二次根式运算和化简超级经典
8种常用二次根式化简计算技巧,8道考试真题详细讲解,抛砖引玉
8种常用二次根式化简计算技巧,8道考试真题详细讲解,抛砖引玉二次根式的化简计算题,很多同学觉得很难,考试的时候,总是容易发生计算错误。
只要掌握二次根式的性质和基本运算法则,这类考试题就是送分题。
下面,通过8道例题,来一起分享,二次根式化简计算题,在考试中常用的8种解题方法和技巧,希望可以起到一个抛砖引玉的作用。
方法技巧一、乘法公式法,一般都是运用到平方差公式,这个过程中,可以化二次根式为整数。
关键,是通过观察数字特征,找出可以套用乘法公式的部分,简化计算步骤和难度。
方法技巧二、拆项因式分解法。
也就是分子或者分母,通过拆项的方法,因式分解,方便分子分母约分。
那么二次根式的因式分解方法,类似于整式的因式分解。
方法技巧三、倒数法。
也就是先算二次根式的倒数,解除结果后,再倒回来的一个计算方法。
这个方法,应用特别广发。
一般特征是,原式的分子可以化成单项式的形式,分母是一个多项式,若先算倒数而且方便约分,就适用这个方法。
方法技巧四、分子分母约分法。
就是分子和分母先因式分解,然后约分的方法。
方法技巧五、配方法。
就是,二次根式里,被开方数先配方成完全平方的形式,然后再开方化简计算的一种方法。
一般,这类题目会是一个二重二次更是,甚至多重二次根式。
先配方法被开方数,就是主要化简方法。
方法技巧六、先平方,再开方法。
就是,二次根式先算出它的平方,再开方,得出原式的值的过程。
这类题型的一般特征,就是两个二次根式的被开方数恰好符合,平方差公式。
方法技巧七、换元法。
就是根据题意,数字特征,把数字设代成字母,方便书写和计算的一种方法。
换元法,又叫设代法,在很多的计算题中,都非常实用,相信大家也不陌生。
方法技巧八、整体思想法。
就是把原式,或者原式的某一部分看做一个整体,求出整体的值的解题方法。
整体思想,是数学里的一个非常重要的解题思想。
二次根式的化简技巧
二次根式的化简技巧二次根式是代数中的一种重要形式,它以根号和一个含有变量的表达式组成。
对于二次根式的化简,我们可以采用以下几种技巧进行简化,从而使表达式更加清晰和易于计算。
技巧一:提取公因式当二次根式的根号下含有可以被分解为两个数的乘积时,我们可以通过提取公因式的方法进行化简。
具体操作如下:例子:化简√(9x^2y^2)步骤:1. 提取公因式,即将根号内的表达式拆分成两个平方数的乘积。
√(9x^2y^2) = √(9) * √(x^2y^2)2. 计算每个平方数的平方根。
√(9) * √(x^2y^2) = 3xy技巧二:平方差公式当二次根式的根号下含有和或差的形式时,我们可以利用平方差公式进行化简。
平方差公式表达式如下:(a - b)(a + b) = a^2 - b^2例子:化简√(x^2 - 4)步骤:1. 将二次根式转化为平方差的形式。
√(x^2 - 4) = √[(x - 2)(x + 2)]2. 利用平方差公式进行展开。
√[(x - 2)(x + 2)] = √(x - 2) * √(x + 2)技巧三:有理化分母当二次根式出现在分母中时,为了方便计算,我们可以采用有理化分母的方法将其转化为分子含有整数的形式。
例子:化简1/√3步骤:1. 利用乘法的交换律,将分母中的二次根式移至分子。
1/√3 = √3/32. 分母有理化,即将分母中的二次根式消除。
√3/3 = (√3 * √3)/(3 * √3) = √3/3√3 = 1/(3√3)通过以上三个化简技巧,我们可以简化二次根式的表达式,使其更易于计算和理解。
在实际应用中,这些技巧可以帮助我们高效地进行代数运算,解决问题。
掌握和熟练运用这些技巧,能提高我们的数学能力和解题能力。
总结:化简二次根式的技巧包括提取公因式、利用平方差公式和有理化分母。
通过灵活运用这些技巧,我们能够简化复杂的二次根式表达式,使其更具可读性和计算性。
掌握这些技巧有助于提高数学运算能力和问题解决能力。
二次根式化简八种方法
二次根式化简八种方法哇塞,二次根式化简超重要好不好!咱先说说最简二次根式法,就是把根式里的数或式子分解成完全平方数和其他数的乘积,然后把完全平方数开出来。
这就好比整理杂乱的房间,把有用的东西挑出来放好,没用的扔掉。
注意可别把不该开出来的也瞎开哦!那安全性和稳定性嘛,只要你认真按照步骤来,肯定不会出啥幺蛾子。
这种方法在数学作业和考试中那可老常用了,优势就是简单直接,让你的答案干净利落。
比如化简根号24,把24 分解成4×6,4 是完全平方数,开出来就是2 倍根号6。
再说说分母有理化法,把分母中的根式去掉,这就像给一个刺头穿上件柔软的外套,让它变得温顺。
哎呀,这可一定要小心,弄错一步就全完啦。
在工程计算中经常用到呢,好处就是让计算更顺畅。
比如1/根号2,分子分母同乘根号2,就变成根号2/2。
还有同类二次根式合并法,把相同的根式合并在一起,就像把一群志同道合的小伙伴聚在一起。
这多棒呀!要是弄错了可就乱套啦。
在实际问题求解中很有用,能让问题变得清晰明了。
比如2 倍根号3 加3 倍根号3 等于5 倍根号3。
平方差公式法也不错哦,利用平方差公式来化简。
这就如同找到了一把神奇的钥匙,能打开复杂问题的大门。
可别粗心大意用错公式哟。
在一些复杂的计算中能大显身手,让难题变得容易。
比如化简根号下(5+2 倍根号6),可以看成根号下(2+3+2 倍根号6),也就是根号下((根号2)²+(根号3)²+2 倍根号6),正好是根号下(根号2+根号3)²,结果就是根号2+根号3。
