比较y 1与y 2的大小; (3)若点P (m ,n )在该抛物线上,求m ﹣n 的最大值. 17.如图1,抛物线2y x bx c =++与x 轴交于点(2,0)A -、(6,0)B .(1)求抛物线的函数关系式.(2)如图1,点C 是抛物线在第四象限内图像上的一点,过点C 作CP y ⊥轴,P 为垂足,求CP OP +的最大值;(3)如图2,设抛物线的顶点为点D ,点N 的坐标为()2,16--,问在抛物线的对称轴上是否存在点M ,使线段MN 绕点M 顺时针旋转90︒得到线段MN ',且点N '恰好落在抛物线上?若存在,求出点M 的坐标;若不存在,请说明理由.18.如图,已知抛物线2y ax bx c =++()0a ≠与x 轴交于点1,0A 和点()3,0B -,与y 轴交于点C ,且OC OB =.(1)求点C 的坐标和此抛物线的解析式;(2)若点E 为第二象限抛物线上一动点,连接BE ,CE ,BC ,求BCE 面积的最大值; (3)点P 在抛物线的对称轴上,若线段PA 绕点P 逆时针旋转90°后,点A 的对应点A '.恰好也落在此抛物线上,求点P 的坐标.19.如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点C ()0,3-,A 点的坐标为(-1,0). (1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积; (3)若Q 为抛物线对称轴上一动点,当Q 在什么位置时QA+QC 最小,求出Q 点的坐标,并求出此时△QAC 的周长.20.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.(1)分别求出当24x ≤≤时,两个函数:()221,211y x y x =+=-+的最大值和最小值; (2)若2y x=的值不大于2,求符合条件的x 的范围;(3)若(0)ky k x=≠,当()20t x x ≤≤≠时既无最大值,又无最小值,求a 的取值范围.参考答案:1.(1)2=23y x x --(2)函数的最大值为5,最小值为4- (3)存在,(0,9)P -或9(0,)5P -【分析】(1)先求出点C 的坐标,得到点B 的坐标,再将点A 、B 的坐标代入解析式计算即可;(2)将函数解析式化为顶点式,根据函数的性质解答即可; (3)存在点P ,设()0,P m ,根据相似三角形对应边成比例列得PC CC PO OB'=,代入数值求出m 即可.【解析】(1)二次函数23y ax bx =+-的图象与y 轴交于C 点,()0,3C ∴-.OB OC =,点A 在点B 的左边,()3,0B ∴.又点A 的坐标为()1,0-,由题意可得:093303a b a b =+-⎧⎨=--⎩,解得:12a b =⎧⎨=-⎩.∴二次函数的解析式为2=23y x x --.(2)()22=2314y x x x ---=-,二次函数顶点坐标为()1,4-,∴当1x =时,4y =-最小值,当01x ≤≤时,y 随着x 的增大而减小, ∴当0x =时,3y =-最大值,当14x <≤时,y 随着x 的增大而增大, ∴当4x =时,5y =最大值.∴当04x ≤≤时,函数的最大值为5,最小值为4-.(3)存在点P ,如图,设()0,P m ,CC OB '∥,且PC 与PO 是相似三角形的对应边,PC CC PO OB ∴'=,即:()323m m --=, 解得:9m =-或95m =-,()0,9P ∴-或90,5P ⎛⎫- ⎪⎝⎭.【点评】此题考查了二次函数与图形问题,待定系数法求二次函数的解析式,二次函数的对称性,相似三角形的性质,二次函数的最值,正确掌握二次函数的综合知识是解题的关键. 2.(1)4(2)当32t =-时,233PE PF +1733232P ⎛- ⎝⎭; (3)(1,3N --,113⎛- ⎝⎭和3731,⎛- ⎝⎭【分析】(1)令232330,求解即可; (2)求直线,AC BD 的解析式,设点232,33P t ⎛ ⎝,则33Q t ⎛ ⎝,33F t ⎛ ⎝⎭,利用30QFC ∠=︒,将所求转化为23333PE PF PQ PF +=+,再求解即可; (3)推出平移后的解析式,设234383,M m ⎛ ⎝⎭,()2,N n -,分三种情况讨论;再利用平行四边形的性质结合中点坐标求解即可. 【解析】(1)令232330, 解得1x =或3x =-, ∴()()3,0,1,0A B -,4AB ∴=;(2)232333y x x =-(3C ∴,设直线AC 的解析式为y kx b =+,303k b b -+=⎧⎪∴⎨=⎪⎩,解得33k b ⎧=⎪⎨⎪=⎩,∴直线AC 的解析式为y x =(),1,0AC BD B ∥,∴直线BD 的解析式为y x =设点2,P t ⎛ ⎝+,则Q t ⎛+ ⎝,F t ⎛ ⎝⎭, ∵点P 为直线AC 上方抛物线上一动点,22PQ ∴==,22P F ==∵3,OA OC ==30CAO ∴∠=︒,,PE AC PF OA ⊥⊥, 30QFC ∴∠=︒,PE ∴=,∴222333332PF PQ PF t ⎛⎫+=+==-+ ⎪⎭⎝⎭∴当32t =-时,3PF +32P ⎛- ⎝⎭;(3))22313y x =-+ ∴抛物线对称轴为直线=1x -,∵抛物线2y =3个单位得到新抛物线y ',∴新抛物线y '的解析式为)22y x =-+',∴2,M m ⎛ ⎝⎭,()1,N n -,①当AB 为平行四边形的对角线时,2311,0m n -=-+=,∴1,m n =-=∴((1,N M --,;②当AM 为平行四边形的对角线时,234383311,m n -=+-= ∴1133,m n ==∴113113N M ⎛⎛- ⎝⎭⎝⎭,; ③当AN 为平行四边形的对角线时,24311,3383n m -+-=+=, ∴3735,m n =-= ∴3733735,1,M N ⎛⎛-- ⎝⎭⎝⎭,; 综上,N 点坐标分别为(1,3N -,113⎛- ⎝⎭和3731,⎛- ⎝⎭. 【点评】本题考查了为此函数的图象和性质,直角三角形的性质,平行四边形的性质,熟练掌握知识并能够运用分类讨论的思想是解题的关键. 3.(1)1 (2)21 (3)1312-【分析】(1)根据对称轴公式求出b ,再有二次函数2y x bx c =+-的图象经过点(3,0),代入求出c ,计算即可;(2)根据二次函数的增减性可知,当x =-4时,y 值最大,代入求解即可;(3)因为平移抛物线2=23y x x --,其顶点始终在二次函数221y x x =--上,故设顶点坐标为()2,21h h h --,可得平移后的解析式为22()21y x h h h =-+--,可求平移后所得抛物线与y 轴交点纵坐标为231=--w h h ,根据二次函数求最值的方法求解即可. (1)解:由题意可知12bx =-=,∴2b =-. 将(3,0)代入22y x x c =--,得3c =, ∴1b c +=. (2)解:由(1)得2223(1)4y x x x =--=--,∴当1x <时,y 随x 增大而减小,当1x >时,y 随x 增大而增大.∵1(4)31-->-,∴当4x =-时,y 取最大值21. (3)解:∵平移抛物线2=23y x x --,其顶点始终在二次函数221y x x =--上,∴设顶点坐标为()2,21h h h --,故平移后的解析式为22()21y x h h h =-+--,∴22222221231y x hx h h h x hx h h =-++--=-+--. 设平移后所得抛物线与y 轴交点的纵坐标为w , 则22113313612w h h h ⎛⎫=--=-- ⎪⎝⎭,∴当16h =时,平移后所得抛物线与y 轴交点纵坐标的最小值为1312-. 【点评】本题考查了二次函数的性质,和最值,平移规律,熟练掌握二次函数的性质和平移规律是解题的关键.4.(1)1,0x =;(2)11m =,21m =-;(3)当1n =-时,m n +有最小值为-2. 【分析】(1)求方程2(x -1)-4=0的根,代入(x -1)(x -2)=m +1中,确定m 的值;解(x -1)(x -2)=m +1,得到另一个根;(2)求方程2(x -m )-4=0的根,代入(x -1)(x -2)=m +1中,确定m 的值;(3)求方程()240x n --=的根,代入(x -1)(x -2)=m +1中,用含n 的代数式表示m ,构造m +n 与n 的二次函数,利用二次函数的性质确定最值. 【解析】(1)∵2(x -1)-4=0, ∴x =3,∴(3-1)(3-2)=m +1, 解得m =1, ∴(x -1)(x -2)=2, ∴2x -3x =0, ∴123,0x x ==, 故答案为:1,0x =. (2)由()240x m --=,得 2x m =+.则()()21221m m m +-+-=+ ∴21m m m +=+, ∴21m =,∴11m =,21m =-. (3)由()240x n --=,得2x n =+.则()()21221n n m +-+-=+. 即21m n n =+-.∴()222112m n n n n +=+-=+-; ∴当1n =-时,m n +有最小值-2.【点评】本题考查了一元一次方程,一元二次方程,二次函数的最值,熟练掌握方程的解法,二次函数的最值是解题的关键.5.(1) 223y x x =-++;(2) P 点坐标为(1,2),BCP ∆1032(3) Q 点坐标存在,为(2,2)或(417或(4,17-或(2-,314或(2-,314【分析】(1)将()3,0A ,()1,0B -代入即可求解;(2)连接BP 、CP 、AP ,由二次函数对称性可知,BP=AP ,得到BP +CP =AP +CP ,当C 、P 、A 三点共线时,△PBC 的周长最小,由此求出AC 解析式,将P 点横坐标代入解析式中即可求解;(3)设P 点坐标为(1,t ),Q 点坐标为(m ,n ),按AC 为对角线,AP 为对角线,AQ 为对角线分三种情况讨论即可求解.【解析】解:(1)将()3,0A ,()1,0B -代入二次函数表达式中,∴093303a b a b =++⎧⎨=-+⎩ ,解得12a b =-⎧⎨=⎩,∴二次函数的表达式为:223y x x =-++; (2)连接BP 、CP 、AP ,如下图所示:由二次函数对称性可知,BP=AP , ∴BP +CP =AP +CP , BCPC BP CP BCPA CP BCBC 为定直线,当C 、P 、A 三点共线时,PA CP 有最小值为AC ,此时BCP ∆的周长也最小,设直线AC 的解析式为:y kx m =+,代入()3,0,(0,3)A C ,∴0=330k m m +⎧⎨=+⎩,解得13k m =-⎧⎨=⎩,∴直线AC 的解析式为:3y x =-+, 二次函数的对称轴为12bx a=-=,代入3y x =-+,得到2y =, ∴P 点坐标为(1,2),此时BCP ∆的周长最小值=222213331032BC AC;(3)()3,0,(0,3)A C 设P 点坐标为(1,t ),Q 点坐标为(m ,n ), 分类讨论:情况一:AC 为菱形对角线时,另一对角线为PQ ,此时由菱形对角互相平分知:AC 的中点也必定是PQ 的中点, 由菱形对角线互相垂直知:1AC PQk k ,∴30103111m t n n t m ⎧⎪+=+⎪+=+⎨⎪-⎪-⋅=--⎩,解得221m n t =⎧⎪=⎨⎪=⎩,∴P 点坐标为(1,1),对应的Q 点坐标为(2,2); 情况二:AP 为菱形对角线时,另一对角线为CQ ,同理有:310030312m t n t n m ⎧⎪+=+⎪+=+⎨⎪--⎪⋅=--⎩,解得43m n t=⎧⎪⎨⎪=⎩或43m n t =⎧⎪=⎨⎪=⎩,∴P 点坐标为(1,3)或(1,3,对应的Q 点坐标为(4或(4,); 情况三:AQ 为菱形对角线时,另一对角线为CP ,()3,0,(0,3)A C 设P 点坐标为(1,t ),Q 点坐标为(m ,n ),同理有:3010303131m n t n t m ⎧⎪+=+⎪+=+⎨⎪--⎪⋅=--⎩,解得23m n t =-⎧⎪=⎨⎪=⎩23m n t =-⎧⎪=⎨⎪=⎩ ∴P 点坐标为(1或(1,,对应的Q 点坐标为(-2,3或(-2,3; 纵上所示,Q 点坐标存在,为(2,2)或(4或(4,或(2-,3或(2-,3.【点评】本题考查了待定系数法求二次函数解析式,二次函数对称性求线段最值问题及菱形的存在性问题,本题第三问难度大一些,熟练掌握各图形的性质是解决本题的关键. 6.(1)①234y x x =--;②自变量x 的取值范围为12x >-;(2)a 1401-+25541-- 【分析】(1)①二次函数y =ax 2+bx +c 的顶点为(32,﹣254),可确定二次函数的对称轴为32x =,利用对称轴求出抛物线与x 轴的交点A (-1,0),B (4,0),利用待定系数法可求抛物线解析式;②设自变量x 的值增加4时,的函数为y 1,求出新增函数21=5y x x +,利用1y y >两函数作差840x +>解不等式即可;(2)设二次函数的解析式为232524y a x ⎛⎫=-- ⎪⎝⎭,由-1≤x ≤132<,0a >或a<0分两种情况利用函数的增减性构造关于a 的一元二次方程,求出a 的值即可. 【解析】解:(1)①二次函数y =ax 2+bx +c 的顶点为(32,﹣254),∴二次函数的对称轴为32x =, ∵与x 轴交于点A ,B ,AB =5, ∴A 、B 两点关于对称轴为32x =对称,35122-=-,35+422=, ∴A (-1,0),B (4,0), 设解析式为()()14y a x x =+-,∵()()14y a x x =+-过顶点(32,﹣254),∴253314422a ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭, 解得=1a ,∴二次函数解析式为:2=34y x x --, ②设自变量x 的值增加4时,的函数为y 1, ∴()()221=+43+44=5y x x x x --+, ∵1y y >,∴()22534840x x x x x +---=+>,解得12x >-;(2)设二次函数的解析式为232524y a x ⎛⎫=-- ⎪⎝⎭,当-1≤x ≤132<, 当0a >,二次函数开口向上,在二次函数对称轴的左侧,y 随x 的增大而减小, ∴当x =1时函数取最小值﹣a 2,∴22325124a a ⎛⎫--=- ⎪⎝⎭,整理得24+250a a -=,解得a =0a =<(舍去), 当a<0,二次函数开口向下,在二次函数对称轴的左侧,y 随x 的增大而增大, ∴当x =-1时函数取最小值﹣a 2,∴22325124a a ⎛⎫---=- ⎪⎝⎭, 整理得24+25250a a -=,解得a =或0a =>(舍去). 【点评】本题考查待定系数法求抛物线解析式,利用自变量增大函数值增大构造不等式,利用函数的增减性取最小值构造关于a 的一元二次方程,掌握待定系数法求抛物线解析式,会列不等式与解不等式,利用函数的增减性取最小值构造关于a 的一元二次方程和解方程是解题关键.7.(1)1k =,1b =;(2)p 最大值为1;(3)30c -<≤或1c =【分析】(1)将(2,3)和1,2n ⎛⎫⎪⎝⎭分别代入直线表达式中可求得k 和n 值,再根据抛物线的对称轴公式求解b 值即可;(2)抛物线的对称轴为直线x =﹣12和2139x x ≤-<得出211x x =--及152x -<≤-,则()22221211331p x x x x =-=---2133222x ⎛⎫=-++ ⎪⎝⎭,根据二次函数的最值方法求解即可;(3)联立方程组可得x 2=1﹣c ,对c 讨论,结合方程根取值范围进行求解即可. 