专题一 二次根式的混合运算及化简求值技巧

合集下载

二次根式混合运算的解题技巧

二次根式混合运算的解题技巧

二次根式混合运算的解题技巧搞定二次根式混合运算其实没有那么复杂,只要掌握几个简单的技巧,绝对能让你在考试中游刃有余。

今天,我们就来聊聊如何在这个看似“高深”的领域里游泳。

1. 理解二次根式的基本概念1.1 什么是二次根式?首先,二次根式就是像√a这样的表达式。

√表示根号,a是根号下面的数。

比如√9,就是3,因为3*3=9。

说白了,根号里的数你要找出一个平方等于它的数。

1.2 根式的简化简化根式就像整理房间,找出里面的“垃圾”并处理掉。

比如√18,可以分解成√(9*2),再把它分成√9和√2,最后得到3√2。

这样一来,根式就变得更简洁啦!2. 二次根式混合运算的基本技巧2.1 加减运算的规则加减根式的时候,根号里的数得相同。

就像“吃瓜群众”只能看同一个热搜,才能讨论。

比如√2 + 3√2 = (1+3)√2 = 4√2。

如果根号下的数不同,就得先简化,或者把它们转化为相同的根式。

2.2 乘除法的应用乘法比较简单,像√a * √b = √(a*b)。

举个例子,√3 * √6 = √18。

再简化一下,√18 = 3√2。

除法也类似,√a / √b = √(a/b)。

比如√20 / √5 = √4 = 2。

运算时,把复杂的根式搞定,结果就会变得清晰明了。

3. 综合运算的解题思路3.1 先简化再运算混合运算的时候,先把每一项尽量简化。

比如√50 √18 + 2√2。

我们先把√50和√18都简化,√50 = 5√2,√18 = 3√2。

然后带入原式变成5√2 3√2 + 2√2,最后合并同类项得到4√2。

简化后的运算就容易多了。

3.2 注意符号和分母的处理如果遇到分母里有根号的情况,记得有理化分母。

比如1 / √2,可以通过√2 /√2 变成√2 / 2,这样分母就没有根号啦。

搞定这些细节问题,运算才能最终完美无瑕。

4. 练习题目,稳扎稳打别忘了,多做练习是最重要的。

就像练瑜伽,开始可能觉得难,但坚持下去,就能越来越熟练。

二次根式化简求值的解题技巧

二次根式化简求值的解题技巧

二次根式化简求值的解题技巧
1. 哇塞,要记住根号下的数字就像是一个神秘的盒子,我们得找到打开它的钥匙呀!比如化简$\sqrt{48}$,不就可以把 48 拆成16×3,然后不就可以轻松化简啦!
2. 嘿,看到那些可以化为平方的数,就像找到了宝藏的线索一样兴奋呢!像$\sqrt{81}$,那不是一眼就能看出是 9 嘛!
3. 哎呀呀,同类二次根式可要放在一起呀,这就好比整理玩具要把相同的放在一起一样!比如$\sqrt{12}+\sqrt{27}$,先化简再合并同类二次根式,多简单!
4. 哇哦,有时候把式子变形一下,就像给它变个魔法一样神奇呢!例如$\sqrt{\frac{1}{3}}$,分子分母同乘 3 不就好化简啦!
5. 嘿,碰到分母有根号的可别慌呀,就像遇到小怪兽,我们有办法打败它!比如$\frac{1}{\sqrt{2}}$,分母有理化一下不就搞定啦!
6. 哎呀,化简的时候要细心呀,可不能像小马虎一样!就像
$\sqrt{25a^2}$,要注意 a 的正负呀!
7. 哇,二次根式化简求值也有小窍门呢,就像走小路更快到达目的地一样!比如知道了$\sqrt{x}=2$,那求$x$不就简单啦!
8. 嘿,有些式子看着复杂,其实就像纸老虎,一戳就破啦!像
$\sqrt{(x-3)^2}$,要考虑绝对值呀!
9. 哎呀呀,化简求值要多尝试几种方法呀,说不定就找到最简单的啦!比如$\sqrt{75}$,用不同方法试试呀!
10. 哇哦,二次根式化简求值真的很有趣呀,就像玩游戏一样!只要掌握了技巧,什么难题都能解决!
我的观点结论就是:只要用心去学,二次根式化简求值一点都不难,反而会很有趣呢!。