完全平方公式法也厉害着呢,把式子变成完全平方的形式再化简。
这就好像给一个灰姑娘穿上水晶鞋,瞬间变得美丽动人。
但可得仔细观察式子,别搞错了。
在代数证明中经常用到,能让证明过程更简洁。
比如化简根号下(x²+2x+1),就是根号下(x+1)²,结果是|x+1|。
整体代入法也超好用,把一个复杂的式子看成一个整体进行化简。
二次根式的化简与运算
二次根式的化简与运算二次根式是高中数学中的一个重要概念,它在代数运算中起到了重要的作用。
本文将从化简与运算两个方面来探讨二次根式的性质和应用。
首先,我们来看二次根式的化简。
对于一个二次根式,如果它的被开方数可以被分解为两个平方数的乘积,那么就可以进行化简。
例如√12可以化简为2√3,因为12可以分解为4×3。
这样的化简可以使计算更加简便,减少错误的可能性。
除了分解为平方数的乘积,有时候还可以利用有理化的方法对二次根式进行化简。
有理化是指将含有根号的式子转化为不含根号的式子。
例如,对于√(3/5),我们可以将分子和分母都乘以√5,得到√(15/25),进一步化简为√15/5,即√15/√5,最后化简为√15/5√5。
有理化的方法可以将二次根式的运算转化为有理数的运算,便于计算和推导。
接下来,我们来讨论二次根式的运算。
二次根式的运算主要包括加减乘除四种基本运算。
在进行加减运算时,要注意被开方数相同的二次根式可以进行合并。
例如,√3+√3可以合并为2√3。
而对于不同的二次根式,我们无法直接进行合并,只能保持原样。
在进行乘法运算时,我们可以利用分配律和乘法的交换律来简化计算。
例如,(√2+√3)(√2-√3)可以化简为(√2)^2-(√3)^2,即2-3,最后得到-1。
在进行除法运算时,我们可以利用有理化的方法将分母有根号的二次根式转化为不含根号的形式,然后进行分数的除法运算。
除了基本运算,二次根式还可以进行幂运算。
对于一个二次根式的n次方,我们可以利用指数运算的性质进行化简。
例如,(√2)^3可以化简为√2^3,即2√2。
在进行指数运算时,我们要注意指数的奇偶性。
如果指数是偶数,那么二次根式的n次方可以化简为被开方数的n/2次方;如果指数是奇数,那么二次根式的n次方可以化简为被开方数的n/2次方乘以√被开方数。
除了化简与运算,二次根式还有许多应用。
在几何中,二次根式常常与勾股定理相关联。
例如,在一个直角三角形中,如果两条直角边的长度分别为a和b,那么斜边的长度可以表示为√(a^2+b^2)。
第6讲 二次根式的混合运算与化简求值(解析版)
第06讲二次根式的混合运算与化简求值一.解答题1.(2023秋•新蔡县期中)计算:;【分析】(1)先计算二次根式的除法,再算减法,即可解答;【解答】解:(1)=3﹣2+=3﹣2+2=3;2.(2023秋•和平区校级期中)计算:(1)()﹣1+(1﹣)0+|﹣2|;(2)÷﹣×+.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先计算二次根式的乘除法,再算加减,即可解答.【解答】解:(1)()﹣1+(1﹣)0+|﹣2|=2+1+2﹣=5﹣;(2)÷﹣×+=﹣+4=﹣+4=4﹣2+4=2+4.3.(2023秋•金塔县期中)计算:(1);(2);(3);(4).【分析】(1)把各个二次根式化成最简二次根式,然后合并同类二次根式即可;(2)先把各个二次根式化成最简二次根式,然后利用乘法分配律进行计算即可;(3)先根据二次根式的乘法法则进行计算,再把二次根式化成最简二次根式,进行合并即可;(4)先根据二次根式的除法法则进行计算,再把二次根式化成最简二次根式,进行合并即可;【解答】解:(1)原式==;(2)原式==9+1=10;(3)原式===;(4)原式===4.(2023秋•太原期中)计算下列各题:(1);(2);(3);(4).【分析】(1)先化简,然后合并同二次根式即可;(2)先算乘法,再化简即可;(3)根据完全平方公式将式子展开,然后合并同类二次根式和同类项即可;(4)先化简,然后合并同二次根式即可.【解答】解:(1)=3﹣5+4=2;(2)===;(3)=20﹣4+1+4=21;(4)=﹣3+5=.5.(2023秋•郓城县期中)计算:(1)﹣+;(2)|﹣1|+﹣;(3)+×﹣|2﹣|;(4)﹣(+1)2﹣(+3)×(﹣3).【分析】(1)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答;(3)先化简各式,然后再进行计算即可解答;(4)利用完全平方公式,平方差公式,进行计算即可解答.【解答】解:(1)﹣+=3﹣2+=2;(2)|﹣1|+﹣=﹣1+3﹣2=;(3)+×﹣|2﹣|=2+5×﹣(﹣2)=2+2﹣+2=3+2;(4)﹣(﹣(+3)×(﹣3)=﹣(4+2)﹣(5﹣9)=﹣4﹣2+4=﹣2.6.(2023秋•太和区期中)计算:(1);(2);(3);(4);(5);(6).【分析】(1)先计算二次根式的乘法,再算加减,即可解答;(2)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答;(3)先计算二次根式的乘除法,再算加减,即可解答;(4)先计算二次根式的乘除法,零指数幂,再算加减,即可解答;(5)先化简各式,然后再进行计算即可解答;(6)利用完全平方公式,平方差公式进行计算,即可解答.【解答】解:(1)=﹣5=6﹣5=1;(2)=+3﹣3=;(3)=(﹣)÷=÷﹣÷=﹣=2﹣;(4)=+1﹣=+1﹣4=﹣3;(5)=﹣3+4﹣+﹣1=0;(6)=3﹣2+2﹣(6﹣1)=3﹣2+2﹣5=﹣2.7.