19.1.1变量与函数(第3课时)
人教版八年级数学下册第19章19.1.1变量与常量(教案)
4.引导学生在探索变量与常量过程中,培养严谨的数学态度和逻辑推理的素养。
5.培养学生的团队协作意识,通过小组讨论、互动交流,提升合作探究的能力。
三、教学难点与重点
1.教学重点
-理解变量与常量的定义及表示方法,并能正确区分两者。
-掌握函数概念的基本内涵,了解变量之间关系的表示方式。
在新课讲授的案例分析部分,我选取了一个与学生生活密切相关的例子,这样做的目的是让学生们感受到数学知识在解决实际问题中的应用。通过这个案例,我看到了学生们开始尝试将数学概念与实际情境联系起来,这是一个很好的开始。
实践活动环节,学生们在分组讨论中表现出了很高的热情。他们通过讨论和实验操作,亲身体验了变量与常量的变化过程,这种亲自动手的方式似乎比单纯的讲授更能加深他们的理解。
在小组讨论环节,我发现有的小组在分析问题时还不够深入,可能是因为他们对变量的理解还不够透彻。我适时地介入,提出了几个引导性的问题,帮助学生进一步思考。看到他们在讨论中逐渐找到问题的解决办法,我感到很欣慰。
最后,我发现在总结回顾环节,有些学生仍然对自己的理解不够自信,可能需要在课后进行个别辅导,确保他们能够真正掌握变量与常量这一知识点。此外,我也会在课后反思自己的教学方法,探索更有效的教学策略,以提升学生们的数学核心素养。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了变量与常量的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对变量与常量的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
变量与函数说课课件
大千世界处在不停的运动变化之中 ,如何来研究这些 运动变化并寻找规律呢?
1.票房收入问题:每张电影票的售价为10元. (1)若一场售出150张电影票,则该场的票房收入 是 1500元; (2)若一场售出205张电影票,则该场的票房收入 是 2050 元; (3)若设一场售出x张电影票,票房收入为 y元,则 y= 10x 。 小结:票房收入随售出的电影票数变化而变化,对于变量x的每一 个确定的值,都有惟一确定的y的值与之相对应 2.行程问题:汽车以60千米/小时的速度匀速行驶,行驶里程为s 千米,行驶时间为t小时.请根据题意填表:
欢迎大家提出宝贵意见
三,教学重、难点:
重点: 函数概念的形成过程。
通过列举生活实例,逐步形成自变量与函数的概 念来突出重点点的关键是通过生活实例帮助学生 从一个变化过程、两个变量、一种对应关 系三个方面来认识和理解函数的概念,应 用函数知识解决简单的实际问题。
四、教学方法与教学手段:
t(时) 1 2 3 … 10 S(千米) 60
2、形成概念
120
180
600
小结:行驶路程随时间 的变化而变化,有关系式s= 60t ,对 于变量t的每一个确定的值,都有惟一确定的s的值与之相对应
( 3 )面积问题:用 10m 长的绳子围成长方形,试改变长方形
的长度,观察长方形的面积怎样变化。记录不同的长方形的长 度值,计算相应的长方形面积的值,探索它们的变化规律,设 长方形的长为xm,面积为Sm2,怎样用含x的式子表示S?
(二)过程与方法目标:
(1) 通过实践与探索,让学生参与变量
的发现和函数概念的形成过程,强化数 学的应用与建模意识。
(2) 引导学生体会函数思想,发展学生 的思维,提高分析问题和解决问题的能力。
北师大版初二数学上册19.1.1变量与函数
(2)在以上这个/k过程中,变化的是_______,
不变化的量是m______.
时间t
速度
(3)试用含t的式子表示s 是_______. s=60t
新课 讲解 2、每张电影票的售价为10元,如果第一场售出150张票,
第二场售出205张票,第三场售出310 张票, (1)第一场电影的票房收入 _1_5_0_0_元;人教版 八年源自 下册19.1.1 变量与函数
课件制作 乐东县千家中学 周克标
新课 引入
列式表示: (1)汽车以60 km/h的速度匀速行驶,行驶时间为t h, 用式子表示路程s ;
S=60t
(2)电影票的售价为10元/张,设一场电影售出张x票, 用式子表示票房收入y元.若第一场售出150张票,则其 票房收入为多少元?第二场售出205张,其票房收入为 多少元?