二次根式的化简与运算

二次根式的化简与运算

二次根式的化简与运算二次根式是指含有根号的代数表达式,通常是一种简化和运算方式,可以将复杂的表达式化简为简单的形式,并进行加减乘除等基本运算。

本文将介绍二次根式化简与运算的基本方法和技巧。

一、二次根式的化简1. 同底数的根式相加减:当根式的底数相同且指数相同时,可以直接对系数进行加减运算,保持根号不变。

例如:√2 + √2 = 2√22. 二次根式的有理化:当二次根式的底数是一个整数,但含有一个或多个根号时,可以通过有理化的方法化简。

例如:√(2/3) = (√2)/(√3) = (√2)/(√3) × (√3)/(√3) = √6/33. 二次根式的合并:当二次根式的底数相同,但系数不同时,可以合并为一个根式,将系数加在一起,并保持底数不变。

例如:3√2 + 2√2 = 5√24. 二次根式的分解:当二次根式的底数是一个整数,且无法进行合并时,可以进行分解,并找出其中可以合并的部分。

例如:√12 = √(4 × 3) = 2√3二、二次根式的运算1. 加减运算:当二次根式的底数和指数都相同时,可以直接对系数进行加减运算,保持底数和指数不变。

例如:2√5 + 3√5 = 5√52. 乘法运算:当二次根式相乘时,可以将根式的系数分别相乘,并保持底数和指数不变。

例如:2√3 × 3√2 = 6√63. 除法运算:当二次根式相除时,可以将根式的系数分别相除,并保持底数和指数不变。

例如:6√8 ÷ 2√2 = 3√24. 乘方运算:当二次根式进行乘方运算时,可以将指数分别应用到系数和根号上,并保持底数不变。

例如:(2√3)^2 = 2^2 × (√3)^2 = 4 × 3 = 12总结:二次根式的化简与运算是一种常见的数学操作,在代数表达式的计算中经常会遇到。

通过适当的化简和运算,可以简化复杂的根式,得到更加简单和规范的表达形式。

熟练掌握二次根式的化简和运算方法,有助于提高数学计算的效率和准确性。

二次根式的计算和化简

二次根式的计算和化简

二次根式的计算和化简二次根式是指包含平方根的表达式。

在数学中,我们经常需要进行二次根式的计算和化简。

本文将介绍如何进行二次根式的计算和化简,并提供一些相关的例子和方法。

一、二次根式的计算二次根式的计算主要包括加减乘除四则运算和指数运算。

下面将分别介绍这些运算的方法。

1. 加减运算对于两个二次根式的加减运算,首先要确定根号下的数(即被开方数)是否相同。

如果相同,则可以直接对根号下的数进行加减运算,并保持根号不变。

如果根号下的数不同,则需要进行化简,使根号下的数相同,再进行加减运算。

例如,计算√3+ √5。

由于根号下的数不同,我们可以进行化简。

将√3与√5相加,得到√3 + √5。

这就是最简形式的结果,无法再进行化简。

2. 乘法运算对于两个二次根式的乘法运算,可以直接将根号下的数相乘,并保持根号不变。

例如,计算√3 × √5。

将根号下的数相乘,得到√15。

这就是最简形式的结果。

3. 除法运算对于两个二次根式的除法运算,可以将被除数与除数的根号下的数相除,并保持根号不变。

例如,计算√15 ÷ √3。

将根号下的数相除,得到√5。

这就是最简形式的结果。

4. 指数运算对于二次根式的指数运算,可以将指数应用于根号下的数,并保持根号不变。

例如,计算(√2)²。

将指数应用于根号下的数2,得到2。

因此,(√2)² = 2。

二、二次根式的化简化简二次根式的目的是使根号下的数尽量小。

下面将介绍一些常用的化简方法。

1. 提取公因数如果根号下的数可以被某个数整除,可以将其提取出来,并保持根号不变。

这是一种常见的化简方法。

例如,化简√16。

16可以被4整除,所以可以将16写成4×4,即√(4×4)。

继续化简,得到2×√4。

最后,我们得到2×2 = 4。

因此,√16 = 4。

2. 合并同类项如果有多个二次根式相加或相乘,可以合并同类项,使根号下的数相加或相乘。

专题训练 二次根式化简求值有技巧(含答案)

专题训练   二次根式化简求值有技巧(含答案)