(2022秋•青羊区校级期末)计算:(1);(2)|﹣2|+(2023+π)0+﹣(﹣)﹣2.【分析】(1)先计算二次根式的乘法,再算加减,即可解答;(2)先计算二次根式的乘除法,再算加减,即可解答.【解答】解:(1)=2+﹣3+=3﹣2;(2)|﹣2|+(2023+π)0+﹣(﹣)﹣2=2﹣+1+﹣4=2﹣+1+3﹣4=2﹣.8.(2023秋•锦江区校级期中)计算:(1);(2).【分析】(1)先化简各式,然后再进行计算即可解答;(2)利用平方差公式,完全平方公式进行计算,即可解答.【解答】解:(1)=1+|5﹣5|﹣=1+5﹣5﹣3=5﹣7;(2)=3﹣4+4﹣(3﹣2)=3﹣4+4﹣1=6﹣4.9.(2023秋•汝阳县期中)计算:(1)5;(2)()2﹣(2+3)2024(2﹣3)2023.【分析】(1)先计算二次根式的乘法,再算加减,即可解答;(2)先计算二次根式的乘法,再算加减,即可解答.【解答】解:(1)5=+﹣×﹣×2=+﹣5﹣2=﹣5;(2)()2﹣(2+3)2024(2﹣3)2023.=2﹣2+1﹣[(2+3)2023(2﹣3)2023]×(2+3)=2﹣2+1﹣[(2+3)(2﹣3)]2023×(2+3)=2﹣2+1﹣(8﹣9)2023×(2+3)=2﹣2+1﹣(﹣1)2023×(2+3)=2﹣2+1﹣(﹣1)×(2+3)=2﹣2+1+2+3=6.10.(2023秋•皇姑区校级期中)计算:(1)﹣(+1)2+(+1)(﹣1).(2)﹣(﹣1)2023+(π﹣2021)0﹣|5﹣|﹣()﹣2;【分析】(1)利用平方差公式,完全平方公式进行计算,即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)﹣(+1)2+(+1)(﹣1)=3﹣(2+2+1)+3﹣1=3﹣2﹣2﹣1+3﹣1=﹣1;(2)﹣(﹣1)2023+(π﹣2021)0﹣|5﹣|﹣()﹣2=﹣(﹣1)+1﹣(﹣5)﹣4=1+1﹣3+5﹣4=3﹣3.11.(2023秋•潞城区校级期中)阅读与思考.下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.双层二次根式的化简二次根式的化简是一个难点,稍不留心就会出错,我在上网还发现了一类带双层根号的式子,就是根号内又带根号的式子、它们能通过完全平方公式及二次根式的性质消掉外面的一层根号.例如:要化简,可以先思考(根据1)..通过计算,我还发现设(其中m,n,a,b都为正整数),则有a+b.∴a=m2+2n2,b=2mn.这样,我就找到了一种把部分化简的方法.任务:(1)文中的“根据1”是完全平方式,b=2mn.(2)根据上面的思路,化简:.(3)已知,其中a,x,y均为正整数,求a的值.【分析】(1)根据完全平方公式进行解答即可;(2)根据题干中提供的信息,进行变形计算即可;(3)根据,得出a=x2+3y2,4=2xy,根据x,y为正整数,求出x=2,y=1或x=1,y=2,最后求出a的值即可.【解答】解:(1)的根据是完全平方公式;∵,∴a=m2+2n2,b=2mn.故答案为:完全平方公式;2mn.(2)===.(3)由题意得,∴a=x2+3y2,4=2xy,∵x,y为正整数,∴x=2,y=1或x=1,y=2,∴a=22+3×12=7或a=12+3×22=13.12.(2023秋•龙泉驿区期中)已知x=,y=.(1)求x2+y2+xy的值;(2)若x的小数部分是m,y的小数部分是n,求(m+n)2021﹣的值.【分析】(1)先利用分母有理化化简x和y,从而求出x+y和xy的值,然后再利用完全平方公式进行计算,即可解答;(2)利用(1)的结论可得:m=2﹣,n=﹣1,然后代入式子中进行计算,即可解答.【解答】解:(1)∵x===2﹣,y===2+,∴x+y=2﹣+2+=4,xy=(2﹣)(2+)=4﹣3=1,∴x2+y2+xy=(x+y)2﹣xy=42﹣1=16﹣1=15;(2)∵1<<2,∴﹣2<﹣<﹣1,∴0<2﹣<1,∴2﹣的小数部分是2﹣,∴m=2﹣,∵1<<2,∴3<2+<4,∴2+的小数部分=2+﹣3=﹣1,∴n=﹣1,∴(m+n)2021﹣=(2﹣+﹣1)2021﹣(n﹣m)=12021﹣[﹣1﹣(2﹣)]=1﹣(﹣1﹣2+)=1﹣+1+2﹣=4﹣2.13.(2023秋•双流区校级期中)阅读下列材料,然后回答问题.在进行二次根式运算时,我们有时会碰上这样的式子,其实我们还可以将其进一步化简:﹣1,以上这种化简的步骤叫作分母有理化.(1)化简:;(2)已知的整数部分为a,小数部分为b,求a2+b2的值.(3)计算:+++…++.【分析】(1)利用分母有理化进行计算,即可解答;(2)先利用分母有理化进行化简,然后再估算出的值的范围,从而估算出2+的值的范围,进而可求出a,b的值,最后代入式子中进行计算,即可解答;(3)先利用分母有理化化简各式,然后再进行计算即可解答.【解答】解:(1)===﹣,故答案为:﹣;(2)===2+,∵1<3<4,∴1<<2,∴3<2+<4,∴2+的整数部分是3,小数部分=2+﹣3=﹣1,∴a=3,b=﹣1,∴a2+b2=32+(﹣1)2=9+3﹣2+1=13﹣2;(3)+++…++=+++…++=﹣1+﹣+﹣+…+﹣+﹣=﹣1=10﹣1=9.14.(2023秋•大东区期中)观察下列各式:第一个式子:=1=1+(1﹣);第二个式子:=1=1+();第三个式子:=1=1+();…(1)求第四个式子为:;(2)求第n个式子为:(n为正整数)(用n表示);(3)求+…+的值.