训练
1、若矩形的宽为xcm,面 积36 cm 2,则这个矩形的长y 随x的变化而变化,其中常量是__3_6_,变量是__x_,__y_. 2、分别指出下列各式中的常量与变量.
(1)圆的面积公式 S r2 ;
常量:π ;变量:S、r
(2)正方形的周长 l 4a ;
常量:4;变量:l、a (3)大米的单价为2.50元/千克,则购买的大米 的数量 x(kg)与金额y的关系为y=2.5x.
解:常量是6,变量是h和S.
新课
讲解 4、用10 m长的绳子围一个矩形.当矩形的一边长x分别
为3 m,3.5 m,4 m,4.5 m时,它的邻边长y分别为多 少?y的值随x的值的变化而变化吗?
当x为3m时,y为2m; 当x为3.5m时,y为1.5m; 当x为4m时,y为1m; 当x为4.5m时,y为0.5m; y的值随x的值得变化而变化。
人教版八年级数学下册说课课件-19.1.1 变量和函数(共16张PPT)
子表示 y ? y的值随x的值的变化而变化吗?
y = 10x
八年级 数学
第十九章 一次函数
19.1 变量与函数
19.1.1 变 量
活动二 问题(3) lián yī
你见过水中的涟漪吗?圆形水波慢慢地扩大,在这一过程 中,当圆的半径r 分别为10 cm,20 cm,30 cm 时,圆的面积S 分别为多少?S的值随r的值的变化而变化吗?
y= 5-x S = 60t y = 10x S= πr2
活动四:巩固练习
变量:月用水量x吨和月应交水费y元, 常量:自来水价4元/吨。
变量:通话时间t分钟和话费余额w元, 常量:通话费0.2元/分钟和存入话费30元。
变量:半径r和圆周长C 常量:圆周率π及计算公式中的数字2。
变量:第一个抽屉放书量x本和第二个抽屉放书量y本, 常量:书的总数10本。
当r=10cm时,S=400πcm2
当r=30cm时,S=900πcm2
圆面积S= πr2
题目中没有 特别要求时,
要保留π
S的值随r的值变化而变化吗?
八年级 数学
19.1 函数
第十九章 一次函数
19.1.1 变 量
活动二 问题(4)
用10 m 长的绳子围成一个长方形,当长方形的一边长x分
别为 3m,3.5m,4m,4.5m时,它的邻边长y分别为多少?y的值
随x
的值的变化而变化吗? 矩形的周长=(长+宽)×2
已知周长,如何去求长或宽呢?
矩形的宽=周长÷2-长
当x=3m时,y=2m 当x=3.5m时,y=1.5m
当x=4m时,y=1m
y= 5-x
活动二:创设情境-----新知探究
问题1:分别指出思考(1)~(4)的变化过程中所涉及的量, 在这些量中哪些量是发生了变化的?哪些量是始终不变的?
