1.3二次根式的运算
二次根式的计算方法
添加标题
乘法运算的应用:二次根式的乘法运算在解决实际问题中具有广泛的应用,例如在计算面积、 体积、长度等物理量时,常常需要进行二次根式的乘法运算。
除法运算
公式:a√b/c√d = (a/c)√(b/d) 例题:(2√3)/(3√2) = (2/3)√(3/2) 注意事项:除法运算中,分母不能为0 应用:二次根式的除法运算在解决实际问题中具有广泛应用
二次根式的定义
概念:二次根式是形如√a(a≥0)的代数式,其中a称为被开方数,√a称为根号。
性质:二次根式具有非负性,即√a≥0(a≥0)。
运算:二次根式的运算包括加法、减法、乘法和除法,遵循一定的运算法则。
应用:二次根式在数学、物理、工程等领域有着广泛的应用,如求解方程、计算面积、体积 等。
二次根式的性质
转化为同类二次根式
概念:非同类二次根式是指 根号下含有不同字母的二次 根式
加减运算:将转化后的同类 二次根式进行加减运算,得
到结果
加减法运算规则
二次根式与有理数相加减, 先化成最简二次根式,再相 加减
不同底二次根式相加减,先 化成同底二次根式,再相加 减
同底二次根式相加减,底数 不变,被开方数相加减
03
二次根式的乘除法
乘法运算
添加标题
乘法运算的定义:二次根式的乘法运算是将两个二次根式相乘,得到一个新的二次根式。
添加标题
乘法运算的法则:二次根式的乘法运算法则是:(a√b)(c√d)=(ac)√(bd)。
添加标题
乘法运算的步骤:首先,将两个二次根式相乘,得到新的二次根式;然后,将新的二次根式的 被开方数相乘,得到新的被开方数;最后,将新的二次根式的系数相乘,得到新的系数。
乘除法运算规则
浙教版数学八年级下册1.3《二次根式的运算》教案3
浙教版数学八年级下册1.3《二次根式的运算》教案3一. 教材分析浙教版数学八年级下册1.3《二次根式的运算》是学生在学习了实数、分数、代数等知识的基础上,进一步深化对二次根式的理解和应用。
本节内容通过具体的例子,引导学生掌握二次根式的加减乘除运算方法,为后续学习二次根式的方程和不等式打下基础。
二. 学情分析学生在学习本节内容前,已经掌握了实数、分数、代数等知识,对数学运算有了一定的理解。
但二次根式的运算相对于其他运算来说较为复杂,需要学生有一定的空间想象能力和抽象思维能力。
同时,学生可能对二次根式的实际应用场景有一定的疑惑,需要教师在教学中进行解答。
三. 教学目标1.理解二次根式的加减乘除运算方法;2.能够熟练地进行二次根式的运算;3.了解二次根式的实际应用场景。
四. 教学重难点1.二次根式的加减乘除运算方法;2.二次根式的实际应用。
五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法,通过教师的讲解和学生的练习,使学生掌握二次根式的运算方法。
六. 教学准备1.教师准备PPT,内容包括二次根式的运算方法、实例讲解、练习题等;2.学生准备笔记本,用于记录教学内容和做练习。
七. 教学过程1.导入(5分钟)教师通过PPT展示二次根式的实际应用场景,引导学生思考二次根式在实际问题中的作用,激发学生的学习兴趣。
2.呈现(10分钟)教师通过PPT呈现二次根式的加减乘除运算方法,并进行详细的讲解和示例。
学生在笔记本上做好笔记。
3.操练(10分钟)教师给出一些二次根式的运算题目,学生独立完成,并及时给予解答和指导。
4.巩固(10分钟)教师再次给出一些二次根式的运算题目,学生独立完成,并与同学进行讨论。
教师选取一些典型的题目进行讲解。
5.拓展(10分钟)教师引导学生思考二次根式运算在更复杂问题中的应用,如二次根式的方程、不等式等,为学生后续学习打下基础。
6.小结(5分钟)教师对本节课的内容进行小结,学生做好笔记。
浙教版八年级下册 1.3 二次根式的运算 课件(共26张PPT)
拓展提升
如图,一张边长为22cm的等边三角形彩色纸,CD⊥AB,小明在
等边三角形纸片中裁出三条宽度相同的长方形纸条,其中最上面的那
个长方形恰好为正方形,分别求出三张长方形纸条的长度.
解:
?
22
22
22
巩固练习
在Rt△ABC中,∠C=Rt∠,AB=c,BC=a,AC=b.
(1)若: =
1
,则:
( 3) 2 3
(1 2) 2 1 2
(1 2)
2 1
三. 性质复习
最简二次根式
1.根号内是一个不含平
方因数的整数
例1 计算
1
3
(2)
4
12 24 化成最简二次根式
2.分母中不含根号
8
2
1
2
2
2
解:原式=
6 -12 2
2 2
2
2
2
1
3
3 2
3
AB=_______m.
B
?
A
?
2
C
斜坡的竖直高度和对应的水平距离的比叫做坡比.
例题分析
例6 如图,扶梯AB的坡比为1:0.8,滑梯CD的坡比为1:1.6,AE=
BC=
.一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,
A
E
C
F
D
m,
经过的总路
程为多少米(要求先化简,再取近似值,结果精确到0.01m)?
方法总结:
二次根式的运算
直角三角形三边计算
A
C
感悟提升
一个概念
斜坡的竖直高度和对应的水平宽度的比叫做坡比
高中一年级数学课程二次根式的运算
高中一年级数学课程二次根式的运算一、引言数学作为高中一年级的必修课,对于学生来说是一个重要的学科。
其中,二次根式是数学课程中的一大重点,掌握好二次根式的运算是学生理解和解决数学问题的关键。
本文将从基础概念、运算规则和实例应用三个方面,深入探讨高中一年级数学课程中二次根式的运算。
二、基础概念二次根式是代数学中的一种常见形式,其一般形式可以表示为√a,其中 a 表示一个非负实数。
在进行二次根式的运算时,需要掌握以下几个基础概念:1. 平方根:平方根是二次根式的特殊形式,表示为√a^2 = a,其中 a 为一个非负实数。
例如,√25 = 5,√16 = 4。
2. 定理:当 a、b 为非负实数时,有以下基本运算法则:(1)√(a * b) = √a * √b(2)√(a / b) = √a / √b注意:对于负数,二次根式的运算需要涉及复数概念,这超出了高中一年级数学课程的范围。
三、运算规则了解基础概念后,我们可以进一步学习二次根式的运算规则,这有助于我们在解题时进行正确的步骤操作。
以下是二次根式的运算规则:1. 同底同指数相加(减):对于同底二次根式,可以进行相加(减)操作。
例如√3 + √5 =√(3 + 5) = √8。
2. 同底不同指数相乘(除):对于同底二次根式,可以进行相乘(除)操作。
例如√3 * √5 =√(3 * 5) = √15。
3. 化简二次根式:当二次根式中包含有平方数时,可以进行化简操作。
例如,√9 = 3。
4. 消去分母中的二次根式:在有理化分母的过程中,需要根据运算规则对二次根式进行处理。
例如,1 / (√2 + √3) = (√2 - √3) / (2 - 3) = -(√2 - √3)。
四、实例应用理论只有在实际问题中应用才能更好地理解和记忆。
下面通过几个实例应用来加深对二次根式的运算的理解。
例1:计算√8 + √18。
解:先进行化简:√8 + √18 = √(4 * 2) + √(9 * 2) = 2√2 + 3√2 = 5√2。
八年级数学下册二次根式二次根式的运算教学课件新版浙教版
ab
x2
xy 1 x2 y2
巩固提升:
1. 8 18 50 __0__. 2. 75 48 27 _6___3_.