【解析】解:(1)把()2,3代入1y kx =+得:213k +=,则1k =,∴点1,2n ⎛⎫⎪⎝⎭在直线1y x =+上,∴12n =-,∴抛物线的对称轴122b x =-=-,∴1b =;(2)由(1)知1b =,则2y x x c =++,∵抛物线2y x x c =++与x 轴交点的横坐标为1x ,2x 且213x x -≥ ∴2112x x >-> ∴211122x x ⎛⎫⎛⎫--=-- ⎪ ⎪⎝⎭⎝⎭即121x x +=-. ∴211x x =--.∴()22221211331p x x x x =-=---2133222x ⎛⎫=-++ ⎪⎝⎭∵2139x x ≤-<,∴()11319x x ≤---< ∴152x -<≤-∵20-<且对称轴为直线32x =-∴当152x -<≤-时,p 随1x 的增大而增大, ∴当12x =-时,p 取最大值且最大值为1;(3)由(1)知,直线的表达式为1y x =+,抛物线表达式为2y x x c =++,联立方程组21y x y x x c =+⎧⎨=++⎩得:x 2=1﹣c , 当c >1时,该方程无解,不满足题意; 当c =1时,方程的解为x =0满足题意; 当c <1时,方程的解为x =±1c -当1c -2即30c -<≤时,满足12x -<<时,抛物线2y x bx c =++与直线1y kx =+有且只有一个公共点,综上,满足题意的c 的取值范围为30c -<≤或1c =.【点评】本题考查二次函数与一次函数的综合,涉及待定系数法求函数表达式、二次函数的图象与性质、求二次函数的最值问题、两个函数图象的交点问题、解一元二次方程、解一元一次不等式组等知识,解答的关键是认真分析题意,找寻知识之间的关联点,利用待定系数法、分类讨论和数形结合思想进行推理、探究和计算. 8.(1)()3,3-;(2)1;(3)4044个【分析】(1)先求出点B 坐标,B 的纵坐标减去A 的纵坐标等于12求出m 值,再求出抛物线的对称轴,根据抛物线的对称性和两点之间线段最短知,当B 、P 、D 三点共线时OBP 周长最短,此时点P 为直线a 与对称轴的交点,进而求解即可;(2)先求出抛物线的顶点C 坐标2,24m m ⎛⎫-- ⎪⎝⎭,由C 与l 的距离221()(2)1144m m m =---=--+≤即可求出最大值;(3)先求出抛物线与直线a 的交点的横坐标,根据每一个整数x 的值都对应的一个整数y 值,结合边界由线段和抛物线组成求解即可. 【解析】解:(1)当0x =时,y x m m =+=, (0,)B m ∴,12AB =,而(0,)A m -,()12m m ∴--=,6m ∴=,∴抛物线L 的解析式为:26y x x =+,L ∴的对称轴3x =-,又知O 、D 两点关于对称轴对称,则OP DP =OB OP PB OB DP PB ∴++=++∴当B 、P 、D 三点共线时OBP 周长最短,此时点P 为直线a 与对称轴的交点,当3x =-时,63y x =+=, (3,3)P ∴-;(2)2224m m y x ⎛⎫=+- ⎪⎝⎭,L ∴的顶点2,24m m C ⎛⎫-- ⎪⎝⎭,点C 在l 上方,C ∴与l 的距离221()(2)1144m m m =---=--+≤,∴点C 与l 距离的最大值为1;(3)当2021m =时,抛物线解析式2:2021L y x x =+ 直线解析式:2021a y x =+联立上述两个解析式220212021y x xy x ⎧=+⎨=+⎩可得:12021x =-,21x =∴可知每一个整数x 的值都对应的一个整数y 值,且-2021和1之间(包括-2021和1)共有2023个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线, ∴线段和抛物线上各有2023个整数点, ∴总计4046个点∵这两段图象交点有2个点重复, ∴“整点”的个数:404624044-=(个); 故2021m =时“整点”的个数为4044个.【点评】本题考查二次函数的图象与性质、一次函数的图象与性质、图形与坐标、最短路径问题、二次函数的最值、两函数图象的交点问题、解二元一次方程组等问题,综合性强,难度适中,解答的关键是读懂题意,找寻相关知识的关联点,利用数形结合思想解决问题. 9.(1)2712y x x =--;(2)t =2时,△PDE 2458, 点P的坐标为(2,﹣4);(3)满足条件的点M 的坐标有(2,﹣4),(6,12),(﹣2,12),过程见解析【分析】(1)利用待定系数法求函数表达式即可;(2)先求出直线AB 的函数表达式和点C 坐标,设P 27,12t t t ⎛⎫-- ⎪⎝⎭,其中0<t <4,则E22727,12t t t t ⎛⎫---⎪⎝⎭,证明△PDE ∽△AOC ,根据周长之比等于相似比可得())22355651024522828l t t ++⎡⎤=--+=-⎣⎦,根据二次函数求最值的方法求解即可;(3)分以下情况①若AB 是平行四边形的对角线;②若AB 是平行四边形的边,1)当 MN ∥AB 时;2)当 NM ∥AB 时,利用平行四边形的性质分别进行求解即可. 【解析】解(1)∵抛物线2y x bx c =++经过点A (0,﹣1),点B (4,1),∴11641c b c =-⎧⎨++=⎩, 解得721b c ⎧=-⎪⎨⎪=-⎩, ∴该抛物线的函数表达式为2712y x x =--;(2)∵A (0,-1),B (4,1), ∴直线AB 的函数表达式为112y x =-, ∴C (2,0),设P 27,12t t t ⎛⎫-- ⎪⎝⎭,其中0<t <4,∵点E 在直线112y x =-上,PE ∥x 轴, ∴E 22727,12t t t t ⎛⎫--- ⎪⎝⎭,∠OCA =∠DEP ,∴PE =()2228228t t t -+=--+, ∵PD ⊥AB , ∴∠EDP =∠COA , ∴△PDE ∽△AOC , ∵AO =1,OC =2, ∴AC∴△AOC 的周长为令△PDE 的周长为lACPE=,∴())2222828l t t ⎡⎤=--+=-⎣⎦, ∴当t =2时,△PDE8, 此时点P 的坐标为(2,﹣4),(3)如图所示,满足条件的点M 的坐标有(2,﹣4),(6,12),(﹣2,12). 由题意可知,平移后抛物线的函数表达式为24y x x =-,对称轴为直线2x =. ①若AB 是平行四边形的对角线,当MN 与AB 互相平分时,四边形ANBM 是平行四边形, 即MN 经过AB 的中点C (2,0),∵点N 的横坐标为2,∴点M 的横坐标为2,∴点M 的坐标为(2,-4);②若AB 是平行四边形的边,1)MN ∥AB 时,四边形ABNM 是平行四边形,∵A (0,-1),B (4,1),点N 的横坐标为2,∴点M 的横坐标为2﹣4=﹣2,∴点M 的坐标为(﹣2,12);2)当 NM ∥AB 时,四边形ABMN 是平行四边形,∵A (0,-1),B (4,1),点N 的横坐标为2,∴点M 的横坐标为2+4=6,∴点M 的坐标为(6,12),综上,满足条件的点M 的坐标有(2,﹣4),(6,12),(﹣2,12).【点评】本题考查待定系数法求函数的表达式、相似三角形的判定与性质、求二次函数的最值、平行四边形的性质等知识,解答的关键是熟练掌握二次函数的性质,运用平行四边形的性质,结合数形结合和分类讨论的思想方法进行探究、推导和计算.10.(1)21722y x x =-++;(2)352(3)存在,点Q 的坐标为(10,23Q 、(20,23Q 【分析】(1)先将点B 的坐标为(4,)m 代入代入直线解析式中,求得点B 的坐标,再利用,A B 坐标,待定系数法求二次函数解析式;(2)设217,22D m m m ⎛⎫-++ ⎪⎝⎭,则7,2E m m ⎛⎫-+ ⎪⎝⎭,()21222DE m =--+,当2m =时,DE 有最大值为2,此时72,2D ⎛⎫ ⎪⎝⎭,作点A 关于对称轴的对称点A ',连接A D ',与对称轴交于点P ,PD PA PD PA A D ''+=+=此时PD PA +最小,勾股定理即可求得;(3)作AH y ⊥轴于点H ,连接AM 、AQ 、MQ 、HA 、HQ ,由45AQM ∠=︒可知12AQM AHM ∠=∠,继而可得:2QH HA HM ===,设(0,)Q t ,勾股定理即可求得点Q 的坐标【解析】解:(1)将点B 的坐标为(4,)m 代入72y x =-+, 71422m =-+=-, ∴B 的坐标为14,2⎛⎫- ⎪⎝⎭, 将(3,2)A ,14,2B ⎛⎫- ⎪⎝⎭代入 212y x bx c =-++, 2213322114422b c b c ⎧-⨯++=⎪⎪⎨⎪-⨯++=-⎪⎩ 解得1b =,72c =, ∴抛物线的解析式21722y x x =-++; (2)设217,22D m m m ⎛⎫-++ ⎪⎝⎭, 则7,2E m m ⎛⎫-+ ⎪⎝⎭, 222177112(2)222222DE m m m m m π⎛⎫⎛⎫=-++--+=-+=--+ ⎪ ⎪⎝⎭⎝⎭, ∴当2m =时,DE 有最大值为2 此时72,2D ⎛⎫ ⎪⎝⎭, 作点A 关于对称轴的对称点A ',连接A D ',与对称轴交于点P .PD PA PD PA A D ''+=+=,此时PD PA +最小,∵(3,2)A ,∴(1,2)A '-,2273(12)2522A D ⎛⎫'=--+- ⎪⎝⎭ 即PD PA +352(3)作AH y ⊥轴于点H ,连接AM 、AQ 、MQ 、HA 、HQ ,∵抛物线的解析式21722y x x =-++, ∴(1,4)M ,∵(3,2)A ,∴2AH MH ==,(1,2)H∵45AQM ∠=︒,90AHM ∠=︒, ∴12AQM AHM ∠=∠, 可知AQM 外接圆的圆心为H ,∴2QH HA HM ===设(0,)Q t2,2t =2∴符合题意的点Q的坐标:(10,2Q、(20,2Q .【点评】本题考查了待定系数法求二次函数解析式,二次函数图像与性质,勾股定理,将军饮马求线段和的最小值,三角形的外心,圆周角定理,正确作出图形是解题的关键.11.(1)211433y x x =-++;(2)3;(3)存在,点Q 的坐标为(1,3)或⎝⎭ 【分析】(1)将点A 、B 的坐标代入解析式中求解即可;(2)由抛物线的表达式211433y x x =-++求出y 轴交点C 的坐标,利用待定系数法求得直线BC 的解析式,然后用m 表示出PQ ,利用三角函数求出PN =PQ cos45°,再利用二次函数的性质即可求解;(3)分三种情况:①当AC CQ =时,过点Q 作QE y ⊥轴于点E .则222CQ CE EQ =+,即[]224(4)25m m +--+=;②当AC AQ =时,连结AQ ,则5AQ AC ==,在Rt AMQ △中,由勾股定理得:AQ 2=AM 2+QM 2=AC 2,即22[(3)](4)25m m --+-+=;③当CQ AQ =时,则EC 2+EQ 2=AM 2+QM 2,即()[]2222(3)(+44)4m m m m =--+--+⎡⎤+⎦-⎣,分别求解即可. 【解析】解:(1)∵抛物线24y ax bx =++交x 轴于3,0,()(,0)4A B -两点,∴将点A B 、的坐标代入抛物线表达934016440a b a b -+=⎧⎨++=⎩, 解得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的表达式为:211433y x x =-++;(2)∵抛物线的表达式211433y x x =-++,当x=0时,y=4,∴点(0,4)C ,设直线BC 的表达式为:y kx b =+;把点B C 、的坐标代入解析式得:404k b b +=⎧⎨=⎩, 解得:14k b =-⎧⎨=⎩, 直线BC 的表达式为:4y x =-+;设点(,0)M m ,则点211,433P m m m ⎛⎫-++ ⎪⎝⎭,点4(),Q m m -+, 221114443333PQ m m m m m ∴=-+++-=-+, OB OC =,∴45ABC OCB ∠=∠=︒,∵PM ⊥x 轴,∴∠MQB =90°-∠CBO =90°-45°=45°,∴∠PQN =∠MQB =45°,∵PN ⊥BC ,∴45NPQ NQP ∠=∠=︒,22214222sin 452)33PN PQ m m m ⎫∴=︒=-+=-⎪⎝⎭, 206-<,开口向下,PN 有最大值, 当2m =时,PN 22 (3)存在,理由: 点A C 、的坐标分别为(3,0),(0,4)-,在△OAC 中由勾股定理有()2222-34AC OA OC +=+①当AC CQ =时,过点Q 作QE y ⊥轴于点E .则222CQ CE EQ =+,∴222=CE EQ AC +即()224425m m ⎡⎤⎣-⎦+-+=, 解得:52m =(舍去负值),∴点Q ⎝⎭;②当AC AQ =时,连结AQ ,则5AQ AC ==,在Rt AMQ △中,由勾股定理得:AQ 2=AM 2+QM 2=AC 2即[]22(3)(4)25m m --+-+=,解得:1m =或0(舍去0),∴点()1,3Q ;③当CQ AQ =时,则EC 2+EQ 2=AM 2+QM 2,即()[]2222(3)(+44)4m m m m =--+--+⎡⎤+⎦-⎣, 解得:2542m =>(舍去);综上,点Q 的坐标为(1,3)或822⎛- ⎝⎭..【点评】本题考查待定系数法求抛物线解析式和直线解析式,两点距离公式,锐角三角函数,分类探究等腰三角形.勾股定理,掌握待定系数法求抛物线解析式和直线解析式,两点距离公式,锐角三角函数,分类探究等腰三角形.勾股定理,利用勾股定理构造方程是解题关键.12.(1)223y x x =--+;(2)y =x +3;(3)M (-1,2),【分析】(1)根据抛物线的对称轴可得12b a-=-,然后代入A (1,0),C (0,3)代入抛物线解析式03a b c c ++=⎧⎨=⎩解方程组即可; (2)利用(1)的函数解析式令y =0,解方程即可求出点B 坐标,再根据B 、C 坐标利用待定系数法求直线BC 的解析式即可;(3)由点A 与点B 是关于对称轴直线=1x -的对称点,直线BC 与对称轴直线=1x -的交点就是D (-1,2),由点M 在对称轴上,可得AM =BM ,由点M 到点A 的距离与到点C 的距离之和最小,点B ,点M ,点C 三点共线时最短,即点M 与点D 重合时,距离之和的最小值就是可得CM +AM =BC 的长,在Rt △BOC 中,由勾股定理得BC =32【解析】解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得123a b c =-⎧⎪=-⎨⎪=⎩,∴223y x x =--+;(2)当y=0时2x 2x 30--+=解得123,1x x =-=∴点B (-3,0)由直线BC 的解析式为:y =mx+n ,代入B (﹣3,0),C (0,3)得:303m n n -+=⎧⎨=⎩, 解得:13m n =⎧⎨=⎩, ∴直线BC 的解析式为:y =x +3;(3)∵点A 与点B 是关于对称轴直线=1x -的对称点,∴直线BC 与对称轴直线=1x -的交点就是D 点,∴当=1x -时3y x =-1+3=2,∴D (-1,2),∵点M 在对称轴上,∴AM =BM ,点M 到点A 的距离与到点C 的距离之和最小,∴点B ,点M ,点C 三点共线时最短,即点M 与点D 重合时,点M (-1,2),∴距离之和的最小值就是CM +AM =CM+BM = BC 的长,在Rt △BOC 中,由勾股定理得BC∴距离之和的最小值就是【点评】本题考查的是二次函数的综合运用,待定系数法求函数解析式,一次函数解析式,利用轴对称求最短路径以及M 坐标是解题关键.13.