19.1.1-变量与函数-教案
19.1.1 变量与函数八年级科目:数学主备人:范德彪时间:年月日课时安排与说明:1课时一、教学设计1、教学目标(1)理解变量与常量、自变量与函数的含义,能指出具体问题中的常量、变量,并会用含一个变量的代数式表示另一个变量;(2)理解两个变量间的特殊对应关系,能指出由哪一个变量唯一确定另一变量,会判断两个变量是否具有函数关系,并会求自变量的取值范围;(3)通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣.引导学生探索实际问题中的数量关系,让学生体会“变化与对应”的数学思想,培养学生提高分析问题和解决问题的能力。
2、内容分析(1)函数是数学中最重要的基本概念之一,它刻画了现实世界中一类数量关系之间的“特殊对应关系”。
方程、不等式、函数是初中数学的核心概念,它们从不同的角度刻画一类数量关系。
本节课是函数入门课,要从数学的角度研究变化现象,把握变化规律,首先必须准确认识变量与常量的特征,关注变化过程中量的变化,这就是变量.有了变量的概念,便为研究成函数关系的两变量的“运动与对应”关系打下基础.本课从四个简单的实际问题入手,通过分析问题中数值的变与不变,引出变量与常量的概念,而且问题中变量的单值对应关系也为学习函数的定义作了铺垫.(2)基于以上分析,确定本节课的教学重点是能找出一个变化过程中的变量与常量,教学难点是能判断两个变量是否具有函数关系。
3、学情分析(1)学生的认知基础:变量是学生第一次接触,对一个运动变化过程中的两个变量的关系,学生往往只认为是一种确定的数量关系。
类似于一元一次方程,学生直知道代数式中的字母可以表示数,方程中的未知数求出来后也是一个“已知数”,从“静态”的角度理解字母所表示的数,并没有用运动与变化的观点去体会两个变量之间相互依赖的关系。
另外,学生在日常生活中也接触到函数图象、两个变量的关系等朴素的函数关系的生活实例.但是学生初次接触函数的概念,难以理解定义中“唯一确定”的准确含义.(2)学生是年龄心理特点:八年级学生具有很强的感性认知基础,活泼好动,思维敏捷,表现欲强,对一些具体的实践活动十分感兴趣,但思考问题单一,不会延伸运用。
人教版八年级下册数学课时练《19.1.1 变量与函数》(含答案)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!人教版八年级数学下册第十九章一次函数《19.1.1变量与函数》课时练一、选择题(共30分)1.(本题3分)下列关系式中,y 不是x 的函数的是()A .1y x =+B .22y x =C .y x =D .22y x =-2.(本题3分)设min (x ,y )表示x ,y 二个数中的最小值.例如min {0,2}=0,min {12,8}=8,则关于x 的函数y =min {3x ,-x +4}可以表示为()A .y =()3(1)41x x x x <ìí-+³îB .y =()4(1)31x x x x -+<ìí³îC .y =3xD .y =-x +43.(本题3分)如果一盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的解析式为().A .32y x =B .23y x =C .12y x=D .18=y x 4.(本题3分)从边长为4cm 的正方形中挖去一个半径是x cm 的圆面,剩下的面积是2y cm ,则y 与x 的函数关系是()A .216y x p =-B .()22y x p =-C .()24y x p =+D .216y x p =-+5.(本题3分)在函数y =12x x --中,自变量x 的取值范围是()A .x ≥1B .x ≠2C .x ≥2D .x ≥1且x ≠26.(本题3分)在函数1y x =-中,自变量x 的取值范围是()A .1³xB .1x ¹C .1x >D .1x ³-7.(本题3分)当实数x 的取值使得2x -有意义时,函数y =4x +1中y 的取值范围是()A .y ≥-7B .y ≥9C .y >9D .y ≤98.(本题3分)弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂的物体的重量x (kg )间有下面的关系:x (kg )012345y (cm )1010.51111.51212.5下列说法不正确的是()A .x 与y 都是变量,且x 是自变量,y 是因变量B .物体质量每增加1kg ,弹簧长度y 增加0.5cmC .所挂物体质量为7kg 时,弹簧长度为13.5cmD .y 与x 的关系表达式是0.5y x=9.(本题3分)从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前的速度随时间的增加而逐渐增大,这个问题中自变量是()A .物体B .速度C .时间D .空气10.(本题3分)根据如图所示的程序计算函数y 的值,若输入x 的值是8,则输出y 的值是﹣3,若输入x 的值是﹣8,则输出y 的值是()A .10B .14C .18D .22二、填空题(共15分)11.(本题3分)下列各项:①2y x =;②21y x =-;③22(0)y x x =³;④3(0)y xx =¹;具有函数关系(自变量为x )的是_____________.