3.3 2 4 1 1 8 _4__2__.
22
4. 12
1 3
11 3
__53___3_.
5. (2 2 3)2 12 =_4___3_ 2
6.( 2 3 5)( 2 3 5) =__4___2__1_0__
把下列各式化简(分母有理化):
(1)-4 2 37
(2) 2a a+b
(3) 2 3 40
解:(1)-4 2 =-4 2 • 7 =-4 14 .
3 7 3 7• 7
21
(2) 2a = a+b
2a a+b
a+b • a+b
=
2a a+b a+b
.
(3) 2 =
2
= 2 • 10 = 20 = 2 5 = 5 .
3 25x
9y2
19 = 19 = 19
16
16 4
25x 5 x
9y2
3y
注意: 如果被开方数是带 分数,应先化成假 分数再进行运算。
把分母中的根号化去,使分母变成有理数,这个过程叫做分
母有理化。
例:计算 1 3
5
2 3 2
27
3 8
2a
解:1 解法1: 3 3 3 5
5 5 55
解法2 :
5 26 5
3 6= 6
2
5
如果根号前 有系数,就 把系数相除, 仍旧作为二 次根号前的 系数
a
b
a b
a 0,b 0
商的算术平方根等于被除式的算术平方根除以
浙教版数学八年级下册1.3《二次根式的运算》说课稿1
浙教版数学八年级下册1.3《二次根式的运算》说课稿1一. 教材分析《二次根式的运算》是浙教版数学八年级下册第1章第3节的内容。
本节课的主要内容有:二次根式的加减运算、乘除运算和乘方运算。
这部分内容是整个初中数学中比较重要的一个部分,也是学生学习数学过程中难以理解的部分。
二次根式的运算不仅涉及到数学知识的运用,还涉及到数学思维的转化,对于学生来说是一个较大的挑战。
二. 学情分析学生在学习本节课之前,已经学习了实数、有理数和无理数的相关知识,对数学的基本概念和运算规则有一定的了解。
但是,对于二次根式的概念和运算规则,学生可能还比较陌生,需要通过本节课的学习来掌握。
另外,学生可能对于数学思维的转化还不是很熟练,需要通过老师的引导和练习来提高。
三. 说教学目标1.知识与技能:使学生掌握二次根式的加减运算、乘除运算和乘方运算的规则和方法。
2.过程与方法:培养学生对于数学思维的转化和运用,提高学生的数学运算能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力和团队合作精神。
四. 说教学重难点1.教学重点:二次根式的加减运算、乘除运算和乘方运算的规则和方法。
2.教学难点:二次根式的乘除运算和乘方运算,以及数学思维的转化。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等,引导学生自主学习,培养学生的数学思维能力。
2.教学手段:利用多媒体课件、黑板、粉笔等,进行直观的教学展示,帮助学生理解和掌握二次根式的运算规则。
六. 说教学过程1.导入:通过复习实数、有理数和无理数的相关知识,引导学生进入二次根式的学习。
2.讲解:讲解二次根式的加减运算、乘除运算和乘方运算的规则和方法,通过具体的例子来进行讲解,让学生理解和掌握。
3.练习:进行一些相关的练习题,让学生巩固所学的知识,并及时发现和解决问题。
4.总结:对本节课的内容进行总结,让学生明确学习的重点和难点。
5.作业:布置一些相关的作业,让学生进行巩固和提高。
二次根式的加减法
二次根式的加减法二次根式是数学中的一种特殊类型,由一个根号和一个数构成。
在这篇文章中,我们将讨论二次根式的加减法运算。
通过理解二次根式的性质和运算规则,我们能够有效地计算和简化这类数学表达式。
一、二次根式的定义二次根式是指具有形如√a的数学表达式,其中a为一个非负实数。
根号下的数称为被开方数,√a读作a的二次根。
例如,√4和√9分别等于2和3,因为2²等于4,3²等于9。
这些数都是被开方数的平方根。
二、二次根式的加法与减法原则1. 加法原则:当两个二次根式具有相同的根号下数时,我们可以将它们合并为一个根号下,然后在对应的系数上进行加法运算。
例如,√5 + 2√5 = 3√5解释:这里的√5和2√5具有相同的根号下数5,所以可以将它们合并为3√5。
2. 减法原则:与加法类似,在两个二次根式具有相同的根号下数时,我们可以将它们合并为一个根号下,然后在对应的系数上进行减法运算。
例如,3√7 - √7 = 2√7解释:这里的3√7和√7具有相同的根号下数7,所以可以将它们合并为2√7。
三、示例与应用让我们通过几个示例来进一步了解二次根式的加减法运算。
示例1:计算:√8 + 3√2解答:√8 = √4 × 2 = 2√2所以,√8 + 3√2 = 2√2 + 3√2 = 5√2示例2:计算:5√10 - 2√10解答:5√10 - 2√10 = 3√10示例3:计算:√18 + 4√3 - 2√12解答:√18 = √9 × 2 = 3√2√12 = √4 × 3 = 2√3所以,√18 + 4√3 - 2√12 = 3√2 + 4√3 - 2√3 = 3√2 + 2√3四、简化与合并在进行二次根式的加减法运算后,我们可以进一步将结果进行简化与合并。
具体而言,可以将相同根号下数的二次根式合并为一个根号下,并且对应的系数进行加减运算。
例如,2√5 + 3√5 = (2+3)√5 = 5√5在这个步骤中,我们将2√5和3√5合并为5√5,并对应的系数2和3进行加法运算。
2022-2023学年浙教版八年级数学下册《1-3二次根式的运算》同步测试题(附答案)