(1)直线x =1,(0,-1);(2)见解析;(3)17-.【分析】(1)将抛物线解析式转化为顶点式解析式,得到对称轴,当0x =时,可解得抛物线与y 轴的交点坐标;(2)将y =x -2代入二次函数解析式,得到关于x 的一元二次方程,根据一元二次方程根的判别式解题即可;(3)将抛物线解析式转化为顶点式,得到对称轴为直线x =1,根据抛物线的图象与性质解题即可.【解析】解:(1)抛物线y =ax 2-2ax -12(1)1a x a =--- ,∴抛物线的对称轴为直线1x =,抛物线y =ax 2-2ax -1中,当0x =时,1y =-,∴抛物线与y 轴的交点坐标为:(0,1)-故答案为:直线x =1,(0,1)-;(2)将y =x -2代入二次函数解析式,得x -2 = ax 2-2ax -1,则原方程可化为 ax 2-(2a +1)x +1=0,由根的判别式可得2-4b ac =()222214441441a a a a a a ⎡⎤-+-=++-=+⎣⎦2410a +>0∴∆>∴直线y =x -2与抛物线y =ax 2-2ax -1(a < 0)一定存在两个交点;(3)∵抛物线的开口向下,对称轴直线为x =1,顶点坐标为(1,1)a --,∴当-2≤x ≤2时,∵y 的最大值是1,∴顶点坐标为(1, 1),11a ∴--=2a ∴=-∴当x < 1时,y 随x 的增大而增大,当x >1时,y 随x 的增大而减小,∵2x =-比2x =离对称轴1x =更远一些,即x =-2时,y 有最小值,∴最小值是22(2)2(2)(2)117y =-⨯--⨯-⨯--=-,即y 的最小值是 17-.【点评】本题考查二次函数的图象与性质、一次函数与二次函数的交点问题,涉及二次函数的最值等知识,是重要考点,难度一般,掌握相关知识是解题关键.14.(1)2343y x =;(2)直角三角形;(3)存在,点P 坐标为:151353,2⎛ ⎝⎭. 【分析】(1)把(3,33A -、(12,0)B 代入2y ax bx =+,利用待定系数法解题;(2)利用勾股定理的逆定理解题;(3)连接AB ,利用待定系数法解得直线AB 的解析式为:33y =-2343P x x ⎛⎫ ⎪ ⎪⎝⎭,过点P 作PM x ⊥轴,垂足为M ,交AB 于点343N x x ⎛- ⎝,由三角形面积公式,结合二次函数的最值问题解题即可.【解析】解:(1)把(3,33A -、(12,0)B 代入2y ax bx =+,得9333144120a b a b ⎧+=-⎪⎨+=⎪⎩①②, ①4⨯-②得,1083a -=-3a ∴= 把3a =①得 43b =343a b ⎧=⎪⎪∴⎨⎪=⎪⎩∴抛物线的解析式为:2343y x =;(2)(0,0)O,(3,A -、(12,0)B(222336OA ∴=+=∣(222(123)108AB =-+=2212144OB ==22236108144OA AB OB +=+==OAB ∴△为直角三角形;(3)存在,连接AB ,OAB APB OAPB S S S =+△△四边形而OAB S 已确定,要使四边形OAPB S 面积最大,只需要APB S 最大即可,设直线AB 的解析式为(0)y kx b k =+≠,把点(3,A -、(12,0)B代入,得:3120k b k b ⎧+=-⎪⎨+=⎪⎩解得:k b ⎧=⎪⎨⎪=-⎩∴直线AB的解析式为:y x =-设2P x x ⎛⎫ ⎪ ⎪⎝⎭,过点P 作PM x ⊥轴,垂足为M ,交AB 于点N ,于是N x ⎛- ⎝,则2119922APB APB S PN S x x ⎡⎤⎫=⋅⋅==--⨯⎢⎥⎪⎪⎢⎥⎝⎝⎭⎣⎦△△2x =-当152x ==⎝⎭时,APB S 最大.2x x = ∴符合条件的点P坐标为:15,2⎛ ⎝⎭.【点评】本题考查二次函数与一次函数的综合题,涉及勾股定理逆定理、待定系数法求一次。
2024年福建中考数学专题复习:二次函数综合题(含答案)
2024年福建中考数学专题复习:二次函数综合题一.定点问题(共3小题)1.已知抛物线y=x2﹣2mx﹣3(m为常数).(1)求抛物线的顶点坐标(用含m的代数式表示);(2)当m≥1时,求抛物线顶点到x轴的最小距离;(3)当m=0时,点A,B为该抛物线上的两点,顶点为D,直线AD的解析式为y1=k1x+b1,直线BD的解析式为y2=k2x+b2,若k1k2=﹣,求证:直线AB过定点.2.已知抛物线y=x2+bx+c关于直线x=1对称,且过点(2,1).(1)求抛物线的解析式;(2)过D(m,﹣1)的直线DE:y=k1x+b1(k>0)和直线DF:y=k2x+b2(k2<0)均与抛物线有且只有一个交点.①求k1k2的值;②平移直线DE,DF,使平移后的两条直线都经过点R(1,0),且分别与抛物线相交于G、H和P、Q两点,若M、N分别为GH,PQ的中点,求证:直线MN必过某一定点.3.在平面直角坐标系中,抛物线l:y=x2﹣2mx﹣2﹣m(m>0)与x轴分别相交于A、B两点(点A在点B的左侧),与y轴相交于点C,设抛物线l的对称轴与x轴相交于点N,且OC=3ON(1)求m的值;(2)设点G是抛物线在第三象限内的动点,若∠GBC=∠ACO,求点G的坐标;(3)将抛物线y=x2﹣2mx﹣2﹣m向上平移3个单位,得到抛物线l′,设点P、Q是抛物线l′上在第一象限内不同的两点,射线PO、QO分别交直线y=﹣2于点P′、Q′,设P′、Q′的横坐标分别为x P′、x Q′,且x P′⋅x Q′=4,求证:直线PQ经过定点.二.定值问题(共2小题)4.过原点的抛物线与x轴的另一个交点为A,且抛物线的对称轴为直线x=2,顶点为B.(1)求抛物线的解析式;(2)如图(1),点E是直线AB上方抛物线上一点,连接AB,BE,AE,若△ABE的面积为4,求点E的坐标;(3)如图(2),设直线y=kx﹣2k(k≠0)与抛物线交于C,D两点,点D关于直线x=2的对称点为D',直线CD'与直线x=2交于点P,求证:BP的长为定值.5.已知抛物线C1:y=mx2+n与x轴于A,B两点,与y轴交于点C,△ABC为等腰直角三角形,且n=﹣1.(1)求抛物线C1的解析式;(2)将C1向上平移一个单位得到C2,点M、N为抛物线C2上的两个动点,O为坐标原点,且∠MON=90°,连接点M、N,过点O作OE⊥MN于点E.求点E到y轴距离的最大值;(3)如图,若点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.三.线段之积(共2小题)6.如图,在平面直角坐标系中,抛物线y=x2+bx+c,交x轴于A、B两点(点A在点B的左侧,其中A点坐标(﹣1,0);交y轴负半轴于点C,C点坐标(0,﹣3).(1)求出抛物线的解析式;(2)如图1,若抛物线上有一点D,∠ACD=45°,求点D的坐标.(3)如图2,点P是第一象限抛物线上一点,过点P的直线y=mx+n(n<0)与抛物线交于另外一点Q,连接AP、AQ,分别交y轴于M、N两点.若OM•ON=2,试探究m、n之间的数量关系,并说明理由.7.已知抛物线y=ax2+bx+c经过点A(﹣1,0),B(2,0),C(0,﹣1).(1)求抛物线的解析式;(2)D为抛物线y=ax2+bx+c上不与抛物线的顶点和点A,B重合的动点.①设抛物线的对称轴与直线AD交于点F,与直线BD交于点G,点F关于x轴的对称点为F′,求证:GF′的长度为定值;②当∠BAD=45°时,过线段AD上的点H(不含端点A,D)作AD的垂线,交抛物线于P,Q两点,求PH•QH的最大值.四.线段数量关系(共5小题)8.抛物线C:y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左边),交y轴于点C.(1)直接写出点A,B的坐标;(2)如图1,直线y=x+1经过点A,交抛物线于另一点N,点D在抛物线上,满足△DAN的面积与△CAN的面积相等,求点D的横坐标;(3)如图2,将抛物线C向上平移,使其顶点M在x轴上,得到抛物线C1,P(x1,y1),Q(x2,y2)是抛物线C1上两点(P点在Q点左侧),直线PQ交抛物线C1对称轴于点E,过点Q作y轴的平行线分别交x轴,直线PM于F,H两点,EH交x轴于点G,求证:EG=GH.9.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线经过点(﹣1,1)且对称轴为直线x=1,求a,c所满足的数量关系;(2)抛物线与y轴交于点,顶点为Q(2,0),过点的直线与抛物线交于E,F两点(点E在点F的左侧).①求△EQF面积的最小值;②过点E作x轴的垂线,垂足为M,直线EM与直线FQ交于点N,连接PM,求证:PM∥QN.10.如图,抛物线y=﹣x2+bx+c经过A(4,0),C(﹣1,0)两点,与y轴交于点B,点P为抛物线上的一个动点,连接AB,BC,PA,PC,PC与AB相交于点Q.(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一个动点.设△APQ的面积为S1,△BCQ的面积为S2.求S1﹣S2的最大值,并求此时点P的坐标;(3)过点P作PD垂直于x轴于点D,与线段AB交于点N.设点D的横坐标为m,且2<m<4,PD中点为点M,AB中点为点E,若,求m的值.11.抛物线y=﹣x2+bx+c经过点A(4,0),与y轴交于点B,对称轴为,点P是x轴上一点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.(1)求二次函数的表达式;(2)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求点P的坐标;(3)分别过点E、F向抛物线的对称轴作垂线,交对称轴于点M、N,矩形EMNF与此抛物线相交,抛物线被截得的部分图象记作G,G的最高点的纵坐标为m,最低点纵坐标为n,当m﹣n=2OP时,求点P的坐标.12.已知抛物线y=﹣﹣2x+3n(n>0)与x轴交于A,B两点(点A位于点B的左侧);与y轴交于点C,顶点为D.(1)如图1,若n=1.①则D的坐标为;②当m≤x≤0时,抛物线的最小值为3,最大值为4,则m的取值范围为.(2)如图2,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线PB 同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2nd.①求证:AC∥PB.②连接AP、OD、OQ、DQ,若AP=QB,PQ=4n,试判断△DOQ的形状是否随着n的变化而变化?并说明理由.五.面积问题(共5小题)13.已知抛物线C1:y=﹣x2﹣2x﹣1,抛物线C2经过点A(﹣1,0),B(m+1,0)(m>0),E为抛物线C2的顶点,M(x M,0)是x轴正半轴上的点.(1)若E在抛物线C1上,求点E的坐标;(用含m的式子表示)(2)若抛物线C2:y=x2﹣mx+n,与y轴交于点C.①点D(m,y D)在抛物线C2上,当AM=AD,x M=5时,求m的值;②若m=2,F是线段OB上的动点,过F作GF⊥CF交线段BC于点G,连接CE,GE,求△CGE面积的最小值.14.如图,在直角坐标系中,抛物线y=x2+bx+c经过点A的坐标为(﹣2,0)和原点O,将线段OA绕原点O 顺时针旋转120°,得到线段OB.(1)求抛物线解析式,判断点B是否在抛物线上;(2)连接AB,作点O关于AB的对称点O′,求四边形AOBO′的面积;(3)点P(n,0)是x轴上一个动点,过P点作x轴的垂线交直线AB于点M,交抛物线于点N,将△ANB的面积记为S,若≤S≤,求n的取值范围.15.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的函数解析式;(2)连接AC,BC,点D是直线BC下方抛物线上的一个的动点(不与B,C重合),①求△BCD面积的最大值;②若∠ACO+∠BCD=∠ABC,求点D的坐标.16.在平面直角坐标系中,抛物线经过点和点B(4,0),与y轴交于点C,点P 抛物线上一点.(1)求抛物线的解析式;(2)已知点P为第一象限内抛物线上的点,过点P作PH⊥AB,垂足为H,作PE⊥x轴,垂足为E,交AB于点F,设△PHF的面积为S1,△BEF的面积为S2,当时,求点P的坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N 坐标,若不存在,请说明理由.17.抛物线y=x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,C是第一象限抛物线上一点,直线AC交y轴于点P.(1)求抛物线解析式;(2)如图1,当OP=OA时,D是点C关于抛物线对称轴的对称点,M是抛物线上的动点,它的横坐标为m(﹣1<m<4),连接DM,CM,DM与直线AC交于点N.设△CMN和△CDN的面积分别为S1和S2,求的最大值.(3)如图2,直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为n.求的值.2024年福建中考数学专题复习:二次函数综合题(答案)一.定点问题(共3小题)1.已知抛物线y=x2﹣2mx﹣3(m为常数).(1)求抛物线的顶点坐标(用含m的代数式表示);(2)当m≥1时,求抛物线顶点到x轴的最小距离;(3)当m=0时,点A,B为该抛物线上的两点,顶点为D,直线AD的解析式为y1=k1x+b1,直线BD的解析式为y2=k2x+b2,若k1k2=﹣,求证:直线AB过定点.【答案】(1)(m,﹣m2﹣3);(2)抛物线顶点到x轴的最小距离为4;(3)直线AB过定点(0,﹣).2.已知抛物线y=x2+bx+c关于直线x=1对称,且过点(2,1).(1)求抛物线的解析式;(2)过D(m,﹣1)的直线DE:y=k1x+b1(k>0)和直线DF:y=k2x+b2(k2<0)均与抛物线有且只有一个交点.①求k1k2的值;②平移直线DE,DF,使平移后的两条直线都经过点R(1,0),且分别与抛物线相交于G、H和P、Q两点,若M、N分别为GH,PQ的中点,求证:直线MN必过某一定点.【答案】(1)y=x2﹣2x+1;(2)①k1k2=﹣4;②证明见解答过程.3.在平面直角坐标系中,抛物线l:y=x2﹣2mx﹣2﹣m(m>0)与x轴分别相交于A、B两点(点A在点B的左侧),与y轴相交于点C,设抛物线l的对称轴与x轴相交于点N,且OC=3ON(1)求m的值;(2)设点G是抛物线在第三象限内的动点,若∠GBC=∠ACO,求点G的坐标;(3)将抛物线y=x2﹣2mx﹣2﹣m向上平移3个单位,得到抛物线l′,设点P、Q是抛物线l′上在第一象限内不同的两点,射线PO、QO分别交直线y=﹣2于点P′、Q′,设P′、Q′的横坐标分别为x P′、x Q′,且x P′⋅x Q′=4,求证:直线PQ经过定点.【答案】(1)m=1;(2)点G的坐标为;(3)见解析.二.定值问题(共2小题)4.过原点的抛物线与x轴的另一个交点为A,且抛物线的对称轴为直线x=2,顶点为B.(1)求抛物线的解析式;(2)如图(1),点E是直线AB上方抛物线上一点,连接AB,BE,AE,若△ABE的面积为4,求点E的坐标;(3)如图(2),设直线y=kx﹣2k(k≠0)与抛物线交于C,D两点,点D关于直线x=2的对称点为D',直线CD'与直线x=2交于点P,求证:BP的长为定值.