临界与极值问题
临界与极值问题
例4、沙堆的形成测出了沙粒之间的动摩擦因数。研究的过 程如下:研究小组通过观察沙堆的形成过程可以发现,由 漏斗落下的细沙总是在地面上形成一个小圆锥体,继续下 落时,细沙沿圆锥体表面下滑,当圆锥体的母线与底面夹 角达到一定角度时,细沙不再下滑,如图所示。经过反复 实验,研究小组得出结论:沙堆的形成与沙粒之间的动摩 擦因数有关。该小组只用一把皮卷尺就测定了沙粒之间的 动摩擦因数(假定最大静摩擦力等于滑动摩擦力),则:
A.3 B.4 C.5 D.6
【解析】 以A为研究对象,根据平衡条件A对B有压力和摩擦力的作用, 以B为研究对象,B除受到A施加的压力和摩擦力外,还受到重力和斜面的支 持力作用,斜面与B之间可能存在摩擦力,也可能不存在摩擦力,故选B、C.
• 例4.如右图所示,斜面小车M静止在光滑水 平面上,一边紧贴墙壁.若再在斜面上加一
T2
5m, garct1an
2
,其中α是T2与水平方向的夹角。
令小球处在离开斜面的临界状态(N刚好为零)时, 斜面向右的加速度为a0,此时小球受力分析如下图所 示.
Tsin mg T cos ma0 a0 gcot 7.5m/s2
T
mg
所以:a10m/2sa0
由于 a10m/2sa0
所以小球会离开斜面,受力如下图
解析 整体分析可知A与墙之间无弹力,所以A仅受重力、 B对A的弹力及摩擦力3个力,应选B项.
例2、如图所示,竖直放置的轻弹簧一端固 定在地面上,另一端与斜面体P相连,P 与斜放在其上的固定档板MN接触且处于 静止状态,则斜面体P此刻受到的外力的 个数有可能是:
A.2
B.3
B.C.4 D、5
例3.如图所示,在水平力F作用下,A、B保持 静止,若A与B的接触面是水平的,且F≠0,则 关于B的受力个数可能为( )
高中物理中的临界与极值问题
高中物理中的临界与极值问题宝鸡文理学院附中何治博一、临界与极值概念所谓物理临界问题是指各种物理变化过程中,随着条件的逐渐变化,数量积累达到一定程度就会引起某种物理现象的发生,即从一种状态变化为另一种状态发生质的变化(如全反射、光电效应、超导现象、线端小球在竖直面内的圆周运动临界速度等),这种物理现象恰好发生(或恰好不发生)的过度转折点即是物理中的临界状态。
与之相关的临界状态恰好发生(或恰好不发生)的条件即是临界条件,有关此类条件与结果研究的问题称为临界问题,它是哲学中所讲的量变与质变规律在物理学中的具体反映。
极值问题则是指物理变化过程中,随着条件数量连续渐变越过临界位置时或条件数量连续渐变取边界值(也称端点值)时,会使得某物理量达到最大(或最小)的现象,有关此类物理现象及其发生条件研究的问题称为极值问题。
临界与极值问题虽是两类不同的问题,但往往互为条件,即临界状态时物理量往往取得极值,反之某物理量取极值时恰好就是物理现象发生转折的临界状态,除非该极值是单调函数的边界值。
因此从某种意义上讲,这两类问题的界线又显得非常的模糊,并非泾渭分明。
高中物理中的临界与极值问题,虽然没有在教学大纲或考试说明中明确提出,但近年高考试题中却频频出现。
从以往的试题形式来看,有些直接在题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词语对临界状态给出了明确的暗示,审题时,要抓住这些特定的词语发掘其内含的物理规律,找出相应的临界条件。
也有一些临界问题中并不显含上述常见的“临界术语”,具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,周密讨论状态的变化。
可用极限法把物理问题或物理过程推向极端,从而将临界状态及临界条件显性化;或用假设的方法,假设出现某种临界状态,分析物体的受力情况及运动状态与题设是否相符,最后再根据实际情况进行处理;也可用数学函数极值法找出临界状态,然后抓住临界状态的特征,找到正确的解题方向。
2024高考物理一轮复习--牛顿第二定律的应用--动力学中的临界和极值问题
动力学中的临界和极值问题一、动力学中的临界极值问题1.“四种”典型临界条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是弹力F N=0。
(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是静摩擦力达到最大值。
(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛与拉紧的临界条件是F T=0。
(4)速度达到最值的临界条件:加速度为0。
2. 解题指导(1)直接接触的连接体存在“要分离还没分”的临界状态,其动力学特征:“貌合神离”,即a相同、F N=0.(2)靠静摩擦力连接(带动)的连接体,静摩擦力达到最大静摩擦力时是“要滑还没滑”的临界状态.(3)极限分析法:把题中条件推向极大或极小,找到临界状态,分析临界状态的受力特点,列出方程(4)数学分析法:将物理过程用数学表达式表示,由数学方法(如二次函数、不等式、三角函数等)求极值.3.解题基本思路(1)认真审题,详细分析问题中变化的过程(包括分析整个过程中有几个阶段);(2)寻找过程中变化的物理量;(3)探索物理量的变化规律;(4)确定临界状态,分析临界条件,找出临界关系.4. 解题方法二、针对练习1、(多选)如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间的动摩擦因数为4μ,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力,则木板加速度a 大小可能是( )A .0a =B .4ga μ=C .3g a μ=D .23ga μ=2、(多选)如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平拉力F ,则( ) A .当F <2μmg 时,A 、B 都相对地面静止 B .当F =52μmg 时,A 的加速度为13μgC .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg3、如图所示,木块A 、B 静止叠放在光滑水平面上,A 的质量为m ,B 的质量为2m 。
动力学中的临界与极值问题
考点二 动力学中的临界与极值问题动力学中的临界问题一般有三种解法:1.极限法在题目中如出现“最大”“最小”“刚好”等词语时,一般隐含着临界问题,处理这类问题时,应把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,达到尽快求解的目的.2.假设法有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,也可能不出现临界问题,解答这类题,一般用假设法.3.数学法将物理过程转化为数学公式,根据数学表达式求解得出临界条件.命题点1 接触与脱离的临界条件3.一个弹簧测力计放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M =10.5 kg ,Q 的质量m =1.5 kg ,弹簧的质量不计,劲度系数k =800 N/m ,系统处于静止.如图所示,现给P 施加一个方向竖直向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2 s 内,F 为变力,0.2 s 以后,F 为恒力.求力F 的最大值与最小值.(取g =10 m/s 2)【解析】 设开始时弹簧压缩量为x 1,t =0.2 s 时弹簧的压缩量为x 2,物体P 的加速度为a ,则有kx 1=(M +m )g ①kx 2-mg =ma ②x 1-x 2=12at 2③ 由①式得x 1=(M +m )g k=0.15 m , 由②③式得a =6 m/s 2.F min =(M +m )a =72 N ,F max =M (g +a )=168 N.【答案】 F max =168 N F min =72 N命题点2 相对滑动的临界条件4.如图所示,12个相同的木块放在水平地面上排成一条直线,相邻两木块接触但不粘连,每个木块的质量m =1.2 kg ,长度l =0.5 m .木块原来都静止,它们与地面间的动摩擦因数均为μ1=0.1,在左边第一个木块的左端放一质量M =1 kg 的小铅块(可视为质点),它与各木块间的动摩擦因数均为μ2=0.5,现突然给小铅块一个向右的初速度v 0=9 m/s ,使其在木块上滑行.设木块与地面间及小铅块与木块间的最大静摩擦力均等于滑动摩擦力,重力加速度g =10 m/s 2.求:(1)小铅块相对木块滑动时小铅块的加速度大小;(2)小铅块下的木块刚发生运动时小铅块的瞬时速度大小.【解析】 (1)设小铅块相对木块滑动时加速度大小为a ,由牛顿第二定律可知μ2Mg =Ma解得a =5 m/s 2.(2)设小铅块最多能带动n 个木块运动,对n 个木块整体进行受力分析,当小铅块下的n 个木块发生运动时,则有μ2Mg ≥μ1(mgn +Mg )解得n ≤3.33即小铅块最多只能带动3个木块运动设当小铅块通过前面的9个木块时的瞬时速度大小为v ,由动能定理可知-μ2Mg ×9l =12M (v 2-v 20) 解得v =6 m/s.【答案】 (1)5 m/s 2 (2)6 m/s命题点3 数学方法求解极值问题5.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2.求:(1)物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面夹角多大时,拉力F 最小?拉力F 的最小值是多少?【解析】 (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得L =v 0t +12at 2① v =v 0+at ②联立①②式,代入数据得a =3 m/s 2③v =8 m/s ④(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面间的夹角为α,受力分析如图所示,由牛顿第二定律得F cos α-mg sin θ-F f =ma ⑤F sin α+F N -mg cos θ=0⑥又F f =μF N ⑦联立⑤⑥⑦式得F =mg (sin θ+μcos θ)+ma cos α+μsin α⑧ 由数学知识得cos α+33sin α=233sin(60°+α)⑨ 由⑧⑨式可知对应F 最小的夹角α=30°⑩联立③⑧⑩式,代入数据得F 的最小值为F min =1335N. 【答案】 (1)3 m/s 2 8 m/s (2)30°1335N“四种”典型临界条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力F N =0.(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值.(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是:F T=0.(4)加速度变化时,速度达到最值的临界条件:当加速度变为0时.。
时动力学中的临界与极值问题
因数为µ2。现突然以恒定加速度a将桌布抽离桌面,加
速度的方向是水平的且垂直于
A
AB边。若圆盘最后不从桌面掉下,
则加速度a满足的条件是什么? B
(以g表示重力加速度)
精品课件!