专题练习(一)二次根式化简求值有技能(含答案)【1 】► 类型之一 应用二次根式的性质a2=|a|化简 对于a2的化简,不要盲目地写成a,而应先写成绝对值的情势,即|a|,然后再依据a 的符号进行化简.即a2=|a|=⎩⎨⎧a (a >0)0(a =0)-a (a <0).1.已知a =2-3,则a2-2a +1=( )A .1-3B.3-1 C .3-3D.3-32.当a <12且a ≠0时,化简:4a2-4a +12a2-a=________. 3.当a <-8时,化简:|(a +4)2-4|.4.已知三角形的双方长分离为3和5,第三边长为c,化简:c2-4c +4-14c2-4c +16. ► 类型之二 逆用二次根式乘除法轨则化简 5.当ab <0时,化简a2b 的成果是( ) A .-a bB .a -bC .-a -bD .a b6.化简:(1)(-5)2×(-3)2;(2)(-16)×(-49); (3) 2.25a2b;(4)-25-9;(5)9a34. ► 类型之三 应用隐含前提求值7.已知实数a 知足(2016-a )2+a -2017=a,求a -12016的值. 8.已知x +y =-10,xy =8,求x y +y x 的值. ► 类型之四 巧用乘法公式化简9.盘算:(1)(-4-15)(4-15);(2)(26+32)(32-26); (3)(23+6)(2-2);(4)(15+4)2016(15-4)2017.► 类型之五 巧用整体思惟进行盘算10.已知x =5-26,则x2-10x +1的值为( )A .-306B .-186-2C .0D .10611.已知x =12(11+7),y =12(11-7),求x2-xy +y2的值. 12.已知x >y 且x +y =6,xy =4,求x +yx -y 的值.► 类型之六 巧用倒数法比较大小13.设a =3-2,b =2-3,c =5-2,则a,b,c 的大小关系是( )A .a >b >cB .a >c >bC .c >b >aD .b >c >a_详解详析1.[解析]B a2-2a +1=|a -1|.因为a -1=(2-3)-1=1-3<0,所以|a -1|=-(1-3)=3-1.故选B.2.[答案] -1a[解析] 原式=(2a -1)2a (2a -1)=|2a -1|a (2a -1). 当a <12时,2a -1<0,所以|2a -1|=1-2a. 所以原式=1-2a a (2a -1)=-1a. 3.解:当a <-8时,a +4<-4<0,a +8<0,∴|a +4|=-(a +4),|a +8|=-(a +8).∴原式=|-(a +4)-4|=|-a -8|=|a +8|=-(a +8)=-a -8.4.[解析] 由三角形三边关系定理可得2<c <8,将这两个二次根式的被开方数分化因式,就可以应用二次根式的性质化简了.解:由三角形三边关系定理,得2<c <8.∴原式=(c -2)2-(12c -4)2=c -2-(4-12c)=32c -6. 5.[解析]A 由ab <0,可知a,b 异号且a ≠0,b ≠0.又因为a2≥0,且a2b ≥0,所以a <0,b>0.所以原式=-a b.[点评] 逆用二次根式的乘除法轨则进行化简时,症结是留意轨则成立的前提,还要留意二次根式的总体性质符号,即化简前后符号要一致.6.解:(1)原式=(-5)2×(-3)2=5×3=15.(2)原式=16×49=16×49=4×7=28.(3)原式= 2.25×a2·b =1.5a ·b =3a 2b. (4)原式=259=259=53. (5)原式=9a34=3a 2 a. 7.解:依题意可知a -2017≥0,即a ≥2017.所以原前提转化为a -2016+a -2017=a,即a -2017=2016.所以a =20162+2017. 所以a -12016=20162+20162016=2017. [点评] 解决此题的症结是从已知前提中发掘出隐含前提“a -2017≥0”,如许才干对(2016-a )2进行化简,从而求出a 的值.8.解:依题意可知x <0,y <0. 所以原式=x2xy +y2xy =-x xy +-y xy =-(x +y )xy . 因为x +y =-10,xy =8,所以原式=-(-10)8=522. [点评] 解决此题的症结是从已知前提中剖析出x,y 的正负性,如许才干对请求的式子进行化简和求值.假如盲目地化简代入,那么将会得出-522这个错误成果. 解答此题还有一个技能,那就是对x y +y x进行变形时,不要按通例化去分母中的根号,而是要依据已知前提的特色对它进行“通分”. 9.解:(1)原式=(-15)2-42=15-16=-1.(2)原式=(32)2-(26)2=18-24=-6. (3)原式=3(2+2)(2-2)=3(4-2)=2 3.(4)原式=(15+4)2016(15-4)2016(15-4)=[(15+4)(15-4)]2016(15-4)=15-4.[点评] 应用乘法公式化简时,要擅长发明公式,经由过程符号变形.地位变形.公因式变形.联合变形(添括号).指数变形等,变出乘法公式,就可以应用公式进行化简与盘算,事半功倍.10.[解析]C 原式=(x -5)2-24. 当x =5-26时,x -5=-26,∴原式=(-26)2-24=24-24=0.故选C.[点评] 解答此题时,先对请求的代数式进行配方,然后视x -5为一个整体代入求值,这比直接代入x 的值进行盘算要简略得多. 11.解:因为x +y =11,xy =14[(11)2-(7)2]=1, 所以x2-xy +y2=(x +y)2-3xy =(11)2-3=8.[点评] 这类问题平日视x +y,xy 为整体,而不是直接代入x,y 的值进行盘算.12.解:因为(x -y)2=(x +y)2-4xy =20,且x >y,所以x-y=20=25,所以原式=(x+y)2(x)2-(y)2=x+y+2xyx-y=6+425= 5.[点评] 此题需先整体求出x-y的值,然后再整体代入变形后的代数式盘算.13.[解析]A 因为(3-2)(3+2)=1,所以a=3-2=13+2.同理,b=12+3,c=15+2.当分子雷同时,分母大的分式的值反而小,所以a>b>c.故选A.[点评] 这里(3-2)(3+2)=1,即3-2与3+2互为倒数.是以,比较大小时,可把3-2转化为13+2,从而转化为分母大小的比较。