【答案】(1)解析式为:y=x2﹣2x;(2)E1(0,0),E2(6,6);(3)证明见解答过程.5.已知抛物线C1:y=mx2+n与x轴于A,B两点,与y轴交于点C,△ABC为等腰直角三角形,且n=﹣1.(1)求抛物线C1的解析式;(2)将C1向上平移一个单位得到C2,点M、N为抛物线C2上的两个动点,O为坐标原点,且∠MON=90°,连接点M、N,过点O作OE⊥MN于点E.求点E到y轴距离的最大值;(3)如图,若点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.【答案】(1)y=x2﹣1;(2);(3)定值1.三.线段之积(共2小题)6.如图,在平面直角坐标系中,抛物线y=x2+bx+c,交x轴于A、B两点(点A在点B的左侧,其中A点坐标(﹣1,0);交y轴负半轴于点C,C点坐标(0,﹣3).(1)求出抛物线的解析式;(2)如图1,若抛物线上有一点D,∠ACD=45°,求点D的坐标.(3)如图2,点P是第一象限抛物线上一点,过点P的直线y=mx+n(n<0)与抛物线交于另外一点Q,连接AP、AQ,分别交y轴于M、N两点.若OM•ON=2,试探究m、n之间的数量关系,并说明理由.【答案】(1)y=x2﹣2x﹣3;(2)D(4,5);(3)m、n之间的数量关系为n+3m=2.理由间接性.7.已知抛物线y=ax2+bx+c经过点A(﹣1,0),B(2,0),C(0,﹣1).(1)求抛物线的解析式;(2)D为抛物线y=ax2+bx+c上不与抛物线的顶点和点A,B重合的动点.①设抛物线的对称轴与直线AD交于点F,与直线BD交于点G,点F关于x轴的对称点为F′,求证:GF′的长度为定值;②当∠BAD=45°时,过线段AD上的点H(不含端点A,D)作AD的垂线,交抛物线于P,Q两点,求PH•QH的最大值.【答案】(1)y=x2﹣x﹣1;(2)①F′G=为定值;②PH•QH的最大值为:.四.线段数量关系(共5小题)8.抛物线C:y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左边),交y轴于点C.(1)直接写出点A,B的坐标;(2)如图1,直线y=x+1经过点A,交抛物线于另一点N,点D在抛物线上,满足△DAN的面积与△CAN的面积相等,求点D的横坐标;(3)如图2,将抛物线C向上平移,使其顶点M在x轴上,得到抛物线C1,P(x1,y1),Q(x2,y2)是抛物线C1上两点(P点在Q点左侧),直线PQ交抛物线C1对称轴于点E,过点Q作y轴的平行线分别交x轴,直线PM于F,H两点,EH交x轴于点G,求证:EG=GH.【答案】(1)A(﹣1,0),B(3,0);(2)3或;(3)见解析.9.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线经过点(﹣1,1)且对称轴为直线x=1,求a,c所满足的数量关系;(2)抛物线与y轴交于点,顶点为Q(2,0),过点的直线与抛物线交于E,F两点(点E在点F的左侧).①求△EQF面积的最小值;②过点E作x轴的垂线,垂足为M,直线EM与直线FQ交于点N,连接PM,求证:PM∥QN.【答案】(1)3a+c=1;(2)①4;②见解答.10.如图,抛物线y=﹣x2+bx+c经过A(4,0),C(﹣1,0)两点,与y轴交于点B,点P为抛物线上的一个动点,连接AB,BC,PA,PC,PC与AB相交于点Q.(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一个动点.设△APQ的面积为S1,△BCQ的面积为S2.求S1﹣S2的最大值,并求此时点P的坐标;(3)过点P作PD垂直于x轴于点D,与线段AB交于点N.设点D的横坐标为m,且2<m<4,PD中点为点M,AB中点为点E,若,求m的值.【答案】(1)y=﹣x2+3x+4;(2)S1﹣S2的最大值为,点P的坐标为:(,);(3)m=.11.抛物线y=﹣x2+bx+c经过点A(4,0),与y轴交于点B,对称轴为,点P是x轴上一点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.(1)求二次函数的表达式;(2)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求点P的坐标;(3)分别过点E、F向抛物线的对称轴作垂线,交对称轴于点M、N,矩形EMNF与此抛物线相交,抛物线被截得的部分图象记作G,G的最高点的纵坐标为m,最低点纵坐标为n,当m﹣n=2OP时,求点P的坐标.【答案】(1);(2)(﹣1,0),,;(3)P(6,0).12.已知抛物线y=﹣﹣2x+3n(n>0)与x轴交于A,B两点(点A位于点B的左侧);与y轴交于点C,顶点为D.(1)如图1,若n=1.①则D的坐标为(﹣1,4);②当m≤x≤0时,抛物线的最小值为3,最大值为4,则m的取值范围为﹣2≤m≤﹣1 .(2)如图2,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线PB 同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2nd.①求证:AC∥PB.②连接AP、OD、OQ、DQ,若AP=QB,PQ=4n,试判断△DOQ的形状是否随着n的变化而变化?并说明理由.【答案】(1)①(﹣1,4);②﹣2≤m≤﹣1;(2)①证明见解析过程;②△DOQ的形状不会随着n的变化而变化,理由见解析过程.五.面积问题(共5小题)13.已知抛物线C1:y=﹣x2﹣2x﹣1,抛物线C2经过点A(﹣1,0),B(m+1,0)(m>0),E为抛物线C2的顶点,M(x M,0)是x轴正半轴上的点.(1)若E在抛物线C1上,求点E的坐标;(用含m的式子表示)(2)若抛物线C2:y=x2﹣mx+n,与y轴交于点C.①点D(m,y D)在抛物线C2上,当AM=AD,x M=5时,求m的值;②若m=2,F是线段OB上的动点,过F作GF⊥CF交线段BC于点G,连接CE,GE,求△CGE面积的最小值.【答案】(1)E(m,﹣m2﹣m﹣1);(2)①m=3﹣1;②6﹣6.14.如图,在直角坐标系中,抛物线y=x2+bx+c经过点A的坐标为(﹣2,0)和原点O,将线段OA绕原点O 顺时针旋转120°,得到线段OB.(1)求抛物线解析式,判断点B是否在抛物线上;(2)连接AB,作点O关于AB的对称点O′,求四边形AOBO′的面积;(3)点P(n,0)是x轴上一个动点,过P点作x轴的垂线交直线AB于点M,交抛物线于点N,将△ANB的面积记为S,若≤S≤,求n的取值范围.【答案】(1)y=x2+x;点B在抛物线上,理由见解答过程;(2)2;(3)≤n≤﹣或≤n≤或≤n≤.15.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的函数解析式;(2)连接AC,BC,点D是直线BC下方抛物线上的一个的动点(不与B,C重合),①求△BCD面积的最大值;②若∠ACO+∠BCD=∠ABC,求点D的坐标.【答案】(1)y=x2﹣2x﹣3;(2)①△BCD面积的最大值为;②D(,﹣).16.在平面直角坐标系中,抛物线经过点和点B(4,0),与y轴交于点C,点P抛物线上一点.(1)求抛物线的解析式;(2)已知点P为第一象限内抛物线上的点,过点P作PH⊥AB,垂足为H,作PE⊥x轴,垂足为E,交AB于点F,设△PHF的面积为S1,△BEF的面积为S2,当时,求点P的坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N 坐标,若不存在,请说明理由.【答案】(1)y=﹣x2+x+4;(2);(3)存在点N,使得直线BC垂直平分线段PN;N的坐标是或.17.抛物线y=x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,C是第一象限抛物线上一点,直线AC交y轴于点P.(1)求抛物线解析式;(2)如图1,当OP=OA时,D是点C关于抛物线对称轴的对称点,M是抛物线上的动点,它的横坐标为m(﹣1<m<4),连接DM,CM,DM与直线AC交于点N.设△CMN和△CDN的面积分别为S1和S2,求的最大值.(3)如图2,直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为n.求的值.【答案】(1)y=x2﹣2x﹣3;(2);(3).。
中考专题训练:定值和最值问题
(一)定值问题1、如图,在平面直角坐标系x O y中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P、Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度,匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)2. 以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t秒,当t=2秒时PQ=5(1)求点D的坐标,并直接写出t的取值范围;(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△A EF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?2、如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C.D重合.(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.(二)由运动产生的线段和差问题(最值问题)1、如图所示,已知A 11(,y )2,B 2(2,y )为反比例函数1y x图像上的两点,动点P (x,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是【 】A. 1(,0)2B. (1,0)C. 3(,0)2D. 5(,0)22、如图,抛物线l 交x 轴于点A (﹣3,0)、B (1,0),交y 轴于点C (0,﹣3).将抛物线l 沿y 轴翻折得抛物线l 1.(1)求l 1的解析式;(2)在l 1的对称轴上找出点P ,使点P 到点A 的对称点A 1及C 两点的距离差最大,并说出理由;3、如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.4、如图,已知抛物线2y ax bx c =++经过A (4,0),B (2,3),C (0,3)三点.(1)求抛物线的解析式及对称轴.(2)在抛物线的对称轴上找一点M ,使得MA+MB 的值最小,并求出点M 的坐标.(3)在抛物线上是否存在一点P ,使得以点A 、B 、C 、P 四点为顶点所构成的四边形为梯形?若存在,请求出点P 的坐标;若不存在,请说明理由.。
二次函数与面积最值定值问题(六大类型)-2023年中考数学压轴题(解析版)
二次函数与面积最值定值问题(六大类型)1.考向分析题型一:二次函数与三角形面积最值问题1如图,已知抛物线y =12x 2+bx 过点A (-4,0)、顶点为B ,一次函数y =12x +2的图象交y 轴于M ,对称轴与x 轴交于点H .(1)求抛物线的表达式;(2)已知P 是抛物线上一动点,点M 关于AP 的对称点为N .①若点N 恰好落在抛物线的对称轴上,求点N 的坐标;②请直接写出△MHN 面积的最大值.【解析】解:(1)∵抛物线y =12x 2+bx 过点A (-4,0),∴12×(-4)2-4b =0,解得:b =2,∴该抛物线的表达式为y =12x 2+2x ;(2)①∵y =12x 2+2x ,∴抛物线对称轴为直线x =-22×12=-2,∵对称轴与x 轴交于点H ,∴H (-2,0),∵A (-4,0),∴AH =2,∵直线y =12x +2交y 轴于M ,∴M (0,2),∴AM 2=OA 2+OM 2=42+22=20,设N (-2,n ),则NH =|n |,如图1、图2,∵M 、N 关于直线AP 对称,∴AN =AM ,即AN 2=AM 2,∴22+n 2=20,∴n =±4,∴点N 的坐标为(-2,-4)或(-2,4);②如图,连接MH ,以点A 为圆心,AM 为半径作⊙A ,过点A 作AN ⊥MH 于点F ,交⊙A 于点N ,则AN =AM ,在Rt △AMO 中,OM =2,OA =4,∴AM =OA 2+OM 2=42+22=25,∴AN =25,∵OH =OM =2,∠HOM =90°,∴△HOM 是等腰直角三角形,∠MHO =45°,MH =22,∴∠AHF =∠MHO =45°,在Rt △AFH 中,AH =OA -OH =4-2=2,∴AF =AH ×sin45°=2×22=2,∴NF =AN +AF =25+2,∴S △MHN =12MH •NF =12×22×(25+2)=210+2,故△MHN 面积的最大值为210+2.题型二:二次函数与三角形面积等积问题2如图,等腰直角三角形OAB 的直角顶点O 在坐标原点,直角边OA ,OB 分别在y 轴和x 轴上,点C 的坐标为(3,4),且AC 平行于x 轴.(1)求直线AB 的解析式;(2)求过B ,C 两点的抛物线y =-x 2+bx +c 的解析式;(3)抛物线y =-x 2+bx +c 与x 轴的另一个交点为D ,试判定OC 与BD 的大小关系;(4)若点M 是抛物线上的动点,当△ABM 的面积与△ABC 的面积相等时,求点M 的坐标.【解析】解:(1)∵点C 的坐标为(3,4),且AC 平行于x 轴,∴点A 的坐标为(0,4)且OA =4,∵△OAB 是等腰直角三角形,∠AOB =90°,∴OB =OA =4,∵点B 的坐标为(4,0),设直线AB的解析式为:y=mx+n,由题意得4m+n=0n=4,解得:m=-1n=4,∴直线AB的解析式为:y=-x+4;(2)∵抛物线y=-x2+bx+c过B,C两点,∴-16+4b+c=0-9+3b+c=4,解得:b=3c=4,∴抛物线的解析式为:y=-x2+3x+4;(3)BD=OC;理由:∵抛物线的解析式为y=-x2+3x+4=-x-322+52,∴抛物线的对称轴直线为x=32,∵点B的坐标为(4,0),点B与点D关于对称轴对称,∴点D的坐标为(-1,0),∴BD=4-(-1)=5,∵点C的坐标为(3,4),∴OC=32+42=5,∴BD=OC;(4)∵点C的坐标为(3,4),且AC平行于x轴,∴AC=3,∴S△ABC=12AC•y C=12×3×4=6,当点M在直线AB的上方时,如图所示,过点M作MN∥y轴,交直线AB于点N,设M的坐标为(t,-t2+3t+4),则N的坐标为(t,-t+4),∴MN=-t2+3t+4-(-t+4)=-t2+4t,∴S△AMB=12MN•x B=12×(-t2+4t)×4=-2t2+8t,∵△ABM的面积与△ABC的面积相等,∴-2t2+8t=6,解得:t=1或t=3(舍,该点为点C),此时M的坐标为(1,6)或(3,4);当点M在直线AB的下方时,如图所示,过点M作MN∥x轴,交直线AB于点N,设M的坐标为(t,-t2+3t+4),则N的坐标为(t2-3t,-t2+3t+4),∴MN=t2-3t-t=t2-4t,∴S△ABM=12MN•y A=12×(t2-4t)×4=2t2-8t,∵△ABM的面积与△ABC的面积相等,∴2t2-8t=6,解得:t=2±7,此时M的坐标为(2+7,-1-7)或(2-7,7-1);综上可得,M的坐标为(2+7,-1-7)或(2-7,7-1)或(1,6).