【分析】(1)观察题中所给式子各部分的变化规律即可解决问题.(2)利用(1)中的发现即可解决问题.(3)根据(2)中的结论即可解决问题.【解答】解:(1)观察题中所给式子可知,第四个式子为:.故答案为:.(2)由(1)中的发现可知,第n个式子为:.故答案为:(n为正整数).(3)原式==1×2022+=2022+1﹣=.15.(2023秋•晋中期中)阅读与思考:观察下列等式:第1个等式=;第2个等式;第3个等式:;…按照以上规律,解决下列问题:(1)=4﹣;(填计算的结果)(2)计算:.【分析】(1)利用分母有理化进行化简计算,即可解答;(2)利用材料的规律进行计算,即可解答.【解答】解:(1)===4﹣,故答案为:4﹣;(2)=(﹣1+﹣+2﹣+…+﹣)×(+1)=(﹣1)×(+1)=2023﹣1=2022.16.(2023秋•郁南县期中)综合探究:像,…两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如与,2与等都是互为有理化因式.在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.例如:;.根据以上信息解答下列问题(1)与+互为有理化因式;(2)请你猜想=﹣;(n为正整数)(3)<(填“>”“<”或“=”);(4)计算:(+++…+)×(+1).【分析】(1)利用互为有理化因式的定义,即可解答;(2)利用分母有理化进行化简计算,即可解答;(3)先求出它们的倒数,然后再进行比较,即可解答;(4)利用分母有理化先化简各数,然后再进行计算即可解答.【解答】解:(1)与+互为有理化因式,(2)==﹣,故答案为:﹣;(3)∵==+,==+,+>+,∴>,∴<,故答案为:<;(4)(+++…+)×(+1)=[+++…+]×(+1)=(+++…+)×(+1)=(﹣1+﹣+﹣+…+﹣)×(+1)=(﹣1)×(+1)=×(2023﹣1)=×2022=1011.17.(2023秋•平阴县期中)阅读下列材料,然后解决问题.在进行二次根式的化简时,我们有时会遇到形如,,的式子,其实我们可以将其进一步化简:,=,如上这种化简的步骤叫做“分母有理化”.(1)化简=,=,=﹣.(2)化简:.【分析】(1)利用例题的解题思路进行计算,即可解答;(2)先进行分母有理化,然后再进行计算即可解答.【解答】解:(1)==,==,===﹣,故答案为:;;﹣;(2)=+++=+++=(﹣1+﹣+﹣+﹣)=.18.(2023春•莱芜区月考)观察下列一组等式,然后解答问题:,,,,…….(1)利用上面的规律,计算:;(2)请利用上面的规律,比较与的大小.【分析】(1)归纳总结得到一般性规律,计算即可求出式子的值;(2)利用得出的规律将与进行转化,再进行比较即可.【解答】解:(1)原式===;(2)由题意得,,,∵,∴.19.(2023春•宁海县期中)已知:a=+2,b=﹣2,求:(1)ab的值;(2)a2+b2﹣3ab的值;(3)若m为a整数部分,n为b小数部分,求的值.【分析】(1)代入求值即可;(2)代入求值,可将(1)的结果代入;(3)根据题意估算出m、n的值,代入分式,化简计算.【解答】解:(1)∵a=+2,b=﹣2,∴ab=(+2)(﹣2)=7﹣4=3;(2)∵a=+2,b=﹣2,ab=3,∴a2+b2﹣3ab=a2+b2﹣2ab﹣ab=(a﹣b)2﹣ab=[(+2)﹣(﹣2)]2﹣3=(+2﹣+2)2﹣3=42﹣3=16﹣3=13;(3)∵m为a整数部分,n为b小数部分,a=+2,b=﹣2,∴m=4,n=b=﹣2∴===,∴的值.20.(2023•沈丘县校级开学)已知a,b,c是△ABC的三边长.(1)若a,b,c满足(a﹣b)(b﹣c)=0,试判断△ABC的形状;(2)化简:﹣.【分析】(1)根据若ab=0,则a=0或b=0,求出a与b,b与c的关系,进行解答即可;(2)先根据三角形三边关系,判断a+b﹣c和a﹣b﹣c的正负,再利用二次根式的性质进行计算化简即可.【解答】解:(1)∵a,b,c满足(a﹣b)(b﹣c)=0,∴a﹣b=0或b﹣c=0,∴a=b或b=c,∴△ABC是等腰三角形;(2)∵a,b,c是△ABC的三边长,∴a+b>c,a﹣b<c,∴a+b﹣c>0,a﹣b﹣c<0,∴=a+b﹣c﹣(﹣a+b+c)=a+b﹣c+a﹣b﹣c=2a﹣2c21.(2023•江北区开学)求值:(1)若,,求的值;(2)若的整数部分为a,小数部分为b,求的值.【分析】(1)先求出ab和a+b的值,然后利用完全平方公式进行计算即可解答;(2)先利用分母有理化进行化简可得=,然后估算出的值的范围,从而求出a,b 的值,然后代入式子中进行计算,即可解答.【解答】解:(1)∵,,∴ab=(﹣1)(+1)=3﹣1=2,a+b=﹣1++1=2,∴=====4,∴的值为4;(2)==,∵4<7<9,∴2<<3,∴5<3+<6,∴<<3,∴的整数部分为2,小数部分为﹣2=,∴a=2,b=,∴=22+(1+)×2×+=4+7﹣1+=10+=,∴的值为.22.(2023春•清江浦区期末)像、、…两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,例如,和、与、与等都是互为有理化因式,在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)计算:①=,②=;(2)计算:.【分析】(1)①分子、分母都乘即可;②分子、分母都乘即可;(2)第一项分子、分母都乘以,第二项分子、分母都乘以,再计算即可.