二次根式的运算与化简

二次根式的运算与化简

二次根式的运算与化简二次根式是指形如√a的数,其中a是一个非负实数。

在数学中,我们经常需要对二次根式进行运算和化简。

本文将介绍二次根式的运算规则和化简方法。

一、二次根式的运算规则1. 加减运算当二次根式的被开方数相同时,可用下面的规则进行加减运算:√a ± √a = 2√a例如:√3 + √3 = 2√3当二次根式的被开方数不同时,无法进行加减运算,需要化简为最简形式:√a ± √b = √a ± √b例如:√2 + √3 无法化简2. 乘法运算二次根式的乘法运算可以按照下列规则进行:√a × √b = √(a × b)例如:√2 × √3 = √6乘法运算的一种特殊情况是平方运算:(√a)² = a例如:(√2)² = 23. 除法运算二次根式的除法运算可以按照下列规则进行:√a ÷ √b = √(a ÷ b)例如:√6 ÷ √2 = √3除法运算的一种特殊情况是倒数运算:1/√a = √a/ a例如:1/√2 = √2/2二、二次根式的化简方法1. 提取因子法当二次根式中有相同的因子时,可以使用提取因子的方法进行化简。

例如:√8 = √(4 × 2) = 2√22. 有理化分母法当二次根式的分母为二次根式时,可以使用有理化分母的方法进行化简。

例如:1/√2 = √2/2 (有理化分母为2)3. 合并同类项法当二次根式中出现相同的根数时,可以使用合并同类项的方法进行化简。

例如:√2 + √2 = 2√24. 化简最简形式当无法再进行其他化简方法时,二次根式已经达到最简形式。

例如:√7 无法化简以上是对二次根式的运算和化简方法的介绍。

掌握了这些方法,我们可以在解决数学问题时更加灵活地利用二次根式进行运算和化简,简化计算过程。

希望本文能对你有所帮助。

二次根式化简求值的十种技巧

二次根式化简求值的十种技巧

二次根式化简求值的十种技巧
1、分解因子:将多项式的括号分解,提取未知项;
2、分子分母同乘以同一因子或者最小公倍数:分子分母乘以最小公倍数后,可分解未知项;
3、比例问题转化为相似三角形:通过比例问题比较两个等式,转化为两个相似三角形,求他们的包含角;
4、代入等式方法:把另外一个等式中的已知值替换掉未知项,再用未知项代入其他等式求解;
5、化简为等式:将式子中的所有常数项移到右边,使左边的各未知项组成解;
6、同类项除法:直接将同类项的分子分母分别相除,可消去某项未知数;
7、加减同乘:可以把加/减法式改成乘法式,使同类项可相除;
8、乘除同加:可以把乘/除法式改成加法式,使同类项可分解;
9、移项求值:把式子中的所有未知项移到右边,用常数项求出变量值;
10、套管问题:将多项式中的未知数抽出,再套回原来的表达式中去,计算未知项的值。