(填序号)12.(本题3分)周长为10cm 的等腰三角形,腰长y (cm )与底边长x (cm )之间的函数关系式是_____.13.(本题3分)在函数5x y x-=中,自变量x 的取值范围是______.14.(本题3分)若对于所有的实数x ,都有()()222x x f xf x -+=,则()2f =______.15.(本题3分)一个弹簧,不挂物体时长为10厘米,挂上物体后弹簧会变长,每挂上1千克物体,弹簧就会伸长1.5cm .如果挂上的物体的总质量为x 千克时,弹簧的长度为为ycm ,那么y 与x 的关系可表示为y =______.三、解答题(共75分)16.(本题7分)小明在劳动技术课中要制作一个周长为80cm 的等腰三角形.请你写出底边长y (cm )与腰长x (cm )的函数关系式,并求自变量x 的取值范围.17.(本题8分)为了增强居民的节水意识,某城区水价执行“阶梯式”计费,每月应缴水费y(元)与用水量x(t)之间的函数关系如图所示.若某用户去年5月缴水费18.05元,求该用户当月用水量.18.(本题8分)在等腰△ABC 中,底角为x (单位:度),顶角y (单位:度).(1)写出y 与x 的函数解析式;(2)求自变量x 的取值范围.19.(本题9分)如图,长方形ABCD 中,AB=4,BC=8.点P 在AB 上运动,设PB=x ,图中阴影部分的面积为y.(1)写出阴影部分的面积y 与x 之间的函数解析式和自变量x 的取值范围;(2)点P 在什么位置时,阴影部分的面积等于20?20.(本题10分)为了净化空气,美化校园环境,某学校计划在A ,B 两种树木中选择一种进行种植,已知A 种树木的单价是80元/棵,B 种树木的单价是72元/棵,且购买A 种树木有优惠,优惠方案是:购买超过20棵时,超出部分可以享受八折优惠.设学校准备购买树木x 棵(20x >),购买A 种树木和B 种树木花费的总金额分别为A y (元)和B y (元).(1)分别求出A y 、B y 与x 之间的函数关系式;(2)请你帮助该学校判断选择购买哪种树木更省钱.21.(本题10分)“五一”期间,小明和父母一起开车到距家200km 的景点旅游,出发前,汽车油箱内储油45L ,当行驶150km 时,发现油箱余油量为30L (假设行驶过程中汽车的耗油量是均匀的).(1)这个变化过程中哪个是自变量?哪个是因变量?(2)求该车平均每千米的耗油量,并写出行驶路程()x km 与剩余油量()Q L 的关系式;(3)当280x km =时,求剩余油量Q 的值.22.(本题11分)小亮想了解一根弹簧的长度是如何随所挂物体质量的变化而变化的,他把这根弹簧的上端固定,在其下端悬挂物体,下面是小亮测得的弹簧的长度y 与所挂物体质量x 的几组对应值.所挂物体质量/kg x 012345y303234363840弹簧长度/cm(1)上表所反映的变化过程中的两个变量,___________是自变量,___________是因变量;(请用文字语言描述)(2)请直接写出y与x的关系式;(3)当弹簧长度为100cm(在弹簧承受范围内)时,求所挂重物的质量.23.(本题12分)在一定弹性限度内,弹簧挂上物体后会伸长.现测得一弹簧长度y(cm)与所挂物体质量x(kg)有如下关系:(已知在弹性限度内该弹簧悬挂物体后的最大长度为21cm.)所挂物体质0123456量x/kg弹簧长度1212.51313.51414.515 y/cm(1)有下列说法:①x与y都是变量,且x是自变量,y是x的函数;②所挂物体质量为6kg时,弹簧伸长了3cm;③弹簧不挂重物时的长度为6cm;④物体质量每增加1kg,弹簧长度y增加0.5cm.上述说法中错误的是(填序号)(2)请写出弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式及自变量的取值范围.(3)预测当所挂物体质量为10kg时,弹簧长度是多少?(4)当弹簧长度为20cm时,求所挂物体的质量.参考答案1.B 2.A 3.A 4.D 5.D 6.A 7.B 8.D 9.C 10.C11.①②④12.y=-()15052x x +<<13.0x ¹14.015.10+1.5x16.802,2040y x x =-<<17.9吨18.(1)y=180-2x ;(2)由三角形内角和得0°<x <90°.19.(1)阴影部分的面积为:y=32-4x (0<x≤4);(2)PB=320.(1)()=6432020A y x x +>,()7220B y x x =>;(2)当2040x <<时,学校选择购买B 种树木更省钱;当40x =时,学校选择购买两种树木的花费一样;当40x >时,学校选择购买A 种树木更省钱.21.(1)(1)行驶路程x ,剩余油量Q ;(2)450.1Q x =-;(3)当280x =(千米)时,剩余油量Q 的值为17L22.(1)所挂物体质量,弹簧长度;(2)y =2x +30;(3)35kg 23.(1)③④;(2)y =0.5x +12(0≤x ≤18);(3)弹簧长度是17cm ;(4)所挂物体的质量为16kg .。
19.1.1 变量与函数(第3课时)课件 (新版)新人教版八年级上
请你按下面的问题进行思考: (1)在这个测量过程中,锅中油的温度w 是加热时 间t 的函数吗?
