板块模型的临界极值问题

合集下载

动力学中的临界极值问题

动力学中的临界极值问题

动力学中的临界极值问题临界和极值问题是物理中的常见题型,结合牛顿运动定律求解的也很多,临界是一个特殊的转换状态,是物理过程发生变化的转折点。

分析此类问题重在找临界条件,常见的临界条件有:1.细线:拉直的临界条件为T=0,绷断的临界条件为T=Tmax2.两物体脱离的临界条件为:接触面上的弹力为零3.接触的物体发生相对运动的临界条件为:静摩擦力达到最大静摩擦 临界或极值条件的标志(1)有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程存在着临界点;(2)若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应临界状态;(3)若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点;(4)若题目要求“最终加速度”、“稳定加速度”等,即是求收尾加速度或收尾速度.例3 (2013·山东·22)如图5所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2.图5(1)求物块加速度的大小及到达B 点时速度的大小.(2)拉力F 与斜面夹角多大时,拉力F 最小?拉力F 的最小值是多少?解析 (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得L =v 0t +12at 2①v =v 0+at②联立①②式,代入数据得a =3 m/s 2③ v =8 m/s④(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面间的夹角为α,受力分析如图所示,由牛顿第二定律得F cos α-mg sin θ-F f =ma⑤ F sin α+F N -mg cos θ=0⑥ 又F f =μF N⑦联立⑤⑥⑦式得F =mg (sin θ+μcos θ)+macos α+μsin α⑧由数学知识得cos α+33sin α=233sin(60°+α) ⑨由⑧⑨式可知对应最小F的夹角α=30°⑩联立③⑧⑩式,代入数据得F的最小值为F min=1335N答案(1)3 m/s28 m/s (2)30°1335N动力学中的典型临界条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力F N=0.(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值.(3)绳子断裂与松驰的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松驰的临界条件是:F T=0.(4)加速度变化时,速度达到最值的临界条件:当加速度变为零时.突破训练3如图6所示,水平地面上放置一个质量为m的物体,在与水平方向成θ角、斜向右上方的拉力F 的作用下沿水平地面运动.物体与地面间的动摩擦因数为μ,重力加速度为g.求:图6(1)若物体在拉力F的作用下能始终沿水平面向右运动且不脱离地面,拉力F的大小范围;(2)已知m=10 kg,μ=0.5,g=10 m/s2,若F的方向可以改变,求使物体以恒定加速度a=5 m/s2向右做匀加速直线运动时,拉力F的最小值.答案(1)μmgcos θ+μsin θ≤F≤mgsin θ(2)40 5 N解析(1)要使物体运动时不离开水平面,应有:F sin θ≤mg 要使物体能一直向右运动,应有:F cos θ≥μ(mg-F sin θ)联立解得:μmgcos θ+μsin θ≤F≤mgsin θ(2)根据牛顿第二定律得:F cos θ-μ(mg-F sin θ)=ma解得:F=μmg+ma cos θ+μsin θ上式变形F=μmg+ma1+μ2sin(θ+α),其中α=sin -111+μ2,当sin(θ+α)=1时F 有最小值解得:F min =μmg +ma 1+μ2,代入相关数据解得:F min =40 5 N.B 组 动力学中的临界极值问题2.如图所示,一质量为0.2 kg 的小球系着静止在光滑的倾角为53°的斜面上,斜面静止时,球紧靠在斜面上,绳与斜面平行,当斜面以10 m/s2加速度水平向右做匀加速直线运动时,求线对小球的拉力和斜面对小球的弹力.(g =10 m/s2)3.(2007江苏)如图所示,光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg .现用水平拉力F 拉其中一个质量为2 m 的木块,使四个木块以同一加速度运动,则轻绳对m 的最大拉力为( )5mg 3μ B .4mg 3μ C .2mg3μ D .mg 3μ例2.一根劲度系数为k 、质量不计的轻弹簧上端固定,下端系一质量为m 的物块,有一水平的木板将物块托住,并使弹簧处于自然长度,如图所示.现让木板由静止开始以加速度a(a<g)匀加速向下移动,经过多长时间木板与物块分离?跟踪训练2.如图所示,物体A 叠放在物体B 上,B 置于光滑水平面上.A 、B 质量分别为6.0 kg 和2.0 kg ,A 、B 之间的动摩擦因数为0.2.在物体A 上施加水平方向的拉力F ,开始时F =10 N ,此后逐渐增大,在增大到45 N 的过程中,以下判断正确的是( )A .两物体间始终没有相对运动B .两物体间从受力开始就有相对运动C .当拉力F <12 N 时,两物体均保持静止状态D .两物体开始没有相对运动,当F >18 N 时,开始相对滑动3如图3-3-3所示,光滑水平面上放置质量分别为m 、2m 的A 、B 两个物体,A 、B 间的最大静摩擦力为μmg ,现用水平拉力F 拉B ,使A 、B 以同一加速度运动,则拉力F 的最大值为( )图3-3-3A .μmgB .2μmgC .3μmgD .4μmg【解析】 当A 、B 之间恰好不发生相对滑动时力F 最大,此时,对于A 物体所受的合外力为μmg ,由牛顿第二定律知a A =μmgm=μg ;对于A 、B 整体,加速度a =a A =μg ,由牛顿第二定律得F =3ma =3μmg .【答案】 C图3-3-44如图3-3-4所示,一轻质弹簧的一端固定于倾角θ=30°的光滑斜面的顶端,另一端系有质量m=0.5 kg 的小球,小球被一垂直于斜面的挡板挡住,此时弹簧恰好为自然长度.现使挡板以恒定加速度a=2 m/s2沿斜面向下运动(斜面足够长),已知弹簧的劲度系数k=50 N/m,g取10 m/s2.(1)求小球开始运动时挡板对小球的弹力的大小.(2)求小球从开始运动到与挡板分离时弹簧的伸长量.(3)判断小球与挡板分离后能否回到原出发点?请简述理由.【审题指导】(1)初始时刻,弹簧处于自然长度,小球受重力和挡板的支持力.(2)球与挡板分离的临界条件为二者之间作用力恰为零.【解析】(1)设小球受挡板的作用力为F1,因为开始时弹簧对小球作用力为零,由牛顿第二定律得:mg sin θ-F1=maF1=1.5 N.(2)设小球受弹簧的拉力为F2,因为小球与挡板分离时,挡板对小球的作用力为零,由牛顿第二定律得:mg sin θ-F2=maF2=1.5 N由胡克定律得:F2=kx,x=3 cm,(3)小球与挡板分离后不能回到原出发点.因为整个过程中挡板对小球的作用力沿斜面向上,小球位移沿斜面向下,挡板对小球做负功,小球和弹簧组成的系统的机械能减小.THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。

专题3 临界极值问题(学生版)--2025版动力学中的九类常见模型精讲精练讲义

专题3 临界极值问题(学生版)--2025版动力学中的九类常见模型精讲精练讲义

动力学中的九类常见模型精讲精练专题3 临界极值问题【问题解读】1.题型概述在动力学问题中出现某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态即临界问题。

问题中出现“最大”“最小”“刚好”“恰能”等关键词语,一般都会涉及临界问题,隐含相应的临界条件。

2.临界问题的常见类型及临界条件(1)接触与分离的临界条件:两物体相接触(或分离)的临界条件是弹力为零且分离瞬间的加速度、速度分别相等。

临界状态是某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态,有关的物理量将发生突变,相应的物理量的值为临界值。

(2)相对静止或相对滑动的临界条件:静摩擦力达到最大静摩擦力。

(3)绳子断裂与松弛的临界条件:绳子断与不断的临界条件是实际张力等于它所能承受的最大张力;绳子松弛的临界条件是绳上的张力恰好为零。

(4)出现加速度最值与速度最值的临界条件:当物体在变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合力最大时,具有最大加速度;当所受合力最小时,具有最小加速度。

当出现加速度为零时,物体处于临界状态,对应的速度达到最大值或最小值。

【方法归纳】求解临界、极值问题的三种常用方法极限法把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的假设法临界问题存在多种可能,特别是非此即彼两种可能时,变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题数学方法 将物理过程转化为数学公式,根据数学表达式解出临界条件出隐含的临界条件。

【典例精析】【典例】. (2024河北安平中学自我提升)如图所示,A 、B 两个木块静止叠放在竖直轻弹簧上,已知A B 1kg m m ==,轻弹簧的劲度系数为100N/m 。

若在木块A 上作用一个竖直向上的力F ,使木块A 由静止开始以22m/s 的加速度竖直向上做匀加速直线运动,从木块A 向上做匀加速运动开始到A 、B 分离的过程中。

第14天 动力学的临界问题和板块问题 -2023年高一物理(人教版2019)(解析版)

第14天 动力学的临界问题和板块问题 -2023年高一物理(人教版2019)(解析版)