2022-2023学年浙教版八年级数学下册《1.3二次根式的运算》同步测试题(附答案)一.选择题(共7小题,满分28分)1.下列各式中,最简二次根式是()A.B.C.D.2.下列计算正确的是()A.B.C.D.3.计算:﹣=()A.﹣B.C.D.04.已知x=﹣2,y=+2,则+的值为()A.2B.﹣4C.4D.﹣25.下列二次根式中,不能与合并的是()A.B.C.D.6.计算式子(﹣2)2021(+2)2020的结果是()A.﹣1B.﹣2C.2﹣D.17.如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16﹣8B.﹣12+8C.8﹣4D.4﹣2二.填空题(共7小题,满分28分)8.化简,结果得.9.计算:(3+)÷=.10.若最简二次根式与可以合并,则a+b=.11.若x=2﹣,则代数式x2﹣4x﹣3的值为.12.规定a⊗b=•+,则(2⊗4)⊗=.13.已知,则=.14.三角形的三条边长分别为a,b,c,其面积S可用公式来求,其中p=(a+b+c),若一个三角形的三边长分别为2,3,4,则用上述公式可求得其面积为.三.解答题(共6小题,满分64分)15.计算:.16.计算:(﹣3)÷2.17.计算或化简:(1);(2).18.如图,在Rt△ABC中,∠ABC=90°,BD是高,AB=,AC=,BC=.(1)求△ABC的周长;(2)求BD的长度.19.在学习二次根式的过程中,小腾发现有一些特殊无理数之间具有互为倒数的关系例如:由(+1)(﹣1)=1,可得+1与﹣1互为倒数,即=﹣1,=+1,类似地,=﹣,=+;….根据小腾发现的规律,解决下列问题:(1)=,=;(n为正整数)(2)若=2﹣m,求m的值;(3)计算:.20.小明在解决问题:已知a=,求2a2﹣8a+1的值.他是这样分析与解的:∵a===2﹣,∴a﹣2=﹣,∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小明的分析过程,解决如下问题:(1)化简+++…+(2)若a=,①求4a2﹣8a+1的值;②直接写出代数式的值a3﹣3a2+a+1=;2a2﹣5a++2=.参考答案一.选择题(共7小题,满分28分)1.解:A.==2,因此选项A不符合题意;B.是最简二次根式,因此选项B符合题意;C.=x,因此选项C不符合题意;D.=,因此选项D不符合题意;故选:B.2.解:A.,故选项A计算错误,不符合题意;B.与不是同类项,不能合并,故选项B计算错误,不符合题意;C.,故选项C计算正确,符合题意;D.,故选项B计算错误,不符合题意.故选:C.3.解:﹣==0,故选:D.4.解:+=,当x=﹣2,y=+2时,x+y=﹣2++2=2,xy=(﹣2)(+2)=3﹣4=﹣1,∴原式==﹣2.故选:D.5.解:A、=2,能与合并,故此选项不符合题意;B、=2与不是同类二次根式,不能与合并,故此选项符合题意;C、=4,能与合并,故此选项不符合题意;D、=6,能与合并,故此选项不符合题意;故选:B.6.解:(﹣2)2021(+2)2020=[(﹣2)×(+2)]2020×(﹣2)=(﹣1)2020×(﹣2)=1×(﹣2)=﹣2,故选:B.7.解:∵两张正方形纸片的面积分别为16cm2和12cm2,∴它们的边长分别为=4cm,=2cm,∴AB=4cm,BC=(2+4)cm,∴空白部分的面积=(2+4)×4﹣12﹣16,=8+16﹣12﹣16,=(﹣12+8)cm2.故选:B.二.填空题(共7小题,满分28分)8.解:=﹣()=2﹣.故答案为:2﹣.9.解:原式=3÷+÷=+1.故答案为:+1.10.解:∵最简二次根式与可以合并,∴a﹣11=2﹣b,∴a+b=13.故答案为13.11.解:x2﹣4x﹣3=x2﹣4x+4﹣7=(x﹣2)2﹣7,当x=2﹣时,原式=(2﹣﹣2)2﹣7=5﹣7=﹣2,故答案为:﹣2.12.解:由题意可得:(×+)⊗=(2+)⊗=⊗=+=+.故答案为:+.13.解:设=a,=b,则a2=5+x2,b2=1+x2,∴a2﹣b2=(5+x2)﹣(1+x2)=4,∴(a+b)(a﹣b)=4,∵﹣=1,∴a﹣b=1,∴(a+b)×1=4,∴a+b=4,∴∵+=4,故答案为:4.14.解:∵三角形的三边长分别为2,3,4,p=(a+b+c),∴p=×(2+3+4)=,∵面积S可用公式来求,∴S===,故答案为:.三.解答题(共6小题,满分64分)15.解:=3﹣1﹣+=3﹣1﹣+2=4﹣.16.解:原式=(3﹣)×﹣(4+4+5)=2×2﹣4﹣4﹣5=4﹣4﹣4﹣5=﹣9.17.解:(1)==;(2)===﹣.18.解:(1)△ABC的周长为++=3+2+5=8+2;(2)∵△ABC是直角三角形,∴AB•BC=AC•BD,∴BD===.19.解:(1)=﹣,=﹣,故答案为:﹣,﹣;(2)∵=2﹣m,∴(2+m)(2﹣m)=1,∴8﹣m2=1,∴m2=7,∴m=;(3)=﹣1+﹣+﹣+•+﹣=﹣1=10﹣1=9.20.解:(1)原式=×(+++…+)=×(﹣1)=10=5;(2)①∵a=,∴4a2﹣8a+1=4×﹣8×(1)+1=5;②a3﹣3a2+a+1=﹣3+()+1=7+5﹣(9)++1+1=0;2a2﹣5a++2=2×++2=2;故答案为:0,2.。
二次根式的运算
二次根式的运算
二次根式的运算
1.积的算术平方根的性质:(a0,b0)积的算术平方根等于每个因式的算术平方根的积
2. 乘法法则:(a0,b0)二
次根式的乘法运算法则:两个二次根式相乘,等于把被开方数相乘,根指数不变。
3、商的算数平方根的性质(a0,b0)
4、除法法则(a0,b0)
二次根式的除法运算法则:两个二次根式相除,等于把被开方数相除,根指数不变。
5、有理化因式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做互为有理化因式。
如:的有理化因式为;的有理化因式也是
的有理化因式为;
6、同类二次根式:
一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
7、合并同类二次根式:把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
8、合并同类二次根式方法:二次根式的系数相加减,二次根式的被开放数及指数不变。
9、二次根式加减方法:先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
1.3二次根式的运算(2)
1 2 =2 3− 3− 3 3 3
= 3 ≈ 1.73
1 2 = (2). 27 − 3 6 × 2 3 (2). −3 3• 6 8 (3).( 48 − 27 ) ÷ 3
练习1
先化简,再求出近似值(精确到0.01). 先化简,再求出近似值(精确到0.01).
