1正多边形与圆

合集下载

正多边形和圆知识点

正多边形和圆知识点

正多边形和圆
知识要点
1、正多边形
(1)、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。

如:正六边形,表示六条边都相等,六个角也相等。

(2)、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

(3)、正多边形的中心正多边形的外接圆的圆心叫做这个正多边形的中心。

(4)、正多边形的半径正多边形的外接圆的半径叫做这个正多边形的半径。

(5)、正多边形的边心距正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。

(6)、中心角正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。

2、正多边形的对称性
(1)、正多边形的轴对称性
正多边形都是轴对称图形。

一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。

(2)、正多边形的中心对称性边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。

(3)、正多边形的画法先用量角器或尺规等分圆,再做正多边形。

欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。

2020年九年级数学上册专题24.3正多边形和圆(讲练)【含解析】

2020年九年级数学上册专题24.3正多边形和圆(讲练)【含解析】

2020年九年级数学上册专题24.3正多边形和圆(讲练)一、知识点1.正多边形与圆(1)正多边形的有关概念:边长(a)、中心(O)、中心角(∠AOB)、半径(R))、边心距(r),如图所示①.(2)特殊正多边形中各中心角、长度比:中心角=120° 中心角=90° 中心角=60°,△BOC 为等边△a:r:R=2:1:2 a:r:R=2::2 a:r:R=2:2二、标准例题:例1:如图,正六边形ABCDEF 内接于⊙O ,连接BD .则∠CBD 的度数是()A .30°B .45°C .60°D .90°【答案】A【解析】∵在正六边形ABCDEF 中,∠BCD ==120°,BC =CD,(62)1806-⨯∴∠CBD =(180°﹣120°)=30°,12故选:A .总结:本题考查的是正多边形和圆、等腰三角形的性质,三角形的内角和,熟记多边形的内角和是解题的关键.例2:如图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形翻折起来后,就能形成一个圆形桌面(可以近似看作正方形的外接圆),正方形桌面与翻折成圆形桌面的面积之比最接近( )A .B .C .D .45342312【答案】C【解析】连接AC ,设正方形的边长为a ,∵四边形ABCD 是正方形,∴∠B=90°,∴AC 为圆的直径,a ,,223π=≈故选C.总结:本题考查的是正多边形和圆,掌握圆周角定理、正方形的性质是解题的关键.例3:如图,正六边形ABCDEF 内接于⊙O ,BE 是⊙O 的直径,连接BF ,延长BA ,过F 作FG ⊥BA ,垂足为G .(1)求证:FG是⊙O的切线;(2)已知FG =,求图中阴影部分的面积.【答案】(1)见解析;(2) 图中阴影部分的面积为.83π【解析】(1)证明:连接OF ,AO ,∵AB =AF =EF ,∴,AB AF EF ==∴∠ABF =∠AFB =∠EBF =30°,∵OB =OF ,∴∠OBF =∠BFO =30°,∴∠ABF =∠OFB ,∴AB ∥OF ,∵FG ⊥BA ,∴OF ⊥FG ,∴FG 是⊙O 的切线;(2)解:∵,AB AF EF ==∴∠AOF =60°,∵OA =OF ,∴△AOF 是等边三角形,∴∠AFO =60°,∴∠AFG =30°,∵FG =,∴AF =4,∴AO =4,∵AF ∥BE ,∴S △ABF =S △AOF ,∴图中阴影部分的面积=.260483603ππ⨯=总结:此题考查切线的判定,等边三角形的判定,扇形面积,解题关键在于利用等弧对等角三、练习1.如图,正六边形的边长为2,分别以点为圆心,以为半径作扇形,扇形ABCDEF ,A D ,AB DCABF .则图中阴影部分的面积是( )DCE A .B .C .D.43π83π-43π-43π【答案】B 【解析】解:∵正六边形的边长为2,ABCDEF ∴正六边形的面积是:,,ABCDEF ()22sin 606622︒⨯⨯=⨯=120FAB EDC ∠=∠=∴图中阴影部分的面积是:,21202823603ππ⨯⨯-⨯=故选:B .2.有一个正五边形和一个正方形边长相等,如图放置,则的值是()1∠A .B .C .D .15︒18︒20︒9︒【答案】B 【解析】解:正五边形的内角的度数是1(52)1801085︒︒⨯-⨯=正方形的内角是90°,则∠1=108°-90°=18°.故选:B .3.如图,已知正方形的顶点、在上,顶点、在内,将正方形绕点逆ABCD A B O C D O ABCD A 时针旋转,使点落在上.若正方形的边长和的半径均为,则点运动的路径长为D O ABCD O 6cm D ()A .B .C .D .2cmπ32cm πcm π12cm π【答案】C 【解析】解:设圆心为O ,连接AO ,BO , OF ,∵AB=6,AO=BO=6,∴AB=AO=BO,∴三角形AOB 是等边三角形,∴∠OAB=60°∵AF=AO=FO=6,∴△FAO 是等边三角形,∴∠OAF=60°∠FAB=∠OAB+∠OAF =120°,∴∠EAC=120°-90°=30°,∵AD=AB=AF=6,∴点D 运动的路径长为:=π.306180π⨯⨯故选:C .4.如图,在正五边形中,,的延长线交于点,则等于( ).ABCDE AE CD FF ∠A .B .C .D .30°32︒36︒38︒【答案】C 【解析】∵五边形ABCDE 是正五边形,∴∠AED =∠EDC =108°,∴∠FED =∠FDE =72°,由三角形的内角和定理得:∠F =180°﹣72°﹣72°=36°.故选C .5.如图,已知正五边形内接于,连结,则的度数是( )ABCDE O BD ABD ∠A .B .C .D .60︒70︒72︒144︒【答案】C 【解析】∵五边形为正五边形ABCDE ∴()1552180108ABC C ∠=∠=-⨯︒=︒∵CD CB =∴181(8326)010CBD ∠=︒-︒=︒∴72ABD ABC CBD ∠=∠-∠=︒故选:C .6.如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是( )A .B .C .D .π-2π-π+2π+【答案】A【解析】解:6个月牙形的面积之和,2132622πππ⎛=--⨯⨯= ⎝故选:A .7.阅读理如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M 的位置可由∠MOx 的度数θ与OM 的长度m 确定,有序数对(θ,m)称为M 点的“极坐标”,这样建立的坐标系称为“极坐标系”。