第14天动力学的临界问题和板块问题(复习篇)1.掌握动力学临界问题的分析方法.2.会分析几种典型临界问题的临界条件.3.建立板块模型的分析方法.4.能运用牛顿运动定律处理板块问题.1.如图所示,在水平光滑桌面上放有m1和m2两个小物块,它们中间有水平细线连接.已知m1=3 kg,m2=2 kg,连接它们的细线最大能承受6 N的拉力.现用水平外力F1向左拉m1或用水平外力F2向右拉m2,为保持细线不断,则F1与F2的最大值分别为()A.10 N15 N B.15 N 6 NC.12 N10 N D.15 N10 N答案D解析用水平外力F1向左拉m1,对m1有F1-F T=m1a1,对m2有F T=m2a1,解得F1最大值为15 N;用水平外力F2向右拉m2,对m2有F2-F T=m2a2,对m1有F T=m1a2,解得F2最大值为10 N,选项A、B、C错误,D正确.2. (多选)如图所示,质量为m1的足够长的木板静止在光滑水平地面上,其上放一质量为m2的木块.t =0时刻起,给木块施加一水平恒力F.分别用a1、a2和v1、v2表示木板、木块的加速度和速度大小,下列图中可能符合运动情况的是()答案AC解析木块和木板可能保持相对静止,一起做匀加速直线运动,加速度大小相等,故A正确;木块可能相对于木板向前滑动,即木块的加速度a2大于木板的加速度a1,都做匀加速直线运动,故B、D错误,C正确.一、动力学临界问题1.临界问题:某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态.2.关键词语:在动力学问题中出现的“最大”“最小”“刚好”“恰好”等词语,一般都暗示了临界状态的出现,隐含了相应的临界条件.3.临界问题的常见类型及临界条件(1)接触与脱离的临界条件:两物体间的弹力恰好为零.(2)相对静止或相对滑动的临界条件:静摩擦力达到最大静摩擦力.(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限的,绳子断裂的临界条件是实际张力等于它所能承受的最大张力,绳子松弛的临界条件是张力为零.(4)加速度最大、最小与速度最大、最小的临界条件:当所受合力最大时,具有最大加速度;当所受合力最小时,具有最小加速度.当出现加速度为零时,物体处于临界状态,对应的速度达到最大值或最小值.4.解答临界问题的三种方法(1)极限法:把问题推向极端,分析在极端情况下可能出现的状态,从而找出临界条件.(2)假设法:有些物理过程没有出现明显的临界线索,一般用假设法,即假设出现某种临界状态,分析物体的受力情况与题设是否相同,然后再根据实际情况处理.(3)数学法:将物理方程转化为数学表达式,如二次函数、不等式、三角函数等,然后根据数学中求极值的方法,求出临界条件.二、动力学中的板块问题1.模型概述:一个物体在另一个物体上,两者之间有相对运动.问题涉及两个物体、多个过程,两物体的运动速度、位移间有一定的关系.2.解题方法(1)明确各物体对地的运动和物体间的相对运动情况,确定物体间的摩擦力方向.(2)分别隔离两物体进行受力分析,准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变).(3)物体之间的位移(路程)关系或速度关系是解题的突破口.求解中应注意联系两个过程的纽带,即每一个过程的末速度是下一个过程的初速度.3.常见的两种位移关系滑块从木板的一端运动到另一端的过程中,若滑块和木板同向运动,则滑离木板的过程中滑块的位移与木板的位移之差等于木板的长度;若滑块和木板相向运动,滑离木板时滑块的位移和木板的位移大小之和等于木板的长度.特别注意:运动学公式中的位移都是对地位移. 4.注意摩擦力的突变当滑块与木板速度相同时,二者之间的摩擦力通常会发生突变,由滑动摩擦力变为静摩擦力或者消失,或者摩擦力方向发生变化,速度相同是摩擦力突变的一个临界条件.一、相对静止(或滑动)的临界问题例题1. 如图所示,质量为M 的木板放在水平桌面上,木板上表面有一质量为m 的物块,物块与木板、木板与桌面间的动摩擦因数均为μ,重力加速度为g ,设最大静摩擦力大小等于滑动摩擦力,若要以水平外力F 将木板抽出,则力的大小应大于( )A .μmgB .μ(M +m )gC .2μ(M +m )gD .μ(2M +m )g答案 C解析 对物块与木板分别进行受力分析如图所示,对物块有:μmg =ma 1,得a 1=μg ,对木板有:F -μmg -μ(M +m )g =Ma 2,得a 2=F -2μmgM -μg ,要将木板从物块下抽出,必须使a 2>a 1解得:F >2μ(M +m )g ,故A 、B 、D 错误,C 正确. 解题归纳:分析两物体叠加问题的基本思路二、地面不光滑的板块问题例题2. 如图所示,物块A 、木板B 的质量均为m =10 kg ,不计A 的大小,木板B 长L =3 m .开始时A 、B 均静止.现使A 以水平初速度v 0从B 的最左端开始运动.已知A 与B 、B 与水平面之间的动摩擦因数分别为μ1=0.3和μ2=0.1,g 取10 m/s 2.\(1)发生相对滑动时,A 、B 的加速度各是多大?(2)若A 刚好没有从B 上滑下来,则A 的初速度v 0为多大? 答案 (1)3 m/s 2 1 m/s 2 (2)2 6 m/s解析 (1)分别对物块A 、木板B 进行受力分析可知,A 在B 上向右做匀减速运动, 设其加速度大小为a 1,则有 a 1=μ1mg m=3 m/s 2木板B 向右做匀加速运动, 设其加速度大小为a 2,则有 a 2=μ1mg -μ2·2mg m=1 m/s 2(2)由题意可知,A 刚好没有从B 上滑下来,则A 滑到B 最右端时的速度和B 的速度相同,设为v ,则有:时间关系:t =v 0-v a 1=va 2位移关系:L =v 0+v 2t -v2t解得v 0=2 6 m/s. 解题归纳:1.分别对不同物体受力分析和运动过程分析。

专题二、 临界、极值问题(答案)

专题二、 临界、极值问题(答案)

专题临界问题一、临界问题1.临界状态:在物体的运动状态变化的过程中,相关的一些物理量也随之发生变化。

当物体的运动变化到某个特定状态时,有关的物理量将发生突变,该物理量的值叫临界值,这个特定状态称之为临界状态。

临界状态是发生量变和质变的转折点。

2.关键词语:在动力学问题中出现的“最大”、“最小”、“刚好”、“恰能”等词语,一般都暗示了临界状态的出现,隐含了相应的临界条件。

二、例题分析【例1】一个质量为0.1千克的小球,用细线吊在倾角θ为37°的斜面顶端,如图所示。

系统静止时绳与斜面平行,不计一切摩擦。

求下列情况下,绳子受到的拉力为多少?(1)系统以6米/秒2的加速度向左加速运动 (2)系统以l0米/秒2的加速度向右加速运动(3)系统以15米/秒2的加速度向右加速运动(提示:怎样建立直角坐标系更好?)T=0.12NT=1.4NT=1.8N练习:轻绳AB与竖直方向的夹角=,绳BC水平,小球质量m=0.4 kg,问当小车分别以 2.5、8的加速度向右做匀加速运动时,绳AB的张力各是多少?(取g=10)3、(1)5N(2)5.12N【例2】质量分别为m和M的两物体叠放在光滑水平地面上,两物体间的动摩擦因数为μ,水平拉力F的作用在M上,两物体相对静止一起向右运动。

求:⑴物体m受的摩擦力f;⑵若F增大,f如何变化⑶要保持两物体相对静止,求拉力F取值要求(4)现施水平力F拉m,为使m和M不发生相对滑动,水平力F不得超过多少?(最大静摩擦力等于滑动摩擦力)⑴mF/(M+m) ⑵增大⑶F≤μ(M+m) g(4)F≤μmg(M+m) /M练习:质量分别为m、2m、3m的物块A、B、C叠放一起放在光滑的水平地面上,现对B施加一水平力F,已知AB间、BC间最大静摩擦力均为f0,为保证它们能够一起运动,F的最大值为。

(提示:分别求出A、C受到的静摩擦力,讨论其变化)2 f0【例3】用细绳拴着质量为m的重物,从深为H的井底提起重物并竖直向上做直线运动,重物到井口时速度恰为零,已知细绳的最大承受力为T,则用此细绳子提升重物到井口的最短运动时间为多少?【提示】“最大”承受力及“最短”作用时间均为本题的临界条件。

物理复习--临界与极值问题

物理复习--临界与极值问题

专题临界与极值问题概述:在某些物理情境中,物体运动状态变化的过程中,由于条件的变化,会出现两种状态的衔接,两种现象的分界,同时使某个物理量在特定状态时,具有最大值或最小值。

在解决极值问题时,常碰到所求物理量,物理过程或物理状态的极值与某一临界值有关,所以我们首先可以考虑用临界法求解极值,其次才是数学方法,比如运用三角函数、配方、不等式、图象、等效法和归纳法求极值,尽管运用数学方法求解物理学中的极值问题有其独到的功能,但决不能让数学方法掩盖住事物的物理实质。

教学过程:一、知识概要1.竖直平面内作圆周运动的临界问题在高考复习阶段,经常会遇到一类专门研究物体在竖直平面内作圆周运动的临界问题的题目。

遇到这类题目,学生大多把分析的着眼点放在了小球过最高点时的受力和运动状况,认为只要保证小球在最高点能作圆周运动,就一定能保证小球在竖直平面内作完整的圆周运动。

如图甲、乙所示,小球到达最高点时绳子的拉力(或轨道的弹力)若刚好等于零,则小球的重力提供其作圆周运动所需要的向心力,即小球能过最高点的条件是:v ≥v 临界(v >v 临界时,绳、轨道分别对小球产生拉力或压力)。

小球不能通过最高点的条件是:v <v 临界(实际上小球还没有到达最高点就脱离了圆轨道)。

事实上在某些情况下,我们不能只盯着最高点,而要队小球作全面地、动态的分析,目的就是找出小球最不容易完成圆周运动的关键点,只要保证小球在这一点上恰能作圆周运动,就能保证他在竖直平面内作完整的圆周运动,如此这类临界问题得以根本解决。

这一关键点并非总是最高点,也可以是最低点,或其他任何位置。

2.极值法常见的极值问题有两类:一类是直接指明某量有极值而要求某极值;另一类则是通过求出某量的极值,进而以此作为依据而解出与之相关的问题。

物理极值问题的两种典型解法:解法一是根据问题所给的物理现象涉及的物理概念和规律进行分析,明确题中的物理量是在什么条件下取极值,或在出现极值时有何物理特征,然后根据这些条件或特征去寻找极值,这种方法更为突出了问题的物理本质,这种解法称之为解极值问题的物理方法;解法二是由物理问题所遵循的物理规律建立方程,然后根据这些方程进行数学推演,在推演中利用数学中已有的有关极值求法的结论而得到所求的极值,这种方法较侧重于数学的推演,这种方法称之为极值问题的物理――数学方法。

人教版必修1 专题:牛顿第二定律的应用-板块模型的临界极值问题(无答案)

人教版必修1 专题:牛顿第二定律的应用-板块模型的临界极值问题(无答案)

板块模型的临界极值问题1.物体A 放在物体B 上,物体B 放在光滑的水平面上,已知6=A m kg ,2=B m kg ,A 、B 间动摩擦因数2.0=μ,如图所示。

现用一水平向右的拉力F 作用于物体A 上,则下列说法中正确的是(10=g m/s 2)( ) A .当拉力F <12N 时,A 静止不动B .当拉力F =16N 时,A 对B 的摩擦力等于4NC .当拉力F >16N 时,A 一定相对B 滑动D .无论拉力F 多大,A 相对B 始终静止2.如图,物体A 叠放在物体B 上,B 置于光滑水平面上,A 、B 质量分别为m A =6 kg 、m B =2 kg ,A 、B 之间的动摩擦因数是0.2,开始时F =10 N ,此后逐渐增加,在增大到45 N 的过程中,则( )A .当拉力F <12 N 时,两物体均保持静止状态B .两物体开始没有相对运动,当拉力超过12 N 时,开始相对滑动C .两物体间从受力开始就有相对运动D .两物体间始终没有相对运动3. (2014·江苏)如图,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上,A 、B 间的动摩擦因数为μ,B与地面间的动摩擦因数为12μ,最大静摩擦力等于滑动摩擦力,重力加速度为g ,现对A 施加一水平拉力F ,则( ) A .当F<2μmg 时,A 、B 都相对地面静止B .当F =52μmg 时,A 的加速度为13μg C .当F>3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg 4.如图在前进的车厢的竖直后壁上放一个物体,物体与后壁间的滑动摩擦系数为μ,设最大静摩擦力等于滑动摩擦力.要使物体不下滑,车厢至少应以多大的加速度前进( )A .g/μB .G μC .μ/gD .g5.一有固定斜面的小车在水平面上做直线运动,小球通过细绳与车顶相连。