【解答】解:(1)①,故答案为:;②,故答案为:;(2)===2+﹣﹣1=1.23.(2023春•珠海校级期中)观察式子:,反过来:,∴,仿照上面的例子:(1)化简①;②;(2)如果x+y=m,xy=n且x>y>0,化简.【分析】(1)模仿示例将更号里面算式变形为完全平方式的形式进行化简;(2)将算式变形为,再运用二次根式的性质进行化简.【解答】解:(1)①====+1;②====;(2)∵x+y=m,xy=n且x>y>0,∴====+.24.(2023春•濮阳期中)已知,,求下列代数式的值.(1)a2﹣2ab+b2;(2)a2﹣b2.【分析】(1)先计算a+b和a﹣b的值,将原式分解因式,再将a﹣b的值代入计算即可;(2)将原式分解因式,再将a+b和a﹣b的值代入计算即可.【解答】解:(1)∵,,∴,,∴a2﹣2ab+b2=(a﹣b)2=42=16;(2)a2﹣b2=(a+b)(a﹣b)==.25.(2023春•张店区期末)阅读材料,解答下列问题.材料:已知,求的值.小明同学是这样解答的:∵==5﹣x﹣2+x=3,∵,∴,这种方法称为“构造对偶式”.问题:已知.(1)求的值;(2)求x的值.【分析】(1)利用例题的解题思路进行计算,即可解答;(2)利用(1)的结论可得2=5,从而可得=2.5,进而可得9+x=6.25,然后进行计算即可解答.【解答】解:(1)∵(﹣)(+)=()2﹣()2=9+x﹣3﹣x=6,∵,∴=2,∴的值为2;(2)由(1)得:﹣=2,+=3,∴2=5,∴=2.5,∴9+x=6.25,∴x=﹣2.75,∴x的值为﹣2.75.。
二次根式的化简
二次根式的化简二次根式是数学中的一个重要概念,它在解方程、求平方根等方面都有广泛的应用。
化简二次根式是指将其写成最简形式,以便于计算和理解。
本文将介绍二次根式的化简方法,并给出一些例子进行演示。
1. 同底数的二次根式相加减:当两个二次根式的底数相同时,可以直接将它们的系数相加或相减,并保持底数不变。
例如,化简√5 + 2√5:可以将√5看作是√5的系数为1的一次方根,则√5 + 2√5 = (1 + 2)√5 = 3√5。
再例如,化简4√7 - 3√7:可以将√7看作是√7的系数为1的一次方根,则4√7 - 3√7 = (4 - 3)√7 = √7。
2. 二次根式的有理化:有些二次根式的底数含有其他根号,这时可以采用有理化的方法化简。
例如,化简√(2 + √3):先将其表示为a + b√c的形式,其中a、b、c为有理数,即√(2 + √3)= a + b√c。
根据平方根的性质,可得(a + b√c)² = 2 + √3。
展开并比较实部和虚部的系数,解得a = 1,b = 1,c = 3。
因此,√(2 + √3)= 1 + √3。
再例如,化简1/√(2 + √3):同样地,将其表示为a + b√c的形式,即1/√(2 + √3)= a + b√c。
根据倒数的性质,可得(a + b√c)² = 1/(2 + √3)。
展开并比较实部和虚部的系数,解得a = 1/3,b = -1/3,c = 3。
因此,1/√(2 + √3)= 1/3 - 1/3√3。
3. 二次根式的乘法和除法:二次根式的乘法和除法可以采用分配律的方法进行。
例如,化简(√2 + √3)²:根据分配律和平方根的性质,(√2 + √3)² = (√2 + √3)(√2 + √3)= 2 + 2√6 + 3= 5 + 2√6。
再例如,化简(√6 - √2)/√3:同样地,根据分配律和平方根的性质,(√6 - √2)/√3 = (√6/√3) - (√2/√3)= √2 - √(2/3)。
化简二次根式的方法和技巧
化简二次根式的方法和技巧
以下是 9 条关于化简二次根式的方法和技巧:
1. 嘿,你知道吗,可以先看看被开方数里有没有能开出来的整数!比如说,像根号 48,不就可以写成根号 16 乘 3 嘛,这不就简单多啦!
2. 哇哦,完全平方数可是个宝呀!要是被开方数里能凑出完全平方数,那可太好啦!就像根号 12 可以变成根号 4 乘 3,等于 2 根号 3 呀。
3. 嘿呀,分母有理化可别忘!如果碰到分母有根式的,想办法给它弄干净呀!比如 2 除以根号 2,分子分母同乘根号 2,就变成 2 根号 2 除以 2,也就是根号 2 啦。
4. 你想想看呀,同类二次根式要合并呀!像 3 根号 5 加 4 根号 5,不就等
于 7 根号 5 吗,多简单!
5. 哎呀呀,根式里的小数也得处理呀!把小数变成分数再化简呀!就像根号,那就是根号 1/4,不就是 1/2 嘛。
6. 嘿!遇到那种超级复杂的式子,别慌呀,一步一步来!就像解难题一样,逐个击破嘛!
7. 哇,碰到带字母的根式也别怕呀!按照规则来,该怎么化就怎么化!比如根号 x 的平方,不就是 x 嘛。
8. 咦,要善于观察式子的特点呀!有时候一眼就能发现化简的方法呢!像根号 50 减根号 8,这不很明显可以化简嘛!
9. 哈哈,多练习才能更熟练呀!你不练怎么能掌握这些神奇的技巧呢?对吧!
总之,化简二次根式就得多尝试,多找感觉,你就能轻松搞定啦!。
二次根式混合运算(经典)
(1)( 3 7- 6)( 5 3) 4
(2) 15 ( 1 + 1 ) 32
(1)3 35+ 3 21- 1 30- 3 2
8
8
2
2
(2)3 30-6 5
例:计算
(1) 10
4 (2)
1
1
5 51
x 1 x2 x 1 x2
解:(1)原式= 10 5
4( 5 1)
时,乘以什么样的式子,分母 中的根式符号可去掉 ?