D A 4m B 6m E 7m C
两
已知a = 3 + 2,
种 方 法
b = 3 − 2, a − ab + b
2 2
.
提高题
不用计算器比较根式的大小. 不用计算器比较根式的大小
6 + 14和 7 + 13
解:∵ 6 + 14 )= 6+2 84 +14=20+2 84 √ √ (
2
( 7 + 13 ) = 20+2 91
(不正确 不正确) 不正确 (不正确 不正确) 不正确 (正确 正确) 正确
⑶
⑷
a a +b a = (a+b) a
1 3 1 3a − 2 2a = a −
⑸
a = 0
(不正确) 不正确
例3先化简,再求出近似值(精确到0.01)
1 1 12 − − 1 3 3
解 原式= 22 × 3 − 3 − 4 × 3 原式 2 2
A
B
C
二次根式的加减类似于整式的加减, 1.二次根式的加减类似于整式的加减, 二次根式的加减类似于整式的加减 可以运用合并同类项 分配律等 合并同类项, 可以运用合并同类项,分配律等. 二次根式的代数式相乘, 2.二次根式的代数式相乘,可看成是 二次根式的代数式相乘 多项式相乘. 多项式相乘. 二次根式加减的基本步骤: 3.二次根式加减的基本步骤: 二次根式加减的基本步骤 先化简,再合并. 先化简,再合并.
浙教版数学八年级下册1.3《二次根式的运算》教案2
浙教版数学八年级下册1.3《二次根式的运算》教案2一. 教材分析浙教版数学八年级下册1.3《二次根式的运算》教案2,主要讲述了二次根式的加减乘除运算方法。
这部分内容是中学数学中的重要组成部分,对于培养学生的数学思维能力和解决实际问题的能力具有重要意义。
通过本节课的学习,学生能够掌握二次根式的基本运算方法,为后续学习更高级的数学知识打下基础。
二. 学情分析八年级的学生已经掌握了实数、有理数等基础知识,对于数学运算有一定的认识。
但二次根式的运算相对于其他运算更为复杂,需要学生能够灵活运用已知知识,进行推理和计算。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行引导和解答疑问。
三. 教学目标1.知识与技能:使学生掌握二次根式的加减乘除运算方法,能够熟练地进行二次根式的运算。
2.过程与方法:通过小组合作、讨论交流等方法,培养学生的团队协作能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自信心,使学生感受到数学在生活中的重要性。
四. 教学重难点1.重点:二次根式的加减乘除运算方法。
2.难点:如何引导学生理解和掌握二次根式运算的规律,以及如何将实际问题转化为二次根式运算问题。
五. 教学方法1.情境教学法:通过生活实例引入二次根式运算,使学生能够直观地理解二次根式的实际意义。
2.引导发现法:教师引导学生发现二次根式运算的规律,培养学生的观察能力和推理能力。
3.小组合作法:学生在小组内进行讨论交流,共同解决二次根式运算问题,培养学生的团队协作能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,以便于展示和讲解二次根式的运算方法。
2.练习题:准备一些二次根式运算的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入二次根式运算的概念,例如:一个正方形的对角线长为8cm,求这个正方形的面积。
2.呈现(10分钟)教师通过PPT展示二次根式的加减乘除运算方法,引导学生观察和总结运算规律。
二次根式计算方法
二次根式计算方法
1 二次根式计算法
二次根式是一种求解多项式两个解的算法。
它的公式是:x的二次根式=\frac {-b\pm \sqrt {b^2-4ac}} {2a},其中a、b、c分别是一
元二次方程中的三个系数。
二次根式属于代数方面的基本运算,其用法极其简单。
在求解一
元二次方程时,只需要将当前的问题代入公式中,并将所有系数带入
公式中,就可以得到方程的两个解。
其计算过程仅仅需要使用最简单
的四则运算和开方运算,因此也是一种暴力破解的计算方法,而且可
以说是一种非常有效的破解方法。
在这里,当使用二次根式的时候要注意的有几点:首先,要确保
系数的准确性,否则会出现无法解决的错误;其次,开方过程中有些
系数会导致不等式的开方结果大于0,此时要检查不等式范围是否正确;最后,二次根式在求解一元二次方程时,会出现一项叫做“原式”的
数据,有时会因为这个“原式”数据而导致最后结果出错。
二次根式式一种求解一元二次方程两个解的暴力破解计算方法,
用户只需要正确输入方程系数和“原式”,就可以得到这个方程的两
个解,简单易用又精准。
1.3二次根式的运算(1,2,3)
1.3 二次根式的运算(1)【要点预习】1.二次根式的运算法则:(1)____(0,0)a b ≥≥; (2)____(0,0).a b =≥>【课前热身】1. = . 答案:92. .3.,则此长方形的面积是 .答案:4.(2008广州中考的倒数是 .【讲练互动】【例1】计算:.解:(1)原式=(2)原式.(3)原式20. 【绿色通道】二次根式乘除运算的一般步骤:一是运用法则,化归为根号内的实数运算;二是完成要根号内相乘、相除(约分)等运算;三是化简二次根式. 【变式训练】 1. 计算:;.答案:(1)(2);(3)(4)○【例2】若一个等边三角形的高为,求此等边三角形的面积.分析:根据题意作出图形,由于三角形的高已知,故要求面积的关键是求等边三角形的边长,这可在△ABD中由勾股定理可求得.解:如图,AD是等边△ABC的一条高,且AD=设等边△ABC的边长为x cm,则BD=CD=12x cm.∵AB2=BD2+AD2,∴(22212x x⎛⎫=+⎪⎝⎭,∴23244x=,x2=32,∵x>0,∴x=∴S△ABC=12⨯=【黑色陷阱】注意当题中没有预定精确度的要求时,最后结果可用化简的二次根式表示. 【变式训练】2.如图, Rt△ABC中,∠ACB=90°, BCAC=求斜边AB上的高CD.解:∵∠ACB=90°, ∴AB2=AC2+BC2=(2227+=.∵AB>0,∴AB=.∵S△ABC=12AC·BC=12AB·CD,∴AC BCCDAB⋅===【黑色陷阱】【同步测控】基础自测○1.(2007淮安中考))A. 2B. 4C. 8D. 16答案:4DCBADCBA2. 的结果是……………………………………………………………( )A. B. 答案:B3. 下列各式,计算正确的是…………………………………………………………………( )A .= B.=C.=D. 