小球某时刻正处于图示状态。

以微专题形式开展高三物理二轮复习——以板块模型相对滑动的临界条件分析为例

以微专题形式开展高三物理二轮复习——以板块模型相对滑动的临界条件分析为例

以微专题形式开展高三物理二轮复习——以板块模型相对滑动的临界条件分析为例目前第一轮复习已到“收官”阶段,通过第一轮分章节的复习,学生已经较为全面地对教材中每一个现象、每一个概念、每一条规律的理解有了较为深刻的认识。

但是学生对有些问题的解题能力有待提高,所以在二轮复习中可采用微专题形式复习,更具有针对性和实效性。

这样摆在老师面前的首要问题是要清楚的了解问题所在,然后再去有针对性的解决。

我觉得以专题形式来复习,效率较高,但专题知识内容选择要合理,难度要适中,方法分析要层层递进。

就拿刚刚结束的江南十校考试一道板块模型计算题来说,此题得分率很低。

众所周知,板块模型是高考的重点内容,而且是第一轮复习时强调的重点题型,但学生得分率低,这说明学生在这方面还存在问题,没能掌握好方法,所以这一块就是第二轮复习的一个重要专题。

江南十校考题内容如下:考题1:如图所示,粗糙的水平面上有一块长为3m 的木板,小滑块放置于长木板上的某一位置。

现将一个水平向右,且随时间均匀变化的力F=0.2t 作用在长木板的右端,让长木板从静止开始运动。

已知:滑块质量m与长木板质量M相等,且m=M=1k,g 滑块与长木板动摩擦系数为μ1=0.1 ,木板与地面间动摩擦系数为μ2=0.2 ,设最大静摩擦力等于滑动摩擦力(g 取10m/s2)。

1)经过多长时间,长木板开始运动?2)经过多长时间,滑块与长木板恰要发生相对运动。

此时滑块的速度为多大?(3)如果t=0 时锁定外力F=6.75N,一段时间后撤去外力,发现小滑块恰好既不从左端滑出,也恰好不从右端滑出木板。

求小滑块放置的初始位置与长木板左端的距离?还有平时涉及的相关考题,如:考题2:如图所示,在倾角为30°的光滑斜面上放置质量分别为m 和2m的四个木块,其中两个质量为m的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是f m。

现用平行于斜面的拉力F 拉其中一个质量为2m的木块,使四个木块沿斜面以同一加速度向下运动,则拉力F 的最大值是()A.3f m/5B. 3f m/4C. 3f m/2D. f这些题都是学生的易错题,接下来我来总结一下解决此类问题的方法和思考问题的突破口,所有问题应从简单模型入手。

3、临界、极值问题

3、临界、极值问题
O V0
d
c
◆带电粒子在三角形磁场区域中的运动
例6.如图所示,在边长为2a的等边三角形△ABC内存 在垂直纸面向里磁感应强度为B的匀强磁场,有一带电 量为q、质量为m的粒子从距A点 3a 的D点垂直于AB方 向进入磁场。若粒子能从AC间离开磁场,求粒子速率 应满足什么条件及粒子从AC间什么范围内射出?
d
缩放圆:变化1:在上题中若电子的电量e,质量 m,磁感应强度B及宽度d已知,若要求电子不从 右边界穿出,则初速度V0有什么要求?
e B v0
d
B
变化2:若初速度向下与边界成 α = 60 0,则初速度有什么要求?
变化3:若初速度向上与边界成 α = 60 0,则初速度有什么要求?
变式、在真空中宽d的区域内有匀强磁场B,质量为 m,电量为e,速率为v的电子从边界CD外侧垂直 射入磁场,入射方向与CD夹角θ,为了使电子能从 磁场的另一侧边界EF射出,v应满足的条件是:B A.v>eBd/m(1+sinθ) C E B.v>eBd/m(1+cosθ) v C.v> eBd/msinθ θ O D.v< eBd/mcosθ
例题、如图所示.长为L的水平极板间,有垂直纸面向 内的匀强磁场,磁感强度为B,板间距离也为L,板不带 电,现有质量为m,电量为q的带正电粒子(不计重力), 从左边极板间中点处垂直磁感线以速度 v水平射入磁场, 欲使粒子不打在极板上,可采用的办法是: AB A.使粒子的速度v<BqL/4m; O2 B.使粒子的速度v>5BqL/4m; r2 C.使粒子的速度v>BqL/m; v D.使粒子速度BqL/4m<v<5BqL/4m。 r2
2R
M
2R
O
R

高中物理常见模型归纳_高中物理板块模型归纳

高中物理常见模型归纳_高中物理板块模型归纳

高中物理常见模型归纳_高中物理板块模型归纳高中物理的绝大部分题目都是有原始模型的,考生需要时刻总结归纳这些模型,掌握物理常见模型,下面店铺给大家带来高中物理常见模型,希望对你有帮助。

高中物理常见模型【力学常见物理模型】“子弹打木块”模型:三大定律、摩擦生热、临界问题、数理问题。

“爆炸”模型:动量守恒定律、能量守恒定律。

“单摆”模型:简谐运动、圆周运动中的力和能问题、对称法、图象法。

“质心”模型:质心(多种体育运动)、集中典型运动规律、力能角度。

“绳件、弹簧、杆件”三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题。

“挂件”模型:平衡问题、死结与活结问题,采用正交分解法、图解法、三角形法则和极值法。

“追碰”模型:运动规律、碰撞规律、临界问题、数学法(函数极值法、图像法等)和物理方法(参照物变换法、守恒法)等。

“皮带”模型:摩擦力、牛顿运动定律、功能及摩擦生热等问题。

“行星”模型:向心力(各种力)、相关物理量、功能问题、数理问题(圆心、半径、临界问题)。

“人船”模型:动量守恒定律、能量守恒定律、数理问题。

【电磁学常见物理模型】“限流与分压器”模型:电路设计。

串并联电路规律及闭合电路的欧姆定律、电能、电功率、实际应用。

“电路的动态变化”模型:闭合电路的欧姆定律。

判断方法和变压器的三个制约问题。

“磁流发电机”模型:平衡与偏转,力和能问题。

电磁场中的单杆模型:棒与电阻、棒与电容、棒与电感、棒与弹簧组合、平面导轨、竖直导轨等,处理角度为力电角度、电学度、力能角度。

电磁场中的”双电源”模型:顺接与反接、力学中的三大定律、闭合电路的欧姆定律、电磁感应定律。

“回旋加速器”模型:加速模型(力能规律)、回旋模型(圆周运动)、数理问题。

高中物理学习方法(1)课前认真预习。

想提高物理考试成绩,基础一定要掌握的牢。

很多基础差的学生,听课很吃力,主要是因为前面落下了很多内容。

因此,请做好预习工作,在这一点上,不要学班里的学霸们,他们不预习,是因为他们考点掌握的很牢固了。

板块的临界问题-物理专题

板块的临界问题-物理专题

时物块与木板都处于静止状态,现对物块施加F=8N,方向水平向右的恒定拉力,
求:(g=10m/s2) ⑴小物块的加速度;
F m
M
⑵物块从木板左端运动到右端经历的时间。
答案:⑴设小物块的加速度为a1,由牛顿第二定律得 F-μmg=ma1 代入数据得: a1= 4m/s2 ⑵设小物块的加速度为a2,由牛顿第二定律得:μmg=Ma2 由运动学规律可得: L+½a2t2=½a1t2 代入数据得:t=2s
(1)当A达到最低点时,A小球的 速度大小v;
(2)B球能上升的最大高度h。 (不计直角尺的质量 )
答案:直角尺和两个小球组成的系统机械能守 恒
• (1)由 2mg 2L 3mg L 1 2m v2 1 3m( v )2 解得v 8gL
2
22
11
• (2)设B球上升到最高时OA与竖直方向的夹 角为θ,则有
• 例3、一轻杆上质量均为m的小球a、b,可绕 o点在数值平面内自由转动。oa=ab=L,将 杆拉至水平后由静止释放。
求:杆转动到竖直方向时a、b两球的速度。
二、轻杆或轻支架连接问题
• 1、轻杆不可伸长和压缩,所以沿杆方 向速度必相同。
• 2、若轻杆或轻支架一端固定则杆或支 架转动时各点角速度相同。
位移 x2= ½a2t2 ① 滑块位移 x1= ½a1t2 ②
F
位移关系 x1-x2=L ③
将①、②、③式联立,解出a1=7m/s2
x2
L
x1
对滑块,由牛顿第二定律得:F-μmg=ma1 所以 F=μmg+ma1=8N
(3)将滑块从木板上拉出的过程中,滑块和木板的位移分别为 x1= ½a1t2= 7/8m x2= ½a2t2= 1/8m

板块无常 法有常——板块模型中的临界问题

板块无常 法有常——板块模型中的临界问题

板块无常法有常---------<<#型f餡性凤问题■湖南省株洲市攸县第四中学王经天-、分析现状板块模型中的临界问题的处理,教师教的方法多而杂,学生运用起来乱且难,原因何在?未抓住其本质(静摩擦力的临界,在板块即将发生相X滑动的瞬间板块之间的静摩擦力刚好达到最大静摩擦力)是根源。

二、构建情景体验过程(—)板块接触面粗糙而地面光滑1.外力2作用在木板上。

情景1:如图1所示,质量为m的木块静止在质量为M的木板上,木块和木板之间的动摩擦因数为$,地面光滑,外力2作用在木板上且2从0开始慢慢增大,假设滑动摩擦力等于最大静摩擦力。

求:外力2增大到多大时木块即将在木板上发生相X滑动?图1剖析:在木块与木板即将发生相X滑动的瞬间,二者的加速度相同,且二者之间的摩擦力刚好达到最大静摩擦力。

对由木块和木板组成的整体有2—(M+m)a,隔离木块有f=$m g=ma,解得2=$(M+m)g。

因此木块与木板发生相对滑动时外力的临界值2=$(M十m)g。

+++++++++++++++++++++++++++++++++++++++++++角速度、向心加速度均变刀、。

!$宇宙中两颗相距较近的天体称为“双星”,它们以两者连线上的某一点为圆心做匀速圆周运动,而不致因万有引力的作用而吸引到一起。

设两者的质量分别为m1和m2,两者相距L。

试证明它们的轨道半径—评:在证明此题时,要注意“双星''的三个特—,第一,两天体绕它们连线的某一—做匀速圆周运动,两天体的周期、角速度相同;第二,两天体的向心力大小相等;第三,两天体的轨道半径之和等于两天体之间的距离,之比、线速度大小之比都等于质量的反比。