上次更新: 2024年9月18日星期三
例 将下列各式分母有理化因式
(1) 3 3 1
(2) 1 4 33 2
(3) m-n (m n) m n
(4) 2 5 2 3
3 3 2
4 33 2 30
m n
2 5 2 6
3 5 2 3 2 3 3 5
2
x-3
例5:化简: 3 2 2 3 2 2
解:原式= ( 2 1)2 ( 2 1)2
= 2 1
2 1
= 2 1 ( 2 1)
= 2 1 2 1
=-2
, 求 a2 2ab b2 7的值
解:(1) x y x y x y
= x( x y)- ( y x y) ( x y)( x y)
(2) a 1 5 2 , 52
b= 1 5 2. 52
= x xy- yx y x-y
= x+y
x-y
当x 1 , y 1 23
时,
5 ( 5 1)( 5 1)
= 2 5 ( 5 1)
(2)原式
51
2x
(x 1 x2 )(x
2x x2 (1 x2 )
二次根式的运算及化简求值技巧
二次根式的运算及化简求值技巧嘿,朋友们,今天咱们聊聊一个让人又爱又恨的话题——二次根式。
对,这就是那些看起来像“√2”、“√5”这种的根式。
别急,虽然听上去像是数学天书,其实也没那么难懂。
咱们一起理清楚,搞定这些小家伙,让它们乖乖听话!1. 二次根式是什么?1.1 根式的定义首先,咱们得搞清楚什么是二次根式。
简单来说,二次根式就是根号下的数字,比如√4、√9、√x。
这个√就是根号的意思,表示一个数的平方根。
举个例子,√4等于2,因为2的平方是4。
同理,√9等于3,因为3的平方是9。
是不是觉得有点小有趣?1.2 根式的分类接下来,根式的世界可不止这么简单。
根式可以分成几种类型。
比如,完全平方根和非完全平方根。
完全平方根就是可以被开平方的,像√9、√16;而非完全平方根就是像√2、√5,这些小家伙的平方根是个无理数,也就是小数点后面是无限的。
2. 二次根式的运算2.1 加减运算说到运算,大家可能会问:“根式怎么加减?”答案是,只有在根号下的数字一样的时候才能加减。
就像你不能把一只苹果和一只香蕉放一起当水果来吃,对吧?比如√2 + √2 就等于2√2,因为它们的根号下的数字相同,但√2 + √3 就不能直接相加,得留着搞清楚。
2.2 乘除运算那么,根式的乘除呢?这就简单多了。
乘法是根号里边的数字直接相乘,比如√2 × √3 就等于√(2 × 3),也就是√6。
除法也差不多,比如√8 ÷ √2 就等于√(8 ÷ 2),也就是√4,结果是2。
看吧,这个计算方法是不是特别直白?3. 二次根式的化简3.1 化简根式说到化简,二次根式的化简就是把它弄得更简单、更容易看懂。
比如√50,咱们可以把50拆成25 × 2,25是完全平方数,所以√50 可以化简成√(25 × 2) = 5√2。
看,这样不是更清晰了吗?3.2 利用平方数还有个技巧,就是利用平方数。
二次根式的运算
二次根式的运算二次根式是指一个数的平方根,即可以表示成√a 的形式,其中a ≥ 0。
在数学中,我们经常需要对二次根式进行各种运算,如加减乘除等。
本文将介绍二次根式的运算方法,并给出一些例子进行说明。
一、二次根式的化简当我们要对一个二次根式进行运算时,通常需要先将其化简为最简形式。
化简二次根式的基本原则是合并根号下的同类项,即合并相同的根号下的数字。
例如,对于√12 + √27 这个二次根式,我们可以将其化简为最简形式。
首先,我们分别求出√12 和√27 的值:√12 = √(4 × 3) = √4 × √3 = 2√3√27 = √(9 × 3) = √9 × √3 = 3√3然后,我们将合并根号下的同类项得到最简形式:√12 + √27 = 2√3 + 3√3 = 5√3通过以上步骤,我们成功将二次根式√12 + √27 化简为了最简形式5√3。
二、二次根式的加减法当我们要对两个二次根式进行加减运算时,需要先化简二次根式,然后进行系数的加减运算。
例如,对于√8 + √32 这个二次根式的加法运算,我们可以先将其化简为最简形式:√8 = √(4 × 2) = √4× √2 = 2√2√32 = √(16 × 2) = √16 × √2 = 4√2然后,我们将合并根号下的同类项得到最简形式:√8 + √32 = 2√2 + 4√2 = 6√2通过以上步骤,我们成功对二次根式√8 + √32 进行了加法运算,并得到了最简形式6√2。
三、二次根式的乘法当我们要对两个二次根式进行乘法运算时,可以直接将根号内的数相乘,并合并同类项。
例如,对于(√5 + √7)(√5 - √7) 这个二次根式的乘法运算,我们可以按照普通的乘法法则展开运算:(√5 + √7)(√5 - √7) = √5 × √5 - √5 × √7 + √7 × √5 - √7 × √7根据乘法法则,我们有√a × √b = √(a × b),可以简化上式为:(√5 + √7)(√5 - √7) = √(5 × 5) - √(5 × 7) + √(7 × 5) - √(7 × 7)= √25 - √35 + √35 - √49= 5 - √35 + √35 - 7= -2通过以上步骤,我们成功对二次根式(√5 + √7)(√5 - √7) 进行了乘法运算,并得到了结果 -2。
专题一二次根式的混合运算及化简求值技巧
二、二次根式的混合运算 5. 21-1+ 3( 3- 6)+ 8;
解:原式=4 6. 15×35 20÷(-13 6);
解:原式=-9 2 7.(3 18+15 50-4 0.5)÷ 32.
解:原式=2
三、巧用乘法公式计算 8.( 5+ 3)2;
解:原式=8+2 15 9.(3 2+ 12)( 18-2 3);
解:原式=(7+4 3)(7-4 3)+(2+ 3)(2- 3)+ 3=2+ 3
七、巧用整体代入求值 16.已知 a=3+2 2,b=3-2 2,求 a2b-
17.已知 x+y=-7,xy=12,求 y yx+x xy的值. 解:∵x+y<0,xy>0,∴x<0,y<0,∴原式=y·-xyy+x·-xxy= -2 xy=-4 3
解:原式=x+1 1,值为
2 2
五、巧用二次根式的定义和性质求值 13.若 x-3- 3-x=(x+y)2,求 x-y 的值.
解:∵x-3≥0,3-x≥0,∴x=3,∴y=-3,∴x-y=6
14.当 x 取何值时, 5x-1+4 的值最小?最小值是多少? 解:x=15时,最小值为 4
六、巧用乘法公式求值 15.已知 x=2- 3,求代数式(7+4 3)x2+(2+ 3)x+ 3的值.
专题一 二次根式的混合运算及化简求值技巧
一、二次根式的加减运算 1. 24+ 0.5-( 81+ 6);
解:原式= 6+14 2
2.3 2-2 12-4 81+3 48; 解:原式=8 3+2 2
2 3.3
9x+6
4x-2x
x1;
解:原式=3 x
4. a2b+a ba-b ba- ab2. 解:原式=a b-b a
解:原式=6 10.( 3+ 2)2-( 3- 2)2.