题型三:二次函数与四边形面积最值问题3如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C.已知A(3,0),该抛物线的对称轴为直线x=1.(1)求该抛物线的函数表达式;(2)求点B、C的坐标;(3)将线段BC平移,使得平移后线段的一个端点在这条抛物线上,另一个端点在x轴上,若将点B、C平移后的对应点分别记为点D、E,求以B、C、D、E为顶点的四边形面积的最大值.【解析】解:(1)∵抛物线对称轴为直线x=-b-2=1,∴b=2,∴y=-x2+2x+c,将(3,0)代入y=-x2+2x+c得0=-9+6+c,解得c=3,∴y=-x2+2x+3.(2)∵抛物线对称轴为直线x=1,点A坐标为(3,0),∴由抛物线对称性可得点B坐标为(-1,0),将x=0代入y=-x2+2x+3得y=3,∴点C坐标为(0,3).(3)如图,可得图2中四边形面积最大,∵BC∥DE且BC=DE,图1图2图3∵y C-y B=y E-y D,∴y D=-3,将y=-3代入y=-x2+2x+3得-3=-x2+2x+3,解得x1=1-7(舍),x2=1+7,∴点E横坐标为1+7+1=2+7,∴BE=2+7+1=3+7,∴S四边形BDEC =12BE•y C+12BE•|y D|=12×(3+7)×3+12×(3+7)×3=9+37.题型四:二次函数与面积分割问题4已知抛物线y=x2+4mx+4m2-4m-3的顶点C在定直线l上.(1)求C点的坐标(用含m的式子表示);(2)求证:不论m为何值,抛物线与定直线l的两交点间的距离d恒为定值;(3)当抛物线的顶点C在y轴上,且与x轴交于A,B两点(点A在点B的左侧)时,是否存在直线n满足以下三个条件:①n与抛物线相交于点M,N(点M在点N的左侧),且与线段AC交于点P;②∠APN=2∠ACO;③n将△ABC的面积分成1:2的两部分.若存在,求出直线n的解析式;若不存在,请说明理由.【解析】(1)解:∵y=x2+4mx+4m2-4m-3=(x+2m)2-4m-3,∴顶点C(-2m,-4m-3);(2)证明:∵C(-2m,-4m-3),∴C点在直线y=2x-3上,∴定直线l为y=2x-3,联立方程组y=2x-3y=x2+4mx+4m2-4m-3 ,解得x=-2my=-4m-3或x=2-2my=-4m+1,∴两个交点分别为(-2m,-4m-3),(2-2m,-4m+1),∴d=(2-2m+2m)2+(-4m+1+4m+3)2=25,∴抛物线与定直线l的两交点间的距离d恒为定值;(3)解:存在直线n,理由如下:∵顶点C在y轴上,∴m=0,∴y=x2-3,令y=0,则x2-3=0,解得x=3或x=-3,∴A(-3,0),B(3,0),∴AB=23,∵抛物线关于y轴对称,∴∠ACO=∠BCO,∵∠APN=2∠ACO,∴∠APN=∠ACB,∴MN ∥BC ,设直线BC 的解析式为y =kx +b ,∴b =-33k +b =0 ,解得k =3b =-3 ,∴y =3x -3,设直线MN 的解析式为y =3x +t ,直线MN 与x 轴的交点为H ,∵直线MN 将△ABC 的面积分成1:2,∴S △PAH =13S △ACB 或S △PAH =23S △ACB ,∴AH AB2=13或AH AB 2=23,∴AH 23=33或AH 23=63,解得AH =2或AH =22,∴H (2-3,0)或(22-3,0),∴直线MN 的解析式为y =3x +3-23或y =3x +3-26.题型五:二次函数与面积比问题5如图,在平面直角坐标系xOy 中,二次函数y =23x 2+bx -2的图象与x 轴交于点A (3,0),B (点B 在点A 左侧),与y 轴交于点C ,点D 与点C 关于x 轴对称,作直线AD .(1)填空:b = -43 ;(2)将△AOC 平移到△EFG (点E ,F ,G 依次与A ,O ,C 对应),若点E 落在抛物线上且点G 落在直线AD 上,求点E 的坐标;(3)设点P 是第四象限抛物线上一点,过点P 作x 轴的垂线,垂足为H ,交AC 于点T .若∠CPT +∠DAC =180°,求△AHT 与△CPT 的面积之比.【解析】解:(1)把A (3,0)代入y =23x 2+bx -2,得23×9+3b -2=0,解得b =-43;故答案为:-43;(2)如图所示:由(1)得y =23x 2-43x -2,令x =0,y =-2,∴C (0,-2),∵点D 与点C 关于x 轴对称,∴D (0,2),设直线AD :y =kx +2,把A (3,0)代入y =kx +2,得3k +2=0,解得k =-23,∴直线AD 解析式:y =-23x +2,∵将△AOC 平移到△EFG ,∴OA =EF =3,FG =OC =2,设E m ,23m 2-43m -2 ,则G m -3,-23(m -3)+2 ,F m -3,-23(m -3)+4 ,∵EF ∥x 轴,∴23m 2-43m -2=-23(m -3)2+4,解得m =-3或m =4,∴E (-3,8)或4,103;(3)如图所示:过C 作CK ⊥AD ,CQ ⊥HP ,∵OD =2,OA =3∴AD =13,∵CK ⊥AD∴CD •AO =AD •CK ,∴CK =121313,DK =81313,AK =51313,∴tan ∠CAK =CK AK=125,∵CQ ⊥HP ,∴∠CPQ +∠CPT =180°,∵∠CPT +∠DAC =180°,∴∠CPQ =∠CAK ,∴tan ∠CPQ =tan ∠CAK =125,∴CQ PQ =125,设P n ,23n 2-43n -2 ,∴PQ =23n 2-43n ,CQ =n ,∴n 23n 2-43n =125,解得n =218,∴P 218,-2932,∴CQ =218,AH =3-218=38,∵tan ∠OAC =TH AH =OC OA =23,∴TH =23AH =23×38=14,∴TP =2132,∴S △ATH S △CPT =12×AH ×TH 12×TP ×CQ =8147,即△AHT 与△CPT 的面积之比为8:147.题型六:函数关系与面积问题6平面直角坐标系中,已知抛物线y =-x 2+(1+m )x -m (m 为常数,m ≠±1)与轴交于定点A 及另一点B ,与y 轴交于点C .(1)当点(2,2)在抛物线上时,求抛物线解析式及点A ,B ,C 的坐标;(2)如图1,在(1)的条件下,D 为抛物线x 轴上方一点,连接BD ,若∠DBA +∠ACB =90°,求点D 的坐标;(3)若点P 是抛物线的顶点,令△ACP 的面积为S ,①直接写出S 关于m 的解析式及m 的取值范围;②当58≤S ≤158时,直接写出m 的取值范围.【解析】(1)将点(2,2)代入y =-x 2+(1+m )x -m ,求出m 即可确定函数的解析式;(2)过D 点作DE ⊥x 轴交于E ,过A 点作AF ⊥BC 交于F ,由题意可知∠ACB =∠BDE ,求出tan ∠ACF =tan ∠BDE =BE DE=35,设D (t ,-t 2+5t -4)(0<t <4),求出t 的值即可求D 点坐标;(3)①求出P 1+m 2,(1-m )24,C (0,-m ),定点A (1,0),B (m ,0),AC 的解析式为y =kx +b ,y =mx -m ,再画出函数图象结合函数图象分类讨即可;②对①中求出的解析式分别进行求解即可.【解答】解:(1)将点(2,2)代入y =-x 2+(1+m )x -m ,∴m =4,∴y =-x 2+5x -4,令x =0,则y =-4,∴C (0,-4),令y =0,则-x 2+5x -4=0,∴x =1或x =4,∴A (1,0),B (4,0);(2)如图1,过D 点作DE ⊥x 轴交于E ,过A 点作AF ⊥BC 交于F ,∵∠DBA +∠ACB =90°,∠DBA +∠BDE =90°,∴∠ACB =∠BDE ,∵B (4,0),C (0,-4),∴OB =OC =4,∴∠OBC =45°,∵BA =3,∴AF =322,∵A (1,0),∴AC =17,∴CF =522,∴tan ∠ACF =AF CF =35,∴tan ∠BDE =BE DE=35,设D (t ,-t 2+5t -4)(0<t <4),∴4-t -t 2+5t -4=35,解得x =4(舍)或x =83,∴D 83,209;(3)①∵y =-x 2+(1+m )x -m =-x -1+m 2 2+(1-m )24,∴P 1+m 2,(1-m )24,令x =0,则y =-m ,∴C (0,-m ),令y =0,则-x 2+(1+m )x -m =0,解得x =1或x =m ,∴定点A (1,0),B (m ,0),设AC 的解析式为y =kx +b ,∴k +b =0b =-m,解得k =m b =-m ,∴y =mx -m ,如图2,当m <-1时,S =S 梯形PNOC +S △OCA -S △PAN =12×(1-m )24-m×1+m 2+12×1×(-m )-12×1-1+m 2 ×(1-m )24=18m 2-18;如图3,当-1<m <0时,S =S 梯形PNOC +S △PNA -S △AOC =12×(1-m )24-m ×1+m 2+12×1-1+m 2 ×(1-m )24-12×1×(-m )=-18m 2+18;如图4,当0≤m <1时,设对称轴与直线AC 交于点M ,∴M 1+m 2,m 2-m 2,∴PM =-14m 2+14,∴S =12×-14m 2+14 ×1=-18m 2+18;如图5,当m >1时,过点C 作CM ⊥PN 交于点M ,∴M 1+m 2,-m ,∴S =S 矩形OCMN +S △APN -S △OCA -S △CMP =1+m 2×m +12×1+m 2-1 ×(1-m )24-12×1×m -12×1+m 2×(1-m )24+m =18m 2-18;综上所述:当m <-1时,S =18m 2-18;当-1<m <1,S =-18m 2+18;当m >1时,S =18m 2-18;②当m <-1时,58≤18m 2-18≤158,解得-4≤m ≤-6;当-1<m <0,58≤-18m 2+18≤158,此时m 无解;当0≤m <1时,58≤-18m 2+18≤158,此时m 无解;当m >1时,58≤18m 2-18≤158,解得6≤m ≤4;综上所述:当58≤S ≤158时,-4≤m ≤-6或6≤m ≤4.2.压轴题速练1一、解答题1(2023春·全国·九年级专题练习)已知:如图,抛物线y =ax 2+bx +c (a ≠0)与坐标轴分别交于点A (0,6),B (6,0),C (-2,0),点P 是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P 运动到什么位置时,△PAB 的面积有最大值,面积最大值是多少?【答案】(1)y =-12x 2+2x +6(2)当P 3,152 时,△PAB 的面积有最大值,最大值是272.【解析】(1)由题意得:36a +6b +c =04a -2b +c =0c =6,解得:a =-12b =2c =6,∴抛物线的表达式为:y =-12x 2+2x +6;(2)∵A (0,6)∴直线AB 的表达式为:y =kx +6,将点B 的坐标代入上式得:0=6k +6,解得:k =-1,∴直线AB 的表达式为:y =-x +6,点P 的横坐标为m ,则P m ,-12m 2+2m +6 ,过点P 作x 轴的垂线,交线段AB 于点D ,则D (m ,-m +6),∴S =12×OB ×PD =12×6×-12m 2+2m +6+m -6 =-32(m -3)2+272,∴当m =3时,S 的值取最大,此时P 3,152;2(2023春·全国·九年级专题练习)如图,抛物线y =ax 2+bx +6(a ≠0)与x 轴交于A (-1,0),B (6,0),与y 轴交于点C ,点P 为第一象限内抛物线上一动点,过点P 作x 轴的垂线,交直线BC 于点D ,交x 轴于点E ,连接 PB .(1)求该抛物线的解析式;(2)当△PBD 与△BDE 的面积之比为1:2时,求点P 的坐标;【答案】【答案】(1)y =-x 2+5x +6(2)P 12,334【解析】(1)∵抛物线y =ax 2+bx +6(a ≠0)与x 轴交于A -1,0 ,B 6,0∴a -b +6=036a +6b +6=0,∴a =-1b =5 ,∴抛物线的解析式为y =-x 2+5x +6;(2)∵抛物线y =-x 2+5x +6过点C ,∴C (0,6),设直线BC 的解析式为 y =kx +n ,∴6k +n =0n =6,∴k =-1n =6 ,∴直线BC 的解析式为y =-x +6,设P m ,-m 2+5m +6 ,则D m ,-m +6 ,∴PE =-m 2+5m +6,DE =-m +6,∵△PBD 与△BDE 的面积之比为1:2,∴PD :DE =1:2,∴PE :DE =3:2,∴3-m +6 =2-m 2+5m +6 ,解得m 1=12,m 2=6(舍去),∴P 12,334;3(2023春·全国·九年级专题练习)如图,抛物线y =-x 2+bx +c 过点A 、B ,抛物线的对称轴交x 轴于点D ,直线y =-x +3与x 轴交于点B ,与y 轴交于点C ,且OA =13OB .(1)求抛物线的解析式;(2)点M t ,0 是x 轴上的一个动点,点N 是抛物线对称轴上的一个动点,当DN =2t ,△MNB 的面积为154时,求出点M 与点N 的坐标;【答案】【答案】(1)y =-x 2+2x +3(2)3+262,0 ,1,3+26 【解析】(1)解:对于直线y =-x +3,令y =0,即-x +3=0,解得:x =3,令x =0,得y =3,∴B 3,0 ,C 0,3 ,∵A 为x 轴负半轴上一点,且OA =13OB ,∴A -1,0 .将点A 、B 的坐标分别代入y =-x 2+bx +c 中,得-1-b +c =0-9+3b +c =0 ,解得b =2c =3 ,∴抛物线的解析式为y =-x 2+2x +3;(2)解:由(1)知:A -1,0 ,B 3,0 ,抛物线解析式为y =-x 2+2x +3,∴对称轴x =-b 2a =-22×-1=1,∴D 点坐标为D 1,0 ,∵M t ,0∴BM =3-t ,∵S △MNB =12×BM ×DN =154,即12×3-t ×2t =154,当t <3时,12×3-t ×2t =154,化简得:4t 2-12t +15=0,∵Δ=b 2-4ac <0,∴方程无解;当t >3时,12×t -3 ×2t =154,解得t1=3+262,t2=3-262(舍),∴DN=2t=3+26,∴点M的坐标为3+262,0,点N的坐标为1,3+262;4(2023·广西贵港·统考一模)在平面直角坐标系中,已知抛物线y=ax2+bx经过A(4,0),B(1,3)两点.P是抛物线上一点,且在直线AB的上方.(1)求抛物线的表达式;(2)若△OAB面积是△PAB面积的2倍,求点P的坐标;(3)如图,OP交AB于点C,PD∥BO交AB于点D.记△CPB,△BCO的面积分别为S1,S2,判断S1S2是否存在最大值.若存在,求出最大值;若不存在,请说明理由.