《同底数幂的乘法》公开课ppt

合集下载

《同底数幂的乘法》公开课一等奖课件

《同底数幂的乘法》公开课一等奖课件

根据幂的定义和乘法运算的性质,我们可 以推导出同底数幂的乘法规则为 a^m*a^n=a^(m+n)。
同底数幂的乘法规则的公式表达
同底数幂的乘法公式 a^m*a^n=a^(m+n)。
公式中各符号的含义
a表示底数,m和n表示指数,*表示乘法运算,^表示乘方运算。
公式的适用范围
适用于底数相同、指数为正整数的幂的乘法运算。
心。
04
CATALOGUE
课程总结与展望
本节课的总结
重点内容回顾
回顾了同底数幂的乘法规 则的定义、性质和应用, 以及如何利用这些规则进 行计算。
课堂互动分析
对课堂互动环节进行了评 估,包括学生的参与度、 提问和回答的质量等。
教学效果评估
通过课堂练习和课后作业 的完成情况,对教学效果 进行了评估,并提出了改 进建议。
练习题目的选取与解析
01
02
03
04
基础练习
选取涉及同底数幂乘法基础知 识的题目,帮助学生巩固基本
概念。
综合运用
设计涉及多个知识点的题目, 培养学生综合运用知识的能力

难度分级
根据学生水平,提供不同难度 的题目,满足不同层次学生的
需求。
题目解析
教师详细解析每道题目,让学 生明确解题思路和方法,提高
同底数幂的乘法规则的应用实例
计算(2^3)*(2^4)
根据同底数幂的乘法规则,可以将其化简为2^(3+4)=2^7。
解释物理现象
在物理学中,同底数幂的乘法规则可以用来描述物理量之间的关系,比如速度与时间的关 系v=s/t和压强与压力的关系p=F/S。
解决实际问题
在解决实际问题时,同底数幂的乘法规则可以用来计算一些指数型的数据,比如人口增长 、放射性物质的衰变等。

《同底数幂的乘法》公开课一等奖课件

《同底数幂的乘法》公开课一等奖课件

学会了如何运用幂的性质进行 数学推理和计算。
增强了数学逻辑思维和问题解 决能力。
激发了学习数学的兴趣和热情 。
需要改进的地方
部分学生在计算过程中出现了 错误,需要加强练习和巩固。
部分学生在理解同底数幂的乘 法法则时存在困惑,需要改进 教学方法和手段。
需要增加更多的实际应用案例 ,帮助学生更好地理解同底数 幂的乘法法则。
《同底数幂的乘 法》公开课一等 奖课件
汇报人:可编辑 2023-12-22
目录
• 课程导入 • 同底数幂的乘法规则 • 课堂互动与实践 • 课程总结与反思 • 附录
01
课程导入
课程背景
幂运算在数学中的重要地位
幂运算作为数学中的基本运算之一,是学习和掌握其他数学概念和定理的基础 。
学生已有的知识储备
对于一些复杂的数学计算,同底数幂的乘法规则可以帮助我们简化计算过程,提高计算效 率。例如,当我们需要计算一系列同底数幂的乘积时,可以利用这个规则将多个幂相加, 从而减少计算的复杂度。
03
课堂互动与实践
课堂互动环节设计
01
02
03
小组讨论
将学生分成小组,讨论同 底数幂的乘法规则,并鼓 励他们分享自己的理解和 发现。
幂的性质
幂具有一些基本性质,如幂的乘 法、除法、指数的加法和减法等 。这些性质在数学中非常重要, 是解决复杂数学问底数幂的乘法规则
同底数幂相乘时,其指数相加。即, 如果a^m * a^n = a^(m+n)。这个 规则可以通过指数的乘法法则推导得 出。
推导过程
假设有两个同底数幂a^m和a^n,它 们的乘积可以表示为a^m * a^n = a^(m+n)。这是因为当两个相同的底 数相乘时,其指数相加。

浙教版七年级数学下册第三章3.1 同底数幂的乘法教学课件 (共15张PPT)

浙教版七年级数学下册第三章3.1 同底数幂的乘法教学课件 (共15张PPT)
(-2)3×(-2)2 = (-2)5 = (-2) 3+2
a5 ·a4 = a 9
= a 5+4
am ·an = am+n
= a m+n
归纳总结:
同底数幂乘法的运算性质
符号语言: a m·a n = am+n (m,n为正整数)
文字语言: 同底数幂相乘, 底数不变,指数相加。
思维深入
想一想,议一议
解: am ·an
= (a · a · … · a ) × (a · a · … · a ) (乘方的意义)
m个a
= a·a·…·a·a
共(m+n)个a
= a m+n
n个a
(乘法结合律) (乘方的意义)
交流与合作
请同学们观察下面各题左右两边,底数、指数
有什么关系?你发现了什么?与同学分享交流。
0.54 × 0.52 = 0.56 = 0.5 4+2
当三个或三个以上同底数幂相乘时,是 否也具有这一性质呢? 怎样用公式表示?
计算:am ·an ·a p ( m,n,p为正整数 )
am ·an ·a p ( m, n, p 为正整数 )
= (a · a · …· a) · (a · a · … · a) ·( a · a · … · a)
m个a
n个a
= 211 = a7 = (2x)6
= (x+y)9 = 4a2
扩展延伸
1.am+n 可以写成哪两个因数的积?
a m·a n = am+n → a m+n = a m ·a n
2.如果 xa =3, x b =2, 那么 x a+b =___6_

1.1同底数幂的乘法课件 (共20张PPT)

1.1同底数幂的乘法课件 (共20张PPT)

-x2
· (-x)3 =x5
m + m3 = m + m3
例2、计算:
(1)a a
m
2m
3 · 2 (2) (a-b) (a-b) a
am ·an = am+n (当m、n都是正整数) 底数可以是一个数、也可是一个字母或是一个多项式。
3 (b-a) 3 (a-b)
2 ·(a-b) = 2 ·(b-a) =
(4) b5 · b ( b6 )
练习二:下面的计算结果对不对?如果不对,怎 样改正? ×) 1、b5 ·b5= 2b5 (× ) 2、b5 + b5 = b10 ( b5 ·b5= b10 b5 + b5 = 2b5 3、(-7)6 · 73 = -79 (× ) 4、y5 +2 y5 =3y10 (× ) (-7)6 · 73 = 79 y5 + 2 y5 =3y5 5、-x2 · (-x)3 =-x5 (× ) 6、m + m3 = m4 (× )
(1) a ·a7- a4 ·a4 = 0
;ห้องสมุดไป่ตู้
(2)(1/10)5 ×(1/10)3 = (1/10)8
(3)(-2 x2 y3)2
4y6 4x =

; ;
(4)(-2 x2 )3 = -8x6
小结:
• 今天,我们学到了什么?
同底数幂的乘法: am · an = am+n
(m、n为正整数)
同底数幂相乘,底数不变,指数相加。
23 ×24
=
23+
4
= 27
a3× a5 = a3+5
= a8
猜想:
m a

3.1《同底数幂的乘法》课件(共24张ppt)

3.1《同底数幂的乘法》课件(共24张ppt)
解 2.566千万亿次=2.566×107×108次,24小时= 24×3.6×103秒. 由乘法的交换律和结合律,得 (2.566×107×108) × (24×3.6×103) =(2.566×24×3.6) ×(107×108×103) =221.7024×1018≈2.2×1020(次). 答:它一天约能运算2.2×1020次.
(3)64 6 641 65. (4)x3 x5 x35 x8 . (5)32 (- 3)5 32 (- 35) -32 35 -37. (6)(a b)2( a b)3 (a b)23 (a b)5 .
例2 我国“天河-1A”超级计算机的实测运算速度达到每 秒2.566千万亿次.如果按这个速度工作一整天,那么它 能运算多少次?
解 V 4 (7 104)3
3 4 73 1012
3 1.4101(5 km3).
答:木星的体积大约是1.4×1015km3.
1、 把下列各式表示成幂的形式:
(1)26 • 23 ;
2 解:原式= 63
29
(3)xm • xm1 ;
x 解:原式= m(m1)
例3 计算下列各式,结果用幂的形式表示.
(1)(107)3. (2)(a4)8. (3)(- 3)6 3.(4)(x3)4( x2)5.

(1) (107)3 1073 1021. (2) (a4)8 a48 a32 .
(3)(- 3)6 3 (- 3)63 (- 3)18 318.
(mn) 个a
am • an amn. (m,n都是正整数)
同底数幂相乘,底数不变,指数相加.
整理反思 z`````xx```k 知识