《正多边形和圆(1)》教案

《正多边形和圆(1)》教案

《正多边形和圆(1)》教案一、教学内容1、正多边形和圆的有关概念:正多边形的外接圆,正多边形的中心,•正多边形的半径,正多边形的中心角,正多边形的边心距。

2、在正多边形和圆中,圆的半径、边长、边心距中心角之间的等量关系。

3、正多边形的画法。

二、教学目标1、了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形。

2、复习正多边形概念,让学生尽可能讲出生活中的多边形为引题引入正多边形和圆这一节间的内容。

三、教学重、难点重点:讲清正多边形和圆中心正多边形半径、中心角、弦心距、边长之间的关系。

难点:通过例题使学生理解正多边形半径、中心角、弦心距、边长之间的关系。

四、教学过程(一)、复习引入请同学们口答下面两个问题。

1、什么叫正多边形?2、从你身边举出两三个正多边形的实例,正多边形具有轴对称、•中心对称吗?其对称轴有几条,对称中心是哪一点?实例略.正多边形是轴对称图形,对称轴有无数多条;•正多边形是中心对称图形,其对称中心是正多边形对应顶点的连线交点。

想一想:菱形是正多边形吗?矩形、正方形呢?(二)、探索新知1、如图所示的圆,把⊙O•分成相等的6•段弧,依次连接各分点得到六边ABCDEF,下面证明,它是正六边形。

∵AB=BC=CD=DE=EF∴AB=BC=CD=DE=EF又∴∠A= BCF= (BC+CD+DE+EF)=2BC∠B= CDA=(CD+DE+EF+FA)=2CD∴∠A=∠B同理可证:∠B=∠C=∠D=∠E=∠F=∠A又六边形ABCDEF的顶点都在⊙O上∴根据正多边形的定义,各边相等、各角相等、六边形ABCDEF是⊙O 的内接正六边形,⊙O是正六边形ABCDEF的外接圆。

这个正多边形就是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆。

•我们把一个正多边形的外接圆的圆心叫做这个多边形的中心。

外接圆的半径叫做正多边形的半径。

正多边形每一边所对的圆心角叫做正多边形的中心角。

圆与正多边形的性质

圆与正多边形的性质

圆与正多边形的性质圆与正多边形都是几何学中常见的几何形体,它们具有一些独特的性质和特点。

本文将以圆与正多边形的性质为主线,探讨它们之间的关系,并给出对应的数学论证。

一、圆的性质圆是由平面上到一个固定点的距离相等的所有点组成的集合。

在圆的内部,我们可以找到一些重要的性质。

1. 圆心和半径圆心是指圆的中心点,记作O,确定了整个圆的位置。

半径是指圆心到圆上任意点的距离,记作r。

圆的半径是圆的重要属性之一,与圆的大小直接相关。

2. 弧和圆心角在圆上,我们可以定义弧和圆心角。

弧是指圆上两点之间的弧段,圆心角是指以圆心为顶点的角度,它的度数等于对应的弧所对应的圆心角。

3. 切线和法线切线是指与圆相切且只与圆相交于一个点的直线,切点在切线上的位置与圆的切线位置相互垂直。

法线是指从切点到圆心的直线段,与切线垂直。

二、正多边形的性质正多边形是指各边相等且各角相等的多边形。

在正多边形中,我们可以找到一些重要的性质。

1. 边和内角正多边形的边数决定了它的名称,如三边形、四边形、五边形等。

每个内角的度数等于 (n-2) × 180° / n,其中n为正多边形的边数。

2. 对角线对角线是指从正多边形的一个顶点到非相邻顶点的线段,正多边形的对角线个数为 n(n-3)/2,其中n为正多边形的边数。

三、圆与正多边形的关系除了各自的性质外,圆与正多边形还存在一些有趣的关系。

1. 内接正多边形内接正多边形是指一个正多边形的每个顶点都在圆上,并且正多边形的边都是圆的切线。

在内接正多边形中,圆心角和内角是相等的,每个内角的度数为 180° / n,其中n为正多边形的边数。

2. 外接正多边形外接正多边形是指一个正多边形的每条边都与圆相切,并且圆的圆心位于外接正多边形的外部。

在外接正多边形中,内角和对应的圆心角是相等的,每个内角的度数为 180° - 360° / n,其中n为正多边形的边数。

初中数学知识点:正多边形和圆知识点

初中数学知识点:正多边形和圆知识点

初中数学知识点:正多边形和圆知识点新一轮的中考复习又开始了,本站编辑为此特为大家整理了正多边形和圆知识点,希望可以帮助大家复习,预祝大家取得优异的成绩~正多边形和圆知识点1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。

2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

典型例题粉笔是校园中最常见的必备品.图1是一盒刚打开的六角形粉笔,总支数为50支.图2是它的横截面(矩形ABCD),已知每支粉笔的直径为12mm,由此估算矩形ABCD的周长约为_____mm.(,结果精确到1mm)答案:300解析:把图形中的边长的问题转化为正六边形的边长、边心距之间的计算即可.解:作B′M′∥C′D′,C′M′⊥B′M′于点M′.粉笔的半径是6mm.则边长是6mm.∵∠M′B′C′=60°∴B′M′=B′C′?cos60°=6×=3.边心距C′M′=6sin60°=3mm.则图(2)中,AB=CD=11×3=33mm.AD=BC=5×6+5×12+3=93mm.则周长是:2×33+2×93=66+186≈300mm.故答案是:300mm.同步练习题1判断题:①各边相等的圆外切多边形一定是正多边形.( )②各角相等的圆内接多边形一定是正多边形.( )③正多边形的中心角等于它的每一个外角.( )④若一个正多边形的每一个内角是150°,则这个正多边形是正十二边形.( )⑤各角相等的圆外切多边形是正多边形.( )2填空题:①一个外角等于它的一个内角的正多边形是正____边形.[②正八边形的中心角的度数为 ____,每一个内角度数为____,每一个外角度数为____.③边长为6cm的正三角形的半径是____cm,边心距是____cm ,面积是____cm.④面积等于 cm2的正六边形的周长是____.⑤同圆的内接正三角形与外切正三角形的边长之比是____.⑥正多边形的面积是240cm2,周长是60cm2,则边心距是____cm.⑦正六边形的两对边之间的距离是12cm,则边长是____cm.⑧同圆的外切正四边形与内接正四边形的边心距之比是____.⑨同圆的内接正三角形的边心距与正六边形的边心距之比是____.3选择题:①下列命题中,假命题的是( )A.各边相等的圆内接多边形是正多边形.B.正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心.C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心.D.一个外角小于一个内角的正多边形一定是正五边形.②若一个正多边形的一个外角大于它的一个内角,则它的边数是( )A.3B.4C.5D.不能确定③同圆的内接正四边形与外切正四边形的面积之比是( )A.1:B.1:C.1:2D. :1④正六边形的两条平行边间距离是1,则边长是( )A . B. C. D.⑤周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是:( )A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S3⑥正三角形的边心距、半径和高的比是( )A.1:2:3B.1: :C. 1: :3D.1:2:四、计算1.已知正方形面积为8cm2,求此正方形边心距 .3.已知圆内接正三角形边心距为 2cm,求它的边长.距长.长.8.已知圆外切正方形边长为2cm ,求该圆外切正三角形半径.10.已知圆内接正方形边长为m,求该圆外切正三角形边长.长.12.已知正方形边长为1cm,求它的外接圆的外切正六边形外接圆的半径.13.已知一个正三角形与一个正六边形面积相等,求两者边长之比.15.已知圆内接正六边形与正方形面积之差为11cm2,求该圆内接正三角形的面积.16.已知圆O内接正n边形边长为an,⊙O半径为R,试用an,R表示此圆外切正n边形边长bn.。