【答案】【答案】(1)y=-x2+4x(2)P(2,4)或(3,3)(3)见解析【解析】(1)解:将A(4,0),B(1,3)代入y=ax2+bx得16a+4b=0a+b=3,解得:a=-1b=4,∴抛物线的解析式为:y=-x2+4x;(2)解:设直线AB的解析式为:y=kx+t,将A4,0,B1,3代入y=kx+t得4k+t=0 k+t=3 ,解得:k=-1 t=4,∴直线AB的解析式为:y=-x+4,∵A4,0,B1,3,∴S△OAB=12×4×3=6,∴S△OAB=2S△PAB=6,即S△PAB=3,过点P作PM⊥x轴于点M,PM与AB交于点N,过点B作BE⊥PM于点E,如图,∴S△PAB=S△PNB+S△PNA=12PN×BE+12PN×AM=32PN=3,∴PN=2,设点P 的横坐标为m ,∴P (m ,-m 2+4m )(1<m <4),N (m ,-m +4),∴PN =-m 2+4m -(-m +4)=2,解得:m =2或m =3;∴P (2,4)或(3,3);(3)解:S 1S 2存在最大值.理由如下:∵PD ∥OB ,∴∠DPC =∠BOC ,∠PDC =∠OBC ,∴△DPC ∽△BOC ,∴CP :CO =CD :CB =PD :OB ,∵S 1S 2=CD CB =PD OB,设直线AB 交y 轴于点F ,则F (0,4),过点P 作PH ⊥x 轴,垂足为H ,PH 交AB 于点G ,如图,∵∠PDC =∠OBC ,∴∠PDG =∠OBF ,∵PG ∥OF ,∴∠PGD =∠OFB ,∴PD :OB =PG :OF ,∴△PDG ∽△OBF ,∴PD :OB =PG :OF ,设P (n ,-n 2+4n )1<n <4 由(2)可知,PG =-n 2+4n --n +4 =-n 2+5n -4,∴S 1S 2=PD BO =PG OF=14PG =-14n -52 2+916,∵1<n <4,∴当n =52时,S 1S 2的最大值为916.5(2023·新疆克孜勒苏·统考一模)如图所示,抛物线y =-x 2+2x +3的图像与x 轴交于A ,B 两点,与y 轴交于点C ,连结BC .(1)求抛物线顶点D 的坐标;(2)在直线BC 上方的抛物线上有一点M ,使得四边形ABMC 的面积最大,求点M 的坐标及四边形ABMC 面积的最大值;(3)点E 在抛物线上,当∠EBC =∠ACO 时,直接写出点E 的坐标.【答案】【答案】(1)(1,4)(2)当点M 32,154 时,四边形ABMC 面积最大,最大值为758(3)(1,4)或-12,74【解析】(1)∵y =-x 2+2x +3=-x -1 2+4.∴抛物线顶点D 的坐标为(1,4);(2)令y =0,则x 2-2x -3=0,解得x 1=-1,x 2=3,∴点A -1,0 ,B 3,0 ,令x =0,则y =-3,∴点C 的坐标为(0,3)∴AB =3--1 =4,OC =3,∴S ΔABC =12AB ⋅OC =6∴△BCM 的面积最大时四边形ABMC 面积最大.设直线BC 的解析式为y =kx +b ,则3k +b =0b =3,∴b =3k =-1 ,∴y =-x +3.设过点M 与y 轴平行的直线交BC 于点N ,M x ,-x 2+2x +3 ,N x ,-x +3 ,则MN =-x 2+2x +3 --x +3 =-x 2+3x ,S △BCM =12-x 2+3x ×3=-12x -32 2+278,∴当x =32时,△BCM 的面积最大,最大值为278,此时,y =-32 2+2×32+3=154,所以,当点M 32,154 时,四边形ABMC 面积最大,最大值为6+278=758(3)①连接CD ,BD ,作DM ⊥OC 于点M .∵C (0,3),D (1,4),∴CM =DM =1,∴△CDM 是等腰直角三角形,∴∠DCE =45°.∵B (3,0),C (0,3),∴△BOC 是等腰直角三角形,∴∠BCO =45°,∴∠BCD =90°,∵BC =32+32=32,CD =12+(-3+4)2=2,∴.tan ∠CBD =232=13,∴∠DBC =∠ACO ,∴点E 与点D 重合,∴点E 的坐标为(1,-4),②作点D 关于BC 的对称点D ,作DN ⊥OC 于点N ,∵∠DMC =∠D NC =90°,∠DCM =D CN ,DC =D C ,∴△DCM ≌△D CN ,∴D N =DM =1,CM =CN =1,∴ON =3-1=2,∴D (-1,2),设直线BD 的解析式为y =mx +n ,,则3m +n =0-m +n =2,解得m =-12n =32,所以,直线BD ′的解析式为y =-12x +32,联立y =-x 2+2x +3y =-12x +32,解得x 1=3y 1=0 (为点B 坐标,舍去),x 2=-12y 2=74,所以,点H 的坐标为-12,74 ,综上所述,点E 的坐标为1,4 或-12,74时,∠EBC =∠ACO .6(2023·广东珠海·统考一模)如图,抛物线与x 轴交于点A -1,0 、B 4,0 ,与y 轴交于点C 0,2 .点D 为抛物线第四象限一动点,连接AC 、BC 、BD 、AD .(1)求抛物线的解析式;(2)当S △BCD =S △ABC 时,求此时点D 的坐标;(3)在第(2)问的条件下,延长线段AC 、DB 交于点E .请判断△ADE 的形状,并说明理由.【答案】(1)y =-x 2+32x +2(2)D 5,-3(3)△ADE 是等腰直角三角形,理由见详解【解析】(1)设抛物线的解析式为y =ax 2+bx +c ,∵抛物线与x 轴交于点A -1,0 、B 4,0 ,与y 轴交于点C 0,2 ,∴a -b +c =016a +4b +c =0c =2,解得:a =-12b =32c =2 ,∴抛物线的解析式为y =-x 2+32x +2;(2)连接OD ,,∵A -1,0 ,B 4,0 ,C 0,2 ,∴AB =5,OC =2,∴S △ABC =12AB ⋅OC =5,设D m ,-12m 2+32m +2 m >4 ,∵S △BCD =S △OBD +S △OBC -S △OCD =S △ABC ,∴12×4×12m 2-32m -2 +12×4×2-12×2×m =5,整理,得m 2-4m -5=0,解得:m 1=5,m 2=-1(舍去),∴D 5,-3 ;(3)△ADE 是等腰直角三角形,理由如下:设直线AC 的解析式为y =k 1x +b 1,把A -1,0 ,C 0,2 代入,得-k 1+b 1=0b 1=2 ,解得:k 1=2b 1=2∴y =2x +2,设直线BD 的解析式为y =k 2x +b 2,把B 4,0 ,D 5,-3 代入,得4k 2+b 2=05k 2+b 2=-3 ,解得:k 2=-3b 2=12∴y =-3x +12,联立y =2x +2和y =-3x +12得,y =2x +2y =-3x +12 ,解得:x =2y =6 ,∴E 2,6 ,又∵A -1,0 ,D 5,-3 ,∴AE =-1-2 2+0-6 2=35,AD =-1-5 2+0+3 2=35,DE =5-2 2+-3-6 2=310,∴AE =AD ,AE 2+AD 2=DE 2,∴△ADE 是等腰直角三角形.7(2023春·上海·八年级专题练习)在边长为4的正方形ABCD 中,点O 是对角线AC 的中点,P 是对角线AC 上一动点,过点P 作PF ⊥CD 于点F ,作PE ⊥PB 交直线CD 于点E ,设PA =x ,S △PCE =y .(1)求证:DF =EF ;(2)当点P 在线段AO 上时,求y 关于x 的函数关系式及自变量x 的取值范围;(3)点P 在运动过程中能否使△PEC 为等腰三角形?如果能,请直接写出PA 的长;如果不能,请简单说明理由.【答案】(1)证明见解析(2)y =12x 2-32x +8,0≤x ≤22 (3)能使△PEC 为等腰三角形,PA =0或PA =4【解析】(1)证明:延长FP 交AB 于点G ,∵正方形ABCD 中,PF ⊥CD 于点F ,∴四边形AGFD 是矩形,∴DF =AG ,∠AGF =90°,∵正方形ABCD ,∴∠BAC =45°,∵∠AGF =90°,∴AG =GP ,∴DF =GP ,同理可得:CF =PF =BG ,∵PE ⊥PB ,∠AGF =90°,∴∠GBP +∠GPB =∠FPE +∠GPB =90°,∴∠GBP =∠FPE ,在△GBP 和△FPE 中,∵∠GBP =∠FPEPF =BG ∠BGP =∠PFE,∴△GBP ≌△FPE (ASA ),∴GP =EF ,∵DF =GP ,∴DF =EF ;(2)∵PA =x ,∴AG =GP =22x ,DF =EF =22x ,则DE =2x ,∴CE =4-2x ,∵PF =4-22x ,∴y =124-2x 4-22x =12x 2-32x +80≤x ≤22 ;(3)点P 在运动过程中能使△PEC 为等腰三角形;当点E 在CD 边上时,∵∠CEP ≥90°,若△PEC 为等腰三角形,只能是∠CPE =∠ECP =45°,则PE ⊥CE ,∵PE ⊥PB ,∴PB ∥CD ,∴PB ∥AB ,于是点P 在AB 上,又∵点P 在AC 上,∴A 与P 重合,此时PA =0;当点E 在DC 延长线上时,如图,若△PEC 为等腰三角形,只能是PC =CE ,设PA =x ,则PC =42-x ,EF =DF =AG =GP =22x ,PF =CF =BG =4-22x ,∴CE =EF -CF =22x -4-22x=2x -4,∵PC =CE ,∴42-x =2x -4,∴x =4,∴即PA =4;综上所述,当PA =0或PA =4时,△PEC 为等腰三角形.【点睛】本题主要考查正方形的性质的综合运用,等腰三角形的性质和判定,全等三角形的判定和性质,三角形的面积等知识,综合运用这些性质进行推理,同时注意对等腰的分类讨论是解题的关键.8(2023春·江苏无锡·九年级统考期中)在平面直角坐标系中xOy 中,二次函数y =ax 2+bx +2a <0 的图像与x 轴交于点A (-1,0)、B (2,0),与y 轴交于点C .(1)求二次函数的表达式;(2)若点P 是二次函数图像上位于线段BC 上方的一个动点.①如图,连接AC ,CP ,AP ,AP 交BC 于点E ,过点P 作AC 的平行线交BC 于点Q ,将△PEQ 与△PCE的面积比S △PEQ S △PCE 记为a ,将△PCE 与△ACE 的面积比S △PCE S △ACE记为b ,当a +22b 有最大值时,求点P 的坐标;②已知点N 是y 轴上一点,若点N 、P 关于直线AC 对称,求CN 的长.【答案】(1)y =-x 2+x +2(2)①当点P 的坐标为1,1 时,a +22b 有最大值;②CN =516【解析】(1)解:将A (-1,0)、B (2,0),代入y =ax 2+bx +2中可得:a -b +2=04a +2b +2=0 ,解得:a =-1b =1 ,∴二次函数的表达式为:y =-x 2+x +2;(2)①当x =0时,y =2,则C 0,2 ,设BC 的解析式为:y =kx +b ,将B (2,0),C 0,2 ,代入可得:2k +b =0b =2 ,解得:k =-1b =2 ,∴BC 的解析式为:y =-x +2,由题意可知,OB =OC =2,则△BOC 是等腰直角三角形,∴∠BCO =45°,∵A (-1,0),则OA =1,∴AC =OA 2+OC 2=5,∴sin ∠ACO =55,cos ∠ACO =255,过点P 作PN ∥y 轴,QM ⊥PN ,设AP 与y 轴交于点D ,则∠ADO =∠APN ,∠QNM =∠BCO =45°,即:△MQN 为等腰直角三角形,∴QM =MN ,∵AC ∥PQ ,∴∠CAP =∠APQ ,△AEC ∽△PEQ ,则EQ CE =EP AE =PQ AC,又∵∠ADO =∠ACP +∠ACO ,∠APN =∠APQ +∠QPM ,∴∠ACO =∠QPM ,则:PM =PQ ⋅cos ∠QPN =PQ ⋅cos ∠ACO =255PQ ,QM =MN =PQ ⋅sin ∠QPN =PQ ⋅sin ∠ACO =55PQ ,则PN =PM +MN =355PQ ,即:PQ =53PN ,∵S △PEQ S △PCE =EQ CE ,S △PCE S △ACE =EP AE ,EQ CE =EP AE =PQ AC,∴a =b =EQ CE =EP AE =PQ AC =PQ 5=13PN ,∴a +22b =1+22 ×13PN ,则当PN 取最大值时,a +22b 有最大值,设P t ,-t 2+t +2 ,0<t <2,则N t ,-t +2 ,∴PN =-t 2+t +2 --t +2 =-t 2+2t =-t -1 2+1,即:当t =1时,PN 取最大值,此时点P 的纵坐标为1,即:当点P 的坐标为1,1 时,a +22b 有最大值;②由题意可知,点N 在点C 下方时,点N 关于直线AC 的对称点在AC 的左侧,不符合题意,点N 在点C 上方时,连接PN ,交AC 于H ,作PF ⊥y 轴,由对称可知,NH =PH =12PN ,CH ⊥PN ,则∠NHC =∠PFN =90°,∴∠NCH +∠CNP =∠CNP +∠FPN ,∴∠NCH =∠FPN∵∠ACO =∠NCH ,sin ∠ACO =55,cos ∠ACO =255,∴∠ACO =∠NCH =∠FPN ,设CN =m ,则NH =CN ⋅sin ∠NCH =55m ,∴PN =2NH =255m ,则PF =PN ⋅cos ∠FPN =45m ,NF =PN ⋅sin ∠FPN =25m ∴CF =CN -NF =35m ,则OF =OC +CF =2+35m ,∴点P 的坐标为:45m ,2+35m ,0<45m <2,即0<m <52,∵点P 在二次函数图象上,∴-45m 2+45m +2=2+35m ,解得:m 1=0(舍去),m 2=516,∴CN =516.9(2023·黑龙江哈尔滨·统考一模)如图,在平面直角坐标系中,直线BC 的解析式为y =-x +6,直线BC 交x 轴和y 轴分别于点B 和点C ,抛物线y =-29x 2+bx +c 交x 轴于点A 和点B ,交y 轴于点C .(1)求抛物线的解析式;(2)点P 是第二象限抛物线上的点,连接PB 、PC ,设点P 的横坐标为t ,△PBC 的面积为S .求S 与t 的函数关系式(不要求写出t 的取值范围);(3)在(2)的条件下,点D 在线段OB 上,连接PD 、CD ,∠PDC =45°,点F 在线段BC 上,EF ⊥BC ,FE 的延长线交x 轴于点G ,交PD 于点E ,连接CE ,若∠GED +∠DCE =180°,DC >DE ,S △CDE =15,求点P 的横出标.