初中数学竞赛试题(附答案)

合集下载

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。

初中中数学竞赛试题及答案

初中中数学竞赛试题及答案

初中中数学竞赛试题及答案初中数学竞赛试题一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0或13. 若a,b,c是三角形的三边,且满足a^2 + b^2 = c^2,则这个三角形是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 钝角三角形4. 一个多项式f(x) = x^3 - 6x^2 + 11x - 6,它的根是:A. 1, 2, 3B. 2, 3, 4C. 1, 3, 4D. 2, 2, 35. 一个圆的半径为5,圆心到直线的距离为4,那么直线与圆的位置关系是:A. 相离B. 相切C. 相交D. 内切6. 以下哪个是二次函数的图像?A. 直线B. 抛物线C. 双曲线D. 椭圆7. 一个数列1, 3, 5, ..., 19,这个数列共有多少项?A. 10B. 11C. 12D. 138. 一个等差数列的首项是2,公差是3,那么第10项是:A. 29B. 32C. 35D. 389. 一个长方形的长是宽的两倍,如果长增加2米,宽增加1米,面积增加8平方米,求原长方形的宽是多少?A. 2米B. 3米C. 4米D. 5米10. 一个分数的分子与分母的和是21,如果分子增加5,分母增加1,新的分数等于1,求原分数是多少?A. 3/18B. 4/17C. 5/16D. 6/15二、填空题(每题4分,共20分)11. 如果一个数的平方根等于它本身,那么这个数是________。

12. 一个数的绝对值是它本身,这个数是非负数,即这个数是________。

13. 一个多项式f(x) = x^2 - 5x + 6可以分解为________。

14. 一个数的立方根等于它本身,这个数是________。

15. 如果一个数列的前三项是1, 2, 3,且每一项都是前一项的两倍,这个数列的第5项是________。

数学竞赛初中组试题及答案

数学竞赛初中组试题及答案

数学竞赛初中组试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的立方等于它本身,那么这个数可能是:A. 1B. -1C. 0D. 1和-1答案:D3. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A4. 一个数的平方根是它本身,这个数可能是:A. 1B. -1C. 0D. 1和0答案:D5. 一个数的倒数是它本身,这个数可能是:A. 1B. -1C. 0D. 1/2答案:A二、填空题(每题2分,共10分)6. 一个数的绝对值是它本身,这个数是______。

答案:非负数7. 一个数的相反数是它本身,这个数是______。

答案:08. 如果a和b互为倒数,那么ab=______。

答案:19. 一个数的平方等于16,这个数可能是______。

答案:±410. 一个数的立方等于8,这个数是______。

答案:2三、简答题(每题5分,共20分)11. 证明:对于任意实数x,都有(x+1)^2 ≥ 2x。

答案:展开(x+1)^2得x^2+2x+1,因为x^2总是非负的,所以(x+1)^2 ≥ 2x。

12. 一个数列的前三项是1, 2, 3,如果每一项都是前一项的两倍,求第10项的值。

答案:这是一个等比数列,首项a1=1,公比r=2。

根据等比数列的通项公式an=a1*r^(n-1),第10项a10=1*2^(10-1)=2^9。

13. 一个圆的半径为5,求圆的周长。

答案:圆的周长公式为C=2πr,代入半径r=5,得C=2*π*5=10π。

14. 一个长方体的长宽高分别为2, 3, 4,求其体积。

答案:长方体的体积公式为V=lwh,代入长l=2,宽w=3,高h=4,得V=2*3*4=24。

四、解答题(每题10分,共30分)15. 某班有40名学生,其中1/4的学生数学成绩优秀,1/3的学生英语成绩优秀,求至少有1门成绩优秀的学生人数。

全国初三初中数学竞赛测试带答案解析

全国初三初中数学竞赛测试带答案解析

全国初三初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.如图,已知在Rt△ABC中,AB=35,一个边长为12的正方形CDEF内接于△ABC.则△ABC的周长为( ).(A)35 (B)40 (C)81 (D)842.设n=9+99+…+99…9(99个9).则n的十进制表示中,数码1有( )个.A.50B.90C.99D.1003.已知f(x)=x2+6ax-a,y=f(x)的图像与x轴有两个不同的交点(x1,0),(x2,0),且=8a-3.则a的值是( ).A.1B.2C.0或D.4.若不等式ax2+7x-1>2x+5对-1≤a≤1恒成立,则x的取值范围是( ).A.2≤x≤3B.2<x<3C.-1≤x≤1D.-1<x<15.在Rt△ABC中,∠B=60°,∠C=90°,AB=1,分别以AB、BC、CA为边长向△ABC外作等边△ABR、等边△BCP、等边△CAQ,联结QR交AB于点T.则△PRT的面积等于( ).(A) (B) (C) (D)6.在3×5的棋盘上,一枚棋子每次可以沿水平或者垂直方向移动一小格,但不可以沿任何斜对角线移动.从某些待定的格子开始,要求棋子经过全部的小正方格恰好一次,但不必回到原来出发的小方格上.在这15个小方格中,有( )个可以是这枚棋子出发的小方格.A.6B.8C.9D.10二、填空题1.正方形ABCD的边长为5,E为边BC上一点,使得BE=3,P是对角线BD上的一点,使得PE+PC的值最小.则PB= .2.设a、b、c为整数,且对一切实数x,(x-a)(x-8)+1="(x-b)(x-c)" 恒成立.则a+b+c的值为 .3.如图,在以O为圆心的两个同心圆图2中,MN为大圆的直径,交小圆于点P、Q,大圆的弦MC交小圆于点A、B.若OM=2,OP= 1,MA=AB=BC,则△MBQ的面积为 .4.从1, 2,…, 2 006中,至少要取出个奇数,才能保证其中必定存在两个数,它们的和为2 008.三、解答题1.(20分)实数x、y、z、w满足x≥y≥z≥w≥0,且5x+4y+3z+6w=100.求x+y+z+w的最大值和最小值.2.(25分)如图,在Rt△ABC中,∠B=90°,它的内切圆分别与边BC、CA、AB相切于点D、E、F,联结AD与内切圆相交于另一点P,联结PC、PE、PF.已知PC⊥PF.求证:(1)EP/DE=PD/DC;(2)△EPD是等腰三角形.3.(25分)在中,有多少个不同的整数(其中,[x]表示不大于x的最大整数)?全国初三初中数学竞赛测试答案及解析一、选择题1.如图,已知在Rt△ABC中,AB=35,一个边长为12的正方形CDEF内接于△ABC.则△ABC的周长为( ).(A)35 (B)40 (C)81 (D)84【答案】D【解析】分析:首先设BC=a,AC=b,由勾股定理与正方形的性质,可得:a2+b2=352,Rt△AFE∽Rt△ACB,再由相似三角形的对应边成比例,可得12(a+b)=ab,解方程组即可求得.解答:解:如图,设BC=a,AC=b,则a2+b2=352=1225.①又Rt△AFE∽Rt△ACB,所以=,即=,故12(a+b)=ab.②由①②得(a+b)2=a2+b2+2ab=1225+24(a+b),解得a+b=49(另一个解-25舍去),所以a+b+c=49+35=84.故答案为D.2.设n=9+99+…+99…9(99个9).则n的十进制表示中,数码1有( )个.A.50B.90C.99D.100【答案】C【解析】由于9=10-1,99=100-1,…,所以n="9+99+999+…+" =10+102+103+…1099-99×1.然后据此等式求出n的值后,即能得出n的十进制表示中,数码1有多少个.解:n=9+99+999+…+=10+102+103+…1099-99×1,=1111111…10(99个1)-99,=11111…1011(99个1).所以在十进制表示中,数码1有99个.故答案为:99.根据式中数据的特点将式中的数据变为10的n次方相加的形式是完成本题的关键.3.已知f(x)=x2+6ax-a,y=f(x)的图像与x轴有两个不同的交点(x1,0),(x2,0),且=8a-3.则a的值是( ).A.1B.2C.0或D.【答案】D【解析】本题考查二次函数与一元二次方程关系的综合应用问题。

数学竞赛试题及答案初中

数学竞赛试题及答案初中

数学竞赛试题及答案初中试题一:代数问题题目:如果\( a \)和\( b \)是两个连续的自然数,且\( a^2 + b^2= 45 \),求\( a \)和\( b \)的值。

解答:设\( a \)为较小的自然数,那么\( b = a + 1 \)。

根据题意,我们有:\[ a^2 + (a + 1)^2 = 45 \]\[ a^2 + a^2 + 2a + 1 = 45 \]\[ 2a^2 + 2a - 44 = 0 \]\[ a^2 + a - 22 = 0 \]分解因式得:\[ (a + 11)(a - 2) = 0 \]因此,\( a = -11 \)或\( a = 2 \)。

由于\( a \)是自然数,所以\( a = 2 \),\( b = 3 \)。

试题二:几何问题题目:在一个直角三角形中,直角边的长度分别为3厘米和4厘米,求斜边的长度。

解答:根据勾股定理,直角三角形的斜边\( c \)可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \]其中\( a \)和\( b \)是直角边的长度。

代入数值:\[ c = \sqrt{3^2 + 4^2} \]\[ c = \sqrt{9 + 16} \]\[ c = \sqrt{25} \]\[ c = 5 \]所以斜边的长度是5厘米。

试题三:数列问题题目:一个等差数列的前三项分别是2,5,8,求这个数列的第10项。

解答:等差数列的通项公式是:\[ a_n = a_1 + (n - 1)d \]其中\( a_n \)是第\( n \)项,\( a_1 \)是首项,\( d \)是公差。

已知首项\( a_1 = 2 \),公差\( d = 5 - 2 = 3 \)。

代入公式求第10项:\[ a_{10} = 2 + (10 - 1) \times 3 \]\[ a_{10} = 2 + 9 \times 3 \]\[ a_{10} = 2 + 27 \]\[ a_{10} = 29 \]所以这个数列的第10项是29。

全国初中数学竞赛试题及答案

全国初中数学竞赛试题及答案

全国初中数学竞赛试题及答案全国初中数学竞赛试题及答案一、选择题1、在一张纸上,我们画了一个圆和一条直径,直径与圆相交于A、B 两点。

如果我们在这张纸上连续地画了8个点,使得这些点都在圆上,那么这8个点的最密集分布是()。

A. 像一个“十”字形,两边各4个点 B. 像一个“十”字形,两边各3个点 C. 像一个“米”字形,上面各4个点 D. 像一个“米”字形,上面各3个点答案:C 解析:根据圆的对称性,我们可以得知,直径两侧的点到圆心的距离相等,因此在一个“十”字形中,中间的交点是最密集的。

而在“米”字形中,上面的4个点距离交点的距离相等且最短,因此是最密集的。

2、在一个等边三角形ABC中,D、E、F分别是AB、BC、CA的中点。

现在以D为圆心,DE为半径画圆弧,交AB于G。

则△DFE的面积是阴影部分面积的()。

A. 2倍 B. 3倍 C. 4倍 D. 6倍答案:C 解析:由题意可知,DE是△ABC的中位线,因此DE=1/2AB。

而△DFE是直角三角形,斜边DE是直径,因此∠DFE=90°。

所以,△DFE的高是DE的一半,即1/4AB。

因此,△DFE的面积是1/2×1/2AB×1/4AB=1/8AB²。

而阴影部分的面积是△ABC面积的一半,即1/2×1/2AB×√3/2AB=√3/4AB²。

所以,△DFE的面积是阴影部分面积的4倍。

3、在一个等腰直角三角形ABC中,∠C=90°,AC=BC=1。

现在以这个三角形的顶点为圆心,1为半径画圆弧,则这三个圆弧的长度之和为()。

A. 3π/2 B. π C. 2π D. 5π/2 答案:C 解析:根据题意,我们可以得到三个圆弧的半径都是1。

其中第一个圆弧的长度为1/4×2π×1=π/2,第二个圆弧的长度也为π/2,第三个圆弧的长度为1/4×2π×√2=π√2/2。

初中数学竞赛试题(含答案)

初中数学竞赛试题(含答案)

DC B A初中数学竞赛试题(含答案)一、选择题(共8小题,每小题5分,满分40分。

以下每小题均给出了代号为A 、B 、C 、 C 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填在题后的括号里,不填、多填或错填均得零分) 1.函数y =1x-图象的大致形状是( )A B C D2.老王家到单位的路程是3500米,老王每天早上7:30离家步行去上班,在8:10(含8:10)到8:20(含8:20)之间到达单位。

如果设老王步行的速度为x 米/分,则老王步行的速度范围是( )A .70≤x ≤87.5B .70≤x 或x ≥87.5C .x ≤70D .x ≥87.53.如图,AB 是半圆的直径,弦AD,BC 相交于P,已知∠DPB =60°,D 是弧BC 的中点,则tan ∠ADC 等于( ) A .12B.2 CD4.抛物线()20y x x p p =++≠的图象与x 轴一个交点的横坐标是P,那么该抛物线的顶点坐标是( )A .(0,-2)B .19,24⎛⎫- ⎪⎝⎭C .19,24⎛⎫- ⎪⎝⎭D .19,24⎛⎫-- ⎪⎝⎭5.如图,△ABC 中,AB =AC,∠A =36°,CD 是角平分线,则△DBC 的面积与△ABC 的面积的比值是( )ABCD 6.直线l :()0y px p =是不等于的整数与直线y =x +10的交点恰好是(横坐标和纵坐标都是整数),那么满足条件的直线l 有() yxOyxOyxOyxOA .6条B .7条C .8条D .无数条7.把三个连续的正整数a,b,c 按任意次序(次序不同视为不同组)填入20x x ++= 的三个方框中,作为一元二次方程的二次项系数、一次项系数和常数项,使所得方程至少有一个整数根的a,b,c ( )A .不存在B .有一组C .有两组D .多于两组 8.六个面上分别标有1,1,2,3,3,5六个数字的均匀立方体的表面如图所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数主该点的纵坐标。

数学竞赛初中试题及答案

数学竞赛初中试题及答案

数学竞赛初中试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的值:(3x^2 - 2x + 1) + (x^2 + 4x - 3) = ?A. 4x^2 + 2x - 2B. 4x^2 + 2x + 2C. 5x^2 + 2x - 2D. 5x^2 + 2x + 2答案:D3. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:C4. 如果一个数的平方是36,那么这个数是?A. 6B. ±6C. 36D. ±36答案:B5. 以下哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:B6. 一个等差数列的第一项是2,公差是3,那么第5项是多少?A. 17B. 14C. 11D. 8答案:A7. 下列哪个图形的面积是最大的?A. 边长为4的正方形B. 半径为2的圆C. 长为5,宽为3的矩形D. 底为6,高为2的三角形答案:B8. 一个正方体的体积是27立方厘米,那么它的表面积是多少?A. 54平方厘米B. 63平方厘米C. 81平方厘米D. 108平方厘米答案:A9. 一个数的立方根是2,那么这个数是?A. 6B. 8C. 2D. 4答案:D10. 下列哪个方程的解是x=2?A. x^2 - 4x + 4 = 0B. x^2 - 3x + 2 = 0C. x^2 - 5x + 6 = 0D. x^2 - 6x + 9 = 0答案:A二、填空题(每题4分,共20分)11. 一个数的相反数是-5,那么这个数是________。

答案:512. 一个等腰三角形的底边长是6厘米,两腰长分别是8厘米,那么这个三角形的周长是________厘米。

答案:2213. 如果一个数除以3余1,除以5余2,那么这个数最小是________。

2024年全国初中数学知识竞赛试题及答案

2024年全国初中数学知识竞赛试题及答案
(1)若圆周上依次放着数 1,2,3,4,5,6,问:是否能经过有限 次操作后,对圆周上任意依次相连的 4 个数 a,b,c,d,都有
第9页
(a d )(b c) ≤0 ?请说明理由. (2 )若圆周上从小到大按顺时针方向依次放着2003 个正整数1 ,
2 ,…,2 0 0 3 ,问:是否能经过有限次操作后,对圆周上任意依次相连 的 4 个数a ,b ,c ,d ,都有(a d )(b c) ≤0 ?请说明理由.
1 0 .已知二次函数y ax2 bx c (其 中 a 是正整数)的图象经 过点 A ( - 1 ,4 ) 与点 B ( 2 ,1 ),并且与x 轴有两个不同的交点,则 b+c 的 最大值为 . 三、解答题(共 4 题,每小题 15 分,满分 60 分)
第3页
1 1 .如图所示,已知AB 是⊙O 的直径,B C 是⊙O 的切线,O C 平行于
第7页
注:1 3 B 和14B 相对于下面的13A 和14A 是较容易的题. 13B 和14B 与 前面的12 个题组成考试卷.后面两页13A 和14A 两题可留作考试后的研究题 。
1 3 A .如图所示,⊙O 的直径的长是关于 x 的二次方程 x2 2(k 2) x k 0
(k是整数)的最大整数根. P 是⊙O 外一点,过点 P 作⊙O 的切线 PA
和割线 P B C ,其中 A 为切点,点 B ,C 是直线 PBC 与⊙O 的交点.若
PA ,P B ,P C 的长都是正整数,且 PB 的长不是合数,求 PA2 PB2 PC2 的 值.
A O
解:
P
B
C
第8页
(第 13A 题图)
1 4 A .沿着圆周放着一些数,如果有依次相连的 4 个数 a,b,c,d 满 足不等式(a d )(b c) >0,那么就可以交换 b,c 的位置,这称为一次操 作.

初中数学竞赛试题及答案pdf

初中数学竞赛试题及答案pdf

初中数学竞赛试题及答案pdf一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个数的平方等于9,这个数是?A. 3B. -3C. 3或-3D. 以上都不是答案:C3. 计算下列算式的结果:(2x + 3)(2x - 3) = ?A. 4x^2 - 6x + 6B. 4x^2 - 9C. 4x^2 + 6x - 9D. 4x^2 + 9答案:B4. 如果一个三角形的两边长分别为3和4,且这两边之间的夹角为90度,那么这个三角形的周长是多少?A. 7B. 8C. 9D. 10答案:D5. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A6. 一个圆的直径是10厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π答案:C7. 以下哪个是完全平方数?A. 36B. 49C. 64D. 81答案:C8. 一个数的立方等于-8,这个数是?A. -2B. 2C. -2或2D. 以上都不是答案:A9. 计算下列算式的结果:(a + b)^2 = ?A. a^2 + 2ab + b^2B. a^2 - 2ab + b^2C. a^2 + b^2D. a^2 - b^2答案:A10. 如果一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题4分,共20分)11. 一个数的平方根是2,那么这个数是______。

答案:412. 一个等差数列的首项是2,公差是3,那么这个数列的第5项是______。

答案:1713. 一个等腰三角形的底边长是6厘米,两腰长分别是8厘米,那么这个三角形的周长是______厘米。

答案:2214. 如果一个数除以3余2,除以5余1,那么这个数可能是______(写出一个符合条件的数即可)。

答案:1115. 一个直角三角形的两直角边长分别是3厘米和4厘米,那么这个三角形的斜边长是______厘米。

竞赛初中数学试题及答案

竞赛初中数学试题及答案

竞赛初中数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. ±3D. ±93. 一个直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 84. 以下哪个分数是最接近1的?A. 1/2B. 3/4C. 4/3D. 5/45. 一个圆的半径是5,它的面积是多少?A. 25πB. 50πC. 100πD. 125π6. 一个数的立方是-8,这个数是多少?A. -2B. 2C. -4D. 47. 一个数的绝对值是5,这个数可以是?A. 5B. -5C. 5或-5D. 都不是8. 以下哪个是二次方程?A. x + 3 = 0B. x^2 + 3x + 2 = 0C. x^3 - 6x^2 + 11x - 6 = 0D. x^4 - 1 = 09. 一个数的相反数是-7,这个数是多少?A. 7B. -7C. 0D. 1410. 一个数的倒数是1/4,这个数是多少?A. 4B. 1/4C. 1/2D. 4/1二、填空题(每题2分,共20分)11. 一个数的平方根是4,这个数是______。

12. 一个数的立方根是2,这个数是______。

13. 一个数的倒数是2,这个数是______。

14. 一个数的绝对值是8,这个数可以是______。

15. 如果一个数的平方是16,那么这个数是______。

16. 一个圆的直径是10,它的半径是______。

17. 一个直角三角形的斜边长度是13,一条直角边是5,另一条直角边是______。

18. 一个数的平方是25,这个数是______。

19. 一个数的立方是-125,这个数是______。

20. 如果一个数的绝对值是-5的相反数,这个数是______。

三、解答题(每题10分,共50分)21. 解方程:2x + 5 = 13。

初中数学竞赛试题(附答案)

初中数学竞赛试题(附答案)

D CBA初中数学竞赛试题一、 选择题(共8小题,每小题5分,满分40分。

以下每小题均给出了代号为A 、B 、C 、 C 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填在题后的括号里,不填、多填或错填均得零分) 1.函数y =1x-图象的大致形状是( )A B C D2.老王家到单位的路程是3500米,老王每天早上7:30离家步行去上班,在8:10(含8:10)到8:20(含8:20)之间到达单位。

如果设老王步行的速度为x 米/分,则老王步行的速度范围是( )A .70≤x ≤87.5B .70≤x 或x ≥87.5C .x ≤70D .x ≥87.53.如图,AB 是半圆的直径,弦AD ,BC 相交于P ,已知∠DPB =60°,D 是弧BC 的中点,则tan ∠ADC 等于( ) A .12B.2 CD 4.抛物线()20y x x p p =++≠的图象与x 轴一个交点的横坐标是P ,那么该抛物线的顶点坐标是( )A .(0,-2)B .19,24⎛⎫-⎪⎝⎭ C .19,24⎛⎫- ⎪⎝⎭ D .19,24⎛⎫-- ⎪⎝⎭5.如图,△ABC 中,AB =AC ,∠A =36°,CD 是角平分线,则△DBC 的面积与△ABC 的面积的比值是() A .22B .23- C .32D .33-6.直线l :()0y px p =是不等于的整数与直线y =x +10的交点yxOyx OyxOyxO恰好是(横坐标和纵坐标都是整数),那么满足条件的直线l 有( ) A .6条 B .7条 C .8条 D .无数条7.把三个连续的正整数a ,b ,c 按任意次序(次序不同视为不同组)填入20x x ++= 的三个方框中,作为一元二次方程的二次项系数、一次项系数和常数项,使所得方程至少有一个整数根的a ,b ,c ( )A .不存在B .有一组C .有两组D .多于两组8.六个面上分别标有1,1,2,3,3,5六个数字的均匀立方体的表面如图所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数主该点的纵坐标。

数学竞赛初中试题及答案

数学竞赛初中试题及答案

数学竞赛初中试题及答案一、选择题(每题3分,共30分)1. 已知等腰三角形的两边长分别为5和8,那么这个等腰三角形的周长是:A. 18B. 21C. 26D. 282. 一个数的平方等于它的4倍,这个数是:A. 0B. 2C. -2D. 0或23. 一个长方形的长是宽的2倍,如果宽增加2厘米,长减少2厘米,那么面积不变。

设长方形的宽为x厘米,根据题意可得方程:A. 2x(x+2) = x(x-2)B. 2x(x-2) = x(x+2)C. 2x^2 = x^2 - 4x + 4D. 2x^2 = x^2 + 4x - 44. 一个数列的前四项依次为1, 2, 4, 8,那么第五项是:A. 16B. 32C. 64D. 1285. 一个圆的直径是10厘米,那么它的面积是:A. 78.5平方厘米B. 157平方厘米C. 314平方厘米D. 785平方厘米6. 一个数的相反数是-4,那么这个数是:A. 4B. -4C. 0D. 87. 一个分数的分子比分母小3,且这个分数等于1/2,那么这个分数是:A. 1/3B. 2/5C. 3/6D. 4/78. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 09. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0, 1或-110. 一个等差数列的前三项依次为2, 5, 8,那么第四项是:A. 11B. 12C. 13D. 14二、填空题(每题4分,共20分)1. 一个数的立方根是它本身的数是______。

2. 如果一个三角形的两个内角分别是45度和45度,那么第三个内角是______度。

3. 一个数的绝对值是它本身,这个数是______。

4. 一个数的平方等于16,这个数是______。

5. 一个数的相反数是它本身,这个数是______。

三、解答题(每题10分,共50分)1. 已知一个等腰三角形的两边长分别为3和4,求这个等腰三角形的周长。

竞赛初中数学试题及答案

竞赛初中数学试题及答案

竞赛初中数学试题及答案一、选择题(每题2分,共10分)1. 已知一个等腰三角形的两边长分别为3cm和5cm,那么这个三角形的周长是()。

A. 11cmB. 13cmC. 16cmD. 无法确定2. 下列哪个数是无理数()。

A. 0.5B. √2C. 22/7D. 03. 一个数的相反数是-3,那么这个数是()。

A. 3B. -3C. 0D. 64. 若a、b、c是等差数列,且a+c=10,b=5,则a、b、c的值分别是()。

A. 2, 5, 8B. 3, 5, 7C. 4, 5, 6D. 5, 5, 55. 一个圆的半径为2cm,那么这个圆的面积是()。

A. 4π cm²B. 8π cm²C. 12π cm²D. 16π cm²二、填空题(每题2分,共10分)6. 一个数的平方是25,那么这个数是______或______。

7. 一个数增加20%后是120,那么这个数原来是______。

8. 已知一个直角三角形的两个直角边长分别为3cm和4cm,那么斜边长是______cm。

9. 一个数的绝对值是5,那么这个数是______或______。

10. 一个数除以-2的商是-3,那么这个数是______。

三、解答题(每题5分,共20分)11. 已知一个二次函数y=ax²+bx+c,其中a=1,b=-3,c=2,求当x=1时,y的值。

12. 一个长方形的长是宽的两倍,如果宽增加2cm,长减少2cm,面积不变,求原长方形的长和宽。

13. 一个数列的前三项分别是1,2,3,从第四项开始,每一项都是前三项的和,求数列的第8项。

14. 一个圆的直径是10cm,求这个圆的周长和面积。

答案:一、选择题1. B2. B3. A4. A5. B二、填空题6. ±57. 1008. 59. ±510. 6三、解答题11. 当x=1时,y=1-3+2=0。

初中数学竞赛试卷带答案

初中数学竞赛试卷带答案

一、选择题(每题5分,共25分)1. 下列各数中,哪个数是负数?A. -3B. 0C. 3D. -3.5答案:D2. 如果一个长方形的面积是24平方厘米,长是6厘米,那么宽是多少厘米?A. 2B. 3C. 4D. 5答案:B3. 下列哪个数是偶数?A. 23B. 25C. 26D. 27答案:C4. 下列哪个图形的对称轴最多?A. 等腰三角形B. 等边三角形C. 长方形答案:D5. 一个正方体的棱长为a,那么它的表面积是多少?A. 4a^2B. 6a^2C. 8a^2D. 12a^2答案:B二、填空题(每题5分,共25分)6. 1/2 + 3/4 = _______答案:5/47. 9.6 - 3.8 = _______答案:5.88. 0.3 × 0.4 = _______答案:0.129. 下列分数中,哪个是最简分数?A. 6/8B. 3/4C. 4/6D. 8/10答案:B10. 下列哪个数是整数?A. 1.5C. 1.1D. 1.01答案:A三、解答题(每题10分,共30分)11. 一个长方形的长是8厘米,宽是5厘米,求它的周长。

答案:周长= 2 × (长 + 宽) = 2 × (8 + 5) = 2 × 13 = 26厘米12. 一个梯形的上底是6厘米,下底是10厘米,高是4厘米,求它的面积。

答案:面积 = (上底 + 下底) × 高÷ 2 = (6 + 10) × 4 ÷ 2 = 16 × 4 ÷ 2 = 64 ÷ 2 = 32平方厘米13. 一个圆的半径是3厘米,求它的周长和面积。

答案:周长= 2 × π × 半径= 2 × 3.14 × 3 = 18.84厘米面积= π × 半径^2 = 3.14 × 3^2 = 3.14 × 9 = 28.26平方厘米四、附加题(10分)14. 一个等腰三角形的底边长是10厘米,腰长是13厘米,求这个三角形的面积。

初中数学竞赛试题(附答案)

初中数学竞赛试题(附答案)

初中数学竞赛试题一、选择题(每小题6分,共48分)下面各题给出的选项中,只有一项是正确的1.某商店经销一批衬衣,进价为每件m 元,零售价比进价高a %,后因市场的变化,该店把零售价调整为原来零售价的b %出售,那么,调价后每件衬衣的零售价是 ( )A .m(1+a %)(1—b %)元B .m·a%(1—b %)元C .m(1+a %)b %元D .m(1+a %·b%)元2.如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边△APC 和等边△BPD.则CD 长度的最小值是 ( )A .4B .5C 6D .5(5 —1)3.在凸n 边形中,小于108°的角最多可以有( )A .3个B 4个C .5个D .6个4.方程(x 2+x-1)x+3=1的所有整数解的个数是 ( )A .2B .3C .4D .55.如图,在△ABC 中,∠ACB=90°,分别以AC 、AB 为边,在△ABC 外作正方形ACEF 和正方形AGHB .作CK⊥AB,分别交AB 和GH 于D 和K .则正方形ACEF 的面积S 1与矩形AGKD 的面积S 2的大小关系是 ( )A S 1=S 2B S 1>S 2 C. S l <S 2 D .不能确定,与AC/AB 的大小有关6.甲、乙两人同时从同一地点出发,相背而行,1小时后他们分别到达各自的终点A 与B .若仍从原地出发,互换彼此的目的地,则甲在乙到达A 之后35分钟到达B .那么,甲的速度与乙的速度之比为 ( )A 3:5 B. 4:3 C. 4:5 D .3:47.在全体实数中引进一种新的运算*,其规定如下:(1)对任意实数a 、b ,有a*b=(a+1)·(b -1);(2)对任意实数a ,有a *2==a*a当x=2时,[3*(x *2)]-2*x+1的值为( )A 34 B. 16 C. 12 D .68.若不等式|x+l|+|x-3|≤a 有解,则n 的取值范围是 ( )A 0<a≤4B a≥4C O<a≤2 D.a≥2二、填空题(每小题8分,共32分)9.如图,□ABCD 的对角线相交于点O ,在AB 的延长线上任取一点E ,连结OE 交BC 于点F .若AB=a ,AD=c ,BE=b ,则BF= .10.若S=,则S 的整数部分是11.若四边形的一组对边中点的连线的长为d ,另一组对边的长分别为a 、b ,则d 与2b a 的大小关系是 .12.如图,O 为某公园大门,园内共有9处景点A 1、A 2、……An.景点间的道路如图所示,游客只能按图上所示的箭头方向从一个景点到达另一个景点.游客进入公园大门之后,可按上述行进要求游览其中部分或全部景点.一旦返回大门O 处,游览即告结束(每个景点只能游览一次).那么,游客所能选择的不同的游览路线共有条.三、解答题(每小题20分,共60分)13.关于x的方程kx2-(k-1)x+l=0有有理根,求整数k的值.14.如图,在□ABCD中,P1、P2、…、P n-1是BD的n等分点,连结AP2并延长交BC于点E,连结AP n-2并延长交.CD于点F.(1)求证:EF∥BD;(2)设□ABCD的面积是S.若S△AEF=3s/8,求n的值.15.有12位同学围成一圈,其中有些同学手中持有鲜花,鲜花总数为13束,他们进行分花游戏,每次分花按如下规则进行:其中一位手中至少持有两束鲜花的同学拿出两束鲜花分给与其相邻的左右两位同学,每人一束.试证:在持续进行这种分花游戏的过程中,一定会出现至少有7位同学手中持有鲜花的情况.初中数学竞赛一、1.C 2.B 3.B 4.C 5.A 6.D 7.D 8.B15.不妨假设开始时手中持有鲜花的同学不足7位.我们以A、A2、A、…、A2按逆时针方向依次分别标记这12位同学.(1)在分花游戏过程中,任何相邻的两位同学一旦其中一位手中持有鲜花,那么,在此后的每次分花之后,他们两人中始终至少有一人手中持有鲜花.事实上,每次分花,如果分花的同学不是这两位同学中的一位,那么,他们俩手中的鲜花只会增加,不会减少.如果他们俩中的一位是分花者,那么,分花后另一位同学一定持有鲜花. (2)任何一位同学不可能手中始终无花,可用反证法证明这一点.不妨假设A1手中始终无花,这意味着A2始终没作为分花者,A2手中鲜花只能增加,不会减少.因总共只有13束鲜花,所以经过有限次分花之后, A2不再接受鲜花.这又意味着经过有限次分花之后,A3不再为分花者.同理可知,再经过有限次分花后,A4不再为分花者.依此类推,经有限次分花之后,全部12位同学无一人为分花者,活动终止.这就与13束鲜花分置于12位同学手中,无论何种情况总能找到与可能分花的同学的事实相矛盾.由(1)、(2)可知,经若干次分花之后,可使任何相邻的两位同学中至少有一位同学手中有花,因此至少有6位同学手中有花.若仅有6位同学手中有花,则手中有花的同学不可能相邻,否则就会有两位手中无花的同学相邻.因此,只要再进行一次分花,至少增加一位手中持花的同学,即至少有7位同学手中持有鲜花.。

初中数学竞赛试卷及答案解析

初中数学竞赛试卷及答案解析

初中数学竞赛试卷及答案解析一、选择题1.已知函数f(x) = 2x - 3,求f(4)的值。

A. 2B. 5C. 6D. 7答案:C. 6解析:将x = 4代入函数f(x) = 2x - 3,得到f(4) = 2(4) - 3 = 8 - 3 = 5。

因此,答案为C. 6。

2.下列哪个不是三角形的内角?A. 90度B. 120度C. 180度D. 270度答案:C. 180度解析:三角形的内角之和总是等于180度。

因此,180度不是三角形的内角,而是一条直线的内角。

答案为C. 180度。

3.已知a = 3,b = 4,c = 5,求三角形的周长。

A. 6B. 12C. 15D. 20答案:C. 15解析:三角形的周长等于三条边的长度之和。

因此,周长 = a + b +c = 3 + 4 + 5 = 12。

答案为C. 15。

4.若x + 3 = 7,则x的值是多少?A. 2B. 3C. 4D. 5答案:A. 2解析:将x + 3 = 7转化为x = 7 - 3,得到x的值为2。

因此,答案为A. 2。

5.已知正方形的周长为20cm,求正方形的边长。

A. 4cmB. 5cmC. 10cmD. 20cm答案:B. 5cm解析:正方形的周长等于4倍的边长。

因此,边长 = 周长 / 4 = 20 /4 = 5。

答案为B. 5cm。

二、填空题1.已知等差数列的首项a₁ = 2,公差d = 3,求该数列的第10项。

答案:28解析:根据等差数列的通项公式an = a₁ + (n - 1) * d,代入a₁ = 2,d = 3,n = 10,得到a10 = 2 + (10 - 1) * 3 = 2 + 9 * 3 = 2 + 27 = 28。

2.若x² + 3x + k是一个完全平方数,则k的值为多少?答案:9/4解析:对于一个完全平方数,它的因式分解必然是两个相同的因式相乘。

根据已知的二次项系数求平方根的方法,可以得到k = (b/2a)² = (3/2)² = 9/4。

初中数学竞赛试题及答案

初中数学竞赛试题及答案

初中数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数不是质数?A. 2B. 3C. 4D. 52. 如果一个数的平方等于其本身,那么这个数可能是:A. 0B. 1C. -1D. 23. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 84. 一个数的绝对值是其本身,这个数可能是:A. 正数B. 0C. 负数D. 正数或05. 以下哪个表达式的结果不是整数?A. 3 + 2C. 4 × 2D. 6 ÷ 26. 如果一个数的立方等于其本身,那么这个数可能是:A. 0B. 1C. -1D. 27. 一个圆的半径是5,它的面积是:A. 25πB. 50πC. 100πD. 125π8. 如果一个数的倒数是其本身,那么这个数可能是:A. 1B. -1C. 2D. 09. 一个数的平方根是其本身,这个数可能是:A. 0B. 1C. -1D. 210. 一个数的立方根是其本身,这个数可能是:A. 0B. 1D. 8答案:1. C2. A, B3. A4. D5. C6. A, B, C7. C8. A, B9. A, B10. A, B, C二、填空题(每题4分,共20分)11. 一个数的平方是16,这个数可能是________。

12. 如果一个数的绝对值是5,那么这个数可能是________。

13. 一个三角形的内角和是________度。

14. 一个数的立方是-27,这个数可能是________。

15. 一个数的平方根是2,那么这个数是________。

答案:11. ±412. ±513. 18014. -315. 4三、解答题(每题10分,共50分)16. 证明勾股定理。

17. 解方程:2x + 5 = 15。

18. 一个长方体的长、宽、高分别是3厘米、4厘米和5厘米,求其体积。

19. 一个圆的周长是12π,求其半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D C
B
A
初中数学竞赛试题
一、 选择题(共8小题,每小题5分,满分40分。

以下每小题均给出了代号为A 、B 、C 、 C 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填在题后的括号里,不填、多填或错填均得零分) 1.函数y =1
x
-图象的大致形状是( )
A B C D
2.老王家到单位的路程是3500米,老王每天早上7:30离家步行去上班,在8:10(含8:10)到8:20(含8:20)之间到达单位。

如果设老王步行的速度为x 米/分,则老王步行的速度范围是( )
A .70≤x ≤87.5
B .70≤x 或x ≥87.5
C .x ≤70
D .x ≥87.5
3.如图,AB 是半圆的直径,弦AD ,BC 相交于P ,已知∠DPB =60°,D 是弧BC 的中点,则tan ∠ADC 等于( ) A .
1
2
B .
2 C
D
4.抛物线()2
0y x x p p =++≠的图象与x 轴一个交点的横坐标是P ,那么该抛物线的顶
点坐标是( ) A .(0,-2) B .19,24⎛⎫-
⎪⎝⎭ C .19,24⎛⎫- ⎪⎝⎭ D .19,24⎛⎫
-- ⎪⎝⎭
5.如图,△ABC 中,AB =AC ,∠A =36°,CD 是角平分线,则△DBC 的面积与△ABC 的面积的比值是(
) A .
22
B .23
C .32
D .33
6.直线l :()
0y px p =是不等于的整数与直线y =x +10的交点
y
x
O
y
x O
y
x
O
y
x
O
恰好是(横坐标和纵坐标都是整数),那么满足条件的直线l 有( ) A .6条 B .7条 C .8条 D .无数条
7.把三个连续的正整数a ,b ,c 按任意次序(次序不同视为不同组)填入2
0x x ++= 的三个方框中,作为一元二次方程的二次项系数、一次项系数和常数项,使所得方程至少有一个整数根的a ,b ,c ( )
A .不存在
B .有一组
C .有两组
D .多于两组
8.六个面上分别标有1,1,2,3,3,5六个数字的均匀立方体的表面如图所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数主该点的纵坐标。

按照这样的规定,每
掷一次该小立方体,就得到平面内的一个点的坐标。

已知小明前再次搠得的两个点能确定一条直线l ,且这条直线l 经过点P (4,7),那么他第三次掷得的点也在直线l 上的概率是( )
A .23
B .12
C .13
D .16
二、填空题(共6小题,每小题5分,满分30分) 9.若a 是一个完全平方数,则比a 大的最小完全平方数是 。

10.按如图所示,把一张边长超过10的正方形纸片剪成5个部分,则中间小正方形(阴影部分)的周长为 。

11.在锐角三角形ABC 中,∠A =50°,AB >BC ,则∠B 的取值范围是 。

12.设正△ABC 的边长为a ,将△ABC 绕它的中心(正三三角形外接圆的圆心)旋转60°得到对应的△A ′B ′C ′,则A ,B ′两点间的距离等于 。

13.如图,在平面直角坐标系内放置一个直角梯形AOCD ,已知AD =3,AO =8,OC =5,若点P 在梯形内且
,PAD POC PAO PCD S S S S == ,那么点P 的坐标
是 。

14.已知A 、B 、C 、D 四人的体重均为整数千克,其中A 最轻,其次是B ,C ,D ,以他们中的每两人为一组称得的体重如下(单位:千克):
45, 49, 54, 60, 64
21
35
1
3
8
3
5
y x
O
D
C
A
则D 的体重为 千克。

三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分) 15.已知211,2,84b
b a a a a a
-=+=-求的值。

16.现在a 根长度相同的火柴棒,按如图1摆放时可摆成m 个正方形,按如图2摆放时可摆成2n 个正方形。

图 3
图 1
......
......
......
......
............图 2
⑴用含n 的代数式表示m ;
⑵当这a 根火柴棒还能摆成如图3所示的形状时,求a 的最小值。

17.如图,已知直径与等边三角形ABC的高相等的圆AB和BC边相切于点D和E,与AC边相交于点F和G,求∠DEF的度数。

18.已知抛物线()2
2
1:2210,0l y ax amx am m a m =-+++>>的顶点为A ,抛物线2l 的
顶点B 在y 轴上,且抛物线12l l 和关于P (1,3)成中心对称。

⑴当a =1时,求2l 的解析式和m 的值;
⑵设2l 与x 轴正半轴的交点是C ,当△ABC 为等腰三角形时,求a 的值。

相关文档
最新文档