答案:C4.(2007厦门中考)= .5.如果等边三角形的高是3cm ,那么它的边长是___________cm.答案:6.方程0+的解是 .答案:x =7.计算:; ; (4).答案:;(2)(3)(4)8.cm ,下底是上底的2,求这个梯形的面积(精确到0.1cm 2).解:S =12=cm 2. 能力提升9.,则此直角三角形的面积是……( )A.2B.4C.8D.解析:=于是可得此直角三角形2=. 答案:A10. (2007青岛中考)1-= .解析:原式11211 -==-=.答案:111.不等式>的解是 .解析:不等式两边同除以x<=--.答案:x<-○12.==后,认为它们是一样的. 因此他认为一个化简过程:==2=是正确的. 你认为他的化简对吗? 说说理由.==成立的前提是必须满足a≥0且b>0,而本题在化简过程都不符合这一前提,故化简不对.解:不对.等都无意义.创新应用○13.已知等腰三角形的两边长分别为方程组41==①②的两个根,求这个等腰三角形的面积.分析:先利用加减消元法求得x,y的值,然后分x为腰长、y为底边及x为底边、y为腰长两种情况进行讨论,最后利用勾股定理分别求得两种情况下的等腰三角形底边上的高的长,进而求得这等腰三角形的面积.解:①+②,得x 5,∴x=①-②,得3=,∴y ==..===∴S 12=S 12=.1.3 二次根式的运算(2)【要点预习】1.二次根式的运算法则:整式运算的均适用于二次根式的运算.二次根式的加减运算实质是把合并.【课前热身】1.)A.±B.C.D.12答案:B2.(2007_________.答案:11=_______.3. 计算:)答案:2【讲练互动】【例1】先化简,再求出近似值. (精确到0.01)=≈.解:原式 5.20【绿色通道】可以合并的项的特征是所含的二次根式完全相同,合并的方法与多项式中合并同类项的方法一样.【变式训练】1.的结果是………………………………………………………( )B.1 C.D.答案:A【例2】计算:(2).解:(1)原式.(2)原式2121+-=. 【绿色通道】二次根式的四则混合运算的次序是先乘除,后加减;同时运算律同样适用于二次根式的计算. 【变式训练】 2.计算:(1) (2)答案:1. 【例3】计算:(1) ; (2) 22-.解:(1)原式=6612-=-.(2)原式=()()20502050+--=【绿色通道】多项式的乘法法则和乘法公式同样适用于二次根式的多项式相乘. 【变式训练】 3.计算:(1)(5⎛+ ⎝; (2) .答案:(1)(2)5-【同步测控】基础自测1.(2007威海中考)下列计算正确的是………………………………………………………( )4=D.(11+-=答案:C2.(2007荆门中考)下列计算错误..的是………………………………………………………( )= = D.3= 答案:D3. (2007绍兴中考)下列计算正确的是………………………………………………………( )= 答案:A4.(2007 .5. (2007黄冈中考)计算:2)= . 答案:16. (2007十堰中考)计算:21)=_________________.答案:3-7. (2007宜昌中考)的结果是 .答案:8.计算:; ; (3)(2007温州中考021)(1)+-;(4)-⋅ (5) (1+.答案:(1)-1;(3)(4)18-;(5)能力提升9. (2007临汾中考)的结果是………………………………( ) A. 6 B.34 C.632+ D.12解析:先分别对每个二次根式化简,得原式=(12== 答案:D10. 计算)211+的结果是………………………………………………………( )+1 B.)31C.1D.-1解析:原式=))1111⎡⎤=⎣⎦.答案:A11. (2008烟台中考)已知2,2a b ==) A. 3 B. 4 C. 5 D.6 解析:原式5.答案:C12. (2007桂林中考)规定运算:()a b a b *=-,其中a、b为实数,则)3+.333+=. 答案:3○13. (2008徐州中考) 已知21,23.x x x =--求的值解:原式=)22(1)41141x --=--=-. ○14.2-=.2=2=,x =创新应用○15. 阅读下列解题过程2==.==请回答下列问题(1)______________________.(2)利用上面所提供的解法,请化简:+.(3)不计算近似值,试比较与-的大小, 并说明理由. 分析:对于(1),注意到1==(2),可依次取n =2,3,…,99代入即可进行化简;对于(3)可用倒数法进行比较,即通过它们倒数大小的比较,进而来比较这两数的大小.解:(2))119-+++⋅⋅⋅+===;=<,<, .1.3 二次根式的运算(3)【要点预习】1.二次根式的应用:在日常生活和生产实践中,在解决一些问题,尤其是涉及 边长计算的问题时,经常用到 及其运算.【课前热身】1. 下列计算中,正确的是…………………………………………………………………( )A.=3C.=3- 答案:B2. 在Rt △ABC 中,∠C =Rt ∠,记,,.AB c BC a AC b === (1)若:b a =则:a c = ;(2)若:3,b c c == a = .答案:2;(2)【讲练互动】【例1】一铁路路基的横断面是梯形ABCD ,如图,已知AD =BC ,CD =8m,路基的高度DE =6m,斜坡BC的坡比是求路基下底宽AB 的长度(精确到0.1m). 解:作CF ⊥AB 于F , 则CF=DE =6m. ∵ i BC=CF BF =∴BF=在Rt △ADE 中, AD=BC , DE=CF , ∴Rt △ADE ≌Rt △BCF , ∴AE=BF=m. ∵EF=CD=8m, ∴AB=(8)m.【绿色通道】坡比是坡的垂直高度与水平宽度的比值. 有关坡比问题,往往通过作梯形的两条高(这两条高相等),将问题转化为解两个直角三角形和一个长方形的问题来解. 【变式训练】1. 水库大坝截面的迎水坡坡比(DE 与AE 的长度之比)为1:0.6,背水坡坡比为1:2,大坝高DE =30米,坝顶宽CD =10米,求大坝的截面的周长 (结果精确到0.01). 答案:198.07mFE DCBA【例2】如图,B 地在A 地的正东方向,两地相距282km ,A ,B 两地之间有一条东北走向的高速公路,A ,B 两地分别到这条高速公路的距离相等.上午8:00测得一辆在高速公路上行驶的汽车位于A 地的正南方向P 处.至上午8:20,B 地发现该车在它的西北方向Q 处,该段高速公路限速为110km /h ,问该车有否超速行驶?