【答案】(1)y =-29x 2+13x +6(2)S =23t 2-4t (3)3-3112【解析】(1)解:直线y=-x+6交x轴和y轴于点B和点C 令x=0时,y=6,即C0,6,令y=0时,x=6,即B6,0,∵点B、C在抛物线上,∴代入解析式可得:c=6-29×62+13×6+6=0,解得:c=6b=-13,∴解析式为y=-29x2+13x+6;(2)过点P作x轴的垂线交BC延长线于点M,交x轴于点N,过点C作CR⊥MN于R ∵P在抛物线上,P横坐标为t∴P t,-29t2+13t+6,∵M在直线BC上,∴M t,-t+6,∴MP=-t+6--29t2+13t+6=29t2-43t,S△PBC=S△MPB-S△MPC=12MP⋅OB=1229t2-43t×6=23t2-4t,即S=23t2-4t;(3)由(1)得,OB=OC=6,∴∠OBC=∠OCB=45°又EF⊥BC交x轴于点G,∴∠GFB=90°∴∠FGB=90°-∠FBG=45°即∠FGB=∠FBG=45°∴FG=FB又∠PDC=45°设∠PDA=α,∴∠CDA=45°+α=∠CBD+∠BCD=45°+∠BCD∴∠BCD=α=∠PDA又∠GED+∠DCE=180°(已知)∠GED+∠FED=180°(平角定义)∴∠DCE=∠FED,又∠FED=∠FGE+∠PDG=45°+a∴∠FED=∠CDA,∴∠DCE=∠CDA,过点D作DR⊥CE于R,如图所示∴在Rt△CRD中,∠CDR=90°-∠RCD=45°-α,∴∠RDE=∠CDE-∠CDR=α,,∴∠RDE=∠EDA=α,∵∠CRD=∠DOC=90°,∠DCE=∠CDA,CD=CD,∴△RCD≌△ODC(AAS),∴RD=CO=6,CR=OD,∠CDR=∠DCO,又∵S△DCE=15,∴12CE×DR=15∴CE=5作EM⊥x轴于M,CN⊥EM于N,DT⊥CN于T,如图所示∵∠RDE=∠EDA,∠ERD=∠EMD=90°,DE=DE,∴△RED ≌△MED (AAS ),∴RE =EM ,RD =MD ,∵EM ⊥x ,CN ⊥EM ,DT ⊥CN ,∴四边形NTDM 为矩形,∴∠MDT =90°,∴∠CDT =∠MDT -∠CDE -∠EDA =45°-α=∠CDR ,∴△DCR ≌△DCT (AAS ),∴DR =DT ,∴DM =DT ,∴四边形NMDT 是正方形∴DM =MN =NT =DT =OC =6,设EM =ER =m ,则CR =5-m =CT ,如图所示:∴NE =6-m ,NC =NT -TC =m +1在Rt △NEC 中,6-m 2+m +1 2=52解得:m 1=2,m 2=3,∵CD >DE ,∴m <5-m ,即m <2.5,∴m =3不符合题意,应舍去;当m =2时,CT =OD =3=MO ,∴E -3,2 ,又点D 3,0 ,设直线ED 的解析式为y =kx +b ,则-3k +b =23k +b =0 ,解得:k =-13b =1 ,∴直线ED 的解析式为:y =-13x +1,y =-13x +1y =-29x 2+13x +6 ,∴x =3-3112或3+3112(舍),∴P 的横坐标是3-311210(2023春·江苏宿迁·九年级统考阶段练习)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c a <0 与x 轴交于A -2,0 、B 4,0 两点,与y 轴交于点C ,且OC =2OA .(1)试求抛物线的解析式;(2)直线y =kx +1k >0 与y 轴交于点D ,与抛物线在第一象限交于点P ,与直线BC 交于点M ,记m =S △CPM S △CDM,试求m 的最大值及此时点P 的坐标;(3)在(2)的条件下,m 取最大值时,点Q 是x 轴上的一个动点,点N 是坐标平面内的一点,是否存在这样的点Q 、N ,使得以P 、D 、Q 、N 四点组成的四边形是矩形?请直接写出满足条件的N 点的坐标.【答案】(1)y =-12x 2+x +4(2)m 取得最大值23,此时点P 的坐标为2,4 (3)存在,满足条件的N 的坐标为72,3 或6,-3 【解析】(1)解:∵A -2,0 ,∴OA =2,∵OC =2OA ,∴OC =4,∴C 0,4 ,∵抛物线y =ax 2+bx +c 经过点A -2,0 ,B 4,0 ,C 0,4 ,∴4a -2b +c =016a +4b +c =0c =4,解得:a =-12b =1c =4,∴该抛物线的解析式为y =-12x 2+x +4;(2)解:如图1,过点P 作PE ∥y 轴交直线BC 于E ,连接CP ,设直线BC 的解析式为y =kx +d ,∵B 4,0 ,C 0,4 ,∴4k +d =0d =4 ,解得:k =-1d =4 ,∴直线BC 的解析式为y =-x +4,设P t ,-12t 2+t +4 ,则E t ,-t +4 ,∴PE =-12t 2+t +4-(-t +4)=-12t 2+2t ,∵直线y =kx +1k >0 与y 轴交于点D ,∴D 0,1 ,∴CD =4-1=3,∵PE ∥y 轴,即PE ∥CD ,∴△EMP ∽△CMD ,∴PM DM =PE CD =-12t 2+2t 3=-16t 2+23t ,∵m =S △CPM S △CDM =PM DM,∴m =-16t 2+23t =-16t -2 2+23,∵-16<0,∴当t =2时,m 取得最大值23,此时点P 的坐标为2,4 ;(3)解:存在这样的点Q 、N ,使得以P 、D 、Q 、N 四点组成的四边形是矩形.①当DP 是矩形的边时,有两种情形,a 、如图2-1中,四边形DQNP 是矩形时,由(2)可知P 2,4 ,代入y =kx +1中,得到k =32,∴直线DP 的解析式为y =32x +1,可得D 0,1 ,E -23,0 ,由△DOE ∽△QOD 可得OD OQ =OE OD,∴OD 2=OE ⋅OQ ,∴1=23⋅OQ ,∴OQ =32,∴Q 32,0 .根据矩形的性质,将点P 向右平移32个单位,向下平移1个单位得到点N ,∴N 2+32,4-1 ,即N 72,3 ,b 、如图2-2中,四边形PDNQ 是矩形时,∵直线PD 的解析式为y =32x +1,PQ ⊥PD ,∴直线PQ 的解析式为y =-23x +163,∴Q 8,0 ,根据矩形的性质可知,将点D 向右平移6个单位,向下平移4个单位得到点N ,∴N 0+6,1-4 ,即N 6,-3 .②当DP 是对角线时,设Q x ,0 ,则QD 2=x 2+1,QP 2=x -2 2+42,PD 2=13,∵Q 是直角顶点,∴QD 2+QP 2=PD 2,∴x 2+1+x -2 2+42=13,整理得x 2-2x +4=0,方程无解,此种情形不存在,综上所述,满足条件的N 的坐标为72,3 或6,-3 .11(2023·山东济宁·统考一模)如图,抛物线y =ax 2+bx +3与坐标轴分别交于A ,B ,C 三点,其中A (-4,0)、B (1,0),M 是第二象限内抛物线上的一动点且横坐标为m ,(1)求抛物线的解析式;(2)连接BM ,交线段AC 于点D ,求S ΔADM S ΔADB的最大值(其中符号S 表示面积);(3)连接CM ,是否存在点M ,使得∠ACO +2∠ACM =90°,若存在,求m 的值,若不存在,请说明理由.【答案】(1)y =-34x 2-94x +3(2)S ΔADM S ΔADB 的最大值为45(3)存在,m =-319【解析】(1)解:(1)分别代入A (-4,0)、B (1,0)到抛物线解析式,解得:y =-34x 2-94x +3;故答案为:y =-34x 2-94x +3.(2)设直线AC 的解析式为y =kx +b ,将点A (-4,0)和点C (0,3)代入y =kx +b 中,-4k +b =0b =3 ,解得:k =34b =3,∴直线AC 的解析式为y =34x +3,如图所示,过点M 作MG ∥x 轴交于AC 于点G ,过点A 作AF ⊥MB 交MB 与点F ,∴G 点的纵坐标与M 点的纵坐标相同,∵M 为抛物线y =-34x 2-94x +3上的一点,设M m ,-34m 2-94m +3 ,又∵G 点在直线AC 上,直线AC 的解析式为y =34x +3,∴G -m 2-3m ,-34m 2-94m +3 ,∴MG =-m 2-4m ,又∵MG ∥AB ,∴MD DB =MG AB =-m 2-4m 5,∵S ΔADM =12MD ⋅AF ,S ΔADB =12DB ⋅AF ,∴S ΔADM S ΔADB =DM DB,∴S ΔADB S ΔADB =DM DB =MG AB=-m 2-4m 5=-m 2+4m 5=-15m +2 2+45,∴S ΔADM S ΔADB 的最大值为45.故答案为:45.(3)过点C 作CP ∥x 轴,延长CM 交x 轴于点T .∴∠MCO =90°,∠MCP =∠MTA ,∵∠ACO +2∠ACM =90°∠ACO +∠PCM +∠MCA =90°,∴∠MCP =∠MCA ,∴∠MCA =∠MTA ,∴△ACT 为等腰三角形,∴AC =AT .在Rt △ACO 中,AC =AO 2+OC 2=42+32=5,∴AC =AT =5,∴OT =AT +OA =5+4=9,∴T (-9,0),设直线CT 的解析式为y =kx +b ,将点T (-9,0)和点C (0,3)代入y =kx +b 中,解得:k =13b =3 ,∴直线CT 的解析式为y =13x +3,∵M 是直线CT 和抛物线y =-34x 2-94x +3的交点,-4<m <0,∴令-34m 2-94m +3=13m +3,∴9m 2+27m +4m =0,∴9m 2+31m =0,∴m 9m +31 =0,解得m =0(舍去)或m =-319故答案为:m =-319.12(2023·海南海口·海口市第九中学校考二模)如图①,已知抛物线L :y =x 2+bx +c 的图象经过点A 0,3 ,B 1,0 .过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,连结OE .(1)求抛物线的关系式并写出点E的坐标;(2)若动点P在x轴下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出此时P点横坐标;(3)若将抛物线向上平移h个单位,且其顶点始终落在△OAE的内部或边上,写出h的取值范围;(4)如图②,F是抛物线的对称轴上l的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3;E(3,3)(2)P的横坐标为52;(3)3≤h≤4;(4)存在,点P的坐标是:5-52,1-52或3-52,5+12或3+52,1-52或5+5 2,5+12【解析】(1)解:∵抛物线L:y=x2+bx+c的图象经过点A(0,3),B(1,0),∴1+b+c=0c=3,解得b=-4c=3,∴抛物线的解析式为:y=x2-4x+3;∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),(2)如图1,过P作PG∥y轴,交OE于点G,设P(m,m2-4m+3),设直线OE的解析式为y=kx,把点E(3,3)代入得,3=3k,解得k=1,∴直线OE的解析式为:y=x,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S△OPE=S△OPG+S△EPG=12PG×AE=12×3×(-m 2+5m -3)=-32(m 2-5m +3)=-32m -52 2+398,∵-32<0,∴当m =52时,△OPE 面积最大,∴P 的横坐标为52(3)由y =x 2-4x +3=(x -2)2-1,得抛物线l 的对称轴为直线x =2,顶点为(2,-1),抛物线L 向上平移h 个单位长度后顶点为F (2,-1+h ).设直线x =2交OE 于点M ,交AE 于点N ,则N (2,3),如图2,∵直线OE 的解析式为:y =x ,∴M (2,2),∵点F 在△OAE 内(包括△OAE 的边界),∴2≤-1+h ≤3,解得3≤h ≤4;(4)设P (m ,m 2-4m +3),分四种情况:①当P 在对称轴的左边,且在x 轴下方时,如图3,过P 作MN ⊥y 轴,交y轴于M ,交l 于N ,∴∠OMP =∠PNF =90°,∵△OPF 是等腰直角三角形,∴OP =PF ,∠OPF =90°,∴∠OPM +∠NPF =∠PFN +∠NPF =90°,∴∠OPM =∠PFN ,∴△OMP ≌△PNF (AAS ),∴OM =PN ,∵P (m ,m 2-4m +3),则-m 2+4m -3=2-m ,解得:m =5+52或5-52,∵m =5+52>2,不合题意,舍去,∴m =5-52,此时m 2-4m +3=1-52,∴P 的坐标为5-52,1-52;②当P 在对称轴的左边,且在x 轴上方时,同理得:2-m =m 2-4m +3,解得:m 1=3+52或m 2=3-52,∵3+52>2,不合题意,舍去,∴m =3-52,此时m 2-4m +3=5+12,∴P 的坐标为3-52,5+12;③当P 在对称轴的右边,且在x 轴下方时,如图4,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,同理得△ONP ≌△PMF ,∴PN =FM ,则-m 2+4m -3=m -2,解得:m 1=3+52或m 2=3-52,∵3-52<2,不合题意,舍去,∴m =3+52,此时m 2-4m +3=1-52,P 的坐标为3+52,1-52;④当P 在对称轴的右边,且在x 轴上方时,如图5,同理得m 2-4m +3=m -2,解得:m =5+52或5-52(舍),P 的坐标为:5+52,5+12;综上所述,点P 的坐标是:5-52,1-52 或3-52,5+12或3+52,1-52 或5+52,5+12.13(2023·广东珠海·校考一模)如图,在平面直角坐标系中,抛物线y =-12x 2+bx +c 与x 轴交于点A ,B ,其中点B 的坐标为(4,0),与y 轴交于点C (0,2).(1)求抛物线y =-12x 2+bx +c 和直线BC 的函数表达式;(2)点P 是直线BC 上方的抛物线上一个动点,当△PBC 面积最大时,求点P 的坐标;(3)连接B 和(2)中求出点P ,点Q 为抛物线上的一点,直线BP 下方是否存在点Q 使得∠PBQ =45°?若存在,求出点Q 的坐标.【答案】(1)y =-12x 2+32x +2,y =-12x +2(2)(2,3)(3)存在,-35,2325【解析】(1)把B (4,0),C (0,2)代入y =-12x 2+bx +c 得:-8+4b +c =0c =2 ,解得b =32c =2,∴抛物线的函数表达式为y =-12x 2+32x +2;设直线BC 的函数表达式为y =mx +2,把B (4,0)代入得:4m +2=0,解得m =-12,∴直线BC 的函数表达式为y =-12x +2;(2)过P 作PH ∥y 轴交BC 于H ,如图:设P t ,-12t 2+32t +2 ,则H t ,-12t +2 ,∴PH =-12t 2+32t +2--12t +2 =-12t 2+2t ,∴S ΔPBC =12PH ⋅OB =12×-12t 2+2t ×4=-t 2+4t =-(t -2)2+4,∵-1<0,∴当t =2时,S ΔPBC 取最大值4,此时P 的坐标为(2,3);(3)直线BP 下方存在点Q ,使得∠PBQ =45°,理由如下:过P 作PM ⊥PB 交BQ 的延长线于M ,过P 作TK ∥x 轴,过B 作BK ⊥TK 于K ,过M 作MT ⊥TK 于T ,如图:由(2)知P (2,3),∵B (4,0),∴PK =2,BK =3,∵∠PBQ =45°,∴ΔPBM 是等腰直角三角形,∴∠MPB =90°,PB =PM ,∴∠KPB =90°-∠TPM =∠TMP ,∵∠K =∠T =90°,∴ΔBPK ≅ΔPMT (AAS ),∴PK =MT =2,BK =PT =3,∴M (-1,1),由M (-1,1),B (4,0)得直线BM 函数表达式为y =-15x +45,联立y =-15x +45y =-12x 2+32x +2 ,解得x =4y =0 或x =-35y =2325,∴Q 的坐标为-35,2325 .14(2023·广西梧州·统考一模)如图1,在平面直角坐标系中,△ABC 的顶点A -6,0 ,B 0,8 ,C 8,0,点P 为线段AC 上的一动点(点P 与点A ,C 不重合),过点P 作PQ ∥BC 交AB 于点Q ,将△APQ 沿PQ 翻折,点A 的对应点为点D ,连接PD ,QD ,BD .设点P 的坐标为t ,0(1)当点D 恰好落在BC 上时,求点P 的坐标;(2)若△PDQ 与△ABC 重叠部分面积S 与点P 横坐标t 之间的函数解析式为S =a (t +6)2(-6<t ≤1)-67t 2+bt +647(1<t <8) ,其图象如图2所示,求a 、b 的值;(3)是否存在点P ,使得∠BDQ 为直角?