做一做
例2 小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
时间t/s 油温w/℃ 0 10 10 25 20 40 30 55
他测量出把油烧沸腾所需要的时间是160 s,这样就 可以确定该食用油的沸点温度.他是怎样计算的呢? 列表法、解析法
做一做
例2 小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
根据刚才问题的思考,你认为函数的自变量可以取 任意值吗? 在实际问题中,函数的自变量取值范围往往是有限 制的,在限制的范围内,函数才有实际意义;超出这个 范围,函数没有实际意义,我们把这种自变量可以取的 数值范围叫函数的自变量取值范围.
问题2 你能用含自变量的式子表示下列函数,并 说出自变量的取值范围吗? (1)等腰三角形的面积为12,底边长为 x,底边上 的高为 y,y 随着 x 的变化而变化;
时间t/s 油温w/℃ 0 10 10 25 20 40 30 55
请你按下面的问题进行思考: (2)能写出w 与t 的函数解析式吗?
做一做
例2 小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
2019版八年级数学下册 第十九章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案 (新版)新人教版
第十九章一次函数19.1函数19.1.1变量与函数【教学目标】知识与技能:1.掌握常量和变量、自变量和函数的基本概念.2.了解函数值的概念,能用解析式表示函数关系.会确定函数自变量的取值范围.过程与方法:结合实例,了解常量、变量的意义,体会“变化与对应”的思想.通过动手实践与探索,让学生参与变量发现的过程,以提高分析问题和解决问题的能力.情感态度与价值观:引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心.【重点难点】重点:了解常量与变量的含义.理解函数的有关概念,能用解析式表示函数关系.确定自变量的取值范围.难点:理解函数的有关概念,能用解析式表示函数关系.会确定自变量的取值范围.【教学过程】一、创设情境,导入新课:1.在学习与生活中,经常要研究一些数量关系,先看下面的问题.如图是某地一天内的气温变化图.看图回答:(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其他类似的数量关系呢?2.五一假期,李想和朋友从学校门口出发,骑自行车去沙河游玩,假设他们匀速行驶,每分钟骑200米,骑车的总路程为s米,骑车的时间为t分钟.填一填:问题:(1)在这个行程问题中,我们所研究的对象有几个量?(2)几个所研究的对象中,哪些是变化的量,哪些是固定不变的量?它们之间存在什么样的关系?这一节我们就来探究这一问题.二、探究归纳活动1:变量与常量1.出示问题,师生探究有如下几个变化过程,请找出各变化过程中的量,并填表:(教材P71四个问题)(师生活动:教师引导学生填表,并分析问题中出现的量,发现其中有些量的数值是变化的,分析问题中的量并分类,领会“变量”、“常量”的含义.发现在同一个变化过程中,始终保持不变的量为常量,而数值发生变化的量为变量.并根据发现自己试着下定义.)2.形成概念(1)(2)定义:在一个变化过程中,数值发生变化的量,称为变量,数值始终不变的量称为常量.活动2:函数的概念1.问题:在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?师生分析得出:上面的每个问题和实验中的两个变量互相联系.当其中一个变量取定一个值时,另一个变量就有唯一确定的值.2.思考:分组讨论教科书“思考”中的两个问题.注:使学生加深对各种表示函数关系的表达方式的印象.3.归纳:一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么,我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值.例如在问题1中,时间t是自变量,里程s是t的函数.t=1时,其函数值s为60,t=2时,其函数值s为120.同样,在心电图中,时间x是自变量,心脏电流y是x的函数;在人口数统计表中,年份x是自变量,人口数y 是x的函数.当x=1999时,函数值y=12.52.活动3:例题讲解【例1】读下面这段有关“龟兔赛跑”的寓言故事,并指出所涉及的量中,哪些是常量,哪些是变量.一次乌龟与兔子举行500 m赛跑,比赛开始不久,兔子就遥遥领先.当兔子以20 m/min的速度跑了10 min时,往回一看,乌龟远远地落在后面呢!兔子心想:“我就是睡一觉,你乌龟也追不上我,我为何不在此美美地睡上一觉呢?”可是,当骄傲的兔子正做着胜利者的美梦时,勤勉的乌龟却从它身边悄悄爬过,并以10 m/min的速度匀速爬向终点.40 min后,兔子梦醒了,而此时乌龟刚好到达终点.兔子悔之晚矣,等它再以30 m/min的速度跑向终点时,它比乌龟足足晚了10 min.分析:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.解:500 m、乌龟的速度10 m/min等在整个变化过程中是常量,兔子的速度是变量.总结:“常量”与“变量”:“常量”是数值始终不变的量,一般是用具体数表示的量;“变量”是数值发生变化的量,变量是可以变化的:(1)可以取不同的数值,(2)一般用字母表示.【例2】我们知道,海拔高度每上升1 km,温度下降6 ℃.某时刻,益阳地面温度为20 ℃,设高出地面x km 处的温度为y℃.(1)写出y与x之间的函数解析式.(2)已知益阳碧云峰高出地面约500 m,求这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过益阳上空,若机舱内仪表显示飞机外面的温度为-34 ℃,求飞机离地面的高度为多少千米?分析:(1)根据题意,按照等量关系:高出地面x km处的温度=地面温度-6 ℃×高出地面的距离;列出函数解析式.(2)把给出的自变量高出地面的距离0.5 km代入函数解析式求得.(3)把给出的函数值高出地面x km处的温度-34 ℃代入函数解析式求得x.解:(1)由题意得,y与x之间的函数解析式y=20-6x(x≥0).(2)由题意得x=0.5 km, y=20-6×0.5=17(℃)答:这时山顶的温度大约是17 ℃.(3)由题意得y=-34 ℃时,-34=20-6x,解得x=9 km.答:飞机离地面的高度为9 km.总结:求函数值的方法:就是将自变量x的值代入解析式,求代数式的值.【例3】函数y=自变量x的取值范围是()A.x≥1且x≠3B.x≥1C.x≠3D.x>1且x≠3分析:求自变量取值范围时,要考虑两个方面:一是被开方数非负;二是分式的分母不为零,通过建立不等式组解决问题.解:选A.根据题意可知:x-1≥0且x-3≠0,解得x≥1且x≠3.总结:确定自变量取值范围的方法(1)整式:其自变量的取值范围是全体实数.(2)分式:其自变量的取值范围是使得分母不为0的实数.(3)二次根式:其自变量的取值范围是使得被开方数为非负的实数.(4)实际问题:其自变量的取值必须使实际问题有意义.三、交流反思这节课我们学习了变量与常量、函数的概念,函数自变量的取值范围的确定方法.四、检测反馈1.在三角形面积公式S=ah,a=2 cm中,下列说法正确的是()A.S,a是变量,h是常量B.S,h是变量,是常量C.S,h是变量,a是常量D.S,h,a是变量,是常量2.函数y=+3中自变量x的取值范围是()A.x>1B.x≥1C.x≤1D.x≠13.下面每个选项中给出了某个变化过程中的两个变量x和y,其中y不是x的函数的选项是()A.y:正方形的面积,x:这个正方形的周长B.y:某班学生的身高,x:这个班学生的学号C.y:圆的面积,x:这个圆的直径D.y:一个正数的平方根,x:这个正数4.对于圆的面积公式S=πR2,下列说法中,正确的为()A.