人教版初中九年级上册数学课件 《正多边形和圆》圆

人教版初中九年级上册数学课件 《正多边形和圆》圆
18
解:要使△PCD 的周长最小,即 PC+PD 的值最小.根
据正多边形的性质,得点 C 关于 BE 的对称点为点 A,连接 AD
交 BE 于点 P,那么有 PC+PD=AD 最小.易知四边形 ABCD
为等腰梯形,∠BAD=∠CDA=60°.作 BM⊥AD 于点 M,CN
⊥AD 于点 N.∵AB=2,∴AM=12AB=1,∴DN=AM=1,∴
能超过( A )
A.12 mm
B.12 3 mm
C.6 mm
D.6 3 mm
3.已知圆内接正三角形的面积为 3,则该圆的内接正六边形的边心距是( B )
A.2
B.1
C. 3
D.
3 2
7
4.【贵州贵阳中考】如图,正六边形 ABCDEF 内接于⊙O,连接 BD.则∠CBD 的度数是( A )
A.30° C.60°
10
8.【教材P106练习T3变式】如图,正八边 形ABCDEFGH的半径为2,求它的面积.
11
解:连接 AO、BO、CO、AC. ∵正八边形 ABCDEFGH 的半径为 2,∴AO= BO=CO=2,∠AOB=∠BOC=360°×18=45°,∴∠AOC=90°,∴AC=2 2,此时 AC⊥BO,∴S 四边形 ABCO=12BO·AC=12×2×2 2=2 2,∴正八边形 ABCDEFGH 的面 积为 2 2×4=8 2.
B.45° D.90°
8
5.如图,正六边形 ABCDEF 内接于半径为 4 的圆,则 B、E 两点间的距离为___8___.
9
6.将一个边长为 1 的正六边形补成如图所示的矩形,则矩形的周长等于 ___4_+__2__3____.(结果保留根号)
43 7.【山东滨州中考】若正六边形的内切圆半径为 2,则其外接圆半径为___3___.

平面几何中的正多边形与圆的周长

平面几何中的正多边形与圆的周长

平面几何中的正多边形与圆的周长在平面几何中,正多边形与圆的周长是一个重要的概念。

正多边形是指所有边长相等且所有内角相等的多边形,而圆的周长则是指圆的边缘一周的长度。

本文将探讨正多边形和圆的周长的关系,并介绍一些计算正多边形和圆的周长的方法。

一、正多边形的周长正多边形的周长可以通过计算每条边的长度之和来得到。

设正多边形有n条边,边长为a,则正多边形的周长L可以表示为L = n * a。

例如,一个有6条边的正六边形,若每条边的长度为3cm,则正六边形的周长L = 6 * 3 = 18cm。

需要注意的是,正多边形的周长与边数以及边长有关。

当边数n增加时,正多边形的周长也会增加;当边长a增加时,正多边形的周长也会增加。

二、圆的周长在平面几何中,圆的周长又称为圆的周长或圆周长。

圆的周长C可以通过计算圆的直径或半径与圆周率π的乘积来得到。

根据定义,圆周率π的近似值约为3.14159。

1. 通过直径计算设圆的直径为d,则圆的周长C可以表示为C = π * d。

例如,一个直径为10cm的圆的周长C = 3.14159 * 10 = 31.4159cm。

2. 通过半径计算设圆的半径为r,则圆的周长C可以表示为C = 2 * π * r。

例如,一个半径为5cm的圆的周长C = 2 * 3.14159 * 5 = 31.4159cm。

需要注意的是,无论是通过直径还是半径计算,圆的周长都与圆周率π有关。

当直径或半径增加时,圆的周长也会增加。

三、正多边形与圆的周长的关系在考察正多边形和圆的周长时,我们可以发现一个有趣的现象。

当正多边形的边数n足够大时,正多边形的周长L会趋近于圆的周长C。

这可以通过以下推理来解释:首先,在一个给定的正多边形中,边数越多,每条边的长度a则越短,这意味着多边形的周长L越接近于n * a。

而当n趋近于无穷大时,正多边形的周长L趋近于无限,也就是周长无限长。

而圆的周长C是有限且确定的,不会随着边数的增加而增加。

正多边形和圆教案

正多边形和圆教案

正多边形和圆教案第一章:正多边形的定义和性质1.1 教学目标了解正多边形的定义和性质能够计算正多边形的边数和内角大小1.2 教学内容引入正多边形的概念,通过图片和实物展示让学生直观感受讲解正多边形的性质,如边数、内角大小、对称性等引导学生通过观察和推理得出正多边形的性质1.3 教学活动通过图片和实物引导学生思考什么是正多边形学生自主探究正多边形的性质,记录下来并与同学交流教师总结正多边形的性质,并给出相关例题让学生巩固第二章:圆的定义和性质2.1 教学目标了解圆的定义和性质能够计算圆的半径和直径2.2 教学内容引入圆的概念,通过图片和实物展示让学生直观感受讲解圆的性质,如半径、直径、圆心等引导学生通过观察和推理得出圆的性质2.3 教学活动通过图片和实物引导学生思考什么是圆学生自主探究圆的性质,记录下来并与同学交流教师总结圆的性质,并给出相关例题让学生巩固第三章:正多边形和圆的关系3.1 教学目标了解正多边形和圆的关系能够计算正多边形的内切圆和外接圆3.2 教学内容讲解正多边形和圆的关系,如内切圆和外接圆的概念引导学生通过观察和推理得出正多边形和圆的关系3.3 教学活动学生通过观察和推理得出正多边形和圆的关系学生自主探究正多边形的内切圆和外接圆的计算方法,记录下来并与同学交流教师总结正多边形和圆的关系,并给出相关例题让学生巩固第四章:正多边形和圆的面积计算4.1 教学目标能够计算正多边形的面积和圆的面积4.2 教学内容讲解正多边形和圆的面积计算公式引导学生通过观察和推理得出正多边形和圆的面积计算方法4.3 教学活动学生通过观察和推理得出正多边形和圆的面积计算方法学生自主探究正多边形和圆的面积计算公式,记录下来并与同学交流教师总结正多边形和圆的面积计算方法,并给出相关例题让学生巩固第五章:正多边形和圆的应用5.1 教学目标了解正多边形和圆在实际中的应用5.2 教学内容讲解正多边形和圆在实际中的应用,如几何图形、建筑设计等5.3 教学活动学生通过图片和实物观察正多边形和圆在实际中的应用学生自主探究正多边形和圆在其他领域的应用,记录下来并与同学交流教师总结正多边形和圆的应用,并给出相关例题让学生巩固第六章:正多边形的内切圆和外接圆6.1 教学目标理解正多边形的内切圆和外接圆的概念。