证明:设“双星”系统中的两天体做匀速圆周运动的半径分别为R1和R2,如图1所示。

由万有引力定,Gm1m2"律得—m1'R1,图1即R1+R2—L#1.已知月球的质量为M,月球的半径为R,月球表面处的重力加速度为g,有一质量为m的飞船绕月球表面做匀速圆周运动,求Gm1mL2—m2'2R2,所以R1m2 R2m13i R i m2因为3—'R,所以一=7^——1因此“双星”系统中的两天体的轨道半径之比、线速度大小之比都等于质量的反比。

牛顿第二定律板块模型极值问题

牛顿第二定律板块模型极值问题

板块模型的临界极值问题1、物体A 放在物体B 上,物体B 放在光滑的水平面上,已知6=A m kg ,2=B m kg ,A 、B 间动摩擦因数2.0=μ,如图所示。

现用一水平向右的拉力F 作用于物体A 上,则下列说法中正确的是(10=g m/s 2)( )A .当拉力F <12N 时,A 静止不动B .当拉力F =16N 时,A 对B 的摩擦力等于4NC .当拉力F >16N 时,A 一定相对B 滑动D .无论拉力F 多大,A 相对B 始终静止2、如图,物体A 叠放在物体B 上,B 置于光滑水平面上,A 、B 质量分别为m A =6 kg 、m B =2 kg ,A 、B 之间的动摩擦因数是0.2,开始时F =10 N ,此后逐渐增加,在增大到45 N 的过程中,则( )A .当拉力F <12 N 时,两物体均保持静止状态B .两物体开始没有相对运动,当拉力超过12 N 时,开始相对滑动C .两物体间从受力开始就有相对运动D .两物体间始终没有相对运动3、如图,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上,A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ,最大静摩擦力等于滑动摩擦力,重力加速度为g ,现对A 施加一水平拉力F ,则( )A .当F<2μmg 时,A 、B 都相对地面静止B .当F =52μmg 时,A 的加速度为13μgC .当F>3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg4、如图在前进的车厢的竖直后壁上放一个物体,物体与后壁间的滑动摩擦系数为μ,设最大静摩擦力等于滑动摩擦力.要使物体不下滑,车厢至少应以多大的加速度前进( )A .g/μB .G μC .μ/gD .g5、一有固定斜面的小车在水平面上做直线运动,小球通过细绳与车顶相连。

小球某时刻正处于图示状态。

设斜面对小球的支持力为N,细绳对小球的拉力为T,关于此时刻小球的受力情况,下列说法正确的是()A.若小车向左运动,N可能为零B.若小车向左运动,T可能为零C.若小车向右运动,N不可能为零D.若小车向右运动,T不可能为零6、一个物体沿摩擦因数一定的斜面加速下滑,下列哪个较准确地描述了加速度a与斜面倾角θ的关系?()7、如图甲所示,M、m两物块叠放在光滑的水平面上,两物块间的动摩擦因数为μ,一个恒力F作用在物块M上.(1)F至少为多大,可以使M、m之间产生相对滑动?(2)如图乙所示,假如恒力F作用在m上,则F至少为多大,可以使M、m之间产生相对滑动?8、如图所示,物体A 、B 的质量分别为2kg 和1kg ,A 置于光滑的水平地面上,B 叠加在A 上。

高三物理专题复习2板块模型-难(学生版)

高三物理专题复习2板块模型-难(学生版)


,则 ,则
B. 若

D. 若

,则 ,则
3 如图所示,木块 、 静止叠放在光滑水平面上, 的质量为 , 的质量为 .现施水平力 拉 (如图甲), 、 刚好不发生相对滑动,一起沿水平面运动.若改用水平力 拉 (如图乙), 使 、 也保持相对静止,一起沿水平面运动,则 不得超过( )
A.
B.
C.
D.
2 如图所示,在光滑水平面上放着两块长度相同,质量分别为 和 的木板,在两木板的左端各 放一个大小、形状、质量完全相同的物块 ,开始时,各物块均静止,今在两物块上各作用一水 平恒力 、 ,当物块和木板分离时,两木板的速度分别为 和 .物块和木板间的动摩擦因数 相同.下列说法正确的是( )
A. 若

C. 若
4 一个质量为
的长木板置于光滑水平地面上,木板上放质量分别

的、
两物块, 、 与木板之间的动摩擦因数都为
,水平恒力 作用在 物块上,如图所示
(重力加速度 取
).则下列说法正确的是( )
A. 若 C. 若
,则 、 都静止不动 ,则 物块所受摩擦力大小为
B. 若 若
,则 物块所受摩擦力大小为 ,则 物块的加速度为
板块模型-难
1. 解题技巧
解决板块模型的问题,需要注意以下几个细节: (1)板块模型经常涉及临界状态的讨论,临界点一般为物体与板之间的摩擦力达到最大值; (2)当物体与板的速度达到相同,而无法判断接下来两者的运动状态时,可以假设两者依然为一整体, 算出整体运动的加速度,再计算此加速度下物体所受的摩擦力大小,若小于最大静摩擦,则两者为一整 体;若大于最大静摩擦,则两者不是一整体; (3)计算物体跟板的相对位移,一般用能量守恒求解系统产生的热量(热量=摩擦力×相对位移)

专题四:临界和极限及板块的应用

专题四:临界和极限及板块的应用

• (2)绳子松弛的临界条件是:绳 中拉力为零
• (3)存在静摩擦的连接系统,当 系统外力大于最大静摩擦力时, 物体间不一定有相对滑动,相对 滑动与相对静止的临界条件是: 静摩擦力达最大值
三、滑块—滑板类问题
1、滑块—滑板类问题的特点: 涉及两个物体,并且物体间存在相对滑动. 2、滑块和滑板常见的两种位移关系: 滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向
运动,位移之差等于板长;反向运动时,位移之和等于板长.
光滑的水平面上,放着质量为m1和m2的长木板 和小物块,两者之间的动摩擦因数为μ,假设木板 足够长,现给小物块 m2初速度v0,则:
1、m1和m2之后分别作什么运动? 2、它们的加速度分别为多大?方向向哪? 3、从开始到相对静止它们的位移分别为多大? 4、从开始到相对静止m2在m1上滑动的距离为多 大?
例1:如图所示,长12m质量为50kg的木板右端有一 立柱.木板置于水平地面上,木板与地面间的动摩擦因 数为0.1,质量为50kg的人立于木板左端,木板与人均 静止,当人以4m/s2 的加速度匀加速向右奔跑至板的右 端时,立刻抱住立柱,(取g=10m/s2)试求:(1)人在奔跑 过程中受到的摩擦力的大小. (2)人在奔跑过程中木板的加速度. (3)人从开始奔跑至到达木板右端所经历的时间.
当滑板的长度一定时,滑块可能从滑板滑下,恰好滑到滑板的边缘达到 共同速度是滑块滑离滑板的临界条件.
a
θ
解:
取小球为研究对象并受力分析 建立正交坐标系 Fcosθ-FNsinθ=ma Fsinθ+FNcosθ=mg
FN F
则沿x轴方向 沿y轴方向
得 F1=1.4mg
将 θ=370 、a1=g 、a2=2g 分别代入 F2= 2.2mg FN2=-0.4mg

(整理)物理复习--临界与极值问题.

(整理)物理复习--临界与极值问题.

专题 临界与极值问题概述:在某些物理情境中,物体运动状态变化的过程中,由于条件的变化,会出现两种状态的衔接,两种现象的分界,同时使某个物理量在特定状态时,具有最大值或最小值。

在解决极值问题时,常碰到所求物理量,物理过程或物理状态的极值与某一临界值有关,所以我们首先可以考虑用临界法求解极值,其次才是数学方法,比如运用三角函数、配方、不等式、图象、等效法和归纳法求极值,尽管运用数学方法求解物理学中的极值问题有其独到的功能,但决不能让数学方法掩盖住事物的物理实质。

教学过程:一、知识概要1.竖直平面内作圆周运动的临界问题在高考复习阶段,经常会遇到一类专门研究物体在竖直平面内作圆周运动的临界问题的题目。

遇到这类题目,学生大多把分析的着眼点放在了小球过最高点时的受力和运动状况,认为只要保证小球在最高点能作圆周运动,就一定能保证小球在竖直平面内作完整的圆周运动。

如图甲、乙所示,小球到达最高点时绳子的拉力(或轨道的弹力)若刚好等于零,则小球的重力提供其作圆周运动所需要的向心力,即小球能过最高点的条件是:v ≥v 临界(v >v 临界时,绳、轨道分别对小球产生拉力或压力)。

小球不能通过最高点的条件是:v <v临界(实际上小球还没有到达最高点就脱离了圆轨道)。

事实上在某些情况下,我们不能只盯着最高点,而要队小球作全面地、动态的分析,目的就是找出小球最不容易完成圆周运动的关键点,只要保证小球在这一点上恰能作圆周运动,就能保证他在竖直平面内作完整的圆周运动,如此这类临界问题得以根本解决。

这一关键点并非总是最高点,也可以是最低点,或其他任何位置。

2.极值法常见的极值问题有两类:一类是直接指明某量有极值而要求某极值;另一类则是通过求出某量的极值,进而以此作为依据而解出与之相关的问题。

物理极值问题的两种典型解法:解法一是根据问题所给的物理现象涉及的物理概念和规律进行分析,明确题中的物理量是在什么条件下取极值,或在出现极值时有何物理特征,然后根据这些条件或特征去寻找极值,这种方法更为突出了问题的物理本质,这种解法称之为解极值问题的物理方法;解法二是由物理问题所遵循的物理规律建立方程,然后根据这些方程进行数学推演,在推演中利用数学中已有的有关极值求法的结论而得到所求的极值,这种方法较侧重于数学的推演,这种方法称之为极值问题的物理――数学方法。