分析:要判断汽车有否超速,必须求出汽车在PQ 路段的速度,由于该路段行驶时间已知为20分钟,故只需求出PQ 的长即可,亦即求出PC 和CQ 的长即可,这可分别通过△APC 和△BCQ 来求得.解:由题意, 得∠ACP =∠BCQ =45°,∠B =45°,AP ⊥AB , 则 △ APC 和△BCQ 均为等腰直角三角形.又AC=BC=12AB=142km. ∴PC =228AC =km, PQ =142=km, ∴PQ =42km.∴V =12613PQ=km/h. ∴超速行驶. 【变式训练】2. 从一张斜边为30cm 等腰直角三角形的纸板中剪一个尽可能大的正方形,某同学分别给出了两种不同的剪法,但他不知道这两种剪法哪个正方形的面积大?你能通过计算帮他解决这个问题吗?分析:只需求出这两个正方形的边长即可,图甲中正方形的边长显然是以斜边的一半即15cm 为斜边的等腰直角三角形的直角边的长;图乙中正方形的边长显然为斜边长的三分之一,即10cm.解:S 1=2225222= ⎪⎝⎭;S 2=2301003⎛⎫= ⎪⎝⎭,∴S 1>S 2.【同步测控】基础自测1. 一个正方形鱼池的边长是6cm,另一个正方形鱼池的面积比第一个大45cm 2,则另一个鱼池的边长为……………………………………………………………………………………( )FE D CBAQPCBAA.8B.9C.10D.11 答案:B2. 如图,有两棵树,一棵高6米,另一棵高2米,两树相 距5米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了…………………( ) A.41米 B.41米 C.3米 D.9米 答案:B3. 在一道坡比为1∶7的斜坡上种有两棵小树,它们之间的距离为10米,则这两棵小树的高度差为 …………………………………………………………………………………( ) A.2米 B.2米 C.5米 D.5米 答案:B4. (2007莱芜中考)王英同学从A 地沿北偏西60°方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,这时王英同学离A 地的距离是……………………………………( ) A. 150m B.503m C.100m D.1003m答案:D5. 一个等腰三角形的腰长为10,底上的高为3,则底为 . 答案:276. 若10的整数部分是x ,小数部分是y ,则22x y -的值为 . 答案:61010-7. (2007辽宁中考)已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 . 答案:(2)n8.某村兴修水利,要挖一条深为1米,上口宽为1.5米的灌水渠道.如图是渠道横断面的示意图.已知渠道两侧内坡的坡比均为2∶1.AB CD EFG(1)求渠道内坡AB 和渠道底面宽BC 的长;(2)已知渠道总长为500米,求挖出的土石方是多少立方米? 答案:(1)0.55m, BC =0.5m ;(2)500立方米. 能力提升 ○9.若16x x +=,0<x <1,则1x x-的值是……………………………………( ) A .2- B .-2C .±2D .±2解析:()222114642x x x x ⎛⎫⎛⎫-=+-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,由于0<x <1,故1x x <,即12x x-=-. 答案:A10. (2007苏州中考)如图,小明作出了边长为1的第1个正△A 1B 1C 1,算出了正△A 1B 1C 1的面积. 然后分别取△A 1B 1C 1的三边中点A 2、B 2、C 2,作出了第2个正△A 2B 2C 2,算出了正△A 2B 2C 2的面积. 用同样的方法,作出了第3个正△A 3B 3C 3,算出了正△A 3B 3C 3的面积……,由此可得,第10个正△A 10B 10C 10的面积是…………………( ) A.931()44⨯ B.1031()44⨯ C.931()42⨯ D.1031()42⨯ 解析:边长为1的正△A 1B 1C 1的面积为2211311224⎛⎫⨯⨯-= ⎪⎝⎭,取△A 1B 1C 1的三边中点A 2、B 2、C 2后,易证得△A 1B 2C 2≌△A 2B 1C 2≌△A 2B 2C 1≌△A 2B 2C 2,故△A 2B 2C 2的面积为△A 1B 1C 1的面积的14,即3144⨯,同理,△A 3B 3C 3的面积为△A 2B 2C 2的面积的14,即△A 1B 1C 1的面积的214⎛⎫ ⎪⎝⎭,亦即23144⎛⎫⨯ ⎪⎝⎭,以此类推,△A n B n C n 的面积为△A 1B 1C 1的面积的114n -⎛⎫ ⎪⎝⎭,即13144n -⎛⎫⨯ ⎪⎝⎭.当n =10时,即得正△A 10B 10C 10的面积. 答案:C11. (2007佳木斯中考)如图,等腰直角△ABC 直角边长为1,以它的斜边上的高AD 为腰,做第一个等腰直角△ADE ;再以所做的第一个等腰直角△ADE 的斜边上的高AF 为腰,做第二个等腰直角△AFG ;……以此类推,这样所做的第n 个等腰直角三角形的腰长为 .AB CEFG解析:由于等腰直角三角形中直角边是斜边的22=,由于本题中第一个等腰直角三角形的直角边恰为第二个等腰直角三角形的斜边长,故每次变化腰长缩小为原来的2倍,以此类推,便可求得第n 个等腰直角三角形的腰长.答案:2n⎛⎫⎪ ⎪⎝⎭12. 如图,点A 是一个半径为300米的圆形森林公园的中心,在森林公园附近有B 、C 两个村庄,现要在B 、C 两村庄之间修一条长为1000米的笔直公路将两村连通.经测得∠ABC =45°,∠ACB =30°,问此公路是否会穿过该森林公园?请通过计算进行说明.分析:本题即求森林公园中心A 点到公路BC 的距离AH 与300米的半径的大小关系. 解:作AH ⊥BC 于H . 设AH=x m.∵∠ABC =45°,∠ACB =30°,∴BH=x m, CH =3x m. ∵BC =1000m, ∴31000x x +=, ∴31x =+≈366m>300m, ∴不会穿过该森林公园.○14. (2007宁夏中考)如图,网格中的小正方形边长均为1,ABC △的三个顶点在格点上,求ABC △中AB 边上的高.分析:要求AB 边上的高,只需求出△ABC 的面积和AB 边的长即可.解:∵S △ABC =1115332311232222⨯-⨯⨯-⨯⨯-⨯⨯=∴AB 边上的高=252422ABC S AB ==△.创新应用14. 如图,自卸车车厢的一个侧面是长方形ABCD ,AB =3米,BC =0.5米,车厢底部离地面1.2米,卸货时,车厢倾斜的角度为45°,问此时车厢的最高点A 距离地面多少米(精确到0.01米)?分析:作AP ⊥CE 于P , DF ⊥CE 于F ,DQ ⊥AP 于Q 后,车厢的最高点A 距离地面即为AQ ,PQ (DF ),1.2米三线段的和.解:作AP ⊥CE 于P ,DF ⊥CE 于F ,DQ ⊥AP 于Q .ABC∵∠DCE=45°,∴∠DAQ=45°.∴AQ=DQ=22=m,PQ=DF=3222=m.∴AP=23722 2.4824+=≈m.感谢您的阅读,祝您生活愉快。