二次根式的化简总结
二次根式的化简总结二次根式是指具有形式√a的数,其中a是一个非负实数。
化简二次根式是将其写成最简形式,即使根号内不含有任何平方数。
在化简二次根式时,常用的方法有有理化和分解质因数。
本文将对二次根式化简的方法进行总结。
1. 同底数的二次根式相加减:当两个二次根式的底数相同,即√a和√b,可以进行加减运算。
具体的步骤如下:将√a和√b合并为一个二次根式,即√(a+b)或√(a-b)。
例如:√3 + √2 = √(3+2) = √5√7 - √5 = √(7-5) = √22. 同底数的二次根式相乘:当两个二次根式的底数相同,即√a和√b,可以进行乘法运算。
具体的步骤如下:将√a和√b相乘,得到√(ab)。
例如:√3 * √2 = √(3*2) = √63. 同底数的二次根式相除:当两个二次根式的底数相同,即√a和√b,可以进行除法运算。
具体的步骤如下:将√a除以√b,得到√(a/b)。
例如:√3 / √2 = √(3/2)4. 有理化分母:当一个二次根式的分母中含有二次根式时,可以将其有理化,即将分母中的二次根式去除。
具体的步骤如下:将分母的二次根式与其共轭形式相乘,即将分母中的二次根式乘以其共轭形式,并将分子也进行相应的乘法运算。
例如:1 / (√3 + √2) = 1 / (√3 + √2) * ( √3 - √2) / ( √3 - √2) = (√3 - √2) / (3 - 2) = (√3 - √2)5. 分解质因数:当一个二次根式的底数可以分解为质数的乘积时,可以使用分解质因数的方法化简二次根式。
具体的步骤如下:将底数进行质因数分解,再将质因数按照指数的方式写在根号外。
例如:√48 = √(2^4 * 3) = 2^2 * √3 = 4√3通过以上的方法,可以化简二次根式并得到最简形式。
需要注意的是,化简二次根式时要尽量将根号内的数进行因式分解,以得到最简形式。
同时,在计算过程中要注意运算的顺序,确保准确性和结果的简洁。
二次根式化简求值的十种技巧
二次根式化简求值的十种技巧下面是二次根式化简求值的十种技巧:技巧一:分解因式当二次根式的被开方数可以进行因式分解时,可以将其分解为两个或多个较简单的二次根式。
例如,√12可以分解为√4×√3,即2√3技巧二:有理化分母当二次根式的分母中含有二次根式时,可以采用有理化分母的方法进行化简。
有理化分母的方法是将分母有理化,即将分母中的二次根式进行去除。
例如,化简√(3/√2)时,可以将分母有理化为√(3×√2)。
技巧三:配方当二次根式中含有如(√x±√y)²或(√x±a)(√x±b)类型的项时,可以采用配方的方法进行化简。
例如,化简√(x+2√2+2)时,可以采用配方的方法,将其化简为(√(√2)+1)²。
技巧四:合并同类项当二次根式中含有相同的根号并且系数不同的项时,可以将其合并为一个项。
例如,化简√(2+√3)-√(2-√3)时,可以将两个相同根号下的项合并为一个项。
技巧五:有理数与二次根式相乘当二次根式与有理数相乘时,可以将二次根式中的根号与有理数相乘得到一个更简单的二次根式。
例如,化简2√8时,可以将其化简为2√(4×2),即4√2技巧六:有理数与二次根式相除当一个有理数与一个二次根式相除时,可以将有理数分子和二次根式的分母相除,并将其结果乘以二次根式的分子。
例如,化简2/√(3+√5)时,可以将其化简为2(√(3+√5))/((3+√5))。
技巧七:分子和分母进行有理化当一个二次根式作为一个分数的分子或分母时,可以将分子和分母同时进行有理化。
例如,化简√(5/√3)时,可以将其化简为(√5×√3)/√(3×√3),即(√15)/√3技巧八:提取公因式当一个二次根式中含有公因式时,可以将其提取出来,并进行分解或合并。
例如,化简√(6x+9)时,可以将其提取公因式3,并进行分解为3√(2x+3)。
二次根式的化简与运算
在二次根式的除法运算中,需要注意分母有理化的应用,确保结果的合理性。
平方差公式
在二次根式的运算中,需要注意平方差公式的应用,可以简化计算过程。
05
练习与巩固
总结词
二次根式的化简是二次根式运算的基础,通过化简可以将复杂的二次根式转化为简单的二次根式,便于进行后续的运算。
化简练习
详细描述
二次根式的化简方法包括:将二次根式被开方数中的因数分解;将被开方数相乘除;将被开方数中的幂指数相乘除等。在化简过程中需要注意化简后的二次根式必须满足被开方数为非负数,根指数为2的条件。
简化根式
化简二次根式时,需要将各项中的同类二次根式合并,尽可能将根式简化成最简形式。
确定被开方数的范围
在化简二次根式时,需要先确定被开方数的范围,避免出现负数或分数的平方根。
运算顺序
在二次根式的混合运算中,需要注意运算顺序,先乘方再乘除最后加减。
运算的注意事项
乘法运算
在二次根式的乘法运算中,需要注意分配律的应用,确保各项之间的乘积正确。
练习题
例如,化简$\sqrt{48}$,可以将48分解为16×3,得到$\sqrt{48} = \sqrt{16} \times \sqrt{3} = 4\sqrt{3}$。类似的,还可以对其他复杂的二次根式进行化简。
二次根式的运算是在化简的基础上进行的,主要包括加法、减法、乘法和除法等运算。通过运算可以解决各种实际问题,如计算几何图形的面积、求解方程等。
化简二次根式的方法
化简二次根式就是将被开方数分解质因数,然后将根号外的因式移到根号内,最后去掉根号。
主要知识点回顾
易错点
学生在处理二次根式的化简时,容易忽略被开方数是负数的情况,或者在运算时出错。
二次根式化简的方法与技巧
所以A=
六、借用整数“1”处理法。
例6、计算
分析:本例运用很多方面的知识如: 1= × ,然后再运用乘法分配率,使分子与分母有相同因式,再约分化简。
解:原式
=
=
七、恒等变形整体代入结合法
分析:本例运用整体代入把x+y与xy的值分别求出来,再运用整体代入法将x+y与xy代入例题中,但一定要把所求多项式进行恒等变形使题中含有x+y与xy的因式,
如x -xy+y =(x+y) -3xy,然后再约分化简。
例7:已知X= ( ),y = ( ),求下列各式的值。
(1)x -xy+y ; (2) +
解:因为X= ( ),y = ( ),所以:x+y= ,xy= .
(1)x -xy+y =(x+y) -3 xy=( ) -3× =
(2) + = =
八、降次收幂法:
例8、已知x=2+ ,求 的值。
分析:本例运用了使题中2次幂项转化成1次方的项再化简。如例题中把多项式 转化为4x-1,这样进行低次幂运算就容易了。
解:由x=2+ ,得x-2= .(x—2) =3整理得:x =4x-1.