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)1,0(2)a =27,b =247(3)67,0【解析】(1)解:∵A -6,0 ,B 0,8 ,C 8,0 ,∴OB =OC =8,∴∠C =45°.∵PQ ∥BC ,∴∠APQ =∠C =45°.由折叠的性质可得AP =PD ,∠APQ =∠DPQ =45°,∴∠DPA =90°.∵B 0,8 ,C 8,0 ,∴直线BC 的解析式为y =-x +8,∵P t ,0 ,∴PA =t --6 =t +6.∵点D 恰好落在BC 上,∴D (t ,-t +8),∴PD =-t +8,∴t +6=-t +8,解得:t =1,∴点P 的坐标为1,0 ;(2)解:∵PQ ∥BC ,∴可设直线PQ 的解析式为y =-x +m ,∴0=-t +m ,解得:t =m ,直线PQ 的解析式为y =-x +t .∵A -6,0 ,B 0,8 ,∴直线AB 的解析式为:y =43x +8. 联立y =-x +t y =43x +8 ,解得:x =3t -247y =4t +247,∴Q 3t -247,4t +247.当-6<t ≤1时,点D 在△ABC 内部,此时重叠部分面积为△PDQ 的面积,由折叠可知S △PDQ =S △APQ =12AP ⋅y Q =12×t +6 ×4t +247=27t +6 2,∴a =27;当1<t <8时,点D 在△ABC 外部,由图象可得当t =4时,S =1287,∴-67×42+4b +647=1287,解得:b =247;(3)解:如图,过点Q 和点B 分别作PD 的垂线,交PD 于点M 和PD 延长线于点N ,∵∠BDQ 为直角,∴∠BDN +∠MDQ =90°∵∠BDN +∠DBN =90°,∴∠MDQ =∠DBN ,∴tan ∠MDQ =tan ∠DBN ,即QM DM =DN BN .∵Q 3t -247,4t +247 ,M t ,4t +247,D t ,t +6 ,N t ,8 ,B 0,8 ,∴QM =t -3t -247=4t +247,DM =t +6-4t +247=3t +187,DN =8-(t +6)=2-t ,BN =t ,∴4t +2473t +187=2-t t,解得:t 1=67,t 2=-6(舍).∴存在,点P 的坐标为67,0 .15(2023·吉林长春·统考一模)在平面直角坐标系中,抛物线y =-x 2+ax +1(a 为常数),经过点P 2,-7 ,点Q 在抛物线上,其横坐标为m ,将此抛物线上P 、Q 两点间的部分(包括P 、Q 两点)记为图像G .。
专题52 中考数学最值问题(解析版)
专题52 中考数学最值问题在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。
一、解决几何最值问题的要领(1)两点之间线段最短;(2)直线外一点与直线上所有点的连线段中,垂线段最短;(3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。
二、解决代数最值问题的方法要领1.二次函数的最值公式二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a=-2时,y 有最小值。
y ac b a min =-442; ②若a <0当x b a=-2时,y 有最大值。
y ac b a max =-442。
2.一次函数的增减性.一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。
3. 判别式法.根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。
4.构造函数法.“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。
5. 利用非负数的性质.在实数范围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。
6. 零点区间讨论法.用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。
7. 利用不等式与判别式求解.在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定值问题解1、如图,在平面直角坐标系x O y 中,矩形AOCD 的顶点A 的坐标是(0,4),现有两动点P 、Q ,点P 从点O 出发沿线段OC (不包括端点O ,C )以每秒2个单位长度的速度,匀速向点C 运动,点Q 从点C 出发沿线段CD (不包括端点C ,D )以每秒1个单位长度的速度匀速向点D 运动.点P ,Q 同时出发,同时停止,设运动时间为t 秒,当t=2秒时PQ=52. (1)求点D 的坐标,并直接写出t 的取值范围;(2)连接AQ 并延长交x 轴于点E,把AE 沿AD 翻折交CD 延长线于点F,连接EF ,则△A EF 的面积S 是否随t 的变化而变化?若变化,求出S 与t 的函数关系式;若不变化,求出S 的值. (3)在(2)的条件下,t 为何值时,四边形APQF 是梯形?【答案】解:(1)由题意可知,当t=2(秒)时,OP=4,CQ=2,在Rt△PCQ 中,由勾股定理得:PC=()2222PQ CQ 252-=-=4,∴OC=OP+P C=4+4=8。
又∵矩形AOCD ,A (0,4),∴D(8,4)。
t 的取值范围为:0<t <4。
(2)结论:△AEF 的面积S 不变化。
∵AOCD 是矩形,∴AD∥OE,∴△AQD∽△EQC。
∴CE CQ AD DQ =,即CE t 84t =-,解得CE=8t4t-。
由翻折变换的性质可知:DF=DQ=4-t ,则CF=CD+DF=8-t 。
S=S 梯形AOCF +S △FCE -S △AOE =12(OA+CF )•OC+12CF•CE-12OA•OE =12 [4+(8-t )]×8+12(8-t )•8t 4t --12×4×(8+8t 4t-)。
化简得:S=32为定值。
所以△AEF 的面积S 不变化,S=32。
(3)若四边形APQF 是梯形,因为AP 与CF 不平行,所以只有PQ∥AF。
由PQ∥AF 可得:△CPQ∽△DAF。
∴CP:AD=CQ :DF ,即8-2t :8= t :4-t ,化简得t 2-12t +16=0, 解得:t 1=6+25,t 2=625-。
由(1)可知,0<t <4,∴t 1=6+25不符合题意,舍去。
∴当t=625-秒时,四边形APQF 是梯形。
2、如图所示,在菱形ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,点E 、F 分别在菱形的边BC .CD 上滑动,且E 、F 不与B .C .D 重合.(1)证明不论E 、F 在BC .CD 上如何滑动,总有BE=CF ;(2)当点E 、F 在BC .CD 上滑动时,分别探讨四边形AECF 和△CEF 的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.【答案】解:(1)证明:如图,连接AC∵四边形ABCD 为菱形,∠BAD=120°, ∠BAE+∠EAC=60°,∠FAC+∠EAC=60°, ∴∠BAE=∠FAC。
∵∠BAD=120°,∴∠ABF=60°。
∴△ABC 和△ACD 为等边三角形。
∴∠ACF=60°,AC=AB 。
∴∠ABE=∠AFC。
∴在△ABE 和△ACF 中,∵∠BAE=∠FAC,AB=AC ,∠ABE=∠AFC, ∴△ABE≌△ACF(ASA )。
∴BE=CF。
(2)四边形AECF 的面积不变,△CEF 的面积发生变化。
理由如下:由(1)得△ABE≌△ACF,则S △ABE =S △ACF 。
∴S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC ,是定值。
作AH⊥BC 于H 点,则BH=2,22AECF ABC 11S S BC AH BC AB BH 4322∆==⋅⋅=⋅-=四形边。
由“垂线段最短”可知:当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.故△AEF 的面积会随着AE 的变化而变化,且当AE 最短时,正三角形AEF 的面积会最小,又S △CEF =S 四边形AECF ﹣S △AEF ,则此时△CEF 的面积就会最大.∴S △CEF =S 四边形AECF ﹣S △AEF ()()221432323332=-⋅⋅-=。
∴△CEF 的面积的最大值是3。
(二)由运动产生的线段和差问题(最值问题)1、如图所示,已知A 11(,y )2,B 2(2,y )为反比例函数1y x=图像上的两点,动 点P (x,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是【 】A. 1(,0)2B. (1,0)C. 3(,0)2D. 5(,0)2【答案】D 。
【考点】反比例函数综合题,待定系数法,曲线上点的坐标与方程的关系,三角形三边关系。
【分析】∵把A 11(,y )2,B 2(2,y )分别代入反比例函数1y x=得:y 1=2,y 2=12 ,∴A(12 ,2),B (2,12)。
∵在△ABP 中,由三角形的三边关系定理得:|AP -BP|<AB , ∴延长AB 交x 轴于P′,当P 在P′点时,PA -PB=AB , 即此时线段AP 与线段BP 之差达到最大。
设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入得:12=k+b 21=2k+b 2⎧⎪⎪⎨⎪⎪⎩,解得:k=15b=2-⎧⎪⎨⎪⎩。
∴直线AB 的解析式是5y x 2=-+。
当y=0时,x= 52,即P (52,0)。
故选D 。
2、如图,抛物线l 交x 轴于点A (﹣3,0)、B (1,0),交y 轴于点C (0,﹣3).将抛物线l 沿y 轴翻折得抛物线l 1. (1)求l 1的解析式;(2)在l 1的对称轴上找出点P ,使点P 到点A 的对称点A 1及C 两点的距离差最大,并说出理由;【答案】解:(1)如图1,设经翻折后,点A .B 的对应点分别为A 1、B 1,依题意,由翻折变换的性质可知A 1(3,0),B 1(﹣1,0),C 点坐标不变,∴抛物线l 1经过A 1(3,0),B 1(﹣1,0),C (0,﹣3)三点,设抛物线l 1的解析式为y=ax 2+bx+c ,则9a+3b+c=0a b+c=0c=3⎧⎪-⎨⎪-⎩,解得a=1b=2c=3⎧⎪-⎨⎪-⎩。
∴抛物线l 1的解析式为:y=x 2﹣2x ﹣3。
(2)抛物线l 1的对称轴为:x=b 2==12a 2---, 如图2,连接B 1C 并延长,与对称轴x=1交于点P ,则点P 即为所求。
此时,|PA 1﹣PC|=|PB 1﹣PC|=B 1C 。
设P′为对称轴x=1上不同于点P 的任意一点,则有:|P′A﹣P′C|=|P′B 1﹣P′C|<B 1C (三角形两边之差小于第三边),∴|P′A﹣P′C|<|PA 1﹣PC|,即|PA 1﹣PC|最大。
设直线B 1C 的解析式为y=kx+b ,则k+b=0b=3-⎧⎨-⎩,解得k=b=﹣3。
∴直线B 1C 的解析式为:y=﹣3x ﹣3。
令x=1,得y=﹣6。
∴P(1,﹣6)。
3、如图,已知抛物线y=﹣x 2+bx+c 与一直线相交于A (﹣1,0),C (2,3)两点,与y 轴交于点N .其顶点为D . (1)抛物线及直线AC 的函数关系式;(2)设点M (3,m ),求使MN+MD 的值最小时m 的值;(3)若抛物线的对称轴与直线AC 相交于点B ,E 为直线AC 上的任意一点,过点E 作EF∥BD 交抛物线于点F ,以B ,D ,E ,为顶点的四边形能否为平行四边形?若能,求点E 的坐标;若不能,请说明理由; (4)若P 是抛物线上位于直线AC 上方的一个动点,求△APC 的面积的最大值.【答案】解:(1)由抛物线y=﹣x 2+bx+c 过点A (﹣1,0)及C (2,3)得,1b+c=04+2b+c=3--⎧⎨-⎩,解得b=2c=3⎧⎨⎩。
∴抛物线的函数关系式为2y x 2x 3=-++。
设直线AC 的函数关系式为y=kx+n ,由直线AC 过点A (﹣1,0)及C (2,3)得k+n=02k+n=3-⎧⎨⎩,解得k=1n=1⎧⎨⎩。
∴直线AC 的函数关系式为y=x+1。
(2)作N 点关于直线x=3的对称点N′, 令x=0,得y=3,即N (0,3)。
∴N′(6,3)由()22y x 2x 3=x 1+4=-++--得D (1,4)。
设直线DN′的函数关系式为y=sx+t ,则6s+t=3s+t=4⎧⎨⎩,解得1s=521t=5⎧-⎪⎪⎨⎪⎪⎩。
∴故直线DN′的函数关系式为121y x 55=-+。
根据轴对称的性质和三角形三边关系,知当M (3,m )在直线DN′上时,MN+MD 的值最小, ∴12118m 3=555=-⨯+。
∴使MN+MD 的值最小时m 的值为185。
(3)由(1)、(2)得D (1,4),B (1,2),①当BD 为平行四边形对角线时,由B 、C 、D 、N 的坐标知,四边形BCDN 是平行四边形,此时,点E 与点C重合,即E (2,3)。
②当BD 为平行四边形边时,∵点E 在直线AC 上,∴设E (x ,x+1),则F (x ,2x 2x 3-++)。
又∵BD=2∴若四边形BDEF 或BDFE 是平行四边形时,BD=EF 。
∴()2x 2x 3x 1=2-++-+,即2x x 2=2-++。
若2x x 2=2-++,解得,x=0或x=1(舍去),∴E(0,1)。
若2x x 2=2-++-,解得,117x=2±,∴E 1+173+1722⎛⎫ ⎪ ⎪⎝⎭ ,或E 11731722⎛⎫-- ⎪ ⎪⎝⎭,。
综上,满足条件的点E 为(2,3)、(0,1)、1+173+1722⎛⎫ ⎪ ⎪⎝⎭ ,、11731722⎛⎫-- ⎪ ⎪⎝⎭ ,。
(4)如图,过点P 作PQ⊥x 轴交AC 于点Q ;过点C 作CG⊥x 轴于点G ,设Q (x ,x+1),则P (x ,﹣x 2+2x+3)。
∴22PQ x 2x 3x 1x x 2=-++--=-++()()。
∴APC APQ CPQ 1S S +S PQ AG 2∆∆∆==⋅ 2213127x x 23x 2228=-++⨯=--+()()。
∵302<-,∴当1x=2时,△APC 的面积取得最大值,最大值为278。
4、如图,已知抛物线2y ax bx c =++经过A (4,0),B (2,3),C (0,3)三点. (1)求抛物线的解析式及对称轴.(2)在抛物线的对称轴上找一点M ,使得MA+MB 的值最小,并求出点M 的坐标.(3)在抛物线上是否存在一点P ,使得以点A 、B 、C 、P 四点为顶点所构成的四边形为梯形?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】解:(1)∵抛物线2y ax bx c =++经过A (4,0),B (2,3),C (0,3)三点,∴ 16a 4b c 04a 2b c 3 c 3++=⎧⎪++=⎨⎪=⎩,解得3a 83b 4c 3⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩。