现代控制理论简答题
现代控制理论考试题及答案
答案及评分标准一,填空(3分每空,共15分)1.输出变量 2.变量的个数最少 3.⎥⎦⎤⎢⎣⎡2001 4. 其状态空间最小实现为u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100001100010 ; u x y 2102121+⎥⎦⎤⎢⎣⎡= 5. 0,021==x x二,选择题(3分每题,共12分) 1.B 2.D 3.B 4.C三,判断题(3分每题,共12分)1.2. √3.4. √四,简答题(共23分)1.(5分) 解 判定系统11221223x x x x x x =-+⎧⎨=--⎩在原点的稳定性。
解 2114523I A λλλλλ+--==+++,两个特征根均具有负实部,(3分) 系统大范围一致渐近稳定。
(2分) 无大范围扣一分,无一致渐近扣一分。
2. (5分)11b ab b -⎛⎫⎪--⎝⎭能控性矩阵为 (2分)1 rank 211det 1b ab b b ab b -⎛⎫= ⎪--⎝⎭-⎛⎫⇔ ⎪--⎝⎭210b ab =-+-≠ (5分)3.(8分)在零初始条件下进行拉式变换得:)()(2)()()(2)(3)(223S U S SU S U S S Y S SY S Y S S Y S ++=+++12312)()()(232+++++==∴S S S S S S U S Y S G (4分)[]XY U X X 121100321100010.=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=∴ (8分)4.(5分)解:[]B CS G A SI --=1)( (2分)2342+--=S S S (5分) 五,计算题1. 1210c u ⎡⎤=⎢⎥⎣⎦,1112201c u -⎡⎤=⎢⎥-⎣⎦能控性矩阵满秩,所以系统能化成能控标准型。
(2分)[][][]1111221122010101c p u -⎡⎤===-⎢⎥-⎣⎦[][]11112122221100p p A ⎡⎤==-=⎢⎥⎣⎦11221112211,11P P --⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦(10分) 能控标准型为u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=101010..(12分) 2. 解:11][)(---==A SI L e t At φ (2分)⎥⎦⎤⎢⎣⎡+-+---=-==----------t t tt t t tt Ate e ee e e e e A SI L e t 3232323211326623][)(φ (8分) ∴系统零初态响应为 X(t)=0,34121)(32320)(≥⎥⎦⎤⎢⎣⎡-+-+-=-----⎰t e e e e d Bu et t t t t t A τττ (12分) 3. 解:因为能观性矩阵满秩,所以系统可观,可以设计状态观测器。
现代控制理论试卷与答案
一、名词解释与简答题(共3题,每小题5分,共15分)
1、经典控制理论与现代控制理论的区别
2、对偶原理的内容
3、李雅普诺夫稳定
二、分析与计算题(共8小题,其中4—10小题每题10分,第11小题15分,共85分)
4、电路如图所示,设输入为,输出为,试自选状态变量并列写出其状态空间表达式。
5
6
、试将下列状态方程化为对角标准型或者约当标准型。
7、已知系统状态空间表达式为,求系统的单位阶跃响应。
8、已知线性定常系统(A ,B ,C), ,试判断系统是否完全能观?若能观求其能观标准型,不能观则按照能观性进行分解.
9、利用李雅普诺夫方程判断系统是否为大范围渐近稳定,并求出其一个李雅普诺夫函数。
10、将状态方程化为能控标准型。
11、已知系统为,试确定线性状态反馈控制律,使闭环极点都是,并画出闭环系统的结构图。
现代控制理论考试试题
现代控制理论考试试题现代控制理论考试试题一、简答题1. 什么是反馈控制系统?请简要解释其原理和作用。
反馈控制系统是一种通过测量输出信号并与期望信号进行比较,然后根据比较结果对输入信号进行调整的控制系统。
其原理是通过不断调整输入信号以使输出信号接近期望信号,从而实现对系统的控制。
反馈控制系统的作用是使系统能够自动调整,以适应外部环境的变化和内部扰动,从而提高系统的稳定性和性能。
2. 请简述PID控制器的工作原理和常见应用。
PID控制器是一种基于比例、积分和微分三个控制量的控制器。
其工作原理是根据当前的误差(偏差)信号,分别计算比例项、积分项和微分项,并将它们相加得到最终的控制量。
比例项用于根据当前误差的大小进行调整,积分项用于对累积误差进行调整,微分项用于对误差变化率进行调整。
PID控制器常见应用于工业过程控制、机器人控制、飞行器控制等领域。
3. 请解释什么是系统稳定性?如何判断一个控制系统的稳定性?系统稳定性是指系统在一定的工作条件下,输出信号始终趋于有限的范围内,不会出现无限增长或震荡的现象。
判断一个控制系统的稳定性可以通过判断系统的极点位置。
如果系统的所有极点的实部都小于零,则系统是稳定的;如果存在至少一个极点的实部大于零,则系统是不稳定的。
二、计算题1. 对于一个开环传递函数为G(s)=1/(s^2+2s+1)的系统,请计算其闭环传递函数和稳定裕度。
闭环传递函数可以通过将开环传递函数除以1加上开环传递函数得到,即H(s)=G(s)/(1+G(s))。
代入G(s)的表达式可得H(s)=1/(s^2+3s+2)。
稳定裕度是指系统的相角裕度和增益裕度。
相角裕度可以通过计算闭环传递函数在频率为零时的相位角来得到,即相角裕度=180°+arctan(0)=180°。
增益裕度可以通过计算闭环传递函数在频率为无穷大时的幅值来得到,即增益裕度=1。
2. 对于一个控制系统的状态空间表达式为dx/dt=Ax+Bu,y=Cx+Du,其中A、B、C、D分别为系统的矩阵参数,请计算该系统的传递函数。
现代控制理论试卷及答案
现代控制理论试卷一、简答题(对或错,10分)(1)描述系统的状态方程不是唯一的。
(2)用独立变量描述的系统状态向量的维数不是唯一的。
(3)对单输入单输出系统,如果1()C sI A B --存在零极点对消,则系统一定不可控或者不可观测。
(4)对多输入多数出系统,如果1()sI A B --存在零极点对消,则系统一定不可控。
(5)李雅普诺夫直接法的四个判定定理中所述的条件都是充分条件。
(6)李雅普诺夫函数是正定函数,李雅普诺夫稳定性是关于系统平衡状态的稳定性。
(8)线性定常系统经过非奇异线性变换后,系统的可控性不变。
(9)用状态反馈进行系统极点配置可能会改变系统的可观测性。
(10)通过全维状态观测器引入状态反馈来任意配置系统的闭环极点时,要求系统必须同时可控和可观测。
对一个线性定常的单输入单输出5阶系统,假定系统可控可观测,通过设计输出至输入的反馈矩阵H 的参数能任意配置系统的闭环极点。
二、试求下述系统的状态转移矩阵()t Φ和系统状态方程的解x 1(t)和x 2(t)。
(15分)1122()()012()()()230x t x t u t x t x t ⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦12(0)0,(),0(0)1tx u t e t x -⎡⎤⎡⎤==≥⎢⎥⎢⎥⎣⎦⎣⎦ 三、设系统的传递函数为()10()(1)(2)y s u s s s s =++。
试用状态反馈方法,将闭环极点配置在-2,-1+j ,-1-j 处,并写出闭环系统的动态方程和传递函数。
(15分) 四、已知系统传递函数2()2()43Y s s U s s s +=++,试求系统可观标准型和对角标准型,并画出系统可观标准型的状态变量图。
(15分)五、已知系统的动态方程为[]211010a x x uy b x ⎧⎡⎤⎡⎤=+⎪⎢⎥⎢⎥⎨⎣⎦⎣⎦⎪=⎩,试确定a ,b 值,使系统完全可控、完全可观。
现代控制理论考试试题
现代控制理论考试试题(正文开始)一、选择题1.控制系统的目标是()。
A. 提高系统的可靠性B. 提高系统的速度C. 提高系统的稳定性D. 提高系统的精度2.在控制系统中,遥感技术主要用于()。
A. 信号传输B. 参数估计C. 故障检测D. 软件设计3.传感器的作用是()。
A. 测量和检测B. 控制和调节C. 存储和处理D. 传输和接收4.反馈控制系统的特点是()。
A. 没有可靠性要求B. 没有精度要求C. 具有稳定性要求D. 具有高速响应要求5.频率响应函数是指()。
A. 系统的输出响应B. 系统的传输函数C. 系统的幅度特性D. 系统的无穷小响应二、简答题1.请解释什么是控制系统的稳定性,并给出判断系统稳定性的方法。
控制系统的稳定性是指系统在一定刺激下,输出保持有界或有限的范围内,不发生持续增长或不发散的性质。
判断系统稳定性的方法有两种:一种是通过系统的特征方程判断,如果特征方程的所有根的实部都小于零,则系统稳定;另一种是通过系统的频率响应函数判断,如果系统的幅频特性在一定频率范围内有界,则系统稳定。
2.什么是控制系统的鲁棒性?鲁棒性的提高可以通过哪些方法实现?控制系统的鲁棒性是指系统对于参数变化、扰动和不确定性的抵抗能力。
在实际应用中,由于系统中存在参数误差、外部扰动等因素,控制系统往往无法精确满足设计的要求,此时需要考虑鲁棒性。
提高鲁棒性的方法包括:采用更加鲁棒的控制器设计方法,如H∞控制、μ合成控制等;通过系统自适应、鲁棒估计等方法,对系统的参数变化进行实时估计和校正;对系统的扰动进行补偿等。
三、分析题考虑一个反馈控制系统,其开环传递函数为G(s),闭环传递函数为T(s),控制器的传递函数为C(s)。
1.给出控制系统的传递函数表达式。
控制系统的传递函数表达式为T(s) = G(s) / (1 + G(s)C(s))。
2.当G(s) = (s+1) / (s^2+3s+2),C(s) = K,求控制系统的闭环传递函数表达式。
现代控制工程简答题
现代控制工程简答题1、控制系统的基本构成及特点。
2、现代控制理论的主要内容。
3、控制系统的状态空间描述及意义。
4、线性定常非齐次连续系统状态(方程解)的动态特性。
参考答案:1、控制系统主要由具有动态特性的被控对象系统、实现控制作用的控制机构、完成数据收集的检测机构,以及实现性能指标评价和信息处理的计算机构等部分构成。
控制系统的主要特点为:以动态系统为控制对象,通过施加必要的操作,实现对象系统状态按照指定的规律进行变化,达到某一特定功能;强调动态过程和动态行为的目的性、稳定性、能观测性、可控性、最优性以及时实性等;控制系统的数学模型主要用微分方程描述,设计方法为动态优化方法。
,2、主要包括五个方面:①线性系统理论(状态空间描述、能控性、能观测性和稳定性分析,状态反馈、状态观测器及补偿理论和设计方法),②建摸和系统辩识(模型结构及参数辩识方法论、参数估计理论),③最优滤波理论(卡尔曼滤波理论),④最优控制理论(经典变分法、最大值原理法、动态规划法),⑤自适应控制理论(模型参考自适应控制方法论、自校正控制方法论、鲁棒稳定自适应理论等)。
3、控制系统的状态空间描述:由状态方程和输出方程组成的状态空间表达式。
状态方程是一个一阶微分方程组,描述系统输入与系统状态的变化关系,即系统的内部描述;输出方程是一个代数方程,主要描述系统状态与系统输出的关系,即系统的外部描述。
意义:状态空间描述反映了控制系统的全部信息,是对系统特性的全部描述,是实现现代控制系统分析、设计的重要手段。
4、线性定常非齐次连续系统状态(方程解)的一般形式为:动态特性:系统状态的动态运动(随时间变化过程)受两部分作用,第一部分为系统初始状态的转移作用,即系统的自由运动项;第二部分为控制输入信号激励下的受控作用,即系统的强迫运动项。
适当选择控制输入,可使系统状态在状态空间中获得满足要求的最佳轨线。
1、控制工程理论(控制科学)的基本任务及广义定义。
现代控制理论基础题库(带答案)
现代控制理论基础题库1、已知某系统的传递函数为:,以下状态空间描述正确的是(C)2、控制理论的发展阶段为(A)。
A、经典控制理论、现代控制理论和鲁棒控制理论B、经典控制理论、现代控制理论C、经典控制理论、鲁棒控制理论D、现代控制理论3、下面关于线性定常系统的非奇异线性变换说法错误的是(C)A、对于线性定常系统,非奇异线性变换不改变系统的传递函数矩阵B、对于线性定常系统,非奇异线性变换不改变系统的特征多项式C、对于线性定常系统,非奇异线性变换不改变系统的状态空间描述D、对于线性定常系统,非奇异线性变换不改变系统的特征值4、状态方程是什么方程(B)A、高阶微分方程B、一阶微分方程C、代数方程D、高阶差分方程5、现代控制理论在整个控制理论发展中起到了什么作用?AA、承上启下B、总结C、开拓D、引领6、能完全描述系统动态行为的数学模型是(B)A、差分方程B、状态空间表达式C、微分方程D、传递函数7、输出方程是(C)A、一阶微分方程B、高阶微分方程C、代数方程D、高阶差分方程8、若某一系统的状态空间描述为:(单选)则与其对应的传递函数为(B)9、以下叙述错误的是(C)A、系统的状态空间模型包括状态方程和输出方程B、状态空间模型不仅可以描述时不变系统,还可以描述时变系统C、一个给定的系统只存在一组动态方程D、状态空间模型存在多种等效的标准型10、以下叙述正确的是(A)A、状态空间模型(A,B,C)的极点等于矩阵A的特征根B、状态空间模型中,系统的输出是由微分方程决定的C、如果系统存在多个状态,则系统可建立对角矩阵形式的状态空间模型D、给定系统的状态微分方程,总能够求出状态的数学表达式。
11、某弹簧-质量-阻尼器机械位移系统如下图所示,图中,K为弹簧的弹性系数,M为质量块的质量,f为阻尼器的阻尼系数,y为质量块M的位移,也是系统的输出量。
为建立其状态空间表达式,以下状态变量的选择方式正确的是(D)(单选)12、某单输入-单输出系统的状态空间模型为(D)则该系统的极点为:A、1,3B、-1,3C、1,-3D、-1,-313、线性定常系统的状态解析表达式中包含ABCA、初始状态B、状态转移矩阵C、输入D、过去时刻的状态14、现代控制理论已经应用在哪些领域ABCDA、倒立摆稳定控制B、工业领域C、航天航空领域D、机器人控制15、哪些内容是现代控制理论的知识体系?ABCDA、系统辨识B、线性系统C、最优估计D、最优控制16、以下哪些条件下,状态变量可以描述系统的未来响应:ABDA、给定当前状态B、给定输入C、给定输出D、给定动态方程17、状态方程是唯一的(错)18、系统状态空间模型中的状态变量可能没有实际物理意义(对)19、具有互不相同的极点的系统总能够化成对角线标准型(对)20、时变控制系统是指一个或多个系统参数会随时间变化的系统。
现代控制理论试题与答案
现代控制理论1.经典-现代控制区别:经典控制理论中,对一个线性定常系统,可用常微分方程或传递函数加以描述,可将某个单变量作为输出,直接和输入联系起来;现代控制理论用状态空间法分析系统,系统的动态特性用状态变量构成的一阶微分方程组描述,不再局限于输入量,输出量,误差量,为提高系统性能提供了有力的工具.可以应用于非线性,时变系统,多输入-多输出系统以及随机过程.2.实现-描述由描述系统输入-输出动态关系的运动方程式或传递函数,建立系统的状态空间表达式,这样问题叫实现问题.实现是非唯一的.3.对偶原理系统=∑1A1,B1,C1和=∑2A2,B2,C2是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性, ∑1的能观性等价于∑2的能控性.或者说,若∑1是状态完全能控的完全能观的,则∑2是状态完全能观的完全能控的.对偶系统的传递函数矩阵互为转置4.对线性定常系统∑0=A,B,C,状态观测器存在的充要条件是的不能观子系统为渐近稳定第一章控制系统的状态空间表达式1.状态方程:由系统状态变量构成的一阶微分方程组2.输出方程:在指定系统输出的情况下,该输出与状态变量间的函数关系式3.状态空间表达式:状态方程和输出方程总合,构成对一个系统完整动态描述4.友矩阵:主对角线上方元素均为1:最后一行元素可取任意值;其余元素均为05.非奇异变换:x=Tz,z=T-1x;z=T-1ATz+T-1Bu,y=CTz+为任意非奇异阵变换矩阵,空间表达式非唯一6.同一系统,经非奇异变换后,特征值不变;特征多项式的系数为系统的不变量第二章控制系统状态空间表达式的解1.状态转移矩阵:eAt,记作Φt2.线性定常非齐次方程的解:xt=Φtx0+∫t0Φt-τBuτdτ第三章线性控制系统的能控能观性1.能控:使系统由某一初始状态xt0,转移到指定的任一终端状态xtf,称此状态是能控的.若系统的所有状态都是能控的,称系统是状态完全能控2.系统的能控性,取决于状态方程中系统矩阵A和控制矩阵b3.一般系统能控性充要条件:1在T-1B中对应于相同特征值的部分,它与每个约旦块最后一行相对应的一行元素没有全为0.2T-1B中对于互异特征值部分,它的各行元素没有全为0的4.在系统矩阵为约旦标准型的情况下,系统能观的充要条件是C中对应每个约旦块开头的一列的元素不全为05.约旦标准型对于状态转移矩阵的计算,可控可观性分析方便;状态反馈则化为能控标准型;状态观测器则化为能观标准型6.最小实现问题:根据给定传递函数阵求对应的状态空间表达式,其解无穷多,但其中维数最小的那个状态空间表达式是最常用的.第五章线性定常系统综合1.状态反馈:将系统的每一个状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入相加形成控制律,作为受控系统的控制输入.K为rn维状态反馈系数阵或状态反馈增益阵2.输出反馈:采用输出矢量y构成线性反馈律H为输出反馈增益阵3.从输出到状态矢量导数x的反馈:A+GC4.线性反馈:不增加新状态变量,系统开环与闭环同维,反馈增益阵都是常矩阵动态补偿器:引入一个动态子系统来改善系统性能5.1状态反馈不改变受控系统的能控性2输出反馈不改变受控系统的能控性和能观性6.极点配置问题:通过选择反馈增益阵,将闭环系统的极点恰好配置在根平面上所期望的位置,以获得所希望的动态性能1采用状态反馈对系统任意配置极点的充要条件是∑0完全能控2对完全能控的单输入-单输出系统,通过带动态补偿器的输出反馈实现极点任意配置的充要条件1∑0完全能控2动态补偿器的阶数为n-13对系统用从输出到x线性反馈实现闭环极点任意配置充要条件是完全能观7.传递函数没有零极点对消现象,能控能观8.对完全能控的单输入-单输出系统,不能采用输出线性反馈来实现闭环系统极点的任意配置9.系统镇定:保证稳定是控制系统正常工作的必要前提,对受控系统通过反馈使其极点均具有负实部,保证系统渐近稳定1对系统采用状态反馈能镇定的充要条件是其不能控子系统渐近稳定2对系统通过输出反馈能镇定的充要条件是其结构分解中的能控且能观子系统是输出反馈能镇定的,其余子系统是渐近稳定的3对系统采用输出到x反馈实现镇定充要条件是其不能观子系统为渐近稳定10.解耦问题:寻求适当的控制规律,使输入输出相互关联的多变量系统的实现每个输出仅受相应的一个输入所控制,每个输入也仅能控制相应的一个输出 11.系统解耦方法:前馈补偿器解耦和状态反馈解耦 12.全维观测器:维数和受控系统维数相同的观测器现代控制理论试题1 ①已知系统u u uy y 222++=+ ,试求其状态空间最小实现;5分 ②设系统的状态方程及输出方程为11000101;0111x x u ⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦[]001y x =试判定系统的能控性;5分2 已知系统的状态空间表达式为00001⎛⎫⎡⎤=+ ⎪⎢⎥⎝⎭⎣⎦x x u t ;[]x y 01=; ⎥⎦⎤⎢⎣⎡=11)0(x 试求当0;≥=t t u 时,系统的输出)(t y ;10分 3给定系统的状态空间表达式为u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100100110100013 ,211021y x -⎡⎤=⎢⎥⎣⎦ 试确定该系统能否状态反馈解耦,若能,则将其解耦10分 4 给定系统的状态空间表达式为设计一个具有特征值为 1 1 1---,,的全维状态观测器10分 5 ①已知非线性系统 ⎩⎨⎧--=+-=2112211sin 2x a x xx x x试求系统的平衡点,并确定出可以保证系统大范围渐近稳定的1a 的范围;5分② 判定系统11221223x x x x x x =-+⎧⎨=--⎩在原点的稳定性;5分6 已知系统 u x x⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=110011 试将其化为能控标准型;10分 7 已知子系统1∑ 111121011x x u -⎡⎤⎡⎤=+⎢⎥⎢⎥-⎣⎦⎣⎦,[]1110y x = 求出串联后系统现代控制理论试题1 ① 取拉氏变换知 )()2()()22(33s u s s s y s ++=+21121)1(21)(2213++-=+++=s s s s s g 3分其状态空间最小实现为u x x⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=101110 ; 21021+⎥⎦⎤⎢⎣⎡=x y 2分② 1n c u B ABA B -⎡⎤=⎣⎦012111101⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,秩为2,系统状态不完全能控; 2 解 02210(,)0.50.51⎛⎫Φ= ⎪-⎝⎭t t t t , 0()(,0)(0)(,)()tx t t x t B d τττ=Φ+Φ⎰ 1y = 3解 [][]100211101101c B ⎡⎤⎢⎥=-=-⎢⎥⎢⎥⎣⎦, [][]200021102101c B ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦所以120d d ==,121121E E E -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦; 1111213--⎡⎤=⎢⎥⎣⎦E 又因为E 非奇异,所以能用实现解耦控制; 2分12630011c A F c A ⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦1分 求出u kx Lv =-+4 解 令122E E E E ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 代入系统得()123120()011100101sE sI A EC sE s E --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--=---⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭理想特征多项式为*332()(1)331f x s s s s =-=+++ 列方程,比较系数求得 001E ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 全维状态观测器为[]ˆˆx A EC x Bu Ey =-++ 12020ˆ01100,00111x u y --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦5 解 ①显然原点为一个平衡点,根据克拉索夫斯基方法,可知 因为 02<-;所以,当0)cos 21(42cos 21cos 212211111>--=----x a a x x时,该系统在原点大范围渐近稳定;解上述不等式知,491>a 时,不等式恒成立; 即491>a 时,系统在原点大范围渐近稳定; ② 解 2114523I A λλλλλ+--==+++,两个特征根均具有负实部,系统大范围一致渐近稳定;2分6 解 1210c u ⎡⎤=⎢⎥⎣⎦,1112201c u -⎡⎤=⎢⎥-⎣⎦ [][][]1111221122010101c p u -⎡⎤===-⎢⎥-⎣⎦[][]11112122221100p p A ⎡⎤==-=⎢⎥⎣⎦11221112211,11P P --⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦能控标准型为u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=101010 7 解 组合系统状态空间表达式为[]1200101001,00010011010010x x u y x -⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=+=⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦5分组合系统传递函数为21()()()G s G s G s = 2分21331(1)(1)(1)(1)s s s s s s s ++=⨯=+-+-+ 3分。
现代控制理论基础试题
现代控制理论基础试题一、选择题:1. 什么是现代控制理论的核心概念?A. 反馈原理B. 开环控制C. 传感器D. 控制算法2. 当系统的输出信号与期望的参考信号之间存在差异时,现代控制理论会采取以下哪种策略进行调节?A. 开环控制B. 闭环控制C. 反馈控制D. 前馈控制3. 现代控制系统通常包括哪些基本组成部分?A. 传感器、执行器、控制器B. 输入信号、输出信号、执行器C. 控制器、执行器、参考信号D. 反馈信号、执行器、控制器4. 现代控制理论的主要目标是什么?A. 降低系统效应B. 提高系统稳定性C. 增加系统响应速度D. 最小化系统误差5. 在现代控制系统中,传感器的作用是什么?A. 通过收集系统的反馈信息B. 将输入信号转化为输出信号C. 控制执行器的动作D. 校准控制器的参数二、填空题:6. 现代控制理论中,PID控制器中的比例、积分和微分项分别代表什么?比例项:_______积分项:_______微分项:_______7. 现代控制理论中,系统的稳定性通常通过计算系统的_________来判断。
8. 现代控制理论中,增益裕度是衡量系统稳定性的一个指标,它表示系统输出响应对增益变化的___________。
三、简答题:9. 请简述开环控制和闭环控制的区别。
10. 现代控制系统常用的传感器有哪些?请简要介绍一个传感器的工作原理。
四、分析题:11. 现代控制系统中的反馈环节起到了重要的作用,请你用一个简单的图示来说明反馈控制系统的基本结构。
12. 现代控制理论中,经典PID控制器在某些系统中可能存在不足之处。
请你简要分析当系统存在非线性或时变特性时,经典PID控制器可能出现的问题,并提出解决方案。
结束语:通过本试题,我们回顾了现代控制理论的核心概念、基本组成部分以及控制策略。
掌握现代控制理论对于工程实践具有重要的意义,它可以帮助我们设计和优化各种控制系统,提高系统的性能和稳定性。
希望通过这些试题的训练,您能够对现代控制理论有更深入的理解,并能够在实际应用中灵活运用。
现代控制理论习题解答【精选文档】
《现代控制理论》第1章习题解答1.1线性定常系统和线性时变系统的区别何在?答:线性系统的状态空间模型为:线性定常系统和线性时变系统的区别在于:对于线性定常系统,上述状态空间模型中的系数矩阵,,和中的各分量均为常数,而对线性时变系统,其系数矩阵,,和中有时变的元素。
线性定常系统在物理上代表结构和参数都不随时间变化的一类系统,而线性时变系统的参数则随时间的变化而变化。
1。
2 现代控制理论中的状态空间模型与经典控制理论中的传递函数有什么区别?答:传递函数模型与状态空间模型的主要区别如下:1.3 线性系统的状态空间模型有哪几种标准形式?它们分别具有什么特点?答: 线性系统的状态空间模型标准形式有能控标准型、能观标准型和对角线标准型。
对于阶传递函数,分别有⑴能控标准型:⑵能观标准型:⑶对角线标准型:式中的和可由下式给出,能控标准型的特点:状态矩阵的最后一行由传递函数的分母多项式系数确定,其余部分具有特定结构,输出矩阵依赖于分子多项式系数,输入矩阵中的元素除了最后一个元素是1外,其余全为0。
能观标准型的特点:能控标准型的对偶形式.对角线标准型的特点:状态矩阵是对角型矩阵。
1.4 对于同一个系统,状态变量的选择是否惟一?答:对于同一个系统,状态变量的选择不是惟一的,状态变量的不同选择导致不同的状态空间模型。
1.5 单输入单输出系统的传递函数在什么情况下,其状态空间实现中的直接转移项不等于零,其参数如何确定?答:当传递函数的分母与分子的阶次相同时,其状态空间实现中的直接转移项不等于零。
转移项的确定:化简下述分母与分子阶次相同的传递函数可得:由此得到的就是状态空间实现中的直接转移项。
1。
6 在例1.2。
2处理一般传递函数的状态空间实现过程中,采用了如图1.12的串联分解,试问:若将图1.12中的两个环节前后调换,则对结果有何影响?答: 将图1。
12中的两个环节调换后的系统方块图为:图中,,。
由于相当于对作3次积分,故可用如下的状态变量图表示:因为相当于对作2次微分,故可用如下的状态变量图表示:因此,两个环节调换后的系统状态变量图为进一步简化,可得系统状态变量图为取,,两个环节调换前的状态空间模型是:显然,调换前后的状态空间实现是互为对偶的。
大工现代控制工程简答题
现代控制工程期末复习简单题汇总(大工版本)1.1线性定常系统和线性时变系统的区别何在?答:线性系统的状态空间模型为: x =Ax+Bu y=Cx+Du 线性定常系统和线性时变系统的区别在于:对于线性定常系统,上述状态空间模型中的系数矩阵A ,B ,C 和D 中的各分量均为常数,而对线性时变系统,其系数矩阵A ,B ,C 和D 中有时变的元素。
线性定常系统在物理上代表结构和参数都不随时间变化的一类系统,而线性时变系统的参数则随时间的变化而变化。
1.2现代控制理论中的状态空间模型与经典控制理论中的传递函数有什么区别?答:传递函数模型与状态空间模型的主要区别如下:传递函数模型(经典控制理论)状态空间模型(现代控制理论)仅适用于线性定常系统 适用于线性、非线性和时变系统用于系统的外部描述 用于系统的内部描述基于频域分析 基于时域分析1.3对于同一个系统,状态变量的选择是否惟一?答:对于同一个系统,状态变量的选择不是惟一的,状态变量的不同选择导致不同的状态空间模型。
1.4已知系统的状态空间模型为x =Ax+Bu ,y=Cx ,写出该系统的特征多项式和传递函数矩阵。
答:系统的特征多项式为I det s A -(),传递函数为1G(s)=C(sI-A)B - 1.5一个传递函数的状态空间实现是否惟一?由状态空间模型导出的传递函数是否惟一?答:一个传递函数的状态空间实现不惟一;而由状态空间模型导出的传递函数是惟一的。
第二章2.1试叙述处理齐次状态方程求解问题的基本思路?答:求解齐次状态方程的解至少有两种方法。
一种是从标量其次微分方程的解推广得到,通过引进矩阵指数函数,导出其次状态方程的解。
另一种是采用拉普拉斯变换的方法。
2.2状态转移矩阵的意义是什么?列举状态转移矩阵的基本性质。
答:状态转移矩阵0A(t=t )e 的意义是:它决定了系统状态从初始状态转移到下一个状态的规律,即初始状态X 在矩阵0A(t=t )e 的作用下,他t 0刻的初始状x0经过时间t-t0,后转移到了t 时刻的状态x (t )。
现代控制理论基础复习资料_普通用卷
现代控制理论基础课程一单选题 (共30题,总分值30分 )1. 已知,则该系统是()(1 分)A. 能控不能观的B. 能控能观的C. 不能控能观的D. 不能控不能观的2. 下面关于线性连续定常系统的最小实现说法中( )是不正确的。
(1 分)A. 最小实现的维数是唯一的。
B. 最小实现的方式是不唯的,有无数个。
C. 最小实现的系统是能观且能控的。
D. 最小实现的系统是稳定的。
3. 下面关于连续线性时不变系统的能控性与能观性说法正确的是()(1 分)A. 能控且能观的状态空间描述一定对应着某些传递函数阵的最小实现。
B. 能控性是指存在受限控制使系统由任意初态转移到零状态的能力。
C. 能观性表征的是状态反映输出的能力。
D. 对控制输入的确定性扰动影响线性系统的能控性,不影响能观性。
4. 下面关于线性非奇异变换说法错误的是()(1 分)A. 非奇异变换阵P是同一个线性空间两组不同基之间的过渡矩阵。
B. 对于线性定常系统,线性非奇异变换不改变系统的特征值。
C. 对于线性定常系统,线性非奇异变换不改变系统的传递函数。
D. 对于线性定常系统,线性非奇异变换不改变系统的状态空间描述。
5. 线性定常系统的状态转移矩阵,其逆是()(1 分)A.B.C.D.6. 下面关于系统Lyapunov稳定性说法正确的是()(1 分)A. 系统Lyapunov稳定性是针对平衡点的,只要一个平衡点稳定,其他平衡点也稳定。
B. 通过克拉索夫斯基法一定可以构造出稳定系统的Lyapunov函数。
C. Lyapunov第二法只可以判定一般系统的稳定性,判定线性系统稳定性,只可以采用Lyapunov方程。
D. 线性系统Lyapunov局部稳定等价于全局稳定性。
7. 线性SISO定常系统,输出渐近稳定的充要条件是()(1 分)A. 其不可简约的传递函数的全部极点位于s的左半平面。
B. 矩阵A的特征值均具有负实部。
C. 其不可简约的传递函数的全部极点位于s的右半平面。
大工现代控制工程简答题
现代控制工程期末复习简单题汇总(大工版本)1.1线性定常系统和线性时变系统的区别何在?答:线性系统的状态空间模型为:X=Ax+Bu y=Cx+D线性定常系统和线性时变系统的区别在于:对于线性定常系统,上述状态空间模型中的系数矩阵A, B, C 和D中的各分量均为常数,而对线性时变系统,其系数矩阵A,B,C和D中有时变的元素。
线性定常系统在物理上代表结构和参数都不随时间变化的一类系统,而线性时变系统的参数则随时间的变化而变化。
1.2现代控制理论中的状态空间模型与经典控制理论中的传递函数有什么区别?答:传递函数模型与状态空间模型的主要区别如下:传递函数模型(经典控制理论)状态空间模型(现代控制理论)仅适用于线性定常系统适用于线性、非线性和时变系统用于系统的外部描述用于系统的内部描述基于频域分析基于时域分析1.3对于同一个系统,状态变量的选择是否惟一?答:对于同一个系统,状态变量的选择不是惟一的,状态变量的不同选择导致不同的状态空间模型。
1.4已知系统的状态空间模型为X =Ax+Bu y=Cx,写出该系统的特征多项式和传递函数矩阵。
答:系统的特征多项式为det(sl-A),传递函数为G(s)二C(sl-A)1.5 一个传递函数的状态空间实现是否惟一?由状态空间模型导出的传递函数是否惟一?答:一个传递函数的状态空间实现不惟一;而由状态空间模型导出的传递函数是惟一的。
第二章2.1试叙述处理齐次状态方程求解问题的基本思路?答:求解齐次状态方程的解至少有两种方法。
一种是从标量其次微分方程的解推广得到,通过引进矩阵指数函数,导出其次状态方程的解。
另一种是采用拉普拉斯变换的方法。
2.2状态转移矩阵的意义是什么?列举状态转移矩阵的基本性质。
答:状态转移矩阵e A(t=t0)的意义是:它决定了系统状态从初始状态转移到下个状态的规律,即初始状态X在矩阵e A(t=t0)的作用下,他t o刻的初始状xO经过时间t-to,后转移到了t时刻的状态x (t )。
《现代控制理论》课后习题全部答案(最完整打印版)
第一章习题答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
11K s K K p +sK s K p 1+s J 11sK n 22s J K b -++-+-)(s θ)(s U 图1-27系统方块结构图解:系统的模拟结构图如下:)(s U )(s θ---+++图1-30双输入--双输出系统模拟结构图1K pK K 1pK K 1+++pK n K ⎰⎰⎰11J ⎰2J K b ⎰⎰-1x 2x 3x 4x 5x 6x系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===∙∙∙∙∙∙阿令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∙∙∙∙∙∙654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp npb1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
R1L1R2L2CU---------Uc---------i1i2图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:∙∙∙+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=∙∙∙写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CC L L R L L R x x x 。
现代控制理论试题
现代控制理论试题一、 名词解释(15分)1、 能控性2、能观性3、系统的最小实现4、渐近稳定性二、 简答题(15分)1、连续时间线性时不变系统(线性定常连续系统)做线性变换时不改变系统的那些性质?2、如何判断线性定常系统的能控性?如何判断线性定常系统的能观性?3、传递函数矩阵的最小实现A 、B 、C 和D 的充要条件是什么?4、对于线性定常系统能够任意配置极点的充要条件是什么?5、线性定常连续系统状态观测器的存在条件是什么? 三、 计算题(70分)1、RC 无源网络如图1所示,试列写出其状态方程和输出方程。
其中,为系统的输入,选两端的电压为状态变量,两端的电压为状态变量,电压为为系统的输出y 。
23、 其中,采样周期为4、 和5、 a 的取值范围:6、 是否为大范围渐近稳定:7、 试确定一个状态反馈矩阵K ,使闭环极点配置为,和。
现代控制理论试题答案一、 概念题1、 何为系统的能控性和能观性?答:(1)对于线性定常连续系统,若存在一分段连续控制向量u (t ),能在有限时间区间[t 0,t 1]内将系统从初始状态x (t 0)转移到任意终端状态x (t 1),那么就称此状态是能控的。
(2)对于线性定常系统,在任意给定的输入u (t )下,能够根据输出量y(t )在有限时间区间[t 0,t 1]内的测量值,唯一地确定系统在t 0时刻的初始状态x (t 0 ),就称系统在t 0时刻是能观测的。
若在任意初始时刻系统都能观测,则称系统是状态完全能观测的,简称能观测的。
2、 何为系统的最小实现?答:由传递函数矩阵或相应的脉冲响应来建立系统的状态空间表达式的工作,称为实现问题。
在所有可能的实现中,维数最小的实现称为最小实现。
3、 何为系统的渐近稳定性? 答:若在时刻为李雅普若夫意义下的稳定,且存在不依赖于的实数和任意给定的初始状态,使得时,有,则称为李雅普若夫意义下的渐近稳定二、 简答题1、连续时间线性时不变系统(线性定常连续系统)做线性变换时不改变系统的那些性质? 答:系统做线性变换后,不改变系统的能控性、能观性,系统特征值不变、传递函数不变2、如何判断线性定常系统的能控性?如何判断线性定常系统的能观性? 答:方法1:对n维线性定常连续系统,则系统的状态完全能控性的充分必要条件为:。
(完整版)现代控制理论试卷和答案解析总结
2012年现代控制理论考试试卷一、(10分,每小题1分)试判断以下结论的正确性,若结论是正确的,( √ )1. 由一个状态空间模型可以确定惟一一个传递函数。
( √ )2. 若系统的传递函数不存在零极点对消,则其任意的一个实现均为最小实现。
( × )3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。
( √ )4. 对线性定常系统x Ax =&,其Lyapunov 意义下的渐近稳定性和矩阵A 的特征值都具有负实部是一致的。
( √ )5.一个不稳定的系统,若其状态完全能控,则一定可以通过状态反馈使其稳定。
( × )6. 对一个系统,只能选取一组状态变量;( √ )7. 系统的状态能控性和能观性是系统的结构特性,与系统的输入和输出无关;( × )8. 若传递函数1()()G s C sI A B -=-存在零极相消,则对应的状态空间模型描述的系统是不能控且不能观的;( × )9. 若一个系统的某个平衡点是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的;( × )10. 状态反馈不改变系统的能控性和能观性。
二、已知下图电路,以电源电压u(t)为输入量,求以电感中的电流和电容中的电压作为状态变量的状态方程,和以电阻R2上的电压为输出量的输出方程。
(10分)解:(1)由电路原理得:112212111122211111LL cLL ccL Ldi Ri u udt L L Ldi Ri udt L Ldui idt c c=--+=-+=-222R Lu R i=1122111122210110011L LL Lc cRi iL LLRi i uL Lu uc c⎡⎤--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦ggg[]122200LR Lciu R iu⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦二.(10分)图为R-L-C电路,设u为控制量,电感L上的支路电流和电容C上的电压2x为状态变量,电容C上的电压2x为输出量,试求:网络的状态方程和输出方程,并绘制状态变量图。
现代控制理论考试题
现代控制理论考试题
1. 简答题(共10小题,每题2分)
1.1 什么是控制理论?
1.2 简述闭环控制系统的基本原理。
1.3 PID控制器中的P、I、D分别代表什么意义?
1.4 什么是系统的稳定性?如何判断一个系统是否稳定?
1.5 什么是系统的可控性和可观测性?
1.6 什么是反馈控制系统?
1.7 请简述Laplace变换的定义和性质。
1.8 什么是传递函数?如何从系统的微分方程中获得传递函数?
1.9 什么是状态空间表示?与传递函数表示有何区别?
1.10 请简述根轨迹法在控制系统设计中的应用。
2. 计算题(共3小题,每题15分)
2.1 给定一个控制系统的传递函数为$G(s)=\frac{10}{s^2+2s}$,请计算系统的阶跃响应。
2.2 如果一个系统的传递函数为$G(s)=\frac{K}{s(s+1)(s+2)}$,试设计一个PID控制器使得系统的阶跃响应的超调量小于5%。
2.3 将以下微分方程转化为状态空间表示:
$$\frac{d^2y}{dt^2}+3\frac{dy}{dt}+2y=u$$
3. 应用题(共2小题,每题20分)
3.1 设计一个控制系统,使得给定系统的开环传递函数为
$G(s)=\frac{K}{s(s+2)}$,并满足以下要求:
- 峰值超调小于10%
- 上升时间小于1秒
- 稳态误差小于0.1
3.2 你了解的现代控制理论中的一种方法(例如状态反馈、最优控制、自适应控制、鲁棒控制等)在工业自动化中的应用。
4. 论述题(共1题,40分)
4.1 以你的理解,简要论述现代控制理论对工业自动化的重要性。
现代控制理论期末试卷青岛大学
现代控制理论期末试卷 | 青岛大学一、简答题(共10题,每题5分,共50分)1.现代控制理论是什么?它的发展历程与意义是什么?2.什么是闭环控制系统?简要描述其基本组成部分。
3.什么是开环控制系统?与闭环控制系统相比,有何优势和劣势?4.什么是传递函数和状态空间方程?它们之间有何联系?5.简述PID控制器的原理和应用场景。
6.什么是校正、补偿和鉴别?分别举例说明。
7.简述模型预测控制(MPC)的基本思想和应用。
8.信号处理在现代控制理论中的作用是什么?举例说明。
9.什么是自适应控制系统?简要说明其工作原理。
10.简述现代控制理论在工业自动化领域的应用。
二、计算题(共5题,每题10分,共50分)1.对于系统的开环传递函数G(s)=K/(s(s+1)(s+2)),计算其闭环传递函数,并将结果化简。
2.一个控制系统的传递函数为G(s) = 1/(s+1),设计一个合适的PID控制器,使得系统的超调量小于5%、调整时间小于1秒。
3.给定状态空间方程和输出方程如下:x(t+1) = Ax(t) + Bu(t) y(t) = Cx(t)其中,A = [1 1; 0 1],B = [0; 1],C = [1 0]。
计算系统的可控性和可观测性。
4.对于一个开环系统,其传递函数为G(s) = (7s + 11)/(s^3 + 5s^2 + 7s+ 3)。
通过根轨迹法判断系统的稳定性,并在实际意义上解释结果。
5.给定一个离散时间系统的状态空间方程如下:x(k+1) = Ax(k) +Bu(k) y(k) = Cx(k)其中,A = [0.8 0.2; -0.2 0.5],B = [0.1; 0.6],C = [1 0]。
计算系统的特征值和特征向量。
三、综合题(共2题,每题25分,共50分)1.设计一个控制系统,使得给定开环系统的根轨迹满足以下要求:–当前系统存在一个零点,使得零点与系统极点的虚部之差大于2倍根轨迹的最大角度。
现代控制理论简答题
4、在经典控制理论中没有给出稳定性的一般定义,因为从经典控制理论可知,线性系统的稳定性只决定于系统的结构和参数而与系统的初始条件及外界扰动的大小无关。