二次根式的化简与运算

二次根式的化简与运算

二次根式的化简与运算二次根式是数学中的重要概念之一,可以表示为形如√a的数。

在数学运算中,化简和运算是常见且基础的操作。

本文将介绍二次根式的化简和运算的方法和技巧。

一、二次根式的化简化简二次根式是指将一个二次根式表示为一个更简单的形式。

下面是常见的化简方法:1. 提取因子:当二次根式中存在可以开平方的因子时,可以进行提取因子的操作。

例如,√8可以化简为2√2,√18可以化简为3√2。

2. 合并同类项:二次根式中如果含有相同根号下的数,可以合并它们。

例如,√3+√5可以合并为√3+5,2√6-3√6可以合并为-√6。

3. 有理化分母:当二次根式的分母是一个二次根式时,需要进行有理化分母的处理。

有理化分母的方法是乘以一个合适的形式,使得分母变为一个有理数。

例如,对于√(2/3),可以通过乘以√3/√3的形式,得到√(6/9),即(√6)/3。

以上是化简二次根式的常见方法,通过运用这些方法,可以将复杂的二次根式化简为简单的形式,更便于计算和理解。

二、二次根式的运算在进行二次根式的运算时,常见的操作包括加法、减法、乘法和除法。

下面是二次根式运算的规则和示例:1. 加法和减法:当二次根式中的根号下的数相同,可以直接进行加法或减法。

例如,√2+2√2等于3√2,3√5-√5等于2√5。

2. 乘法:二次根式的乘法遵循根号下的数相乘,系数相乘的原则。

例如,√3*2√5等于2√15。

3. 除法:二次根式的除法遵循根号下的数相除,系数相除的原则。

例如,(3√2)/(2√3)等于(3/2)√(2/3)。

通过运用这些规则,可以进行二次根式的运算,得到最简形式的结果。

综上所述,二次根式的化简和运算是数学中的基础操作,掌握了这些方法和技巧,可以更好地理解和解决与二次根式相关的问题。

通过大量练习和实践,相信大家能够在二次根式的化简和运算中游刃有余,提高数学能力和解题水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.当 x 取何值时, 5x-1+4 的值最小?最小值是多少? 1 解:x= 时,最小值为 4 5
六、巧用乘法公式求值 15.已知 x=2- 3,求代数式(7+4 3)x2+(2+ 3)x+ 3的值. 解:原式=(7+4 3)(7-4 3)+(2+ 3)(2- 3)+ 3=2+ 3
七、巧用整体代入求值 16.已知 a=3+2 2,b=3-2 2,求 a2b-ab2 的值. 解:原式=ab(a-b)=4 2
17.已知 x+y=-7,xy=12,求 y
x y+x
y x的值.
xy xy 解:∵x+y<0,xy>0,∴x<0,y<0,∴原式=y· +x· = -y -x -2 xy=-4 3
八年级数学下册(人教版)
专题一 二次根式的混合运算及化简求值技巧
一、二次根式的加减运算 1. 24+ 0.5-( 1 8+ 6);
1 解:原式= 6+4 2
2.3 2-2 12-4 解:原式=8 3+2 2
1 +3 48; 8
2 3. 9x+6 3
x -2x 4
1 ; x
解:原式=3 x
4. a2b+a
四、先化简,再求值 2 11.化简3 9x+6 x 4-2x 1 x,并将自己喜欢的 x 值代入求值.
解:原式=3 x,当 x=1 时,原式=3
x 1 12.(2015· 广东)先化简,再求值: 2 ÷ (1+ ),其中 x= 2-1. x -1 x-1 1 2 解:原式= ,值为 2 x+1
五、巧用二次根式的定义和性质求值 13.若 x-3- 3-x=(x+y)2,求 x-yห้องสมุดไป่ตู้的值. 解:∵x-3≥0,3-x≥0,∴x=3,∴y=-3,∴x-y=6
b a -b
a 2 - ab . b
解:原式=a b-b a
二、二次根式的混合运算 5. 1 + 3( 3- 6)+ 8; 2-1 解:原式=4 3 1 6. 15×5 20÷ (-3 6); 解:原式=-9 2 1 7.(3 18+5 50-4 0.5)÷ 32. 解:原式=2
三、巧用乘法公式计算 8.( 5+ 3)2; 解:原式=8+2 15 9.(3 2+ 12)( 18-2 3); 解:原式=6 10.( 3+ 2)2-( 3- 2)2. 解:原式=4 6
相关文档
最新文档