临界与极值问题模板

临界与极值问题模板
1.将物体静止置于斜面上, 如tgθ≤μ,则物体保持静止; 如tgθ>μ,则物体不能保持静止,而加速下滑。
2.将物体以一沿斜面向下的初速度置于斜面上, 如tgθ<μ ,则物体减速,最后静止; 如tgθ=μ,则物体保持匀速运动; 如tgθ>μ,则物体做加速运动。
因此,这一临界条件是判断物体在斜面上会如何运动的一个条件。
• C.水平面与斜面体间的摩擦力变大
• D.水平面与斜面体间的摩擦力变小
【解析】 应用隔离法对m受力分析,通过正交分解法分解重力,根据力的平衡条件可 得A、B正确.应用整体法分析M和m这个整体的受力可知,水平面与斜面体之间的摩擦 力一直为零.【答案】 AB
例3、如图所示,一个质量为m的物体放在倾 角为α的粗糙斜面上,保持静止,现用水平 力F推物体,当F由零增加稍许,而物体仍 保持静止,则( CD)
A.3 B.4 C.5 D.6
【解析】 以A为研究对象,根据平衡条件A对B有压力和摩擦力的作用, 以B为研究对象,B除受到A施加的压力和摩擦力外,还受到重力和斜面的支 持力作用,斜面与B之间可能存在摩擦力,也可能不存在摩擦力,故选B、C.
• 例4.如右图所示,斜面小车M静止在光滑水 平面上,一边紧贴墙壁.若再在斜面上加一
物体m,且M、m相对静止,小车后来受力个 数为 ( )
• A.3
B.4
• C.5
D.6
【解析】 对M和m整体,它们必受到重力和地面支持力,因小车静止, 由平衡条件知墙面对小车必无作用力,以小车为研究对象.如右图所 示,它受四个力;重力Mg,地面的支持力FN1,m对它的压力FN2和静 摩擦力Ff,由于m静止,可知Ff和FN2的合力必竖直向下,故B项正确.
• 例5、如图所示,物体A在水平外力F的作用下, 静止在斜面上,现在使水平外力F增大一些, 物体仍静止在斜面上,关于物体A所受斜面支 持力及静摩擦力的变化情况,下面几种说法中 正确的是

动力学中的临界极值问题

动力学中的临界极值问题

动力学中的临界极值问题临界和极值问题是物理中的常见题型,结合牛顿运动定律求解的也很多,临界是一个特殊的转换状态,是物理过程发生变化的转折点。

分析此类问题重在找临界条件,常见的临界条件有:1.细线:拉直的临界条件为T=0,绷断的临界条件为T=Tmax2.两物体脱离的临界条件为:接触面上的弹力为零3.接触的物体发生相对运动的临界条件为:静摩擦力达到最大静摩擦 临界或极值条件的标志(1)有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程存在着临界点;(2)若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应临界状态;(3)若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点;(4)若题目要求“最终加速度”、“稳定加速度”等,即是求收尾加速度或收尾速度.例3 (2013·山东·22)如图5所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2.图5(1)求物块加速度的大小及到达B 点时速度的大小.(2)拉力F 与斜面夹角多大时,拉力F 最小?拉力F 的最小值是多少?解析 (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得L =v 0t +12at 2①v =v 0+at②联立①②式,代入数据得a =3 m/s 2③ v =8 m/s④(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面间的夹角为α,受力分析如图所示,由牛顿第二定律得F cos α-mg sin θ-F f =ma⑤ F sin α+F N -mg cos θ=0⑥ 又F f =μF N⑦联立⑤⑥⑦式得F =mg (sin θ+μcos θ)+macos α+μsin α⑧由数学知识得cos α+33sin α=233sin(60°+α) ⑨由⑧⑨式可知对应最小F的夹角α=30°⑩联立③⑧⑩式,代入数据得F的最小值为F min=1335N答案(1)3 m/s28 m/s (2)30°1335N动力学中的典型临界条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力F N=0.(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值.(3)绳子断裂与松驰的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松驰的临界条件是:F T=0.(4)加速度变化时,速度达到最值的临界条件:当加速度变为零时.突破训练3如图6所示,水平地面上放置一个质量为m的物体,在与水平方向成θ角、斜向右上方的拉力F 的作用下沿水平地面运动.物体与地面间的动摩擦因数为μ,重力加速度为g.求:图6(1)若物体在拉力F的作用下能始终沿水平面向右运动且不脱离地面,拉力F的大小范围;(2)已知m=10 kg,μ=0.5,g=10 m/s2,若F的方向可以改变,求使物体以恒定加速度a=5 m/s2向右做匀加速直线运动时,拉力F的最小值.答案(1)μmgcos θ+μsin θ≤F≤mgsin θ(2)40 5 N解析(1)要使物体运动时不离开水平面,应有:F sin θ≤mg 要使物体能一直向右运动,应有:F cos θ≥μ(mg-F sin θ)联立解得:μmgcos θ+μsin θ≤F≤mgsin θ(2)根据牛顿第二定律得:F cos θ-μ(mg-F sin θ)=ma解得:F=μmg+ma cos θ+μsin θ上式变形F=μmg+ma1+μ2sin(θ+α),其中α=sin -111+μ2,当sin(θ+α)=1时F 有最小值解得:F min =μmg +ma 1+μ2,代入相关数据解得:F min =40 5 N.B 组 动力学中的临界极值问题2.如图所示,一质量为0.2 kg 的小球系着静止在光滑的倾角为53°的斜面上,斜面静止时,球紧靠在斜面上,绳与斜面平行,当斜面以10 m/s2加速度水平向右做匀加速直线运动时,求线对小球的拉力和斜面对小球的弹力.(g =10 m/s2)3.(2007江苏)如图所示,光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg .现用水平拉力F 拉其中一个质量为2 m 的木块,使四个木块以同一加速度运动,则轻绳对m 的最大拉力为( )5mg 3μ B .4mg 3μ C .2mg3μ D .mg 3μ例2.一根劲度系数为k 、质量不计的轻弹簧上端固定,下端系一质量为m 的物块,有一水平的木板将物块托住,并使弹簧处于自然长度,如图所示.现让木板由静止开始以加速度a(a<g)匀加速向下移动,经过多长时间木板与物块分离?跟踪训练2.如图所示,物体A 叠放在物体B 上,B 置于光滑水平面上.A 、B 质量分别为6.0 kg 和2.0 kg ,A 、B 之间的动摩擦因数为0.2.在物体A 上施加水平方向的拉力F ,开始时F =10 N ,此后逐渐增大,在增大到45 N 的过程中,以下判断正确的是( )A .两物体间始终没有相对运动B .两物体间从受力开始就有相对运动C .当拉力F <12 N 时,两物体均保持静止状态D .两物体开始没有相对运动,当F >18 N 时,开始相对滑动3如图3-3-3所示,光滑水平面上放置质量分别为m 、2m 的A 、B 两个物体,A 、B 间的最大静摩擦力为μmg ,现用水平拉力F 拉B ,使A 、B 以同一加速度运动,则拉力F 的最大值为( )图3-3-3A .μmgB .2μmgC .3μmgD .4μmg【解析】 当A 、B 之间恰好不发生相对滑动时力F 最大,此时,对于A 物体所受的合外力为μmg ,由牛顿第二定律知a A =μmgm=μg ;对于A 、B 整体,加速度a =a A =μg ,由牛顿第二定律得F =3ma =3μmg .【答案】 C图3-3-44如图3-3-4所示,一轻质弹簧的一端固定于倾角θ=30°的光滑斜面的顶端,另一端系有质量m=0.5 kg 的小球,小球被一垂直于斜面的挡板挡住,此时弹簧恰好为自然长度.现使挡板以恒定加速度a=2 m/s2沿斜面向下运动(斜面足够长),已知弹簧的劲度系数k=50 N/m,g取10 m/s2.(1)求小球开始运动时挡板对小球的弹力的大小.(2)求小球从开始运动到与挡板分离时弹簧的伸长量.(3)判断小球与挡板分离后能否回到原出发点?请简述理由.【审题指导】(1)初始时刻,弹簧处于自然长度,小球受重力和挡板的支持力.(2)球与挡板分离的临界条件为二者之间作用力恰为零.【解析】(1)设小球受挡板的作用力为F1,因为开始时弹簧对小球作用力为零,由牛顿第二定律得:mg sin θ-F1=maF1=1.5 N.(2)设小球受弹簧的拉力为F2,因为小球与挡板分离时,挡板对小球的作用力为零,由牛顿第二定律得:mg sin θ-F2=maF2=1.5 N由胡克定律得:F2=kx,x=3 cm,(3)小球与挡板分离后不能回到原出发点.因为整个过程中挡板对小球的作用力沿斜面向上,小球位移沿斜面向下,挡板对小球做负功,小球和弹簧组成的系统的机械能减小.THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。