二次根式化简的五种常用方法-概述说明以及解释
二次根式化简的五种常用方法-概述说明以及解释1.引言1.1 概述概述部分:根式化简是数学中一种常用的操作,尤其在解决代数问题时经常用到。
而二次根式化简作为根式化简中的一种重要形式,在数学学习中也是必须掌握的技能之一。
本文将介绍二次根式化简的五种常用方法,帮助读者更好地理解和掌握这一技巧。
在本篇文章中,我们将会依次介绍五种常用的二次根式化简方法。
每种方法都有其特定的适用场景和优势,通过详细的解释和实例演示,读者将能够全面了解每种方法的操作步骤和应用技巧。
文章的重点将在正文部分展开。
首先,我们将介绍方法一,其中包括要点一、要点二和要点三。
每个要点都将详细说明具体的操作步骤,并给出相应的例子进行演示。
接下来,我们将继续介绍方法二和方法三,同样包括各自的要点和具体的操作示例。
通过这些例子,读者将能够清晰地理解每种方法的原理和应用场景。
最后,在结论部分,我们将对每种方法进行总结,分别列举出它们的优点和适用情况。
这样,读者可以根据问题的具体要求和特点,选择合适的方法进行二次根式化简,提高问题的解题效率。
通过阅读本文,读者将能够全面了解二次根式化简的五种常用方法,并能够灵活运用它们解决实际问题。
无论是在学习阶段还是在数学实践中,掌握这些方法都是非常有益的。
希望本文能对读者有所启发,提升其数学解题能力和对根式化简的理解。
1.2文章结构文章结构部分的内容如下:1.2 文章结构本文将围绕二次根式化简展开,共分为三个主要部分:引言、正文和结论。
引言部分将对二次根式化简的概念进行概述,介绍二次根式化简在实际应用中的重要性,并明确本文的目的。
通过引言,读者将对二次根式化简有一个整体的认识,为接下来的内容做好准备。
正文部分是本文的核心部分,将详细介绍五种常用的二次根式化简方法。
具体而言,正文将分为三个章节,分别介绍方法一、方法二和方法三。
每个章节将分别列出该方法的要点,并逐一详细解释说明。
读者将通过正文部分全面了解每种方法的实施步骤和注意事项,从而掌握不同方法的应用场景和技巧。
二次根式的化简与运算详细解析
二次根式的化简与运算详细解析二次根式是数学中重要的一个概念,它在代数中的运算和化简是我们必须掌握的基本技能。
本文将详细解析二次根式的化简与运算,帮助读者更好地理解和应用这一概念。
一、二次根式的化简化简二次根式是将含有根号的表达式变得更简单,通常有以下几种方法:1. 分解因式法当二次根式中的根号下为完全平方数时,可使用分解因式法进行化简。
例如,对于√36,因为36是6的平方,我们可以得到√36=√(6×6)=6。
2. 求平方法当二次根式中的根号下含有两项且其中一项为平方时,可以使用求平方法进行化简。
例如,对于√(x+2)(x+2),我们可以将其展开为(x+2),即√(x+2)(x+2)=x+2。
3. 合并同类项法当二次根式中存在相同的根号下的项时,可以使用合并同类项法进行化简。
例如,对于√12+√12,我们可以将其合并为2√12。
二、二次根式的运算二次根式的运算包括加减乘除四种基本运算,下面将详细介绍每一种运算的步骤和方法。
1. 加法与减法运算对于二次根式的加法与减法运算,要求根号下的项相同,即它们的根号下含有相同的因式。
例如,对于√5+√3-√5,我们可以合并相同的根号项,得到√5-√5+√3,进而化简为√3。
2. 乘法运算二次根式的乘法运算需要使用分配律,即将一个二次根式乘以另一个二次根式,并化简结果。
例如,对于√2 × √3,我们可以运用分配律,得到√(2 × 3),即√6。
3. 除法运算二次根式的除法运算可以通过有理化的方法进行。
有理化是指将含有根号的表达式乘以一个合适的有理数,使得分子或分母中的根号项消去。
例如,对于√10/√2,我们可以将分子和分母都乘以√2,得到(√10 ×√2)/(√2 × √2),即√20/2。
进一步化简为√20/2=√4/1=2。
三、应用举例为了更好地理解和应用二次根式的化简与运算,下面通过一些具体例子进行说明。
二次根式的乘除运算--知识讲解(提高
二次根式的乘除运算—知识讲解(提高)责编:杜少波【学习目标】1.掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算.2.能运用二次根式的有关性质进行分母有理化.【要点梳理】要点一、二次根式的乘法1.乘法法则:(a≥0,b≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.要点诠释:(1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数).(2)该法则可以推广到多个二次根式相乘的运算:≥0,≥0,…..≥0).(3)若二次根式相乘的结果能写成的形式,则应化简,如.要点二、二次根式的除法1.除法法则:==(a≥0,b>0),即两个二次根式相除,根指数不变,把被开方数相除.要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数a、b的取值范围应特别注意,a≥0,b>0,因为b在分母上,故b不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.要点三、分母有理化1.分母有理化把分母中的二次根式化去叫做分母有理化.2.有理化因式两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式.有理化因式确定方法如下:a-a-与ba=b等分别互为有理化因式.a+与a-+②两项二次根式:利用平方差公式来确定.如+-.要点诠释:分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式.【典型例题】类型一、二次根式的乘除运算1.