精品课件!
例7、如图所示,在倾角为θ的光滑斜面上端系一劲度系
数为k的轻弹簧,弹簧下端连有一质量为m的小球,球被
一垂直于斜面的挡板A挡住,此时弹簧没有形变,若手持
10 m.已知斜面倾角 θ=30°,物块与斜面之间的动摩擦因数 μ= 33. 重力加速度 g 取 10 m/s2. (1)求物块加速度的大小及到达 B 点时速度的大小. (2)拉力 F 与斜面夹角多大时,拉力 F 最小?拉力 F 的最小值是多少?
例5、如图所示,质量M=1 kg的木板静止在粗糙的水平地面上,木
当板A以加速度a(a<gsinθ)沿斜面匀加速下滑,求:
平向左的拉力F,认为最大静摩擦力等于滑动摩擦力,在图中画出 数为k的轻弹簧,弹簧下端连有一质量为m的小球,球被
(3)若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点; (3)绳子断裂与松驰的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,
例1、m=10kg、θ=37°,M=2kg,斜面与物块的动摩擦因 数µ=0.2,地面光滑,要使物体m相对斜面静止,力F应多 大?(设物体与斜面的最大静摩擦力等于滑动摩擦力,g 取10m/s2)
m
F
M
θ
例2、斜面光滑、倾角α、小球质量m
①要使小球对斜面无压力,求斜
面体运动的加速度范围并说明其
方向。
a=10m/s2加速度向右匀加速运动时,
物理带电粒子在匀强磁场中运动的临界极值问题
物理带电粒子在匀强磁场中运动的临界极值问题由于带电粒子在磁场中的运动通常都是在有界磁场中的运动,所以常常出现临界和极值问题。
1.临界问题的分析思路临界问题分析的是临界状态,临界状态存在不同于其他状态的特殊条件,此条件称为临界条件,临界条件是解决临界问题的突破口。
2.极值问题的分析思路所谓极值问题就是对题中所求的某个物理量最大值或最小值的分析或计算,求解的思路一般有以下两种:(1)根据题给条件列出函数关系式进行分析、讨论;(2)借助几何知识确定极值所对应的状态,然后进行直观分析3.四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。
(2)当速率v一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长。
(3)当速率v变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,根据几何关系求出半径及圆心角等。
(4)在圆形匀强磁场中,当运动轨迹圆半径大于区域圆半径时,则入射点和出射点为磁场直径的两个端点时,轨迹对应的偏转角最大(所有的弦长中直径最长)。
【典例】平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外。
一带电粒子的质量为m,电荷量为q(q>0)。
粒子沿纸面以大小为v的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。
已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。
不计重力。
粒子离开磁场的出射点到两平面交线O的距离为()【应用练习】1、如图所示,半径为r的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,磁场边界上A点有一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为k,速度大小为2kBr。
则粒子在磁场中运动的最长时间为()3.如图所示,直角坐标系中y轴右侧存在一垂直纸面向里、宽为a的有界匀强磁场,磁感应强度为B,右边界PQ平行于y轴,一粒子(重力不计)从原点O以与x轴正方向成θ角的速率v垂直射入磁场,当斜向上射入时,粒子恰好垂直PQ射出磁场,当斜向下射入时,粒子恰好不从右边界射出,则粒子的比荷及粒子恰好不从右边界射出时在磁场中运动的时间分别为( )4、如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B。
物理临界和极值问题总结
物理临界和极值问题总结
物理临界和极值问题是物理学中常见的一类问题,涉及到系统在特定条件下达到某种临界状态或取得极值的情况。
下面是对这两类问题的总结:
1. 物理临界问题:
- 物理临界指系统在某些参数达到临界值时出现突变或重要性质发生显著改变的情况。
- 临界问题常见于相变、相平衡和相变点等领域。
- 典型的物理临界问题包括:磁场的临界温度、压力、电流等;化学反应速率的临界浓度;相变时的临界温度和压力等。
2. 极值问题:
- 极值问题涉及到通过调整系统的参数找到使目标函数取得最大值或最小值的条件。
- 极值问题在物理学中广泛应用于优化、动力学和力学等领域。
- 典型的极值问题包括:能量最小原理和哈密顿原理,用于求解经典力学问题;费马原理,用于求解光路最短问题;鞍点问题,用于求解多元函数的极值等。
无论是物理临界还是极值问题,通常需要使用数学工具进行分析和求解。
对于物理临界问题,常用的方法包括热力学、统计物理和相变理论等;而对于极值问题,则常用的方法包括微积分、变分法和最优化等。
总结起来,物理临界和极值问题是物理学中重要的一类问题,涉及到系统在特定条件下达到临界状态或取得最值的情况。
这些问题需要使用数学工具进行分析和求解,以揭示系统的性质和寻找最优解。
3、临界、极值问题
d
c
◆带电粒子在三角形磁场区域中的运动
例6.如图所示,在边长为2a的等边三角形△ABC内存 在垂直纸面向里磁感应强度为B的匀强磁场,有一带电 量为q、质量为m的粒子从距A点 3a 的D点垂直于AB方 向进入磁场。若粒子能从AC间离开磁场,求粒子速率 应满足什么条件及粒子从AC间什么范围内射出?
d
缩放圆:变化1:在上题中若电子的电量e,质量 m,磁感应强度B及宽度d已知,若要求电子不从 右边界穿出,则初速度V0有什么要求?
e B v0
d
B
变化2:若初速度向下与边界成 α = 60 0,则初速度有什么要求?
变化3:若初速度向上与边界成 α = 60 0,则初速度有什么要求?
变式、在真空中宽d的区域内有匀强磁场B,质量为 m,电量为e,速率为v的电子从边界CD外侧垂直 射入磁场,入射方向与CD夹角θ,为了使电子能从 磁场的另一侧边界EF射出,v应满足的条件是:B A.v>eBd/m(1+sinθ) C E B.v>eBd/m(1+cosθ) v C.v> eBd/msinθ θ O D.v< eBd/mcosθ
例题、如图所示.长为L的水平极板间,有垂直纸面向 内的匀强磁场,磁感强度为B,板间距离也为L,板不带 电,现有质量为m,电量为q的带正电粒子(不计重力), 从左边极板间中点处垂直磁感线以速度 v水平射入磁场, 欲使粒子不打在极板上,可采用的办法是: AB A.使粒子的速度v<BqL/4m; O2 B.使粒子的速度v>5BqL/4m; r2 C.使粒子的速度v>BqL/m; v D.使粒子速度BqL/4m<v<5BqL/4m。 r2
2R
M
2R
O
R
专题动力学中的临界与极值问题
专题:动力学中的临界与极值问题临界问题:是指物体的某种状态恰能维持而未被破坏的一种特殊状态,这种分界线,通常以临界值和临界状态的形式出现在不同的问题中。
解决这类问题时,应注意“恰好出现”或“恰好不出现”等条件。
极值问题:是指研究动力学问题中某物理量变化时出现的最大值或最小值,一. 动力学中的临界问题例1. 如图1所示,光滑小球恰好放在木块的圆弧槽中,它左边的接触点为A,槽的半径为R,且OA与水平线成α角,通过实验知道,当木块的加速度过大时,小球可以从槽中滚出来,圆球的质量为m,木块的质量为M,各种摩擦及绳和滑轮的质量不计,则木块向右的加速度最小为多大时,小球恰好能滚出圆弧槽练习1.如图所示,质量为M的木板上放着一质量为m的木块,木块与木板间的动摩擦因数为μ1,木板与水平地面间的动摩擦因数为μ2,加在小板上的力F为多大,才能将木板从木块下抽出?二.动力学中的极值问题例2. 如图3所示,质量为m=1kg 的物块放在倾角为的斜面体上,斜面质量为,斜面与物块间的动摩擦因数为,地面光滑,现对斜面体施一水平推力F ,要使物体m 相对斜面静止,试确定推力F 的取值范围。
()点拨:此题有两个临界条件,当推力F 较小时,物块有相对斜面向下运动的可能性,此时物体受到的摩擦力沿斜面向上;当推力F 较大时,物块有相对斜面向上运动的可能性,此时物体受到的摩擦力沿斜面向下。
找准临界状态,是求解此题的关键。
练习2.如图1—1所示,质量为m 的物体放在水平地面上,物体与地面间的动摩擦因数为μ,对物体施加一个与水平方向成θ角的力F ,试求:使物体在水平面上运动的力F 的取值范围图1—1【跟踪练习】1.质量为0.2kg的小球用细线吊在倾角为θ=60°的斜面体的顶端,斜面体静止时,小球紧靠在斜面上,线与斜面平行,如图所示,不计摩擦,求在下列二种情况下,细线对小球的拉力和斜面对球的弹力(取g=10 m/s2)(1) 斜面体以23m/s2的加速度向右加速运动;(2) 斜面体以43m/s2,的加速度向右加速运动;2.如图所示,木块A、B静止叠放在光滑水平面上,A的质量为m,B的质量为2m。
牛顿运动定律中的临界和极值问题
牛顿运动定律中的临界和极值问题1.动力学中的典型临界问题1接触与脱离的临界条件两物体相接触或脱离的临界条件是接触但接触面间弹力F N=0.2相对静止或相对滑动的临界条件两物体相接触且处于相对静止时,常存在着静摩擦力,则相对静止或相对滑动的临界条件是:静摩擦力达到最大值.3绳子断裂与松弛的临界条件绳子断与不断的临界条件是绳子张力等于它所能承受的最大张力.绳子松弛的临界条件是F T=0.4速度最大的临界条件在变加速运动中,当加速度减小为零时,速度达到最大值.2.解决临界极值问题常用方法1极限法:把物理问题或过程推向极端,从而使临界现象或状态暴露出来,以达到正确解决问题的目的.2假设法:临界问题存在多种可能,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题.3数学法:将物理过程转化为数学公式,根据数学表达式解出临界条件.题型一:接触与脱离类的临界问题例1: 如图所示,在劲度系数为k的弹簧下端挂一质量为m的物体,物体下有一托盘,用托盘托着物体使弹簧恰好处于原长,然后使托盘以加速度a竖直向下做匀速直线运动a<g,试求托盘向下运动多长时间能与物体脱离例2: 如图,竖直固定的轻弹簧,其劲度系数为k=800N/m,上端与质量为 kg的物块B相连接;另一个质量为 kg的物块A放在B上;先用竖直向下的力F=120N压A,使弹簧被压缩一定量后系统静止,突然撤去力F,A、B共同向上运动一段距离后将分离,分离后A上升最大高度为 m,取g=10 m/s2, 求刚撤去F时弹簧的弹性势能例3:如图所示,质量均为m 的A 、B 两物体叠放在竖直轻质弹簧上并保持静止,用大小等于mg 21的恒力F 向上拉A,当运动距离为h 时A 与B 分离;则下列说法正确的是A .A 和B 刚分离时,弹簧为原长B .弹簧的劲度系数等于hmg 23 C .从开始运动到A 和B 刚分离的过程中,两物体的动能先增大后减小D .从开始运动到A 和B 刚分离的过程中,A 物体的机械能一直增大例4:如图甲所示,平行于光滑斜面的轻弹簧劲度系数为k,一端固定在倾角为θ的斜面底端,另一端与物块A 连接;两物块A 、B 质量均为m,初始时均静止;现用平行于斜面向上的力F 拉动物块B,使B 做加速度为a 的匀加速运动,A 、B 两物块在开始一段时间内的v-t 关系分别对应图乙中A 、B 图线t 1时刻A 、B 的图线相切,t 2时刻对应A 图线的最高点,重力加速度为g,则A .t 1和t 2时刻弹簧形变量分别为kma mg +θsin 和0 B .A 、B 分离时t 1()akma mg +=θsin 2 C .拉力F 的最小值ma mg +θsinD .从开始到t 2时刻,拉力F 逐渐增大题型二:相对静止或相对滑动的临界问题例1:如图所示,质量分别为15kg和5kg的长方形物体A和B静止叠放在水平桌面上;A与桌面以及A、B 间动摩擦因数分别为μ1=和μ2=,设最大静摩擦力等于滑动摩擦力;问:1水平作用力F作用在B上至少多大时,A、B之间能发生相对滑动2当F=30N或40N时,A、B加速度分别各为多少跟踪训练:多选如图甲所示,一质量为M的长木板静置于光滑水平面上,其上放置一质量为m小滑块.木板受到随时间t变化的水平拉力F作用时,用传感器测出长木板的加速度a与水平拉力F的关系如图乙所示,取g=10m/s2,则A.小滑块的质量m=2kgB.当F=8N时,滑块的加速度为1m/s2C.滑块与木板之间的动摩擦因数为D.力与加速度的函数关系一定可以表示为F=6aN例2:如图所示,两个质量均为m的小木块A和B放在转盘上,且木块A、B与转盘中心在同一条直线上,两木块用长为L的细绳连接,木块与转盘的最大静摩擦力均为各自重力的k倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动;开始时,绳恰好伸直但无弹力,现让该装置从静止转动,使角速度ω缓慢增大;为使细绳有弹力,而木块A和B又能相对转盘保持静止,求角速度ω的取值范围和细绳张力的最大值;例3:如图所示的水平转盘可绕竖直轴OO′旋转,盘上水平杆上穿着两个质量均为m=2kg的小球A和B;现将A和B分别置于距轴r A=和r B=1m处,并用不可伸长的轻绳相连;已知两球与杆之间的最大静摩擦力都是f m=1N;试分析转速ω从零缓慢逐渐增大短时间内可近似认为是匀速转动,两球对轴保持相对静止过程中,在满足下列条件下,ω的大小;1绳中刚要出现张力时的ω1;2A、B中某个球所受的摩擦力刚要改变方向时的ω2,并指明是哪个球的摩擦力方向改变;3两球对轴刚要滑动时的ω3;跟踪训练:多选圆形转盘上的A、B、C三个物块如图放置,A、O、B、C在一条直线上,A、B间用一轻质细线相连开始细线刚好伸直,三个物块与转盘间的动摩擦因数均为μ,A、B、C三个物块的质量分别为m、m、2m,到转盘中心O的距离分别为3r、r、2r,现让转盘以角速度ω可调匀速转动,重力加速度为g,最大静摩擦力等于滑动摩擦力,则A、当物块C相对转盘刚要滑动时,物块B所受摩擦力为μmgB、当物块C相对转盘刚要滑动时,细线张力为μmgC、当细线内刚出现张力时,物块C所受摩擦力为μmgD、当细线内刚出现张力时,A、B、C所受摩擦力大小之比为3:1:4题型三:绳子断裂与松弛的临界问题例5.如图所示,在竖直的转动轴上,a、b两点间距为40 cm,细线ac长50 cm,bc长30 cm,在c点系一质量为m的小球,在转动轴带着小球转动过程中,下列说法不正确的是A.转速小时,ac受拉力,bc松弛B.bc刚好拉直时,ac中拉力为C.bc拉直后转速增大,ac拉力不变D.bc拉直后转速增大,ac拉力增大例6.如图所示,将两物块A、B用一轻质细绳沿水平方向连接放在粗糙的水平面上,已知两物块A、B的质量分别为m1=8kg,m2=2kg,滑块与地面间的动摩擦因数均为μ=,g=10m/s2,细绳的最大拉力为T=8N.今在滑块A上施加一水平向右的力F,设最大静摩擦力等于滑动摩擦力;为使两滑块共同向右运动,则拉力F多大题型四:速度最大的临界问题例7.如图所示,在磁感应强度为B的水平匀强磁场中,有一足够长的绝缘细棒OO′在竖直面内垂直于磁场方向放置,细棒与水平面夹角为α.一质量为m、带电荷量为+q的圆环A套在OO′棒上,圆环与棒间的动摩擦因数为μ,且μ<tan α.现让圆环A由静止开始下滑.试问圆环在下滑过程中:1圆环A的最大加速度为多大获得最大加速度时的速度为多大2圆环A能够达到的最大速度为多大跟踪练习:1.如图所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P处于静止,P的质量m=12kg,弹簧的劲度系数k=300N/m;现在给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在t=内F是变力,在以后F是恒力,g=10m/s2,则F的最小值是 ,F的最大值是 ;思维拓展:若上题中秤盘质量m1=1.5kg,盘内物体P质量为m2=10.5kg,弹簧的劲度系数 k=800N/m,其他条件不变,则F的最小值是 ,F的最大值是 ;2. 如图所示,细线的一端固定于倾角为450的光滑楔形滑块A的顶端P处,细线的另一端拴一质量为m的小球;当滑块至少以多大的加速度a向左运动时,小球对滑块的压力等于零,当滑块以a=2g的加速度向左运动时,球此时线中拉力T大小3. 一个带负电荷q ,质量为m 的小球,从光滑绝缘的斜面轨道的A 点由静止下滑,小球恰能通过半径为R 的竖直圆形轨道的最高点B 而做圆周运动.现在竖直方向上加如图所示的匀强电场,若仍从A 点由静止释放该小球,则A .小球不能过B 点 B .小球仍恰好能过B 点C .小球能过B 点,且在B 点与轨道之间压力不为0D .以上说法都不对5.如图,在光滑水平面上放着紧靠在一起的AB两物体,B的质量是A的2倍,B受到向右的恒力FB =2N,A受到的水平力FA =9-2tN,t 的单位是s;从t =0开始计时,则:A .A物体在3s 末时刻的加速度是初始时刻的5/11倍;B .t >4s 后,B物体做匀加速直线运动;C .t =时,A物体的速度为零;D .t >后,AB的加速度方向相反;6.如图所示,在光滑水平面上有一辆小车A ,其质量为m A = kg,小车上放一个物体B ,其质量为m B = kg.如图甲所示,给B 一个水平推力F ,当F 增大到稍大于 N 时,A 、B 开始相对滑动.如果撤去F ,对A 施加一个水平推力F ′,如图乙所示.要使A 、B 不相对滑动,求F ′的最大值F m . a A P450。
平衡中的临界、极值问题
平衡中的临界、极值问题1.临界问题当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”、“刚能”、“恰好”等语言叙述.常见的临界状态有:(1)两接触物体脱离与不脱离的临界条件是相互作用力为0(主要体现为两物体间的弹力为0);(2)绳子断与不断的临界条件为作用力达到最大值;(3)存在摩擦力作用的两物体间发生相对滑动或相对静止的临界条件为静摩擦力达到最大。
2.极值问题平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题.一般用图解法或解析法进行分析.3.解决临界问题和极值问题的方法(1)极限法:首先要正确地进行受力分析和变化过程分析,找出平衡的临界点和极值点;临界条件必须在变化中去寻找,不能停留在一个状态来研究临界问题,而要把某个物理量推向极端,即极大和极小.(2)数学分析法:通过对问题的分析,依据物体的平衡条件写出物理量之间的函数关系(画出函数图象),用数学方法求极值(如求二次函数极值、公式极值、三角函数极值).(3)物理分析方法:根据物体的平衡条件,作出力的矢量图,通过对物理过程的分析,利用平行四边形定则进行动态分析,确定最大值与最小值.【例1】如图所示,轻绳OA、OB一端分别固定于天花板上的A、B两点,轻绳OC一端悬挂一重物。
已知OA、OB、OC能承受的最大拉力分别为150 N、100 N、200 N。
问悬挂的重物的重力不得超过多少?【例2】如图所示,质量为m 的物体放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F 水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F 多大,都不能使物体沿斜面向上滑行,试求: (1)物体与斜面间的动摩擦因数; (2)这一临界角θ0的大小.【例3】如图所示,一球A 夹在竖直墙与三角劈B 的斜面之间,三角劈的重力为G ,劈的底部与水平地面间的动摩擦因数为μ,劈的斜面与竖直墙面是光滑的,设劈的最大静摩擦力等于滑动摩擦力.问:欲使三角劈静止不动,球的重力不能超过多少?【例4】如图将质量为m 的小球a 用轻质细线悬挂于O 点,用力F 拉小球a ,使整个装置处于静止状态,且悬线与竖直方向的夹角θ=30°,重力加速度为g ,则F 的最小值为( ) A.√33mg B.12mgC.√32mgD.√2mg随堂练习1.倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G 的物体A ,物体A 与斜面间的动摩擦因数μ=0.5。
高中物理中的临界与极值问题
有关“物理”的临界与极值问题高中物理中的临界与极值问题涉及到多个知识点,包括牛顿第二定律、圆周运动、动量守恒等。
有关“物理”的临界与极值问题如下:1.牛顿第二定律与临界问题:●牛顿第二定律描述了物体的加速度与合外力之间的关系。
当物体受到的合外力为零时,物体处于平衡状态。
●在某些情况下,物体受到的合外力不为零,但物体仍然处于平衡状态,这是因为物体受到的合外力恰好等于某个临界值。
这种状态被称为“临界平衡”。
●在解决与临界平衡相关的问题时,通常需要考虑物体的平衡条件和牛顿第二定律。
通过分析物体的受力情况,可以确定物体是否处于临界平衡状态,以及需要施加多大的力才能使物体离开临界平衡状态。
2.圆周运动中的极值问题:●圆周运动中的极值问题通常涉及向心加速度和线速度的最大值和最小值。
●当物体在圆周运动中达到最大速度时,其向心加速度最小。
此时,物体的线速度最大,而向心加速度为零。
●当物体在圆周运动中达到最小速度时,其向心加速度最大。
此时,物体的线速度最小,而向心加速度为最大值。
●在解决与圆周运动中的极值问题相关的问题时,通常需要考虑向心加速度和线速度之间的关系,以及如何通过分析物体的受力情况来确定其最大速度和最小速度。
3.动量守恒与极值问题:●动量守恒定律描述了系统在不受外力作用的情况下,系统内各物体的动量之和保持不变。
●在某些情况下,系统受到的外力不为零,但系统仍然保持动量守恒。
这是因为系统受到的外力恰好等于某个临界值。
这种状态被称为“临界动量守恒”。
在解决与临界动量守恒相关的问题时,通常需要考虑系统的动量守恒条件和外力的作用。
通过分析系统的受力情况,可以确定系统是否处于临界动量守恒状态,以及需要施加多大的外力才能使系统离开临界动量守恒状态。
动力学的临界和极值问题
动力学的临界和极值问题教学目标: 教学重点、难点: 新课引入:教学过程:一、临界和极值在应用牛顿定律解决动力学问题中,当物体运动的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词语时,往往会有临界现象。
此时要采用极限分析法,看物体在不同加速度时,会有哪些现象发生,尽快找出临界点,求出临界条件。
在某些物理情境中,物体运动状态变化的过程中,由于条件的变化,会出现两种状态的衔接,两种现象的分界,同时使某个物理量在特定状态时,具有最大值或最小值。
这类问题称为临界问题。
在解决临界问题时,进行正确的受力分析和运动分析,找出临界状态是解题的关键。
1、相互接触的物体,它们分离的临界条件是:它们之间的弹力N 0,而且此时它们的速度相等,加速度相同。
【例】如图,在竖直立在水平面的轻弹簧上面固定一块质量不计的薄板,将薄板上放一重物,并用手将重物往下压,然后突然将手撤去,重物即被弹射出去,则在弹射过程中,(即重物与弹簧脱离之前),重物的运动情况是()A、一直加速B、先减速,后加速C、先加速、后减速D>匀加速答案:C 【例】如图所示,劲度系数为k的轻弹簧竖直固定在水平面上,上端固定一质量为m。
的托盘,托盘上有一个质量为m的木块。
用竖直向下的力将原长为l o 的弹簧压缩后突然撤去外力,则m即将脱离m0时的弹簧长度为()A , m0m gA 、l。
B 、l。
—0——gkC、1。
mgkD、1。
m°g答案:A 【例】如图所示,一细线的一端固定于倾角为45的光滑楔形滑块A的顶端P处,细线的另一端拴一质量为m的小球。
当滑块至少以加速度a左运动时,小球对滑块的压力等于零。
当滑块以a加速度向左运动时,线的拉力大小F O答案:g、>/5mg【例】一个质量为0.2kg的小球用细线吊在倾角53的斜面顶端,如图, 斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦,当斜面以10m/s2的加速度向右做加速运动时,求绳的拉力及斜面对小球的弹力。
超级经典实用的临界问题和极值问题(吐血整理)
如图3—51所示,把长方体切成质量分别为m和M的 两部分,切面与底面的夹角为θ长方体置于光滑的 水平地面,设切面亦光滑,问至少用多大的水平力 推m,m才相对M滑动?
如图1所示,质量均为M的两个木块A、B在水平力F 的作用下,一起沿光滑的水平面运动,A与B的接触面 光滑,且与水平面的夹角为60°,求使A与B一起运 动时的水平力F的范围。
临界问题和极值问题
一、临界状态
在物体的运动状态发生变化的过程中,往往 达到某一特定的状态时,有关物理量将发生 变化,此状态即为临界状态,相应物理量的 值为临界值。【讨论相互作用的物体是否会 发生相对滑动,相互接触的物体是否会分离 等问题就是临界问题】 注意:题目中出现“最大、刚好、恰好、最 小”等词语时,常有临界问题。
F
A
ห้องสมุดไป่ตู้
B 60°
图1
1、在水平向右运动的小车上,有一倾角θ=370的光 滑斜面,质量为 m 的小球被平行于斜面的细绳系住 而静止于斜面上,如图所示。当小车以(1)a1=g, (2) a2=2g 的加速度水平向右运动时,绳对小球的拉 力及斜面对小球的弹力各为多大?
a
θ
二、动力学中常见的临界问题
1、接触的两物体发生脱离(分离)临界条件: 弹力FN=0; 2、两相对静止的物体发生相对滑动的临界条 件:静摩擦力达到最大值,即f=fMax; 3、绳子断裂和松弛的临界条件:(1)断裂 的临界条件:绳子受的拉力达到它能承受拉 力的最大值;(2)松弛临界条件:绳子受的 拉力为零,即FT=0
4、加速度达到最大和最小的临界条件:物体 受到变化的合外力作用,加速度不断变化, 当所受合外力最大时,加速度最大;合外力 最小时,加速度最小; 5、速度最大或最小的临界条件:加速度为零, 即a=0
平衡中的临界与极值问题(解析版)
突破5平衡中的临界与极值问题1.临界问题当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”、“刚能”、“恰好”等语言叙述.常见的临界状态有:(1)两接触物体脱离与不脱离的临界条件是相互作用力为0(主要体现为两物体间的弹力为0);(2)绳子断与不断的临界条件为绳中张力达到最大值;绳子绷紧与松弛的临界条件为绳中张力为0;(3)存在摩擦力作用的两物体间发生相对滑动或相对静止的临界条件为静摩擦力达到最大。
突破临界问题的三种方法(1)【解析】法根据物体的平衡条件列方程,在解方程时采用数学知识求极值。
通常用到的数学知识有二次函数求极值、讨论分式求极值、三角函数求极值以及几何法求极值等。
(2)图解法根据平衡条件作出力的矢量图,如只受三个力,则这三个力构成封闭矢量三角形,然后根据矢量图进行动态分析,确定最大值和最小值。
(3)极限法极限法是一种处理临界问题的有效方法,它是指通过恰当选取某个变化的物理量将问题推向极端(“极大”、“极小”、“极右”、“极左”等),从而把比较隐蔽的临界现象暴露出来,使问题明朗化,便于分析求解。
2.极值问题平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题.一般用图解法或【解析】法进行分析.处理极值问题的两种基本方法(1)【解析】法:根据物体的平衡条件列方程,通过数学知识求极值的方法.此法思维严谨,但有时运算量比较大,相对来说较复杂,而且还要依据物理情境进行合理的分析讨论.学%科网(2)图解法:根据物体的平衡条件作出力的矢量三角形,然后由图进行动态分析,确定极值的方法.此法简便、直观.【典例1】倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A与斜面间的动摩擦因数μ=0.5。
现给A施加一水平力F,如图所示。
设最大静摩擦力与滑动摩擦力相等(sin 37°=0.6,cos 37°=0.8),如果物体A能在斜面上静止,水平推力F与G的比值不可能是()A.3B.2C.1D.0.5【答案】 A【典例2】如图所示,一球A夹在竖直墙与三角劈B的斜面之间,三角形劈的重力为G,劈的底部与水平地面间的动摩擦因数为μ,劈的斜面与竖直墙面是光滑的,问欲使三角劈静止不动,球的重力不能超过多大?(设劈的最大静摩擦力等于滑动摩擦力)【答案】:球的重力不得超过G【跟踪短训】1. 将两个质量均为m的小球a、b用细线相连后,再用细线悬挂于O点,如图所示。
高中物理中的临界与极值问题
下中物理中的临界与极值问题之阳早格格创做宝鸡文理教院附中何治专一、临界与极值观念所谓物理临界问题是指百般物理变更历程中,随着条件的渐渐变更,数量聚集达到一定程度便会引起某种物理局里的爆收,即从一种状态变更为另一种状态爆收量的变更(如齐反射、光电效力、超导局里、线端小球正在横直里内的圆周疏通临界速度等),那种物理局里恰佳爆收(或者恰佳不爆收)的过分转合面即是物理中的临界状态.与之相关的临界状态恰佳爆收(或者恰佳不爆收)的条件即是临界条件,有关此类条件与截止钻研的问题称为临界问题,它是形而上教中所道的量变与量变顺序正在物理教中的简直反映.极值问题则是指物理变更历程中,随着条件数量连绝渐变越过临界位子时或者条件数量连绝渐变与鸿沟值(也称端面值)时,会使得某物理量达到最大(或者最小)的局里,有关此类物理局里及其爆收条件钻研的问题称为极值问题.临界与极值问题虽是二类分歧的问题,但是往往互为条件,即临界状态时物理量往往博得极值,反之某物理量与极值时恰佳便是物理局里爆收转合的临界状态,除非该极值是单调函数的鸿沟值.果此从某种意思上道,那二类问题的界线又隐得非常的朦胧,并不是泾渭明隐.下中物理中的临界与极值问题,虽然不正在教教大目或者考查道明中粗确提出,但是连年下考查题中却频频出现.从往常的试题形式去瞅,有些间接正在题搞中时常使用“恰佳”、“最大”、“起码”、“不相碰”、“不摆脱”……等词汇语对付临界状态给出了粗确的表示,审题时,要抓住那些特定的词汇语收挖其内含的物理顺序,找出相映的临界条件.也有一些临界问题中本去不隐含上述罕睹的“临界术语”,具备一定的湮出性,解题机动性较大,审题时应力图还本习题的物理情景,粗细计划状态的变更.可用极限法把物理问题或者物理历程推背极度,进而将临界状态及临界条件隐性化;或者用假设的要领,假设出现某种临界状态,领会物体的受力情况及疏通状态与题设是可相符,终尾再根据本量情况举止处理;也可用数教函数极值法找出临界状态,而后抓住临界状态的特性,找到粗确的解题目标.从往常试题的真量去瞅,对付于物理临界问题的考查主要集结正在力战疏通的关系部分,对付于极值问题的考查则主要集结正在力教或者电教等权沉较大的部分.二、罕睹临界状态及极值条件解问临界与极值问题的关键是觅找相关条件,为了普及解题速度,不妨明白并记着一些罕睹的要害临界状态及极值条件:1.雨火从火仄少度一定的光润斜里形屋顶流淌时间最短——2.从少斜里上某面仄扔出的物体距离斜里最近——速度与斜里仄止时刻3.物体以初速度沿牢固斜里恰佳能匀速下滑(物体冲上牢固斜里时恰佳不再滑下)—μ=tgθ.4.物体刚刚佳滑动——静摩揩力达到最大值.5.二个物体共背疏通其间距离最大(最小)——二物体速度相等.6.二个物体共背疏通相对付速度最大(最小)——二物体加速度相等.7.位移一定的先开用后制动分段疏通,正在初、终速及二段加速度一定时欲使齐程历时最短——中间无匀速段(位移一定的先开用后制动分段匀变速疏通,正在初速及二段加速度一定时欲使能源效率时间最短——到终面时终速恰佳为整)8.二车恰不相碰——后车逃上前车时二车恰佳等速.9.加速疏通的物体速度达到最大——恰佳不再加速时的速度.10.二交战的物体刚刚佳分散——二物体交战但是弹力恰佳为整.11.物体所能到达的最近面——直线疏通的物体到达该面时速度减小为整(直线疏通的物体轨迹恰与某鸿沟线相切)12.正在排球场合3米线上圆火仄打球欲乐成的最矮位子——既触网又压界13.木板或者传递戴上物体恰不滑降——物体到达终端时二者等速.14.线(杆)端物正在横直里内搞圆周疏通恰能到圆周最下面15.横直里上疏通的非拘束物体达最下面——横直分速度为整.16.细线恰佳推直——细线绷直且推力为整.17.已知一分力目标及另一分力大小的领会问题中若第二分力恰为极小——二分力笔直.18.动背力领会的“二变一恒”三力模型中“单变力”极小——二个变力笔直.19.度目标的分力.20.渡河中时间最短——船速笔直于河岸,即船速与河岸笔直(相称于静火中渡河).21.船速大于火速的渡河中航程最短——“斜顺航止”且船速顺进与止分速度与火速对消.22.船速小于火速的渡河中航程最短——“斜顺航止”且船速与合速度笔直.23.“圆柱体”滚上台阶最省力——使能源臂达最大值2R.24.25.益坏动能最小(大)的碰碰——真足弹性(真足非弹性)碰碰.26.简谐疏通速度最大——位移(回复力、加速度)为整.27.受迫振荡振幅恰佳达最大——驱能源的频次与振荡系统的固有频次相等.28.二个共相相搞波源连线上振幅最大的面——二边距连线中…29.惟有板滞能与电势能相互转移时,沉力势能与电势能之战最小时,动能最大.30.粒子恰不飞出匀强磁场——圆形轨迹与磁场鸿沟相切.31.杂电阻背载时电源输出功率最大——内中电阻阻值相等.32.滑动变阻器对付称式接法中阻值达最大——滑至中面.33.倾斜安顿的光润导轨上的通电导体棒停止时,所加匀强磁场目标若笔直于斜里的情况下磁感强度最小.34.光从介量射背气氛时恰不射出——进射角等于临界角.35.刚刚佳爆收光电效力——进射光频次等于极限频次.36.戴电粒子恰佳被速度采用器选中(霍我效力、等离子收电)——电场力与洛力仄稳.37.“大天卫星”(氢本子处于基态)时,势能最小、总能量最小、疏通周期、角速度均最小;速度、背心力、加速度均最大.38.等量共本量面电荷连线的中垂线上场强最大的位子供解.三、临界与极值问题普遍解法临界问题常常以定理、定律等物理顺序为依据,领会所钻研问题的普遍顺序战普遍解的形式及其变更情况,而后找出临界状态,临界条件,进而通过临界条件供出临界值,再根据变更情况,间接写出条件.供解极值问题的要领从大的圆里可分为物理要领战数教要领.物理要领即用临界条件供极值.数教要领包罗(1)利用矢量图供极值(2)用正(余)弦函数供极值;(3)扔物线顶面法供极值;(4)用基础不等式供极值.(5)单调函数端面值法供极值(6)导数法供解.普遍而止,用物理要领供极值简朴、直瞅、局里,对付构修物理模型及动背领会等圆里的本领央供较下,而用数教要领供极值思路宽紧,对付数教修模本领央供较下,若能将二者给予混合,则将相得亦彰,对付巩固解题本领大有裨益.四、典型问题领会例题1.某屋顶横断里是一等腰三角形ABC ,横梁AC=2L (定值),欲使雨火从屋顶里下贵下去时间最短,供屋里的倾斜角(摩揩忽略不计,雨火初速为0)剖析:设倾斜角α,AB=s ∵F=mgsinα=ma ,∴a=gsinα∵s== ∴当α=45°时,等号创制所以α=45°,雨火从屋顶(光润)下贵下所用的时间最短解法2.21sin cos 2L g t αα=⋅∴解恰当0=45α时 t 有最小值. 例题2.从倾角为θ的牢固少斜里顶面以初不计气氛阻力供自扔出经多万古间小球离斜里最近?解法一:设经t 秒小球距离斜里最近,此时速度必与斜里仄止,则所以. 解法二:近离斜里目标的所以近离斜里的速度减小至整时相距最近.时相距最近.解法四:剖析法.选初速度目标为x 轴正背,沉力目标为y 轴正仄扔物体轨迹圆故隐然二次函数有极大概的条件为即例题3.一个品量为3kg的物体搁正在少木板上,当木板一端抬起使它与火仄目标成30°的牢固斜里时,物体正佳不妨沿斜里匀速下滑.当木板火仄牢固时,用多大的火仄推力能将该物体推动?剖析:正在斜里上物体所受摩揩力与沉力沿斜里背下的分力仄稳即F=mgsin30°而滑动摩揩力f=μmgcos30°所以μ=tan30°正在火仄里上推的时间压力大小等于沉力大小.则火仄里上的摩揩力f=μmg=mgtan30°所以推力起码要达到那个值才搞推动物体,例题4-1.某物体所受沉力为200 N,搁正在火仄大天上,它与大天间的动摩揩果数是,它与大天间的最大静摩揩力是80 N,起码要用_________N的火仄推力,才搞将此物体推动,若推动之后脆持物体搞匀速直线疏通,火仄推力应为_________N;物体正在大天上滑动历程中,若将火仄推力减小为50 N,直到物体再次停止前,它所受到的摩揩力为_________N;物体停止后,此50 N的火仄推力并已撤去,物体所受的摩揩力大小为_________N.剖析:从停止推物体时推力起码达到最大静摩揩力80N才不妨推动物体;推动后当推力大小与滑动摩揩力等值(200×0.38=76N)时物体将搞匀速直线疏通;正在物体滑动历程中火仄推力若减小至50N,物体受到的滑动摩揩力仍跟本去一般为76N;物体停止后此50N的火仄推力并已撤去时物体受静摩揩力大小等于此时的火仄推力大小50N.例题4-2. 如图所示,U 形导线框牢固正在火仄里上,左端搁有品量为m 的金属棒ab ,ab 与导轨间的动摩揩果数为μ,它们围成的矩形边少分别为1L 、2L ,回路的总电阻为R.从t=0时刻起,正在横直进与目标加一个随时间匀称变更的匀强磁场B=kt ,(k>0)那么正在t 为多大时,金属棒开初移动.剖析:当磁场爆收变更的时间,有感触电动势爆收,正在回路中便会爆收感触电流,ab 棒会受到安培力的效率,则ab 有背左疏通的趋势,则ab 便会受到背左的静摩揩力的效率.当ab 棒受到安培力战静摩揩力的效率仄稳时,由12E kL L t ∆Φ==∆可知,回路中感触电动势是恒定的,电流大小也是恒定的,但是由于安培力F=BIL ∝B=kt ∝t ,所以安培力将随时间而删大,所以ab 受到的静摩揩力也删大,二者终究是等值反背的,只消安培力的大小不超出最大静摩揩力,ab 便终究处于停止状态.当安培力大于最大静摩揩力之后,ab 便会疏通起去.正在停止到疏通之间便存留着一个从停止到疏通的临界状态,此状态的临界条件便是安培力删大到等于最大静摩揩力.此时有:1212212,kL L mgR kt L mg t R k L L μμ⋅⋅==所以例题4-3.如图3所示二根仄止的金属导轨牢固正在共一火仄里上,磁感触强度的匀强磁场与导轨仄里笔直,导轨电b a L 1 L 2阻不计,导轨间距;二根品量均为电阻均为的仄止金属杆甲、乙可正在导轨上笔直于导轨滑动,与导轨间的动摩揩果数均为;现有一与导轨仄止大小为的火仄恒力效率于甲杆使金属杆正在导轨上滑动,已知210m g s = 供(1)领会甲、乙二杆的疏通的情况?(2)杆疏通很万古间后开初,则再通过5秒钟二杆间的距离变更了几?剖析:(1)金属杆甲正在火仄恒力(那里0.5f mg μ==甲牛为甲杆所受的最大静摩揩力)效率下将背左加速疏通并切割磁感线爆收顺时针目标的感触电流,果而使甲杆共时受到火仄背左的安培阻力;乙杆中也果为有了电流而受到火仄背左的安培能源,二个安培力等值反背;开初时甲杆的切割速度较小故安培力=均较小,随的删大则回路中的感触电流删大,所以二杆所受的安培力=均删大,故甲杆将背左做加速度减小的变加速疏通;当时乙杆也将开初背左做加速度渐渐删大的变加速疏通;直到甲、乙二杆的加速度相等时(此时甲乙二杆速度好v ∆最大,回路中动死电流最大即0.50.2=0.44m BL v v v I R ⋅∆⨯⨯∆∆==总, 每杆受安培力最大即0.50.2440Bm m v v F BI L ∆∆==⨯⨯=乙杆的加速度最大即max 54Bm F mg v a m μ-∆==-乙甲杆的加速度最小即min 154Bm F F mg v a m μ--∆==-甲图5所以甲乙二杆以共共的加速度,恒定的速度好背左搞匀加速直线疏通.即甲相对付乙将背左搞匀速直线疏通而近离.(2)依据上述领会知疏通很万古间后甲乙二杆将以共共的加速度背左搞匀加速直线疏通,亦即5秒例题4-4.如图5一端施一大小为20N 的恒力FM 可视为量面,问木块从较近处背左疏通到离定滑轮多近时加速度最大?最大加速度为几?剖析: 设当沉绳与火仄目标成角θ时,对付M 有A 与最大值时a 最大.利用三角函数知识有:此时木块离定滑轮的火仄距离为:cm=θcot≈S25h道明:此题并不是正在所有条件下皆能达到上述最大加速度,当木块达到一定值时,有大概使物体摆脱大天,今后物体将不正在沿着火仄里疏通.果此,F、M、μ必须谦足θsinF≤Mg.此题所给数据谦足上述条件,不妨达到最大加速度.例题4-5.如图3所示,品量为m=1kg的物块搁正在倾角为的斜里体上,斜里品量为,斜里与物块间的动摩揩果数为,大天光润,现对付斜里体施一火仄推力F,要使物体m相对付斜里停止,试决定推力F的与值范畴.()图3剖析:此题有二个临界条件,当推力F较小时,物块有相对付斜里背下疏通的大概性,此时物体受到的摩揩力沿斜里进与;当推力F较大时,物块有相对付斜里进与疏通的大概性,此时物体受到的摩揩力沿斜里背下.找准临界状态,是供解此题的关键.(1)设物块处于相对付斜里背下滑动的临界状态时的推力为F1,此时物块受力如图4所示,与加速度的目标为x轴正目标.图4对付物块领会,正在火仄目标有横直目标有对付真足有代进数值得(2)设物块处于相对付斜里进与滑动的临界状态时的推力为F2图4-6 对付物块领会,正在火仄目标有 横直目标有, 对付真足有代进数值得.综上所述可知推力F 的与值范畴为: 例题4-6.如图4-6所示,跨过定滑轮的沉绳二端,分别系着物体A 战B ,物体A 搁正在倾角为α的斜里上,已知物体A 的品量为m ,物体B 战斜里间动摩揩果数为μ(μ<t an θ),滑轮的摩揩不计,要使物体停止正在斜里上,供物体B 品量的与值范畴.剖析:物体正在斜里上大概恰佳不上滑,也大概恰佳不下滑,所以摩揩力大概有二个目标.以B 为钻研对付象,由仄稳条件得:B T m g =再以A 为钻研对付象,它受沉力、斜里对付A 的收援力、绳的推力战斜里对付A 的摩揩效率.假设A 处于临界状态,即cos N mg θ=0,m m T f mg f N μ--==或者:0,m m T f mg f N μ+-==(sin cos )(sin cos )B m m m θμθθμθ-≤≤+例题5-1.甲物体以=4m v s 甲搞匀速直线疏通,乙物体正在其后里5m 处沿共背去线共一目标搞初速为整加速度22m a s =的匀加速直线疏通,问乙物体是可不妨逃上甲物体?并供出其间距离的最大值.解法一:(1)乙物体一定不妨逃上甲物体.(2)用临界法领会供极值:乙物体加速至=4m v s 甲前,速度小于其前圆的甲物体疏通速度,此阶段其间距离不竭删大,当乙物体加速至=4m v s 甲后,速度大于其前圆的甲物体疏通速度,所以正在尚已逃上甲物体前,其间距离不竭减小,故等速时其间距离最大.令a t v ⋅=甲 解得4==22v t s a =甲 此时相距最近 解法二:(2)用扔物线顶面坐标法供极值:依据甲乙二物体各自疏通顺序可得出其间的距离函数222011+5424522S S v t at t t t t =⋅-=+-⨯=-++甲 422(1)t =-=-s 时 例题5-2.(宝鸡2012年二模)如图所示,品量为6kg 的小球A 与品量为3kg 的小球B ,用沉弹簧贯串后正在光润火仄里上共共以速度0v 背左匀速疏通,正在A 球与左侧横直墙壁碰后二球继承疏通的历程中,弹簧的最大弹性势能为4J ,若A 球与左侧墙壁碰碰前后无板滞能益坏,试供0v 的大小.剖析:那里弹性势能最大时即簧压缩量最大,亦即A 与左侧0v 为初速(碰墙壁无板滞能益坏)背左减速疏通,B 仍以0v 为初速背左减速,但是B 球品量小先减至整又反背背左加速疏通,二者均背左疏通等速时其间距离最小,此时簧的弹性势能最大.果为碰墙壁后背左疏通历程A+B 系统总动量守恒,如果选背左为正目标则又果为碰墙壁后背左疏通历程A+B (含簧)系统总板滞能守恒则联坐供解并代进数值得01m v s = (13AB m v s =) 例题5-3.(90年世界卷)正在光润的火仄轨道上有二个半径皆是r 的小球A 战B ,品量分别为m 战2m ,当二球心间距离大于L (L 比2r 大得多)时,二球之间无相互效率力;当二球心间距离等于或者小于L 时,二球间存留相互效率的恒定斥力F.设A 球从近离B 球处以速度0v 沿二球连心线背本去停止的B 球疏通,如图12-2所示,欲使二球不爆收交战,0v 必须谦足什么条件剖析 : 据题意,当A 、B 二球球心间距离小于L 时,二球间存留相互效率的恒定斥力 F.故A 减速而B 加速.B A v v >时,A 、B 间距离减小;当B A v v <时,A 、B 间距离删大.可睹,当B A v v =时,A 、B相距迩去.若此时A 、B 间距离r x 2>,则A 、B 不爆收交战(图12-3).上述状态即为所觅找的临界状态,B A v v =时r x 2>则为临界条件.二球不交战的条件是:B A v v = (1) 2B A L S S r +- (2)其中A v B v 为二球间距离最小时,A 、B球的速度;A S 、B S为二球间距离从L 变至最小的历程中,A 、B 球通过的路途. 设0v 为A 球的初速度,对付于A+B 系统由动量守恒定律得 B A mv mv mv 20+= (3)对付于A 球由动能定律得022011cos18022A A F S mv mv ⋅=- (4)对付于B 球由动能定律得 021cos0(2)2B B F S m v ⋅= (5) 联坐解得:m r L F v )2(30-<评析 本题的关键是粗确找出二球“不交战”的临界状态,为B A v v =且此时r x 2>例题6.(09年江苏卷)如图所示,二品量相等的物块A 、B 通过一沉量弹簧对接,B 足够少、搁置正在火仄里上,所有交战里均光润.弹簧开初时处于本少,疏通历程中终究处正在弹性极限内.正在物块A 上施加一个火仄恒力,A 、B 从停止开初疏通到第一次速度相等的历程中,下列道法中粗确的有 ( )A .当A 、B 加速度相等时,系统的板滞能最大B .当A 、B 加速度相等时,A 、B 的速度好最大C .当A 、B 的速度相等时,A 的速度达到最大D .当A 、B 的速度相等时,弹簧的弹性势能最大剖析:领会本题的关键是对付物体举止受力领会战疏通历程领会,使用图象处理则不妨使问题越收简朴.A 、B 物块正在火仄目标受力如左图上下,F 1为弹簧的推力.A 从停止开初背左搞加速度减小的变加速直线疏通,B 从停止开初背左搞加速度删大的变加速直线疏通,当二物块加速度相等时它们的速度好最大(果为该阶段A 速度的减少值经常大于B 速度的减少值),————选B.该历程可视为B 板后沿(量面)逃打A 物块,果为前里A 物体的速度经常大于后里B 物体的速度,所以其间距离不竭删大(共一时间内A 物的位移经常大于B 物的位移),当二物体等速时其间距离最大即弹簧伸少量最大,所以弹簧的弹性势能最大.————选D据前领会该历程A 物体终究搞加速度减小的加速疏通(B 物也终究加速但是加速度删大),那种疏通背去持绝到A 物体加速度减为整(此时B 物体加速度删至F/m ),即A 物体速度单调减少,故终时刻速度最大.————选C.又果中力F 不竭搞正功,所以系统板滞能不竭删大,终时刻板滞能最大.————排除A. 1t 时刻2A B F a a m ==2t 时刻A B v v =且A 物加速度=0例题7-1.消防队员为了收缩下楼时间,往往抱着直坐于大天的横直滑杆间接滑下(设滑杆正在火仄目标不克不迭移动),假设一名品量为60kg 的消防队员从离大天18m 的七楼抱着横直的滑杆以最短的时间滑下.已知消防队员的脚战足对付杆之间的压力最大为1800N ,脚战足与滑杆之间动摩揩果数为0.5,消防队员着天的速度不克不迭大于6m/s ,当天(1)消防队员下滑的最短时间?(2)消防队员下滑历程中最大速度?解法一(基础不等式极值法):设消防队员先搞自由降体疏900N 大于沉力600N佳减速至=6m/s ,则下滑时间①且..② 又依牛顿第二定律知消防队员减速下滑的加速度最大值为..③ 将②③式代进①式并整治有即消防队员下滑的最短时间为2.4 s ,即加速1.2s 、匀速0s 、减速1.2s.(2)消防队员下滑的最大速度即自由降体段下滑的终速度解法二18m ,那种临界状态的v-t 图像如下图中真线OAB 所示,其与横轴所围成的图形“里积”恰佳为18m ,隐然其余任性一个含有匀速疏通段的图形若里积与其相等(比圆OPQM),则底边少度必大于24s.所以先加速后减速中间无匀速疏通段,历时最短.例题7-2.(06年上海卷) (辨析题):央供摩托车由停止开初正在尽管短的时间内走完一段直道,而后驶进一段半圆形的直道,但是正在直道上止驶时车速不克不迭太快,免得果离心效率而偏偏出车道,供摩托车正在直道上止驶所用的最短时间.有关数据睹表1.某共教是那样解的:要使摩托车所用时间最短,应先由静,而后再减速,您认为那位共教的解法是可合理?若合理,请完毕估计;若分歧理,请道明缘由,并用您自己的要领算出粗确截止.剖析:故分歧理.40),又以加速度218m 的直道距离止驶,即为最短时间.例题7-3.(2013年宝鸡市一检试题)如图所示,火仄大天上有A 、B 二面,且二面间距离LAB=15m,品量m=2kg 的物体(可视为量面)停止正在A 面,为使物体疏通到B 面,现给物体施加一火仄F =10N 的推力,供推力F 效率的最短时间.(已知大天与物块的滑动摩揩果数μ=0.2,g 与10m/s2)剖析:可证要使F 效率时间最短,则F B 面恰佳停止(道明睹后).设匀加速直线疏通的加速度为a1可得:(1)(2)设撤去F(3)(4)(5)(6)(7)道明:设恒力F滑止段-2,设滑止段即恒力效率时间最小需要2s.亦即滑止至终速恰佳为整所需的时间为2s (也可通过v-t图像证略).例题8.后圆距离甲车S驶速度脆持稳定,为了保证二车不相碰,乙车搞匀减速直线疏通的加速度大小起码为多大?解法一:.设a ,恰逃上时历时0t 则20=v v at -乙令201==v v at v -乙 解得210v v t a-=又果为21101=v v s v t v a -=⋅甲2222212121200211s =()222v v v v v v v t at v a a a a----=⋅-⋅=乙 令+s s s =乙甲 解得221()2v v a s-=解法二:以甲车为参照物,乙车的相对付初速度为21v v -,设加速度(亦即相对付加速度)为a相对付终速度为0,相对付位移为S ,则有2221()02v v as --=所以 221()2v v a s-=例题9.如图所示,横直搁置的U 形导轨宽为L ,上端串有电阻R (其余导体部分的电阻皆忽略不计).磁感触强度为B 的匀强磁场目标笔直于纸里背中.金属棒ab 的品量为m ,与导轨交战良佳,不计摩揩.从停止释搁后ab 脆持火仄下滑.试供ab 下滑的最大速度m v .剖析:释搁瞬间ab 只受沉力,开初背下加速疏通,只消ab 有速度,正在ab 上便会爆收动死电动势,正在回路中便会爆收电流,由左脚定则知,ab 会受到进与的安培力的效率.动死电动势会随着速度的删大而不竭的删大,回路中电流便会不竭的删大,根据=F BIL 安,安培力会不竭的删大,则ab 搞加速0F mg -=安时,其加速度便形成0,速度达到最大,开初搞匀速直线疏通.果此,正在从变速疏通状态变到匀速状态之间有一个速度达到最大的状态,此状态的临界条件便是ab 受的的沉力大小等于安培力大小.m gR v L B F m==22,可得22L B mgRv m =例题10-1.如图所示,m=4kg 的小球挂正在小车后壁上,细线与横直目标成37°角.要使后壁对付小球不爆收力的效率小车的加速度应谦足的条件?剖析:小车背左加速或者背左减速时,后壁对付小球的效率力N 有大概减为整,那时小球将离开后壁而“飞”起去.那时细线跟横直目标的夹角会改变,果此细线推力F 的目标会改变.所以必须先供出那个临界值.领会知正在该临界状态下, 小球横直目标仄稳, 则0cos37=F mg细线推力火仄分量使得小球正在火仄目标加速,则0sin37F ma =联坐解得 小车背左加速或者背左减速的加速度大小起码为0a=g tg37⋅例题10-2.一根劲度系数为k,品量不计的沉弹簧,上端牢固,下端系一品量为m 的物体,有一火仄板将物体托住,并使弹簧处于自然少度.如图所示.现让木。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热点综合专题四牛顿运动定律的综合应用热点一超重和失重问题超重、失重和完全失重的比较【典例】(2018·福建福州期末)广州塔,昵称小蛮腰,总高度达600米,游客乘坐观光电梯大约一分钟就可以到达观光平台.若电梯简化成只受重力与绳索拉力,已知电梯在t=0时由静止开始上升,a -t图象如下图所示.则下列相关说法正确的是()A.t=4.5 s时,电梯处于失重状态B.5~55 s时间内,绳索拉力最小C.t=59.5 s时,电梯处于超重状态D.t=60 s时,电梯速度恰好为零[审题指导](1)判断超重与失重,仅看加速度方向即可,与加速度大小如何变化无关.(2)a-t图线与t轴所围的“面积”代表速度的变化量.[解析]利用a-t图象可判断:t=4.5 s时,电梯有向上的加速度,电梯处于超重状态,则A错误;0~5 s时间内,电梯处于超重状态,拉力>重力,5~55 s时间内,电梯处于匀速上升过程,拉力=重力,55~60 s时间内,电梯处于失重状态,拉力<重力,综上所述,B、C错误;因a-t图线与t轴所围的“面积”代表速度改变量,而图中横轴上方的“面积”与横轴下方的“面积”相等,则电梯的速度在t=60 s时为零,D正确.[答案]D判断超重和失重的方法[针对训练]1.(2018·吉林省白城市通榆一中考试)某运动员(可看成质点)参加跳台跳水比赛,t=0时,为其向上起跳离开跳台的瞬间,其速度与时间关系图象如图所示,不计空气阻力,则下列说法错误的是()A.可以求出水池的深度B.可以求出跳台距离水面的高度C.0~t2时间内,运动员处于失重状态D.t2~t3时间内,运动员处于超重状态[解析]跳水运动员在跳水过程中的v-t图象不能反映是否到达水底,所以不能求出水池的深度,故A错误;应用v-t图象中,图线与横轴围成的面积表示位移大小,可以求出跳台距离水面的高度,故B正确;t=0时刻是运动员向上起跳离开跳台的瞬间,速度是负值时表示速度方向向上,则知0~t1时间内运动员做匀减速运动,t1~t2时间内向下做匀加速直线运动,0~t2时间内,运动员一直在空中具有向下的加速度,处于失重状态,故C正确;由题图可知,t2~t3时间内,运动员向下做减速运动,则加速度的方向向上,处于超重状态,故D正确.[答案]A2.(多选)飞船绕地球做匀速圆周运动,宇航员处于完全失重状态时,下列说法正确的是()A.宇航员不受任何力作用B.宇航员处于平衡状态C.地球对宇航员的引力全部用来提供向心力D.正立和倒立时宇航员一样舒服[解析]飞船绕地球做匀速圆周运动时,飞船以及里面的宇航员都受到地球的万有引力,选项A错误;宇航员随飞船绕地球做匀速圆周运动,宇航员受到地球的万有引力提供其做圆周运动的向心力,不是处于平衡状态,选项B错误,选项C正确;完全失重状态下,重力的作用效果完全消失,正立和倒立情况下,身体中的器官都是处于悬浮状态,没有差别,所以一样舒服,选项D正确.[答案]CD热点四动力学中的临界和极值问题的分析方法(微专题)1.临界或极值条件的标志(1)有些题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程存在着临界点.(2)若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应临界状态.(3)若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点.(4)若题目要求“最终加速度”“稳定速度”等,即是求收尾加速度或收尾速度.2.解临界或极值问题的基本思路(1)认真审题,分析问题中变化的过程(包括分析整体过程中有几个阶段).(2)寻找过程中变化的物理量.(3)探索物理量的变化规律.(4)确定临界状态,分析临界条件,找出临界关系.3.常见临界(极值)问题的条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是相互作用的弹力为零,加速度相等。
(2)是否相对滑动的临界条件:静摩擦力达到最大值。
(3)绳子是否断裂与张弛的临界条件:绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力;绳子张弛的临界条件是F T=0。
(4)滑块在滑板上滑下与不滑下的临界条件:滑块滑到滑板一端时,两者速度相同。
(5)加速度的极值条件:当所受合力最大时,具有最大加速度;合力最小时,具有最小加速度。
(6)速度最大的极值条件:应通过运动过程分析,很多情况下当加速度为零时速度最大。
4.求解临界极值问题的思维方法题型一“脱离”临界问题【典例1】(2017·海南卷)一轻弹簧的一端固定在倾角为θ的固定光滑斜面的底部,另一端和质量为m的小物块a相连,如图所示.质量为35m的小物块b紧靠a静止在斜面上,此时弹簧的压缩量为x0,从t=0时开始,对b施加沿斜面向上的外力,使b始终做匀加速直线运动.经过一段时间后,物块a、b分离;再经过同样长的时间,b距其出发点的距离恰好也为x0.弹簧的形变始终在弹性限度内,重力加速度大小为g.求:(1)弹簧的劲度系数;(2)物块b加速度的大小;(3)在物块a、b分离前,外力大小随时间变化的关系式.[审题指导]第一步读题画图(形象过程)过程1:a 、b 紧贴在一起做匀加速直线运动,b 受外力. 过程2:a 、b 恰好分离后,b 继续做匀加速直线运动.第二步 审题分析(找突破口)(1)初始时“b 紧靠a 静止在斜面上,弹簧的压缩量为x 0”,可直接求得弹簧的劲度系数.(2)“物块b 始终做匀加速直线运动”;物块b 的加速度在整个过程中是没有改变的.(3)过程1和过程2的时间是相等的.[解析] (1)物块a 、b 静止在斜面上,由平衡条件有⎝⎛⎭⎪⎫m +35m g sin θ=kx 0,解得k =8mg sin θ5x 0. (2)设物块b 加速度的大小为a ,a 、b 分离时b 运动的位移为x 1,由运动学公式有x 1=12at 21,x 0=12a (2t 1)2, 分离瞬间,对物块a 进行受力分析,由牛顿第二定律有k (x 0-x 1)-mg sin θ=ma ,联立以上各式解得a =15g sin θ.(3)设外力为F ,经过时间t 弹簧的压缩量为x ,在物块a 、b 分离前,对物块a 、b 整体,由牛顿第二定律有F +kx -⎝ ⎛⎭⎪⎫m +35m g sin θ=⎝ ⎛⎭⎪⎫m +35m a , 由运动学公式有x 0-x =12at 2, 联立以上各式解得F =4mg 2sin 2θ25x 0t 2+8mg sin θ25. [答案] (1)8mg sin θ5x 0 (2)15g sin θ (3)4mg 2sin 2θ25x 0t 2+8mg sin θ25动力学中极值问题的处理方法“四种”典型的数学处理方法①三角函数法;②根据临界条件列不等式法;③利用二次函数的判别式法;④极限法.[针对训练]1.(2018·安徽六校二联)一弹簧一端固定在倾角为37°的光滑斜面的底端,另一端拴住质量m 1=4 kg 的物块P ,Q 为一重物,紧靠P 放置,已知Q 的质量m 2=8 kg ,弹簧的质量不计,劲度系数k =600 N/m ,系统处于静止状态,如图所示.现给Q 施加一个沿斜面向上的力F ,使它从静止开始沿斜面向上做匀加速运动,已知在前0.2 s 时间内,F 为变力,0.2 s 以后,F 为恒力.求此过程中力F 的最大值与最小值.(sin37°=0.6,g =10 m/s 2)[解析] 从受力角度看,两物块分离的条件是两物块间的正压力为0.从运动学角度看,一起运动的两物块恰好分离时,两物块在沿斜面方向上的加速度和速度仍相等.设刚开始时弹簧压缩量为x 0,则(m 1+m 2)g sin θ=kx 0①因为在前0.2 s 时间内,F 为变力,0.2 s 以后,F 为恒力,所以在0.2 s 时,P 对Q 的作用力为0,设此时弹簧压缩量为x 1,由牛顿第二定律知kx 1-m 1g sin θ=m 1a ②前0.2 s 时间内P 、Q 向上运动的距离为x 0-x 1=12at 2③ 联立①②③式解得a =3 m/s 2P 、Q 刚开始运动时拉力F 最小,此时有F min =(m 1+m 2)a =36 N当P 、Q 分离时拉力最大,此时有F max =m 2(a +g sin θ)=72 N.[答案] 72 N 36 N2.小车内固定一个倾角为37︒的光滑斜面,用一根平行于斜面的细线系住一个质量为2m kg =的小球,如图所示。
(1)当小车以加速度215/a m s =向右匀加速运动时,细线上的拉力为多大?(2)当小车的加速度2215/a m s =向右匀加速运动时,细线上的拉力为多大?(g 取210/)s s【解答】解:(1)当支持力为零时,小球受拉力和重力两个力作用,根据cot37mg ma ︒=得, 解得240cot37/3a g m s =︒=, 因为1a a <,知小球未离开斜面,受重力、支持力和拉力作用,受力如图所示,竖直方向上有:cos37sin37N T mg ︒+︒=,水平方向上有:1cos37sin37T N ma ︒-︒=,代入数据解得20T N =。
(2)2a a >,可知小球离开斜面,根据平行四边形定则知,拉力T 。
题型二 “相对滑动”临界问题【典例2】(多选)(2018·河北五校联盟)如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平拉力,则( )A .当F <2μmg 时,A 、B 都相对地面静止 B .当F =52μmg 时,A 的加速度为13μg C .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg[审题指导] (1)注意B 与地面有摩擦力.(2)逐渐增大拉力时,B 先与地面发生相对滑动,然后才是AB 发生相对滑动.[解析] A 、B 间的最大静摩擦力f A m =2μmg ,B 与地面间的最大静摩擦力f B m =32μmg .逐渐增大拉力F ,当F =32μmg 时,A 、B 间相对静止,B 与地面开始相对滑动,A 错误.当A 、B 间相对滑动时,由牛顿第二定律,对物块A 有F -2μmg =2ma ,对物块B 有2μmg -32μmg =ma ,联立两式得F =3μmg ,也就是当F ≥3μmg 时,物块A 、B 开始相对滑动,因此F =52μmg 时,A 、B 相对静止,整体应用牛顿第二定律可得此时的加速度为a A =F -32μmg 3m=13μg ,B 、C 正确.物块A 、B 间和物块B 与地面间都相对滑动时,B 的加速度为a B =2μmg -32μmgm=12μg ,此后无论F 为何值,只要A 、B 间相对滑动,B 的加速度就是12μg ,所以B 的加速度不会超过此值,D 正确.[答案] BCD叠加体系统临界问题的求解思路[针对训练]1. (2018·河南六市一联)如图所示,光滑水平面上放置着质量分别为m 、2m 的A 、B 两个物体,A 、B 间的最大静摩擦力为μmg ,现用水平拉力F 拉B ,使A 、B 以同一加速度运动,则拉力F 的最大值为( )A .μmgB .2μmgC .3μmgD .4μmg[解析] 当A 、B 之间恰好不发生相对滑动时力F 最大,此时A 物体所受的合外力为μmg ,由牛顿第二定律知a A =μmgm =μg ;对于A 、B 整体,加速度a =a A =μg ,由牛顿第二定律得F =3ma =3μmg .选项C 正确.[答案] C2.如图所示,质量为1 kg 的木块A 与质量为2 kg 的木块B 叠放在水平地面上,A 、B 间的最大静摩擦力为2 N ,B 与地面间的动摩擦因数为0.2.用水平力F 作用于B ,则A 、B 保持相对静止的条件是(g 取10 m/s 2)( )A .F ≤12 NB .F ≤10 NC .F ≤9 ND .F ≤6 N[解析] 当A 、B 间有最大静摩擦力(2 N)时,对A 由牛顿第二定律知,加速度为2 m/s 2,对A 、B 整体应用牛顿第二定律有:F -μ(m A +m B )g =(m A +m B )a ,解得F =12 N ,A 、B 保持相对静止的条件是F ≤12 N ,A 正确,B 、C 、D 错误. [答案] A题型三 极值问题2.如图所示,一质量0.4m kg =的小物块,以02/v m s =的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经2t s =的时间物块由A 点运动到B 点,A 、B 之间的距离10L m =。