高中物理中的临界与极值问题

高中物理中的临界与极值问题

下中物理中的临界与极值问题之阳早格格创做宝鸡文理教院附中何治专一、临界与极值观念所谓物理临界问题是指百般物理变更历程中,随着条件的渐渐变更,数量聚集达到一定程度便会引起某种物理局里的爆收,即从一种状态变更为另一种状态爆收量的变更(如齐反射、光电效力、超导局里、线端小球正在横直里内的圆周疏通临界速度等),那种物理局里恰佳爆收(或者恰佳不爆收)的过分转合面即是物理中的临界状态.与之相关的临界状态恰佳爆收(或者恰佳不爆收)的条件即是临界条件,有关此类条件与截止钻研的问题称为临界问题,它是形而上教中所道的量变与量变顺序正在物理教中的简直反映.极值问题则是指物理变更历程中,随着条件数量连绝渐变越过临界位子时或者条件数量连绝渐变与鸿沟值(也称端面值)时,会使得某物理量达到最大(或者最小)的局里,有关此类物理局里及其爆收条件钻研的问题称为极值问题.临界与极值问题虽是二类分歧的问题,但是往往互为条件,即临界状态时物理量往往博得极值,反之某物理量与极值时恰佳便是物理局里爆收转合的临界状态,除非该极值是单调函数的鸿沟值.果此从某种意思上道,那二类问题的界线又隐得非常的朦胧,并不是泾渭明隐.下中物理中的临界与极值问题,虽然不正在教教大目或者考查道明中粗确提出,但是连年下考查题中却频频出现.从往常的试题形式去瞅,有些间接正在题搞中时常使用“恰佳”、“最大”、“起码”、“不相碰”、“不摆脱”……等词汇语对付临界状态给出了粗确的表示,审题时,要抓住那些特定的词汇语收挖其内含的物理顺序,找出相映的临界条件.也有一些临界问题中本去不隐含上述罕睹的“临界术语”,具备一定的湮出性,解题机动性较大,审题时应力图还本习题的物理情景,粗细计划状态的变更.可用极限法把物理问题或者物理历程推背极度,进而将临界状态及临界条件隐性化;或者用假设的要领,假设出现某种临界状态,领会物体的受力情况及疏通状态与题设是可相符,终尾再根据本量情况举止处理;也可用数教函数极值法找出临界状态,而后抓住临界状态的特性,找到粗确的解题目标.从往常试题的真量去瞅,对付于物理临界问题的考查主要集结正在力战疏通的关系部分,对付于极值问题的考查则主要集结正在力教或者电教等权沉较大的部分.二、罕睹临界状态及极值条件解问临界与极值问题的关键是觅找相关条件,为了普及解题速度,不妨明白并记着一些罕睹的要害临界状态及极值条件:1.雨火从火仄少度一定的光润斜里形屋顶流淌时间最短——2.从少斜里上某面仄扔出的物体距离斜里最近——速度与斜里仄止时刻3.物体以初速度沿牢固斜里恰佳能匀速下滑(物体冲上牢固斜里时恰佳不再滑下)—μ=tgθ.4.物体刚刚佳滑动——静摩揩力达到最大值.5.二个物体共背疏通其间距离最大(最小)——二物体速度相等.6.二个物体共背疏通相对付速度最大(最小)——二物体加速度相等.7.位移一定的先开用后制动分段疏通,正在初、终速及二段加速度一定时欲使齐程历时最短——中间无匀速段(位移一定的先开用后制动分段匀变速疏通,正在初速及二段加速度一定时欲使能源效率时间最短——到终面时终速恰佳为整)8.二车恰不相碰——后车逃上前车时二车恰佳等速.9.加速疏通的物体速度达到最大——恰佳不再加速时的速度.10.二交战的物体刚刚佳分散——二物体交战但是弹力恰佳为整.11.物体所能到达的最近面——直线疏通的物体到达该面时速度减小为整(直线疏通的物体轨迹恰与某鸿沟线相切)12.正在排球场合3米线上圆火仄打球欲乐成的最矮位子——既触网又压界13.木板或者传递戴上物体恰不滑降——物体到达终端时二者等速.14.线(杆)端物正在横直里内搞圆周疏通恰能到圆周最下面15.横直里上疏通的非拘束物体达最下面——横直分速度为整.16.细线恰佳推直——细线绷直且推力为整.17.已知一分力目标及另一分力大小的领会问题中若第二分力恰为极小——二分力笔直.18.动背力领会的“二变一恒”三力模型中“单变力”极小——二个变力笔直.19.度目标的分力.20.渡河中时间最短——船速笔直于河岸,即船速与河岸笔直(相称于静火中渡河).21.船速大于火速的渡河中航程最短——“斜顺航止”且船速顺进与止分速度与火速对消.22.船速小于火速的渡河中航程最短——“斜顺航止”且船速与合速度笔直.23.“圆柱体”滚上台阶最省力——使能源臂达最大值2R.24.25.益坏动能最小(大)的碰碰——真足弹性(真足非弹性)碰碰.26.简谐疏通速度最大——位移(回复力、加速度)为整.27.受迫振荡振幅恰佳达最大——驱能源的频次与振荡系统的固有频次相等.28.二个共相相搞波源连线上振幅最大的面——二边距连线中…29.惟有板滞能与电势能相互转移时,沉力势能与电势能之战最小时,动能最大.30.粒子恰不飞出匀强磁场——圆形轨迹与磁场鸿沟相切.31.杂电阻背载时电源输出功率最大——内中电阻阻值相等.32.滑动变阻器对付称式接法中阻值达最大——滑至中面.33.倾斜安顿的光润导轨上的通电导体棒停止时,所加匀强磁场目标若笔直于斜里的情况下磁感强度最小.34.光从介量射背气氛时恰不射出——进射角等于临界角.35.刚刚佳爆收光电效力——进射光频次等于极限频次.36.戴电粒子恰佳被速度采用器选中(霍我效力、等离子收电)——电场力与洛力仄稳.37.“大天卫星”(氢本子处于基态)时,势能最小、总能量最小、疏通周期、角速度均最小;速度、背心力、加速度均最大.38.等量共本量面电荷连线的中垂线上场强最大的位子供解.三、临界与极值问题普遍解法临界问题常常以定理、定律等物理顺序为依据,领会所钻研问题的普遍顺序战普遍解的形式及其变更情况,而后找出临界状态,临界条件,进而通过临界条件供出临界值,再根据变更情况,间接写出条件.供解极值问题的要领从大的圆里可分为物理要领战数教要领.物理要领即用临界条件供极值.数教要领包罗(1)利用矢量图供极值(2)用正(余)弦函数供极值;(3)扔物线顶面法供极值;(4)用基础不等式供极值.(5)单调函数端面值法供极值(6)导数法供解.普遍而止,用物理要领供极值简朴、直瞅、局里,对付构修物理模型及动背领会等圆里的本领央供较下,而用数教要领供极值思路宽紧,对付数教修模本领央供较下,若能将二者给予混合,则将相得亦彰,对付巩固解题本领大有裨益.四、典型问题领会例题1.某屋顶横断里是一等腰三角形ABC ,横梁AC=2L (定值),欲使雨火从屋顶里下贵下去时间最短,供屋里的倾斜角(摩揩忽略不计,雨火初速为0)剖析:设倾斜角α,AB=s ∵F=mgsinα=ma ,∴a=gsinα∵s== ∴当α=45°时,等号创制所以α=45°,雨火从屋顶(光润)下贵下所用的时间最短解法2.21sin cos 2L g t αα=⋅∴解恰当0=45α时 t 有最小值. 例题2.从倾角为θ的牢固少斜里顶面以初不计气氛阻力供自扔出经多万古间小球离斜里最近?解法一:设经t 秒小球距离斜里最近,此时速度必与斜里仄止,则所以. 解法二:近离斜里目标的所以近离斜里的速度减小至整时相距最近.时相距最近.解法四:剖析法.选初速度目标为x 轴正背,沉力目标为y 轴正仄扔物体轨迹圆故隐然二次函数有极大概的条件为即例题3.一个品量为3kg的物体搁正在少木板上,当木板一端抬起使它与火仄目标成30°的牢固斜里时,物体正佳不妨沿斜里匀速下滑.当木板火仄牢固时,用多大的火仄推力能将该物体推动?剖析:正在斜里上物体所受摩揩力与沉力沿斜里背下的分力仄稳即F=mgsin30°而滑动摩揩力f=μmgcos30°所以μ=tan30°正在火仄里上推的时间压力大小等于沉力大小.则火仄里上的摩揩力f=μmg=mgtan30°所以推力起码要达到那个值才搞推动物体,例题4-1.某物体所受沉力为200 N,搁正在火仄大天上,它与大天间的动摩揩果数是,它与大天间的最大静摩揩力是80 N,起码要用_________N的火仄推力,才搞将此物体推动,若推动之后脆持物体搞匀速直线疏通,火仄推力应为_________N;物体正在大天上滑动历程中,若将火仄推力减小为50 N,直到物体再次停止前,它所受到的摩揩力为_________N;物体停止后,此50 N的火仄推力并已撤去,物体所受的摩揩力大小为_________N.剖析:从停止推物体时推力起码达到最大静摩揩力80N才不妨推动物体;推动后当推力大小与滑动摩揩力等值(200×0.38=76N)时物体将搞匀速直线疏通;正在物体滑动历程中火仄推力若减小至50N,物体受到的滑动摩揩力仍跟本去一般为76N;物体停止后此50N的火仄推力并已撤去时物体受静摩揩力大小等于此时的火仄推力大小50N.例题4-2. 如图所示,U 形导线框牢固正在火仄里上,左端搁有品量为m 的金属棒ab ,ab 与导轨间的动摩揩果数为μ,它们围成的矩形边少分别为1L 、2L ,回路的总电阻为R.从t=0时刻起,正在横直进与目标加一个随时间匀称变更的匀强磁场B=kt ,(k>0)那么正在t 为多大时,金属棒开初移动.剖析:当磁场爆收变更的时间,有感触电动势爆收,正在回路中便会爆收感触电流,ab 棒会受到安培力的效率,则ab 有背左疏通的趋势,则ab 便会受到背左的静摩揩力的效率.当ab 棒受到安培力战静摩揩力的效率仄稳时,由12E kL L t ∆Φ==∆可知,回路中感触电动势是恒定的,电流大小也是恒定的,但是由于安培力F=BIL ∝B=kt ∝t ,所以安培力将随时间而删大,所以ab 受到的静摩揩力也删大,二者终究是等值反背的,只消安培力的大小不超出最大静摩揩力,ab 便终究处于停止状态.当安培力大于最大静摩揩力之后,ab 便会疏通起去.正在停止到疏通之间便存留着一个从停止到疏通的临界状态,此状态的临界条件便是安培力删大到等于最大静摩揩力.此时有:1212212,kL L mgR kt L mg t R k L L μμ⋅⋅==所以例题4-3.如图3所示二根仄止的金属导轨牢固正在共一火仄里上,磁感触强度的匀强磁场与导轨仄里笔直,导轨电b a L 1 L 2阻不计,导轨间距;二根品量均为电阻均为的仄止金属杆甲、乙可正在导轨上笔直于导轨滑动,与导轨间的动摩揩果数均为;现有一与导轨仄止大小为的火仄恒力效率于甲杆使金属杆正在导轨上滑动,已知210m g s = 供(1)领会甲、乙二杆的疏通的情况?(2)杆疏通很万古间后开初,则再通过5秒钟二杆间的距离变更了几?剖析:(1)金属杆甲正在火仄恒力(那里0.5f mg μ==甲牛为甲杆所受的最大静摩揩力)效率下将背左加速疏通并切割磁感线爆收顺时针目标的感触电流,果而使甲杆共时受到火仄背左的安培阻力;乙杆中也果为有了电流而受到火仄背左的安培能源,二个安培力等值反背;开初时甲杆的切割速度较小故安培力=均较小,随的删大则回路中的感触电流删大,所以二杆所受的安培力=均删大,故甲杆将背左做加速度减小的变加速疏通;当时乙杆也将开初背左做加速度渐渐删大的变加速疏通;直到甲、乙二杆的加速度相等时(此时甲乙二杆速度好v ∆最大,回路中动死电流最大即0.50.2=0.44m BL v v v I R ⋅∆⨯⨯∆∆==总, 每杆受安培力最大即0.50.2440Bm m v v F BI L ∆∆==⨯⨯=乙杆的加速度最大即max 54Bm F mg v a m μ-∆==-乙甲杆的加速度最小即min 154Bm F F mg v a m μ--∆==-甲图5所以甲乙二杆以共共的加速度,恒定的速度好背左搞匀加速直线疏通.即甲相对付乙将背左搞匀速直线疏通而近离.(2)依据上述领会知疏通很万古间后甲乙二杆将以共共的加速度背左搞匀加速直线疏通,亦即5秒例题4-4.如图5一端施一大小为20N 的恒力FM 可视为量面,问木块从较近处背左疏通到离定滑轮多近时加速度最大?最大加速度为几?剖析: 设当沉绳与火仄目标成角θ时,对付M 有A 与最大值时a 最大.利用三角函数知识有:此时木块离定滑轮的火仄距离为:cm=θcot≈S25h道明:此题并不是正在所有条件下皆能达到上述最大加速度,当木块达到一定值时,有大概使物体摆脱大天,今后物体将不正在沿着火仄里疏通.果此,F、M、μ必须谦足θsinF≤Mg.此题所给数据谦足上述条件,不妨达到最大加速度.例题4-5.如图3所示,品量为m=1kg的物块搁正在倾角为的斜里体上,斜里品量为,斜里与物块间的动摩揩果数为,大天光润,现对付斜里体施一火仄推力F,要使物体m相对付斜里停止,试决定推力F的与值范畴.()图3剖析:此题有二个临界条件,当推力F较小时,物块有相对付斜里背下疏通的大概性,此时物体受到的摩揩力沿斜里进与;当推力F较大时,物块有相对付斜里进与疏通的大概性,此时物体受到的摩揩力沿斜里背下.找准临界状态,是供解此题的关键.(1)设物块处于相对付斜里背下滑动的临界状态时的推力为F1,此时物块受力如图4所示,与加速度的目标为x轴正目标.图4对付物块领会,正在火仄目标有横直目标有对付真足有代进数值得(2)设物块处于相对付斜里进与滑动的临界状态时的推力为F2图4-6 对付物块领会,正在火仄目标有 横直目标有, 对付真足有代进数值得.综上所述可知推力F 的与值范畴为: 例题4-6.如图4-6所示,跨过定滑轮的沉绳二端,分别系着物体A 战B ,物体A 搁正在倾角为α的斜里上,已知物体A 的品量为m ,物体B 战斜里间动摩揩果数为μ(μ<t an θ),滑轮的摩揩不计,要使物体停止正在斜里上,供物体B 品量的与值范畴.剖析:物体正在斜里上大概恰佳不上滑,也大概恰佳不下滑,所以摩揩力大概有二个目标.以B 为钻研对付象,由仄稳条件得:B T m g =再以A 为钻研对付象,它受沉力、斜里对付A 的收援力、绳的推力战斜里对付A 的摩揩效率.假设A 处于临界状态,即cos N mg θ=0,m m T f mg f N μ--==或者:0,m m T f mg f N μ+-==(sin cos )(sin cos )B m m m θμθθμθ-≤≤+例题5-1.甲物体以=4m v s 甲搞匀速直线疏通,乙物体正在其后里5m 处沿共背去线共一目标搞初速为整加速度22m a s =的匀加速直线疏通,问乙物体是可不妨逃上甲物体?并供出其间距离的最大值.解法一:(1)乙物体一定不妨逃上甲物体.(2)用临界法领会供极值:乙物体加速至=4m v s 甲前,速度小于其前圆的甲物体疏通速度,此阶段其间距离不竭删大,当乙物体加速至=4m v s 甲后,速度大于其前圆的甲物体疏通速度,所以正在尚已逃上甲物体前,其间距离不竭减小,故等速时其间距离最大.令a t v ⋅=甲 解得4==22v t s a =甲 此时相距最近 解法二:(2)用扔物线顶面坐标法供极值:依据甲乙二物体各自疏通顺序可得出其间的距离函数222011+5424522S S v t at t t t t =⋅-=+-⨯=-++甲 422(1)t =-=-s 时 例题5-2.(宝鸡2012年二模)如图所示,品量为6kg 的小球A 与品量为3kg 的小球B ,用沉弹簧贯串后正在光润火仄里上共共以速度0v 背左匀速疏通,正在A 球与左侧横直墙壁碰后二球继承疏通的历程中,弹簧的最大弹性势能为4J ,若A 球与左侧墙壁碰碰前后无板滞能益坏,试供0v 的大小.剖析:那里弹性势能最大时即簧压缩量最大,亦即A 与左侧0v 为初速(碰墙壁无板滞能益坏)背左减速疏通,B 仍以0v 为初速背左减速,但是B 球品量小先减至整又反背背左加速疏通,二者均背左疏通等速时其间距离最小,此时簧的弹性势能最大.果为碰墙壁后背左疏通历程A+B 系统总动量守恒,如果选背左为正目标则又果为碰墙壁后背左疏通历程A+B (含簧)系统总板滞能守恒则联坐供解并代进数值得01m v s = (13AB m v s =) 例题5-3.(90年世界卷)正在光润的火仄轨道上有二个半径皆是r 的小球A 战B ,品量分别为m 战2m ,当二球心间距离大于L (L 比2r 大得多)时,二球之间无相互效率力;当二球心间距离等于或者小于L 时,二球间存留相互效率的恒定斥力F.设A 球从近离B 球处以速度0v 沿二球连心线背本去停止的B 球疏通,如图12-2所示,欲使二球不爆收交战,0v 必须谦足什么条件剖析 : 据题意,当A 、B 二球球心间距离小于L 时,二球间存留相互效率的恒定斥力 F.故A 减速而B 加速.B A v v >时,A 、B 间距离减小;当B A v v <时,A 、B 间距离删大.可睹,当B A v v =时,A 、B相距迩去.若此时A 、B 间距离r x 2>,则A 、B 不爆收交战(图12-3).上述状态即为所觅找的临界状态,B A v v =时r x 2>则为临界条件.二球不交战的条件是:B A v v = (1) 2B A L S S r +- (2)其中A v B v 为二球间距离最小时,A 、B球的速度;A S 、B S为二球间距离从L 变至最小的历程中,A 、B 球通过的路途. 设0v 为A 球的初速度,对付于A+B 系统由动量守恒定律得 B A mv mv mv 20+= (3)对付于A 球由动能定律得022011cos18022A A F S mv mv ⋅=- (4)对付于B 球由动能定律得 021cos0(2)2B B F S m v ⋅= (5) 联坐解得:m r L F v )2(30-<评析 本题的关键是粗确找出二球“不交战”的临界状态,为B A v v =且此时r x 2>例题6.(09年江苏卷)如图所示,二品量相等的物块A 、B 通过一沉量弹簧对接,B 足够少、搁置正在火仄里上,所有交战里均光润.弹簧开初时处于本少,疏通历程中终究处正在弹性极限内.正在物块A 上施加一个火仄恒力,A 、B 从停止开初疏通到第一次速度相等的历程中,下列道法中粗确的有 ( )A .当A 、B 加速度相等时,系统的板滞能最大B .当A 、B 加速度相等时,A 、B 的速度好最大C .当A 、B 的速度相等时,A 的速度达到最大D .当A 、B 的速度相等时,弹簧的弹性势能最大剖析:领会本题的关键是对付物体举止受力领会战疏通历程领会,使用图象处理则不妨使问题越收简朴.A 、B 物块正在火仄目标受力如左图上下,F 1为弹簧的推力.A 从停止开初背左搞加速度减小的变加速直线疏通,B 从停止开初背左搞加速度删大的变加速直线疏通,当二物块加速度相等时它们的速度好最大(果为该阶段A 速度的减少值经常大于B 速度的减少值),————选B.该历程可视为B 板后沿(量面)逃打A 物块,果为前里A 物体的速度经常大于后里B 物体的速度,所以其间距离不竭删大(共一时间内A 物的位移经常大于B 物的位移),当二物体等速时其间距离最大即弹簧伸少量最大,所以弹簧的弹性势能最大.————选D据前领会该历程A 物体终究搞加速度减小的加速疏通(B 物也终究加速但是加速度删大),那种疏通背去持绝到A 物体加速度减为整(此时B 物体加速度删至F/m ),即A 物体速度单调减少,故终时刻速度最大.————选C.又果中力F 不竭搞正功,所以系统板滞能不竭删大,终时刻板滞能最大.————排除A. 1t 时刻2A B F a a m ==2t 时刻A B v v =且A 物加速度=0例题7-1.消防队员为了收缩下楼时间,往往抱着直坐于大天的横直滑杆间接滑下(设滑杆正在火仄目标不克不迭移动),假设一名品量为60kg 的消防队员从离大天18m 的七楼抱着横直的滑杆以最短的时间滑下.已知消防队员的脚战足对付杆之间的压力最大为1800N ,脚战足与滑杆之间动摩揩果数为0.5,消防队员着天的速度不克不迭大于6m/s ,当天(1)消防队员下滑的最短时间?(2)消防队员下滑历程中最大速度?解法一(基础不等式极值法):设消防队员先搞自由降体疏900N 大于沉力600N佳减速至=6m/s ,则下滑时间①且..② 又依牛顿第二定律知消防队员减速下滑的加速度最大值为..③ 将②③式代进①式并整治有即消防队员下滑的最短时间为2.4 s ,即加速1.2s 、匀速0s 、减速1.2s.(2)消防队员下滑的最大速度即自由降体段下滑的终速度解法二18m ,那种临界状态的v-t 图像如下图中真线OAB 所示,其与横轴所围成的图形“里积”恰佳为18m ,隐然其余任性一个含有匀速疏通段的图形若里积与其相等(比圆OPQM),则底边少度必大于24s.所以先加速后减速中间无匀速疏通段,历时最短.例题7-2.(06年上海卷) (辨析题):央供摩托车由停止开初正在尽管短的时间内走完一段直道,而后驶进一段半圆形的直道,但是正在直道上止驶时车速不克不迭太快,免得果离心效率而偏偏出车道,供摩托车正在直道上止驶所用的最短时间.有关数据睹表1.某共教是那样解的:要使摩托车所用时间最短,应先由静,而后再减速,您认为那位共教的解法是可合理?若合理,请完毕估计;若分歧理,请道明缘由,并用您自己的要领算出粗确截止.剖析:故分歧理.40),又以加速度218m 的直道距离止驶,即为最短时间.例题7-3.(2013年宝鸡市一检试题)如图所示,火仄大天上有A 、B 二面,且二面间距离LAB=15m,品量m=2kg 的物体(可视为量面)停止正在A 面,为使物体疏通到B 面,现给物体施加一火仄F =10N 的推力,供推力F 效率的最短时间.(已知大天与物块的滑动摩揩果数μ=0.2,g 与10m/s2)剖析:可证要使F 效率时间最短,则F B 面恰佳停止(道明睹后).设匀加速直线疏通的加速度为a1可得:(1)(2)设撤去F(3)(4)(5)(6)(7)道明:设恒力F滑止段-2,设滑止段即恒力效率时间最小需要2s.亦即滑止至终速恰佳为整所需的时间为2s (也可通过v-t图像证略).例题8.后圆距离甲车S驶速度脆持稳定,为了保证二车不相碰,乙车搞匀减速直线疏通的加速度大小起码为多大?解法一:.设a ,恰逃上时历时0t 则20=v v at -乙令201==v v at v -乙 解得210v v t a-=又果为21101=v v s v t v a -=⋅甲2222212121200211s =()222v v v v v v v t at v a a a a----=⋅-⋅=乙 令+s s s =乙甲 解得221()2v v a s-=解法二:以甲车为参照物,乙车的相对付初速度为21v v -,设加速度(亦即相对付加速度)为a相对付终速度为0,相对付位移为S ,则有2221()02v v as --=所以 221()2v v a s-=例题9.如图所示,横直搁置的U 形导轨宽为L ,上端串有电阻R (其余导体部分的电阻皆忽略不计).磁感触强度为B 的匀强磁场目标笔直于纸里背中.金属棒ab 的品量为m ,与导轨交战良佳,不计摩揩.从停止释搁后ab 脆持火仄下滑.试供ab 下滑的最大速度m v .剖析:释搁瞬间ab 只受沉力,开初背下加速疏通,只消ab 有速度,正在ab 上便会爆收动死电动势,正在回路中便会爆收电流,由左脚定则知,ab 会受到进与的安培力的效率.动死电动势会随着速度的删大而不竭的删大,回路中电流便会不竭的删大,根据=F BIL 安,安培力会不竭的删大,则ab 搞加速0F mg -=安时,其加速度便形成0,速度达到最大,开初搞匀速直线疏通.果此,正在从变速疏通状态变到匀速状态之间有一个速度达到最大的状态,此状态的临界条件便是ab 受的的沉力大小等于安培力大小.m gR v L B F m==22,可得22L B mgRv m =例题10-1.如图所示,m=4kg 的小球挂正在小车后壁上,细线与横直目标成37°角.要使后壁对付小球不爆收力的效率小车的加速度应谦足的条件?剖析:小车背左加速或者背左减速时,后壁对付小球的效率力N 有大概减为整,那时小球将离开后壁而“飞”起去.那时细线跟横直目标的夹角会改变,果此细线推力F 的目标会改变.所以必须先供出那个临界值.领会知正在该临界状态下, 小球横直目标仄稳, 则0cos37=F mg细线推力火仄分量使得小球正在火仄目标加速,则0sin37F ma =联坐解得 小车背左加速或者背左减速的加速度大小起码为0a=g tg37⋅例题10-2.一根劲度系数为k,品量不计的沉弹簧,上端牢固,下端系一品量为m 的物体,有一火仄板将物体托住,并使弹簧处于自然少度.如图所示.现让木。

临界和极值问题

临界和极值问题
临界和极值问题
江苏省太仓高级中学
什么是临界问题? 什么是临界问题?
临界状态是自然界中的物质不同运动形式之间变化的 分界点,临界状态的物理特征具有承前启后的作用,在 临界状态必须满足的条件叫临界条件
临界问题通常包括以下几个方面: 临界问题通常包括以下几个方面: 1、全反射问题 2、最大和最小问题 3、边界和转折问题 4、分离和断裂问题 5、极端思维问题 等等。 等等。
临界和极值问题的解题关键是确定临界条件
例1.如图所示,平板车静止在光滑的水平面上,在平板 1.如图所示,平板车静止在光滑的水平面上, 如图所示 车上固定两个中间有小孔竖直放置的平行金属板构成的 电容器,电容器两板间加有恒定电压U, U,电容器和小车的 电容器,电容器两板间加有恒定电压U,电容器和小车的 总质量为m,现有一个质量为m带电量为q m,现有一个质量为 总质量为m,现有一个质量为m带电量为q的带负电的小球 速度从A板小孔射入两板间,要使小球能从B 以v0速度从A板小孔射入两板间,要使小球能从B板的小 孔射出, 应满足什么条件?(不计小球重力) ?(不计小球重力 孔射出,v0应满足什么条件?(不计小球重力)
q Q B
例6.如图所示,质量为m的小球用长为L的线悬于 6.如图所示,质量为m的小球用长为L 如图所示 O点,把小球拉至与悬点等高处由静止释放,求 把小球拉至与悬点等高处由静止释放, 小球运动过程中重力对小球做功的最大功率。 小球运动过程中重力对小球做功的最大功率。
O L
这类问题的解决既要考虑到数学上的极值问题, 这类问题的解决既要考虑到数学上的极值问题,又要想到 实际条件的约束,求解时要格外细心 实际条件的约束, 一般通过物理量间的函数关系用数学方法求极值; 一般通过物理量间的函数关系用数学方法求极值;也可以 通过对物理意义的分析, 通过对物理意义的分析,找出极值产生的条件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

板块模型的临界极值问

Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#
板块模型的临界极值问题 1【经典模型】 如图甲所示,M 、m 两物块叠放在光滑的水平面上,两物块间的动摩擦因数为μ,一个恒力F 作用在物块M 上.
(1)F 至少为多大,可以使M 、m 之间产生相对滑动
(2)如图乙所示,假如恒力F 作用在m 上,则F 至少为多大,可以使M 、m 之间产生相对滑动
练1、如图所示,物体A 、B 的质量分别为2kg 和1kg ,A 置于光滑的水平地面上,B 叠加在A 上。

已知A 、B 间的动摩擦因数为,水平向右的拉力F 作用在B 上,
A 、
B 一起相对静止开始做匀加速运动。

加速度为2/s
m 。

(2/10s m g =)求: (1)力F 的大小。

(2)A 受到的摩擦力大小和方向。

(3)A 、B 之间的最大静摩擦力A 能获得的最大加速度
(4)要想A 、B 一起加速(相对静止),力F 应满足什么条件
(5)要想A 、B 分离,力F 应满足什么条件
练2、物体A 放在物体B 上,物体B 放在光滑的水平面上,已知6=A m kg ,
2=B m kg ,A 、B 间动摩擦因数2.0=μ,如图所示。

现用一水平向右的拉力F 作用于物体A 上,则下列说法中正确的是(10=g m/s 2)( )
A .当拉力F <12N 时,A 静止不动
B .当拉力F =16N 时,A 对B 的摩擦力等于4N
C .当拉力F >16N 时,A 一定相对B 滑动
D .无论拉力F 多大,A 相对B 始终静止
2、如图,物体A 叠放在物体B 上,B 置于光滑水平面上,A 、B 质量分别为m A =6 kg 、m B =2 kg ,A 、B 之间的动摩擦因数是,开始时F =10 N ,此后逐渐增加,在增大到45 N 的过程中,则( )
A .当拉力F <12 N 时,两物体均保持静止状态
B .两物体开始没有相对运动,当拉力超过12 N 时,开始相对滑动
C .两物体间从受力开始就有相对运动
D .两物体间始终没有相对运动
3.如图所示,光滑水平面上放置质量分别为m 、2m 和3m 的三个木块,其中质量为m 的木块放在质量为2m 的木块上,质量为2m 和3m 的木块间用一不可伸长的轻绳相连,轻绳能承受的最大拉力为T.现用水平拉力F 拉质量为3m 的木块,使三个木块以同一加速度运动,下说法
正确的是( ) A .当F 逐渐增加1 N 时,轻绳中拉力增
加 N B .当F 逐渐增大到T 时,轻绳刚好被拉断
C .当F 逐渐增大到时,轻绳不会被拉断
D .轻绳刚要被拉断时,质量为m 和2m 的木块间的摩擦力为
4. (2014·江苏)如图所示,A 、B 两物块的质量分别为2m 和
m ,静止叠放在水平
地面上,A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12
μ,最大静摩擦力等于滑动摩擦力,重力加速度为g ,现对A 施加一水平拉力F ,则( )
A .当F<2μmg 时,A 、
B 都相对地面静止
B .当F =52μmg 时,A 的加速度为13
μg C .当F>3μmg 时,A 相对B 滑动
D .无论F 为何值,B 的加速度不会超过12
μg 5、质量为2kg 、长度为2.5m 的长木板B 在光滑的水平地面上以4m/s 的速度向右运动,将一可视为质点的物体A 轻放在B 的右端,若A 与B 之间的动摩擦因数为,A 的质量为m=1kg 。

2/10s m g 求:
(1)说明此后A 、B 的运动性质
(2)分别求出A 、B 的加速度
(3)经过多少时间A 从B 上滑下
(4)A 滑离B 时,A 、B 的速度分别为多大A 、B 的位移分别为多大
(5)若木板B 足够长,最后A 、B 的共同速度
(6)当木板B 为多长时,A 恰好没从B 上滑下(木板B 至少为多长,A 才不会从B 上滑下)
6、如图所示,质量M=4kg 的木板长L=1.4m ,静止在光滑的水平地面上,其水平顶面右端静置一个质量m=1kg 的小滑块(可视为质点),小滑块与板间的动摩擦因数μ=(g 取10m/s 2)今用水平力F=28N 向右拉木板,小滑块将与长木板发生相对滑动。

求:
(1)小滑块与长木板发生相对滑动时,它们的加速度各为多少
(2)经过多长时间小滑块从长木板上掉下
(3)小滑块从长木板上掉下时,小滑块和长木板的位移各为多少
m
7、长L=2m 、质量为M=2kg 的长木板静止在光滑的水平面上,质量为m=1kg 的小滑块
以初速度s m /50=υ滑上长木板的左端。

已知小滑块与长木板之间的动摩擦因数为μ=,小滑块可视为质 点,(2/10s m g =)求:
(1)经过多长时间,小滑块从长木板右端滑出
(2)小滑块从长木板右端滑出时,小滑块的速度和位移
8、长为3m 、质量为2kg 的长木板以s m /22=υ的速度在光滑的水平面上向右匀速运动,某时刻一个可视为质点的小滑块以s m /11=υ的速度滑上长木板右端。

已知小滑块与长木板之间的动摩擦因数为,2/10s m g =。

求:
(1) 小滑块和长木板的加速度分别为多大
(2) 判断小滑块能否从长木板上滑下
(3) 如果小滑块不能从长木板上落下,最后小滑块在长木板上相对滑动的位移。

9、一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木
板右端与墙壁的距离为 m ,如图(a)所示.t =0时刻开始,小物块与木板一起以共同速度向右运动,直至t =1 s 时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1 s 时间内小物块的v -t 图线如图(b)所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10 m/s 2.求:
(1)木板与地面间的动摩擦因数及小物块与木板间的动摩擦因数;
(2)木板的最小长度;
(3)木板右端离墙壁的最终距离.。

相关文档
最新文档