但非线性系统的稳定性则还与初始条件及外界扰动的大小有关。
李雅普诺夫第二法是一种普遍适用于线性系统、非线性系统及时变系统稳定性分析的方法。
李雅普诺夫第二法给出了对任何系统都普遍适用的稳定性的一般定义。
44.何为系统一致能控?系统对于任意的t0Etd均是状态完全能控的。
45.何谓系统的实现问题?由系统传递函数建立状态空间模型这类问题称为系统实现问题。
46.何谓系统的最小实现?将维数最小的实现称为系统的最小实现。
从工程的观点看,在无穷多个内部不同结构的系统中,其中维数最小的一类系统就是所谓的最小实现问题。
47.系统最小实现的充要条件是系统和条件能控又能观。
48. 平衡态指状态空间中状态变量的导数向量为零向量的点。
49. 平衡点:由平衡状态在状态空间中所确定的点,称为平衡点。
50. 控制理论最基本的任务是对给定的被控系统设计能满足所期望的性能指标的闭环控制系统即寻找反馈控制律,51. 极点配置问题,①闭环极点可任意配置的条件,②如何设计反馈增益矩阵使闭环极点配置在期望极点处。
52. 系统镇定问题:受控系统通过状态反馈(或者输出反馈)使得闭环系统渐进稳定。
53. 系统解耦:就是消除系统间耦合关联作用。
状态观测器:重构或估计系统状态变量值的装置称为状态观测器。
状态变量:指能完全表征系统运动状态的最小一组变量。
状态向量:若一个系统有n个彼此独立的状态变量x1(t),x2(t)…xn(t),用它们作为分量所构成的向量x(t),就称为状态向量。
状态空间表达式:状态方程和输出方程结合起来,构成对一个系统动态行为的完整描述。
x(t)=Φ(t-t0)x(t0)的物理意义:是自由运动的解仅是初始状态的转移,状态转移矩阵包含了系统自由运动的全部信息,其唯一决定了系统中各状态变量的自由运动。
现代控制理论问答题
现代控制与经典控制的不同,现代控制的分支?经典控制论时期——着重解决单输入单输出(SISO-Single Input Single Output )线性定 常系统的控制问题;它的主要数学工具是微分方程、拉普拉斯变换和传递函数,主要研 究方法是时域法、频域法和根轨迹法;主要研究问题是控制系统的快速性、稳定性及其 精度。
在古典控制理论发展的后期,也曾研究过多变量系统和非线性系统,但从整体上 看,它是以研究单变量线性定常系统为主的。
现代控制理论时期——着重解决多输入多输出(MIMO-Multi-Input Multi-Output )系统和 非线性系统的控制问题;主要数学工具是一次微分方程组、矩阵论等等;主要方法是状 态空间法、变分法、极大值原理、动态规划理论等;重点是最优控制、随机控制和自适 应控制;核心控制装置是电子计算机;现代控制理论与经典控制理论相比有许多优点, 它适用于MIMO 系统,这些系统可以是线性的,也可以是非线性的,可以是定常的,也 可以是时变的。
主要包括:线性系统理论、最优控制理论、自适应控制理论、系 统 辩识理论、大系统理论,等等。
外部稳定性—— 若系统对所有有界输入引起的零状态响应的输出是有界的,则称该系统是 外部稳定的。
系统外部稳定性判据线性定常连续系统∑),,(C B A 的传递函数矩阵为 B A sI C s G 1)()(--=,当且仅当)(s G 极点都在s 的左半平面内时,系统才是外部稳 定(或BIBO 稳定)的。
内部稳定性——对于线性定常系统Bu Ax x+= , 00)(x t x =, Cx y =,如果外部输 入0)(=t u ,初始条件0x 为任意,且由0x 引起的零输入响应为00),()(x t t t x φ=,满足 0),(lim 00=∞→x t t t φ,则称系统是内部稳定的,或称为系统是渐近稳定的。
内部稳定性与外部稳定性的关系:1、若系统是内部稳定(渐近稳定)的,则一定是外部稳定(BIBO 稳定)的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、在经典控制理论中没有给出稳定性的一般定义,因为从经典控制理论可知,线性系统的稳定性只决定于系统的结构和参数而与系统的初始条件及外界扰动的大小无关。
但非线性系统的稳定性则还与初始条件及外界扰动的大小有关。
李雅普诺夫第二法是一种普遍适用于线性系统、非线性系统及时变系统稳定性分析的方法。
李雅普诺夫第二法给出了对任何系统都普遍适用的稳定性的一般定义。
44.何为系统一致能控?系统对于任意的t0Etd均是状态完全能控的。
45.何谓系统的实现问题?由系统传递函数建立状态空间模型这类问题称为系统实现问题。
46.何谓系统的最小实现?将维数最小的实现称为系统的最小实现。
从工程的观点看,在无穷多个内部不同结构的系统中,其中维数最小的一类系统就是所谓的最小实现问题。
47.系统最小实现的充要条件是系统和条件能控又能观。
48. 平衡态指状态空间中状态变量的导数向量为零向量的点。
49. 平衡点:由平衡状态在状态空间中所确定的点,称为平衡点。
50. 控制理论最基本的任务是对给定的被控系统设计能满足所期望的性能指标的闭环控制系统即寻找反馈控制律,
51. 极点配置问题,①闭环极点可任意配置的条件,②如何设计反馈增益矩阵使闭环极点配置在期望极点处。
52. 系统镇定问题:受控系统通过状态反馈(或者输出反馈)使得闭环系统渐进稳定。
53. 系统解耦:就是消除系统间耦合关联作用。
状态观测器:重构或估计系统状态变量值的装置称为状态观测器。
状态变量:指能完全表征系统运动状态的最小一组变量。
状态向量:若一个系统有n个彼此独立的状态变量x1(t),x2(t)…xn(t),用它们作为分量所构成的向量x(t),就称为状态向量。
状态空间表达式:状态方程和输出方程结合起来,构成对一个系统动态行为的完整描述。
x(t)=Φ(t-t0)x(t0)的物理意义:是自由运动的解仅是初始状态的转移,状态转移矩阵包含了系统自由运动的全部信息,其唯一决定了系统中各状态变量的自由运动。
状态方程解的意义:线定定常连续系统状态方程的解由两部分相加组成,一部分是由初始状态所引起的自由运动即零输入相应,第二部分是由输入所引起的系统强迫运动,与输入有关称为零状态相应。
系统能控性:控制作用对被控系统的状态和输出进行控制的可能性。
系统能观性:反应由能直接测量的输入输出的量测值来确定系统内部动态特征的状态的可能性。
经典控制理论讨论的是在有界输入下,是否产生有界输出的输入输出稳定性问题,李氏方法讨论的是动态系统各平衡态附近的局部稳定性问题
状态反馈不改变被控系统的能控性;输出反馈不改变被控系统的能控性和能观测性。