(1) 21521)74181(2133÷-⨯ (2)243)2()()(a a a -÷-⋅-【答案与解析】(1)原式=1(3()8=⨯-⨯ =34-(2)原式=22122a a -÷=-【总结升华】根据二次根式的乘除法则灵活运算,注意最终结果要化简.举一反三【变式】b b a b a x x b a -÷+⋅-5433622222【答案】原式=21⨯== 2.(2014秋•闵行区校级期中)计算:×(﹣2)÷.【思路点拨】本题中a 作为被开方数,说明a≥0,下面直接利用二次根式的乘除运算法则化简即可.【答案与解析】解:×(﹣2)÷=×(﹣2)×=﹣=﹣=﹣.【总结升华】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.举一反三:【变式】已知,且x 为偶数,求(1+x)的值.【答案】由题意得,即∴6<x≤9,∵x 为偶数,∴x=8∴原式=(1+x)=(1+x)=(1+x)=∴当x=8时,原式的值==6.类型二、分母有理化3. 把下列各式分母有理化:【思路点拨】找分母有理化因式.【答案与解析】(1)552555252=∙∙=(2)b a b a ba b a b a b a b a ba b a b a b a -+=--∙-=-∙--∙-=--)()()(222222(3)ba b a b a b a b a b a ba -=-∙+-∙-=+-)()()()(【总结升华】有理化因式不止一个,但以它们的乘积较简为宜.显然,a ±b 与a b ,a ±b 与a b ,a ±b 与a b 都是互为有理化因式.举一反三:【变式】(2014春•隆化县校级期末)阅读材料,并解决问题.定义:将分母中的根号化去的过程叫做分母有理化.如:将分母有理化.解:原式==+运用以上方法解决问题:(1)将分母有理化;(2)比较大小:(在横线上填“>”、“<”或“=”) (n≥2,且n为整数)(3)化简:+++…+.【答案】解:(1)===2﹣;(2)∵=+,=+,又<,∴<,∵=+,=+,∴<,故答案为:<,<;(3)原式=++…+=﹣1+﹣+﹣+…+﹣=﹣1.4.已知x=,y=,求下列各式的值:(1)x yx y+-;(2)223x xy y-+.【思路点拨】先把x、y的值分母有理化,再分别代入所求的两个式子即可.【答案与解析】77x y==-==+(1)x yx y+==-2222 (2)3(73(7(7194x xy y-+=---+++=【总结升华】此题考查分母有理化与二次根式乘除的应用.。
二次根式的加减法
二次根式的加减法二次根式是指根号下含有变量的代数式,表现形式为√a ,其中 a 为非负实数。
在数学中,我们常常需要对二次根式进行加减运算。
本文将详细介绍二次根式的加减法规则,以及一些实用的求解技巧。
一、二次根式的基本性质在进行二次根式的加减法之前,我们需要了解一些二次根式的基本性质,以便于后续运算。
1. 同类项的概念在进行加减法运算时,我们需要保证参与运算的二次根式是同类项。
同类项指的是具有相同根指数和根数的项。
例如,√2 和2√2 就是同类项,因为它们的根指数都为 2,且都是根号下的 2 乘以某个系数。
2. 二次根式的合并在进行加减法运算时,我们可以通过合并同类项的方式简化计算。
合并同类项的基本原则是保留相同根指数和根数,将系数相加或相减。
3. 二次根式的乘法与除法对于二次根式的乘法和除法,我们可以使用以下规则进行计算:•乘法:二次根式的乘法可以通过将根号内的数相乘,并保留相同的根指数和根数,这相当于将系数相乘。
•除法:二次根式的除法可以通过将根号内的数相除,并保留相同的根指数和根数,这相当于将系数相除。
二、二次根式的加法运算二次根式的加法运算可以通过合并同类项的方式进行,具体步骤如下:1.检查所要相加的二次根式是否为同类项,即根指数和根数是否相同。
2.如果是同类项,将系数相加,并保留相同的根指数和根数。
3.如果不是同类项,无法进行直接加法运算,需要将它们转化为同类项后再进行相加。
下面举一个具体的例子来说明二次根式的加法运算:例:计算√2 + 2√2这里的√2 和2√2 是同类项,因为它们的根指数都为 2,且都是根号下的 2 乘以某个系数(1 和 2)。
根据同类项的合并原则,我们将系数相加得到最终结果,即√2 + 2√2 = 3√2 。
三、二次根式的减法运算二次根式的减法运算与加法运算相似,同样是通过合并同类项进行计算。
具体步骤如下:1.检查所要相减的二次根式是否为同类项,即根指数和根数是否相同。
二次根式的运算
二次根式的运算二、知识要点:1.关于二次根式的概念,要注意以下几点:(1)从形式上看,二次根式是以根号“”表示的代数式,这里的开方运算是最后一步运算。
如,等不是二次根式,而是含有二次根式的代数式或二次根式的运算;(2)当一个二次根式前面乘有一个有理数或有理式(整式或分式)时,虽然最后运算不是开方而是乘法,但为了方便起见,我们把它看作一个整体仍叫做二次根式,而前面与其相乘的有理数或有理式就叫做二次根式的系数;(3)二次根式的被开方数,可以是某个确定的非负实数,也可以是某个代数式表示的数,但其中所含字母的取值必须使得该代数式的值为非负实数;(4)象“,”等虽然可以进行开方运算,但它们仍属于二次根式。
2.二次根式的主要性质:(1);(2);(3);(4)积的算术平方根的性质:;(5)商的算术平方根的性质:;(6)若,则。
3.注意与的逆用。
4.二次根式的运算:(1)二次根式的乘除运算:二次根式相乘除,把被开方数相乘除,根指数不变。
由特殊到一般,理解二次根式乘除运算法则的合理性;明确运算结果的要求,不断归纳运算结果应满足的两个要求:①应为最简二次根式(包括两个条件)或有理式;②分母中不含根号。
(2)二次根式的加减运算:先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并。
二次根式的加减运算需要先化为最简二次根式,再类比整式加减运算中的合并同类项,二次根式加减运算的实质是合并同类二次根式。
(3)二次根式的混合运算整式的运算顺序、运算法则、公式和运算律在二次根式的运算中同样适用。
一、二次根式的除法1. 运算法则:商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
2. 与积的算术平方根对比(1)共同点:一个根号变成两个根号(2)区别:取值范围不同。
3. 理解和记忆商的算术平方根要注意:(1)这里的被开方数是一个整式(可以是多项式,也可以是单项式。
)(2)注意被开方数的取值范围。
二、法则指导运算例1. 计算(1)(2)(3)(4)解:(1)原式(2)原式(3)原式(4)原式注意:一般我们遇到小数时常化为分数再化简。