正多边形和圆

正多边形和圆
(1)一个正多边形的外接圆的圆心叫做这个正多边形的中心. (2)正多边形外接圆的半径叫做正多边形的半径. (3)正多边形每一边所对的圆心角叫做正多边形的中心角. (4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距. 3.正多边形的有关计算
(1)正n边形每一个内角的度数是

(2)正n边形每个中心角的度数是

14.如图,AB,AC,BD 是⊙O 的切线,P,C,D 为切点,若 AB=5,AC=4,则 BD
的长为

15.如图,等腰△ABC 的内切圆⊙O 与 AB,BC,CA 分别相切于点 D,E,F,且 AB
=AC=5,BC=6,则 DE 的长是

三.解答题
-5-
16.已知:如图,Rt△ABC 中,∠ACB=90°,以 AC 为弦作⊙O,交 BC 的延长线于点 D,且 DC
() A.60°
B.65°
C.72°
D.75°
类型二、正多边形和圆的有关计算
3.如图,点 G,H 分别是正六边形 ABCDEF 的边 BC,CD 上的点,且 BG=CH,AG 交 BH 于点 P.(1) 求证:△ABG≌△BCH; (2)求∠APH 的度数.
4. 若同一个圆的内接正三角形、正方形、正六边形的边长分别记作 a3,a4,a6,则 a3:a4:
C.3
D.4
10.如图,AB 为⊙O 的切线,切点为 A,OB 交⊙O 于点 C,点 D 在⊙O 上,且 OD∥
AC,若∠B=38°,则∠ODC 的度数为( )
A.46°
B.48°
C.52°
D.58°
二.填空题
11.如图,已知圆 O 为 Rt△ABC 的内切圆,切点分别为 D、E、F,且∠C=90°,AB

九年级数学上册《正多边形和圆》教案、教学设计

九年级数学上册《正多边形和圆》教案、教学设计
1.教学活动设计:利用多媒体展示生活中常见的正多边形和圆形物体,如正方形的地砖、圆形的餐桌等。引导学生观察这些图形的特点,激发学生对正多边形和圆的学习兴趣。
a.提问:同学们,你们在生活中都见过哪些正多边形和圆形的物体呢?
b.学生回答后,教师总结:正多边形和圆在我们的生活中无处不在,它们具有很多独特的性质和美感。今天我们就来学习正多边形和圆的相关知识。
2.学生在解决实际问题时,可能难以将正多边形的性质与实际问题相结合,需要教师通过举例、引导,帮助学生建立知识间的联系。
3.部分学生对数学学习存在恐惧心理,需要教师关注学生的情感态度,激发学生的学习兴趣,增强他们的自信心。
4.学生在团队合作、交流表达方面有待提高,教师应创造更多机会让学生进行讨论交流,培养他们的沟通能力。
a.设计一道具有实际背景的问题,运用正多边形和圆的知识进行解决,要求学生将解题过程和答案以书面形式提交。
b.学生以小组为单位,共同探讨生活中的正多边形和圆的应用,完成一份小报告,内容包括:应用实例、性质分析、解题方法等。
3.拓展与思考:
a.阅读相关资料,了解正多边形和圆在历史、文化、艺术等领域的应用,撰写一篇心得体会。
b.探究正多边形与圆在建筑设计中的应用,结合实际案例进行分析,提出自己的看法。
4.口头作业:
a.与家人分享本节课所学知识,讲解正多边形和圆的性质,以及它们在生活中的应用。
b.与同学进行交流,讨论解决正多边形和圆相关问题时的策略和方法。
5.预习作业:
a.预习下一节课内容,提前了解与正多边形和圆相关的其他几何知识。
b.采用问题驱动法,设计具有启发性的问题,引导学生主动探究正多边形的性质及其与圆的关系。
c.以小组合作的形式,让学生共同解决正多边形与圆的实际问题,培养学生的团队合作意识和问题解决能力。

人教版数学九年级上册24.3.1《正多边形和圆》说课稿

人教版数学九年级上册24.3.1《正多边形和圆》说课稿

人教版数学九年级上册24.3.1《正多边形和圆》说课稿一. 教材分析《正多边形和圆》是人教版数学九年级上册第24章第3节的内容。

本节课主要介绍正多边形的定义、性质以及与圆的关系。

通过学习,使学生能够理解正多边形的概念,掌握正多边形的性质,并能够运用这些性质解决实际问题。

教材通过丰富的图片和实例,引发学生的兴趣,引导学生探究正多边形与圆的内在联系,培养学生的空间想象能力和逻辑思维能力。

二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认识和理解有一定的基础。

但是,对于正多边形的定义和性质,以及与圆的关系,可能还比较陌生。

因此,在教学过程中,需要注重引导学生从已有的知识出发,探究新知识,激发学生的学习兴趣,帮助学生建立知识体系。

三. 说教学目标1.知识与技能:理解正多边形的定义,掌握正多边形的性质,了解正多边形与圆的关系。

2.过程与方法:通过观察、分析、归纳等方法,探究正多边形的性质,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神,使学生感受到数学的美。

四. 说教学重难点1.教学重点:正多边形的定义,正多边形的性质。

2.教学难点:正多边形与圆的关系,正多边形的性质在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、启发式教学法、合作学习法等,引导学生主动探究,积极参与课堂活动。

2.教学手段:利用多媒体课件、实物模型、几何画板等,直观展示正多边形的性质和与圆的关系,提高学生的学习兴趣。

六. 说教学过程1.导入:通过展示一些生活中的正多边形图片,如足球、骰子等,引导学生关注正多边形,激发学生的学习兴趣。

2.探究正多边形的定义和性质:学生分组讨论,每组找出正多边形的定义和性质,最后进行汇报和交流。

3.揭示正多边形与圆的关系:引导学生观察正多边形的特点,引导学生发现正多边形可以看作圆的内接多边形,从而得出正多边形与圆的关系。

人教版九年级数学上册24.3.1《正多边形和圆(1)》教学设计

人教版九年级数学上册24.3.1《正多边形和圆(1)》教学设计

人教版九年级数学上册24.3.1《正多边形和圆(1)》教学设计一. 教材分析《正多边形和圆》是人教版九年级数学上册第24章第三节的第一课时内容,主要介绍了正多边形的定义、性质以及与圆的关系。

本节课的内容是学生对几何图形学习的进一步深化,对于培养学生的空间想象能力和抽象思维能力具有重要意义。

教材通过生活中的实例引入正多边形和圆的概念,让学生感受数学与生活的紧密联系,激发学生的学习兴趣。

二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的认识有一定的深度。

但是,对于正多边形和圆的性质和关系,可能还比较陌生。

因此,在教学过程中,需要教师通过生动形象的实例和直观的图形,帮助学生理解和掌握正多边形和圆的概念和性质。

三. 教学目标1.了解正多边形的定义和性质,能够识别和判断正多边形。

2.理解圆的概念,掌握圆的性质。

3.掌握正多边形与圆的关系,能够运用正多边形和圆的知识解决实际问题。

四. 教学重难点1.重难点:正多边形的定义和性质,圆的概念和性质。

2.难点:正多边形与圆的关系的理解和运用。

五. 教学方法1.采用问题驱动的教学方法,通过提问引导学生思考和探索,激发学生的学习兴趣和积极性。

2.采用直观演示法,通过实物和图形的展示,帮助学生直观地理解和掌握正多边形和圆的概念和性质。

3.采用归纳总结法,通过总结和归纳,使学生对正多边形和圆的知识有一个系统的认识。

六. 教学准备1.准备相关的图形和图片,如正多边形和圆的实物图片,正多边形和圆的模型等。

2.准备相关的教学PPT,内容包括正多边形和圆的定义、性质和关系等。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾已学过的几何图形,如三角形、四边形等,激发学生的学习兴趣。

然后,展示一些生活中的实例,如五角星、车轮等,引导学生思考这些图形的共同特征。

2.呈现(10分钟)教师展示正多边形和圆的实物图片和模型,引导学生观察和描述正多边形和圆的特征。

然后,教师通过PPT呈现正多边形和圆的定义和性质,让学生初步了解和掌握。

正多边形与圆1

正多边形与圆1

B
巩固 1、如图,正六边形 、如图,正六边形ABCDEF的半径为 的半径为 8cm,求这个正六边形的边长。 ,求这个正六边形的边长。 A F O C D E
B
巩固 2、正三角形的半径为 ,则边长为 、正三角形的半径为R, 边心距为 ,面积为 。 ,
3、正三角形的边长 ,则其半径为 、正三角形的边长a,
正多边形和圆 正多边形和圆
导入 观察下列图案: 观察下列图案:
导入 观察下列图案: 观察下列图案:
探究 什么叫正多边形? 一、 什么叫正多边形?
边相等,角相等的多边形叫正多边形。 边相等,角相等的多边形叫正多边形。
探究 正多边形有没有外接圆? 二、 正多边形有没有外接圆?
正多边形和圆有什么关系? 正多边形和圆有什么关系?
边数是偶数的正多边形还是中心 对称图形,它的中心就是对称中心。 对称图形,它的中心就是对称中心。
例1、如图,有一个亭子,它的地基是 、如图,有一个亭子, 半径为4cm的正六边形,求地基的周长 的正六边形, 半径为 的正六边形 和面积(精确到 精确到0.1cm2)。 和面积 精确到 。 A F O C P D E

范例 例2、已知圆内接正方形的面积为 ,求 、已知圆内接正方形的面积为8, 圆内接正六边形的面积。 圆内接正六边形的面积。 A B C O D F E
巩固 3、同圆的内接正三角形、正四边形、 、同圆的内接正三角形、正四边形、 正六边形的边长之比为 。
探究 如何画一个边长为2cm的正六边 五、 如何画一个边长为 的正六边 形? A F 1、以2cm为半径作 、 为半径作 一个⊙ ; 一个⊙ O; E B O 2、用量角器画一个 、 60°的圆心角; °的圆心角; C D 3、在圆上顺次截取这个圆心角对的弧; 、在圆上顺次截取这个圆心角对的弧; 4、顺次连接分点。 、顺次连接分点。

正多边形和圆及圆的有关计算

正多边形和圆及圆的有关计算

正多边形和圆及圆的有关计算一、知识梳理: 1、正多边形和圆各边相等,各角也相等的多边形叫正多边形。

定理:把圆分成n (n >3)等分:(l )依次连结各分点所得的多边形是这个圆的内按正多边形;(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形。

定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。

正多边形的外接(或内切)圆的圆心叫正多边形的中心。

外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距。

正多边形各边所对的外接圆的圆心角都相等,叫正多边形的中心角。

正n 边形的每个中心角等于n360正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心。

若n 为偶数,则正n 边形又是中心对称图形,它的中心就是对称中心。

边数相同的正多边形相似,所以周长的比等于边长的比,面积的比等于边长平方的比。

2、正多边形的有关计算正n 边形的每个内角都等于nn180)2(-定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形。

正多边形的有关计算都归结为解直角三角形的计算。

3、画正多边形(1)用量角器等分圆 (2)用尺规等分圆正三、正六、正八、正四及其倍数(正多边形)。

正五边形的近似作法(等分圆心角) 4、圆周长、弧长(1)圆周长C =2πR ;(2)弧长180Rn L π= 5、圆扇形,弓形的面积 (l )圆面积:2R S π=;(2)扇形面积:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

在半径为R 的圆中,圆心角为n °的扇形面积S 扇形的计算公式为:3602R n S π=扇形 注意:因为扇形的弧长180Rn L π=。

所以扇形的面积公式又可写为LR S 21=扇形(3)弓形的面积由弦及其所对的弧组成的圆形叫做弓形。

弓形面积可以在计算扇形面积和三角形面积的基础上求得。

如果弓形的弧是劣弧,则弓形面积等于扇形面积减去三角形面积。

正多边形与圆的有关的证明和计算知识讲解及典型例题解析

正多边形与圆的有关的证明和计算知识讲解及典型例题解析

正多边形与圆的有关的证明和计算知识讲解及典型例题解析【考纲要求】1.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;2.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【考点梳理】考点一、正多边形和圆1、正多边形的有关概念:(1) 正多边形:各边相等,各角也相等的多边形叫做正多边形.(2)正多边形的中心——正多边形的外接圆的圆心.(3)正多边形的半径——正多边形的外接圆的半径.(4)正多边形的边心距——正多边形中心到正多边形各边的距离.(正多边形内切圆的半径)(5)正多边形的中心角——正多边形每一边所对的外接圆的圆心角.2、正多边形与圆的关系:(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形.(2)这个圆是这个正多边形的外接圆.(3)把圆分成n(n≥3)等分,经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.这个圆叫做正n边形的内切圆.(4)任何正n边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3、正多边形性质:(1)任何正多边形都有一个外接圆.(2) 正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.当边数是偶数时,它又是中心对称图形,它的中心就是对称中心.(3)边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.(4)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.要点诠释:(1)正n边形的有n个相等的外角,而正n边形的外角和为360度,所以正n边形每个外角的度数是360n;所以正n边形的中心角等于它的外角.(2)边数相同的正多边形相似.周长的比等于它们边长(或半径、边心距)的比.面积比等于它们边长(或半径、边心距)平方的比.考点二、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、正多边形有关计算1.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【思路点拨】(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长 FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.【答案与解析】(1)如图所示,八边形ABCDEFGH即为所求,(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3=135°,∵OA=5,∴的长=,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.【总结升华】本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.举一反三:【变式1】如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是______米.【答案】31+.解析:如图,以三个圆心为顶点等边三角形O1O2O3的高O1C=3,所以AB=AO1+O1C+BC=1313122++=+.【变式2】同一个圆的内接正三角形、正方形、正六边形的边长的比是__________.32::【变式3】一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为2,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:【答案】A.【解析】解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=2,∵∠AOB=45°,∴OB=AB=2,由勾股定理得:OD==2,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=2,∴MC=MB=,∴⊙M的面积是π×()2=2π,∴扇形和圆形纸板的面积比是π÷(2π)=.故选:A.类型二、正多边形与圆有关面积的计算2.(1)如图(a),扇形OAB 的圆心角为90°,分别以OA ,OB 为直径在扇形内作半圆,P 和Q分别表示阴影部分的面积,那么P 和Q 的大小关系是( ).A .P =QB .P >QC .P <QD .无法确定(2)如图(b),△ABC 为等腰直角三角形,AC =3,以BC 为直径的半圆与斜边AB 交于点D ,则图中阴影部分的面积是________.(3)如图(c),△AOB 中,OA =3cm ,OB =1cm ,将△AOB 绕点O 逆时针旋转90°到△A ′OB ′,求AB 扫过的区域(图中阴影部分)的面积.(结果保留π)【思路点拨】 直接使用公式计算阴影部分面积比较困难时,可采用和差法、转化法、方程法等,有时也需要运用变换的观点来解决问题.【答案与解析】解:(1)阴影部分的面积直接求出十分困难,可利用几个图形面积的和差进行计算:2OAB OCA P S S Q =-+扇形半圆2211()42R R Q Q ππ=-+=; (2)(转化法“凑整”)利用BmD CnD S S =弓形弓形,则阴影部分的面积可转化为△ACD 的面积,等于△ABC 面积的一半,答案为94; (3)(旋转法)将图形ABM 绕点O 逆时针旋转到A ′B ′M ′位置,则A OA MOM S S S ''=-阴影扇形扇形2211244OA OM πππ=-=. 【总结升华】求阴影面积的几种常用方 (1)公式法;(2)割补法;(3)旋转法;(4)拼凑法;(5)等积变形法;(6)构造方程法.举一反三:【变式】如图,在△ABC 中,AB =AC ,AB =8,BC =12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( )A .64π127-B .16π32-C .16π247-D .16π127-【答案】解:如图,由AB ,AC 为直径可得AD ⊥BC ,则BD =DC =6.在Rt △ABD 中,228627AD =-=,∴ 211246271612722S ππ⎛⎫=⨯⨯⨯-⨯⨯=-⎪⎝⎭阴影. 答案选D.3.如图所示,A 是半径为2的⊙O 外一点,OA =4,AB 是⊙O 的切线,B 为切点,弦BC ∥OA ,连AC ,求阴影部分的面积.【思路点拨】图中的阴影是不规则图形,不易直接求出,如果连接OB 、OC ,由BC ∥OA ,根据同底等高的三角形面积相等,于是所求阴影可化为扇形OBC 去求解.【答案与解析】解:如图所示,连OB 、OC∵ BC ∥OA .∴ △OBC 和△ABC 同底等高,∴ S △ABC =S △OBC ,∴∵ AB 为⊙O 的切线,∴ OB ⊥AB .∵ OA =4,OB =2,∴ ∠AOB =60°.∵ BC ∥OA ,∴ ∠AOB =∠OBC =60°.∵ OB =OC ,∴ △OBC 为正三角形.∴ ∠COB =60°,∴ 260223603OBC S S ππ⨯===阴影扇形.【总结升华】通过等积替换化不规则图形为规则图形,在等积转化中①可根据平移、旋转或轴对称等图形变换;②可根据同底(等底)同高(等高)的三角形面积相等进行转化.举一反三:【变式】如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【答案】 解:连接OC 、OD 、CD .∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===g g 阴影扇形OCD .4.如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E.(1)求弧BE所对的圆心角的度数.(2)求图中阴影部分的面积(结果保留π).【思路点拨】(1)连接OE,由条件可求得∠EAB=45°,利用圆周角定理可知弧BE所对的圆心角∠EOB=2∠E AB=90°;(2)利用条件可求得扇形AOE的面积,进一步求得弓形的面积,利用Rt△ADC的面积减去弓的面积可求得阴影部分的面积.【答案与解析】解:(1)连接OE,∵四边形ABCD为正方形,∴∠EAB=45°,∴∠EOB=2∠EAB=90°;(2)由(1)∠EOB=90°,且AB=4,则OA=2,∴S扇形AOE==π,S△AOE=OA2=2,∴S弓形=S扇形AOE﹣S△AOE=π﹣2,又∵S△ACD=AD•CD=×4×4=8,∴S阴影=8﹣(π﹣2)=10﹣π.【总结升华】本题主要考查扇形面积的计算和正方形的性质,掌握扇形的面积公式是解题的关键,注意弓形面积的计算方法.»AB)对应5.将一块三角板和半圆形量角器按图中方式叠放,重叠部分(阴影)的量角器圆弧(的中心角(∠AOB)为120°,AO的长为4cm,求图中阴影部分的面积.【思路点拨】看是否由“规则的”三角形、四边形、圆、扇形、弓形等可求面积的图形,经过怎样的拼凑、割补、叠合而成,这是解决这类题的关键.【答案与解析】阴影部分的面积可看成是由一个扇形AOB 和一个Rt △BOC 组成,其中扇形AOB 的中心角是120°,AO 的长为4,Rt △BOC 中,OB =OA =4,∠BOC =60°,∴ 可求得BC 长和OC 长,从而可求得面积,阴影部分面积=扇形AOB 面积+△BOC 面积=21623cm 3π⎛⎫+ ⎪⎝⎭. 【总结升华】本题是求简单组合图形的面积问题,解答时,常常是寻找这些“不规则的图形”是由哪些“可求面积的、规则的图形”组合而成.举一反三:【变式】如图,矩形ABCD 中,AB =1,2AD =.以AD 的长为半径的⊙A 交BC 于点E ,则图中阴影部分的面积为________.【答案】1224π--. 解析:连接AE ,易证AB =BE =1,∠BAE =45°,所以∠EAD =45°, 所以21112(2)22824ABE ABCD DAE S S S S ππ=--=--=--△阴影矩形扇形.6.如图,AB 是⊙O 的直径,点P 是AB 延长线上一点,PC 切⊙O 于点C ,连接AC ,过点O 作AC 的垂线交AC 于点D ,交⊙O 于点E .已知AB ﹦8,∠P=30°.(1)求线段PC 的长;(2)求阴影部分的面积.【思路点拨】(1)连接OC,由PC为圆O的切线,根据切线的性质得到OC与PC垂直,可得三角形OCP为直角三角形,同时由直径AB的长求出半径OC的长,根据锐角三角函数定义得到tanP为∠P的对边OC与邻边PC的比值,根据∠P的度数,利用特殊角的三角函数值求出tanP的值,由tanP及OC的值,可得出PC 的长;(2)由直角三角形中∠P的度数,根据直角三角形的两个锐角互余求出∠AOC的度数,进而得出∠BOC的度数,由OD与BC垂直,且OC=OB,利用等腰三角形的三线合一得到OD为∠BOC的平分线,可求出∠COD度数为60°,再根据直角三角形中两锐角互余求出∠OCD度数为30°,根据30°角所对的直角边等于斜边的一半,由斜边OC的长求出OD的长,先由∠COD的度数及半径OC的长,利用扇形的面积公式求出扇形COE的面积,再由OD与CD的长,利用直角三角形两直角边乘积的一半求出直角三角形COD 的面积,用扇形COE的面积减去三角形COD的面积,即可求出阴影部分的面积.【答案与解析】解:(1)连接OC,∵PC切⊙O于点C,∴OC⊥PC,∵AB=8,∴OC=12AB=4,又在直角三角形OCP中,∠P=30°,∴tanP=tan30°=OCPC,即PC=433=43;(2)∵∠OCP=90°,∠P=30°,∴∠COP=60°,∴∠A OC=120°,又AC⊥OE,OA=OC,∴OD为∠AOC的平分线,∴∠COE=12∠AOC=60°,又半径OC=4,∴S扇形OCE=26048=3603ππ⨯,在Rt△OCD中,∠COD=60°,∴∠OCD=30°,∴OD=12OC=2,根据勾股定理得:CD=22OC-OD=23,【总结升华】此题考查了切线的性质,含30°角的直角三角形的性质,等腰三角形的性质,锐角三角函数定义,以及扇形的面积公式,遇到已知切线的类型题时,常常连接圆心与切点,利用切线的性质得出垂直,利用直角三角形的性质来解决问题.。

正多边形与圆

正多边形与圆

知识点1 正多边形的相关概念(1)正多边形:各边相等、各角也相等的多边形叫做正多边形。

(2)正多边形和圆:把一个圆n等分,依次联接各等分点所得的多边形是这个圆的内接正多边形,这个圆是这个正多边形的外接圆。

正多边形的外接圆的圆心叫做正多边形的中心。

(3)正多边形是对称图形。

当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形。

(4)与正多边形有关的概念:a正多边形的中心:正多边形的外接圆的圆心;b正多边形的半径:正多边形的外接圆的半径;c正多边形的中心角:正多边形每一条边所对的外接圆的圆心角。

正n边形的每个中心角都等于360/n,正n边形的每个内角都等于【(n-2)×180】/n.d正多边形的边心距:正多边形的中心到正多边形一条边的距离。

例题1圆的半径扩大一倍,则它的相应的圆内接正n边形的边长与半径之比( )A.扩大了一倍B.扩大了两倍C.扩大了四倍D.没有变化例题2正五边形共有__________条对称轴,正六边形共有__________条对称轴.例题3正n边形是对称图形,它的对称轴有条。

例题4正n边形的每个内角是,每个中心角是。

知识点2 正多边形的计算1.正多边形的中心是这个正多边形的外接圆的圆心,也是内切圆的圆心。

2.联接中心和正多边形的各顶点,所得线段都是外接圆的半径,相邻两条半径的夹角是中心角。

3.在正n变形中,分别经过各顶点的这些半径将这个正n边形分成n个全等的等腰三角形,每个等腰三角形的腰是正n边形的半径,底边是正n边形的边,顶角是正n边形的中心角;底边上的高是正n 边形的内切圆的半径,它的长是正n 边形的边心距。

注:正多边形半径R 和边长a 、边心距r 之间的数量关系式.提示:解决圆和正多边形的计算问题通常构造直角三角形,运用垂径定理和勾股定理来解决. 例题5【例1】如图,两相交圆的公共弦AB 为32,在⊙O 1中为内接正三角形的一边,在⊙O 2中为内接正六边形的一边,求这两圆的面积之比。

人教版数学九年级上册24.3《正多边形和圆》教学设计

人教版数学九年级上册24.3《正多边形和圆》教学设计

人教版数学九年级上册24.3《正多边形和圆》教学设计一. 教材分析《正多边形和圆》是人教版数学九年级上册第24.3节的内容。

本节内容是在学生已经掌握了圆的概念和性质的基础上进行学习的,主要让学生了解正多边形的定义、性质及其与圆的关系。

通过本节内容的学习,学生能够理解正多边形的对称性,掌握正多边形的计算方法,并为后续学习圆的周长、面积等知识打下基础。

二. 学情分析九年级的学生已经具备了一定的几何基础知识,对圆的概念和性质有一定的了解。

但是,对于正多边形的定义和性质,以及与圆的关系,学生可能还比较陌生。

因此,在教学过程中,需要引导学生通过观察、思考、探究,逐步理解正多边形的性质,并能够运用到实际问题中。

三. 教学目标1.知识与技能:让学生掌握正多边形的定义、性质及其与圆的关系,能够运用正多边形的性质解决实际问题。

2.过程与方法:通过观察、思考、探究,培养学生的几何思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:正多边形的定义、性质及其与圆的关系。

2.难点:正多边形的计算方法及其在实际问题中的应用。

五. 教学方法1.引导发现法:通过引导学生观察、思考、探究,发现正多边形的性质及其与圆的关系。

2.案例分析法:通过分析实际问题,让学生学会运用正多边形的性质解决实际问题。

3.小组合作学习:让学生在小组内进行讨论、交流,培养团队合作精神。

六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示。

2.教学素材:准备一些关于正多边形的实际问题,用于巩固和拓展。

3.教学工具:准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中常见的正多边形,如正方形、正三角形等,引导学生关注正多边形,激发学生的学习兴趣。

2.呈现(10分钟)介绍正多边形的定义和性质,引导学生通过观察、思考,发现正多边形的特点。

3.操练(10分钟)让学生分组讨论,分析一些实际问题,运用正多边形的性质解决问题。

正多边形与圆(八大题型)( 原卷版)

正多边形与圆(八大题型)( 原卷版)
为( )
A.1B.2C. D.
解题技巧提炼
主要考查了正多边形和圆,正六边形的性质、正方形的性质,等边三角形的性质,勾股定理,正确掌握它们的性质是解决问题的关键.
【变式3-1】(2022•成都)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为( )
A. B. C.3D.2
正多边形.
◆2等于 的圆心角,它对着一段弧,然后在圆上依次截取与这条弧相等的弧,得到圆的n个等分点;
(2)顺次连接各等分点.
【例题1】下列命题正确的是( )
A.各边相等的多边形是正多边形
B.正多边形一定是中心对称图形
C.各角相等的圆内接多边形是正多边形
D.正多边形外接圆的半径是正多边形的半径
半径
外接圆的半径叫做正多边形的半径.
边心距
内切圆的半径叫做正多边形的边心距.
中心角
正多边形每一条边对应所对的外接圆的圆心角都相等,叫做正多边形的中心角.
任何正多边形都有一个外接圆和一个内切圆.
◆2、正多边形的判定:
一个多边形必须同时满足各边相等,各角也相等才能判定其是正多边形,两个条件缺一不可,如菱形的各边相等,但各角不一定相等,矩形的各角相等,但各边不一定相等,因此它们不是正多边形.
解题技巧提炼
根据正多边形的相关概念进行判断即可,正n边形(n≥3,n为整数)都是轴对称图形,都有n条对称轴,且这些对称轴都交于一点,当n为偶数时,正n边形为中心对称图形.
【变式1-1】下列说法中,错误的是( )
A.正多边形的外接圆的圆心,就是它的中心
B.正多边形的外接圆的半径,就是它的半径
C.正多边形的内切圆的半径,就是它的边心距
(苏科版)九年级上册数学《第2章对称图形---圆》

人教版《正多边形和圆》优秀课件_初中数学1

人教版《正多边形和圆》优秀课件_初中数学1

例题分析
1. (1)正三角形的半径为R,则边长为_____,边心距为______,
面积为________. (3)定时定量做一些客观题和中档题,训练速度和正确率,适量做一些综合题,提高解题思维能力。并及时总结、记忆,内化提高。
A
知识与技能:理解分类加法计数原理与分步乘法计数原理;会利用两个原理分析和解决一些简单的应用问题 。
中心 O 中心角
AB=BC=CD=DA .
边心距r
边心距r
边心距r
思考
各边相等的多边形是正多边形吗?
反例:如图,菱形的四条边相等, 但是四个角不相等,所以不是正 多边形.
各角相等的多边形是多边形吗? 反例:如图,矩形的四个角相等, 但是四条边不相等,所以不是正 多边形.
思考
各边相等的圆内接多边形是正多边形吗?
OB=OC=2,则
Rt△OBD中,边心距
O是正五边形ABCDE
观察这些图片,你看到了哪些正多边形?
复习回顾
正多边形是轴对称图形; 当边数为偶数时,正多边形也是中心对称 图形; 圆既是轴对称图形又是旋转对称图形. 正多边形和圆的关系联系非常密切,只要把 一个圆分成相等的一些弧,就可以作出正多 边形.
分析:画出示意图,圆内接正三角形ABC. (3)数列。此专题中数列是重点,同时也要注意数列与其他知识交汇问题的训练。
高三数学复习中的几个注意点
中心角BOC 360 3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 120 ,OB=OC=R,则
O R
OBC 30, Rt
3 OBD
找出下列正多边形的中心,并标出正多边形的半 中心角
,OA=OB, AB=a,则
已知:如图, O 中内接四边形ABCD ,

正多边形和圆知识点归纳

正多边形和圆知识点归纳

正多边形和圆知识点归纳1. 正多边形①定义:各边相等,各角也相等的多边形,叫做正多边形;②定义中两个条件缺一不可.我们知道三边相等的三角形是正三角形,三个角相等的三角形也是正三角形.但菱形四条边相等,却不是正四边形.矩形四角都相等,也不是正四边形.所以正多边形的定义中各边相等和各角相等两个条件缺一不可.2. 正多边形与圆的关系把一个圆分成相等的一些弧,就可以得到这个圆的内接正多边形,这个圆是这个多边形的外接圆.3、正多边形中各元素间的关系一个正多边形的外接圆的圆心叫做这个正多边形的中心.外接圆的半径叫做正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角.中心到正多边形的一边的距离叫做正多边形的边心距.如图,设正多边形的边长为a n,半径为R,边心距为r n,中心角为αn,则它们有如下关系:;正n边形的中心角;正n边形的周长P n=na n;正n边形的面积.4、正多边形有关计算在解决有关正多边形计算时,通常运用转化的思想方法,将正多边形的有关计算化为一个边长分别是正多边形的半径、正多边形边长的一半,正多边形的边心距的直角三角形来解决.5、正多边形的对称性①多边形都是轴对称图形,当边数为偶数时,它的对称轴是每一边的垂直平分线和正多边形的边心距所在的直线,当边数为奇数时,它的对称轴是边心距所在的直线;②只有正偶边形才是中心对称图形;③正n边形绕着它的中心每旋转就与它本身重合.典例讲解例1、填空题1. 如图,小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则该圆的半径为()A. B. C. D.答案:D2. 正六边形两条平行边间的距离是1,则它的边长为()A. B. C. D.答案:C3. 已知正三角形的边长为2,则它的内切圆和外接圆组成的圆环面积为()A. B. C. D.答案:B4. 边长为a的正三角形的边心距、半径和高之比为()A.1∶2∶3B.C. D.答案:A例2、如图,圆内接正六边形ABCDEF中,对角线BD、EC相交于点G,求∠BGC的度数.解:正六边形ABCDEF中DC=DE,,∴,同理可证:∠2=,∴∠BGC=∠1+∠2=.例3、如图,已知正三角形ABC外接圆的半径为R,求正三角形ABC的边长、边心距、周长和面积.思路点拨:过中心向正多边形的边作垂线得到Rt△OCH,在Rt△OCH中包含了中心角的一半、边心距、半径、边长的一半等基本元素.解:连接OB、OC,作OH⊥BC于H.例4、如图,正方形的边长为4cm,剪去四个角后成为一个正八边形,求这个正八边形的边长和面积.解:由题意知PD=PE=FQ设PD=PE=FQ=xcm,则EF=ED=(4-2x)cm,∵∠P=90°,由勾股定理ED=,∴,∴正八边形的边长为4-2x=cm,面积为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档