同底数幂的乘法课件(公开课)-PPT

同底数幂的乘法课件(公开课)-PPT

解: (1)原式= x2+5 = x7
(2)原式= a1+6 =
(3)原式= (2)143 ( 2 )8 28
(4)原式= xm3m1 x4m1
1.计算: (1)107 ×104 ; 解:(1)原式=107 + 4 = 1011
(2)x2 ·x5 .
(2)原式= x2+5 = x7
➢练习二
(当m、n都是正整数)
am·an·ap = am+n+p (m、n、p都是正整数)
1、计算: (1)23×24×25 (2)y ·y2 ·y3
解:(1)23×24×25=23+4+5=212 (2)y ·y2 ·y3 = y1+2+3=y6
➢思考题
2.计算: (x+y)3 ·(x+y)4 .
公式中的 a 可代表 一个数、字母、式 子等.
求几个相同因数的积的运算叫做乘方。
25表示什么? 10×10×10×10×10 可以写成什么形式?
25 = 2×2×2×2×2 . (乘方的意义) 10×10×10×10×10 = 105 (乘方的意义)
回顾 热身
(1)、(- 2)×(-2) ×(-2 )=(- 2)( 3 )
(2)、 a·a·a·a·a = a( 5 ) (3)、 x4= x·x·x·x
探索并推导同底数幂的乘法的性质
a ma na m n(m,n 都是正整数)表述了两个 同底数幂相乘的结果,那么,三个、四个…多个同底 数幂相乘,结果会怎样?
这一性质可以推广到多个同底数幂相乘的情况: a m a n a p a m n p (m,n,p都是正整数).
➢am ·an = am+n

同底数幂的乘法公开课课件

同底数幂的乘法公开课课件

23 =2(
6
)
(2) (am )n = a(
) (m、n为正整数)
KJ
合作探究

例题讲解
1.(2012· 漳州中考)计算a6· a2的结果是( ) (A)a12 (B)a8 (C)a4 (D)a3
首页
KJ
合作探究

2.若103· 10n=102 013,则n=______.
① (- 2)4×(- 2)5 = (-2)9
②( ③ )
3
×( )
2= (
)
5
2 (a+b)
5 ·(a+b)
= (a+b)7
同底数幂的乘法
am ·an = am+n
深入挖潜(2)----算一算
计算:(结果写成幂的形式)
23 + 23= 2 × 23 = 24
34 × 27= 34 × 33 =37 b2· b3+b · b4 = b5 + b5 =2b5
同底数幂的乘法
am ·an = am+n
深入拓展(1)----议一议
已知:am=2, an=3.
m+n 求a
= ?.
=2 × 3=6
解: am+n = am · an
同底数幂的乘法
am ·an = am+n
深入拓展(2)----议一议
根据乘方的意义及同底数幂的乘法填空:
(1)
(23 )2 =
23 ×
m个 a
n个a
(乘法结合律)
= aa…a
(m+n)个a
=am+n
(乘方的意义)
m n m+n a ·a = a 即:

1.1同底数幂的乘法课件

1.1同底数幂的乘法课件

2.填空:
(1)x·x2·x( 4 )=x7; (2)xm·( x2m)=x3m; (3)8×4=2x,则x=( 5 ).
随堂即练
23×22=25
3.计算下列各题:
随堂即练
A组
注意符号哟! B组
(1)(-9)2×93 =92×93=95
(2)(a-b)2·(a-b)3=(a-b)5
(3)-a4·(-a)2 =-a4·a2 =-a6
新课讲授
如果m,n都是正整数,那么am·an等于什么? 为什么? am·an =(a·a·…·a) ·(a·a·…·a) (乘方的意义)
( m 个a) ( n 个a)
=(a·a·…·a)
(乘法的结合律)
( m+n 个a) =a( m+n ) (乘方的意义)
归纳总结
同底数幂的乘法法则:
am ·an = am+n (m,n都是正整数).
正整数) a ·a6 ·a3 = a7 ·a3 =a10
当三个或三个以上同底数幂相乘时,是否也具有这一 性质呢?用字母表示 am ·an ·ap等于什么呢?
归纳:am·an·ap = am+n+p (m、n、p都是正整数)
新课讲授
例2 光在真空中的速度约为3×108m/s,太阳 光照射到地球上大约需要5×102m/s.地球距离 太阳大约有多远? 解:3×108×5×102
同底数幂相乘,底数不变,指数相加.
注意:条件:①乘法 结果:①底数不变
②底数相同
②指数相加
新课讲授
例1 计算: (1) (-3)7×(-3)6;
(3)-x3·x5;
(2)( 1 )3 1 ;
111 111
(4)b2m·b2m+1 .