所以:3x -2x+5=3(4x-1)-2x+5=10(2+ )+2=22+10
二次根式化简的方法与技巧
一、巧用公式法
例1计算
分析:本例初看似乎很复杂,其实只要你掌握好了公式,问题就简单了,因为 与 成立,且分式也成立,故有 >0, >0, 而同时公式:ห้องสมุดไป่ตู้= —2 + , — = ,可以帮助我们将 和 变形,所以我们应掌握好公式可以使一些问题从复杂到简单。
二次根式化简公式
二次根式化简公式二次根式是数学中的一种常见形式,它可以用来表示一些特定的数值关系。
在代数中,我们经常需要对二次根式进行化简,以便更方便地进行运算和求解。
本文将介绍一些常见的二次根式化简公式,并通过具体的例子来说明其使用方法。
一、二次根式的定义和性质二次根式是指形如√a的数,其中a是非负实数。
二次根式有一些重要的性质,我们在进行化简时需要利用这些性质来简化表达式。
1. 二次根式的乘法性质:√a * √b = √(a * b)。
通过这个性质,我们可以将二次根式的乘法化简为一个二次根式。
2. 二次根式的除法性质:√a / √b = √(a / b)。
同样地,我们可以将二次根式的除法化简为一个二次根式。
3. 二次根式的加法和减法:√a ± √b 不能直接合并,但可以通过有理化的方法将其化简为一个二次根式。
二、二次根式化简的方法1. 合并同类项如果一个表达式中含有相同的二次根式,我们可以将它们合并为一个,从而简化表达式。
例如,化简√2 + √2,我们可以将其合并为2√2。
2. 分解因式有时候,我们需要将一个复杂的二次根式进行因式分解,以便更方便地进行化简。
例如,化简√18,我们可以将18分解为2 * 9,然后再将9分解为3 * 3,最终得到√(2 * 3 * 3) = 3√2。
3. 有理化分母当二次根式出现在分母中时,我们可以通过有理化的方法将其化简。
有理化分母的基本思想是将分母中的二次根式去掉,使得分母变为有理数。
例如,化简1 / (√3 + √2),我们可以乘以一个适当的有理化因子,将分母中的二次根式消去,得到(√3 - √2) / (3 - 2),最终化简为√3 - √2。
三、例题解析下面通过一些例题来说明二次根式化简的具体步骤。
例题1:化简√12+ √27。
解:首先,我们可以将12和27分别因式分解为2 * 2 * 3和3 * 3 * 3,然后利用乘法性质合并同类项,得到√(2 * 2 * 3) + √(3 * 3 * 3) = 2√3 + 3√3 = 5√3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式运算和化简(超级经典)
————————————————————————————————作者:————————————————————————————————日期:
二次根式的运算
【知识梳理】
1、 当0≥a 时,称a 为二次根式,显然0≥a 。
2、 二次根式具有如下性质:
(1)()
()02≥=a a a ; (2)⎩⎨
⎧<-≥==时;,当时,,当002a a a a a a (3)()00≥≥⋅=b a b a ab ,;
(4)()00>≥=b a b
a b a ,。
3、二次根式的运算法则如下:
(1)()()0≥±=±c c b a c b c a ;
(2)()()0≥=a a a n n 。
4、设Q m d c b a ∈,,,,,且m 不是完全平方数,则当且仅当d b c a ==,时, m d c m b a +=+。
5、二次根式是代数式中应掌握的非常复杂的内容,其运算常用到换元、拆项相消、分解相约等方法,还应注意运用乘法公式、分母有理化等技巧,最后的结果一定要化成最简二次根式的形式。
6、最简二次根式与同类二次根式
(1)一个根式经过化简后满足:
被开方数的指数与根指数互质;
被开方数的每一个因式的指数都小于根指数;
被开方数不含分母。
适合上述这些条件的根式叫做最简根式。
(2)几个根式化成最简根式后,如果被开方数都相同,根指数也都相同,那么这几个根式叫做同类根式。
【例题精讲】
【例1】已知254245222+-----=x
x x x y ,则=+22y x ___________________。
【巩固一】若y x ,为有理数,且42112=+-+-y x x ,则xy 的值为___________。
【巩固二】已知200911+-+
-=x x y ,则=+y x _______________________。
【拓展】若m 适合关系y x y x m y x m y x --⋅+-=
-++--+19919932253,
求m 的值。
【例2】当b a 2<时,化简二次根式a
b ab a b a a 2
2442+--。
【巩固】
1、化简()2
232144--+-x x x 的结果是__________________。
2、已知0<a ,则()22a a -等于( )
A.a
B.a -
C.a 3
D.a 3-
3、已知c a b <<<0,化简()()()2222c b b a a c a -++--+。
【例3】多重二次根式的化简:
(1)324324-++; (2)223810++。
【巩固】化简:(1)=+21027______________________;
(2)=+-526425________________________;
(3)4156110x x x x ++++
+++=______________________;
【拓展】化简111119911993199419951996++++⨯。
(1)()(
)23362
3346++++; (2)2115141021151410+++--+。
【巩固】计算:
(1)
75235213515+++++; (2)4266777647511+++++。
【拓展】设2008
20071
321
211
++++++= M , 200820074321-++-+-= N ,则
()21+M N 的值是__________________________。
二次根式的化简求值
【知识梳理】
有条件的二次根式化简求值问题是代数式的化简求值的重点与难点,这类问题包容了有理式的众多知识,又涉及最简根式、同类根式、有理化等二次根式的重要概念,同时联系着整体代入、分解变形、构造关系式或图形等重要的技巧与方法,解题的关键是,有时需把已知条件化简,或把已知条件变形;有时需把待求式化简或变形;有时需把已知条件和待求式同时变形。
【例1】设55+=
x ,55-=y ,求66y x +的值。
【巩固】
1、设12121212-+=+-=
y x ,,求22y xy x +-的值。
2、已知321321-=+=
y x ,,求()()
221111+++y x 的值。
【拓展】已知32-=x ,求432565x x x x -+-的值。
【例2】已知21=+
x x ,那么1
91322++-++x x x x x x 的值等于______________。
【巩固】
1、若a a x -=1,则24x x +的值为( ) A.a a 1-
B.a a -1
C.a
a 1+ D.不能确定
2、已知51=+
x x ,求1
122+--++x x x x x x 的值。
【例3】已知b a 、是实数,且
()()11122=++++b b a a ,问b a 、之间有怎样的关系?请推导。
【巩固】已知()()20082008200822=++++y y x x ,求58664322+----y x y xy x 的值。
【例4】已知b a 、均为正数,且2=+b a ,求1422+++=b a U 的最小值。
【巩固】求代数式()912422+-+
+x x 的最小值。