《同底数幂的乘法》优质课件

《同底数幂的乘法》优质课件
不同底数幂乘法
与同底数幂乘法相比,不同底数幂乘法更为复杂。在这种情况下,底数 不同,需要使用指数运算法则和换底公式来进行计算。
在实际问题中的应用
经济增长模型
同底数幂乘法可以用于描述经济增长模型,如复利计算。 通过同底数幂乘法,可以方便地计算投资本金和利息的复 合增长。
科学计算
在科学研究中,同底数幂乘法常用于描述物理量之间的关 系,如距离、速度、加速度等。通过使用同底数幂乘法, 可以简化科学计算过程,提高计算效率。
04
总结与反思
课程内容的总结
幂的定义与性质回顾
课程首先回顾了幂的定义和性质,为 后续的乘法法则做了铺垫。
同底数幂的乘法法则讲解
详细讲解了同底数幂的乘法法则,并 通过实例进行解析,使学生更直观地 理解该法则的应用。
法则的特殊情况讨论
对于底数为0或1的特殊情况,进行 了深入的讨论和解释。
练习题与解答
对未来学习的建议与展望
深化学习内容
希望未来的课程可以进一步拓 展幂运算的其他法则和性质, 如幂的除法、指数的运算等。
加强实践环节
建议课程中增加更多练习题和 实践机会,以加深对知识点的 理解和应用。
与其他知识点的关联
希望课程能够进一步探讨幂运 算与其他数学知识点的联系和 应用,如代数、三角函数等。
多媒体与互动教学
建议未来可以引入更多的多媒 体元素和互动环节,提高学习
的趣味性和参与度。
THANKS
感谢观看
03
拓展与应用
与其他乘法法则的对比
01
普通乘法
普通乘法是同底数幂乘法的基础,它涉及到两个或多个数的相乘,结果
是一个新的数。在普通乘法中,乘数可以是任何实数或整数。
02 03

同底数幂的乘法ppt课件

同底数幂的乘法ppt课件
填空: (1)x5 ·(x3 )= x 8 (2)a ·(a5
)= a6
(3)x · x3(x3 )= x7 x3m
(4)xm ·x(2m
)=
15
Ø练习提高
1.计算:
(1) x n · xn+1
解: x n · xn+1 =xn+(n+1) = x2n+1
(2) (x+y)3 · (x+y)4
公式中的a可代表
运算形式 (同底、乘法) 运算方法(底不变、指数相加)
幂的底数必须相同, 相乘时指数才能相加.
如 43×45= 43+5 =48
8
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
1.1幂的乘法
例1:计算
发现;只有量的变化,才会有质 的进步.祝大家学有所得!
24
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
/10/29
④y · yn+2 · yn+4 = y2n+7
(5) (x+y)2·(x+y)5= (x+y) 7
(6) a2·a3-a3·a2 = 0
23
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
亲: 只有不断的思考,才会有新的
(2)y · y3 · y5 = y1+3+5=y9
11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变式训练 1. 53 56 59 3. (5)3 56 59 2. (5)3 (5)6 59 4.
53 (5)6 59
5. (5)3 (56 ) 59 6. (5)3 [(5)6 ] 59
习题三
y y 5, 填空: 1. y _______
(乘方的意义)
m n m+n a · a = a 即:
(当m、n都是正整数)
8.1同底数幂的乘法
同底数幂的乘法公式: m a m+n n ·a = a (m、n都是正整数)
同底数幂相乘,底数 不变,指数 相加。
习题一:
1.
7 7 85 13 7 7
8 5
2.
3 3 5 4 1 3 3
an 表示的意义是什么?其中a、n、an分
别叫做什么?
指数
底数
a
n
=a· a· · · · a
n个a
an = a × a × a ×… a
n个 a

23 × 24
(2 2 2) (2 2 2 2) 2
(4 4) (4 4 4)
7
32×
42× 猜想:
2
3
x 2. x _______ x 10 .
3
7
3. (x+y)3 ·(x+y)4 (x y )7
4.
23×24×25
212
5. y ·y2 · y3 ·y4 y 10
.
温馨提示:
同底数幂相乘时,指数是相加的;
底数为负数时,先用同底数幂的乘 法法则计算,•最后确定结果的正负; 不能疏忽指数为1的情况; 公式中的a可为一个有理数、单项式 或多项式(整体思想)
34
43
(3 3) (3 3 3 3) 36
4
5
am ·an=
? (当m、n都是正整数)
猜想:
am ·an= am+n (当m、n都是正整数)
(乘方的意义) am · an ( = aa…a) (aa…a)
m个 a
n个a
(乘法结合律)
= aa…a
(m+n)个a
=am+n
5 m 1 x 3m (2m 1) x
b
b8
习题二
下面的计算对不对?如果不对,怎样改正? (1)b5 ·b5= 2b5 (×) (2)b + b5 = b6 ( ×) b5 ·b5= b10 ( 3) x5 · y5 = (xy)10 ( ×) x5 ·y5 = x5 ·y5 b + b5 = b + b5 ( 4) y· y 5 = y5 ( × ) y ·y5 =y6
4
3
6 3.(5)4 (5)
(5)4 6 10 (5) 10 5
26
1 4. 2 3 4 1 2
1 2
7
பைடு நூலகம்
1 2
4
5. b 2 b 6
6.x 3m x 2m 1
相关文档
最新文档