π是自变量B.R2是自变量C.R是自变量D.πR2是自变量5.函数y=中的自变量x的取值范围是()A.x≥0B.x≠-1C.x>0D.x≥0且x≠-16.根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为()A.B.C.D.7.一支演唱队第一排有20人,后面每排比前排多1人,则第n排的人数s与n的函数解析式为________.8.一个小球从静止开始在一个斜坡上向下滚动,通过仪器观察得到了小球滚动的距离s(m)与时间t(s)的数据如下表:(1)这一变化过程中的自变量是________.(2)写出用t表示s的关系是________.(3)求第6秒时,小球滚动的距离为________m.(4)小球滚动200 m用的时间为________.五、布置作业教科书第81页习题19.1第1,2,3,4,5题六、板书设计七、教学反思本节课学习了常量与变量,函数的概念及函数自变量的取值范围的确定,关于变量与常量概念:要通过实例引导学生分析运动变化过程中出现的数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,值得注意的是出现了一些数值会发生变化的量,有些是数值始终不变的量,总结得出并通过实例练习巩固.关于函数概念的教学,通过实例引导学生分析总结得出,并明确表示函数关系的方法通常有三种:①解析法.②列表法.③图象法.关于函数自变量的取值范围的教学,通过实例引导学生分析得出:求函数自变量取值范围的两个依据:(1)要使函数的解析式有意义.①函数的解析式是整式时,自变量可取全体实数;②函数的解析式分母中含有字母时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.(2)对于反映实际问题的函数关系,应使实际问题有意义.。
八年级数学下册第19章一次函数19.1变量与函数19.1.1变量与函数课件(新版)新人教版
例2 下列变量间的关系是函数关系的是
.
①长方形的长与面积;②圆的面积与半径;
③y=± x ;④S= 1 ah中的S与h.
2
解析 ①因为长方形的长、宽、面积都不确定,有三个变量,所以长方
形的长与面积不是函数关系.②因为圆的面积公式为S=πr2,当半径r取一
个确定的值时,面积S就唯一确定,所以圆的面积与半径是函数关系.③当
解析 (1)根据函数的定义可知,对于底面半径的每个值,都有一个确定 的体积的值按照一定的法则与之相对应,所以自变量是底面半径,因变 量是体积. (2)体积增加了(π×102-π×12)×3=297π cm3.
2.(2018湖北咸宁咸安模拟)若函数y=
x
2
2(
x
2),
则当函数值y=8时,自
答案 B 把h=2代入T=21-6h,得T=21-6×2=9.故选B.
5.在函数y=3x+4中,当x=1时,函数值为 为10.
,当x=
时,函数值
答案 7;2
解析 当x=1时,y=3x+4=3×1+4=7.当函数值为10时,3x+4=10,解得x=2.
知识点三 自变量的取值范围
6.(2018江苏宿迁中考)函数y= 1 中,自变量x的取值范围是( )
知识点一 常量与变量 1.(2017河北唐山乐亭期中)一辆汽车以50 km/h的速度行驶,行驶的路程 s(km)与行驶的时间t(h)之间的关系式为s=50t,其中变量是 ( ) A.速度与路程 B.速度与时间 C.路程与时间 D.三者均为变量
答案 C 在s=50t中路程随时间的变化而变化,所以行驶时间是自变 量,行驶路程是因变量,速度为50 km/h,是常量.故选C.
八年级下册数学第十九章练习册参考答案
八年级下册数学第十九章练习册参考答案八年级下册数学第十九章练习册参考答案19.1.1变量与函数第1课时答案【基础知识】1、2π、r;c2、1,8,0.3;n,l3、21000,200;x,y4、0.4;0.8;1.2;1.6;y=0.4x5、y=30/x;30;x,y6、(1)s=x(10-x),敞亮是10,变量是x,s(2)α+β=90°,常量是90°,变量是α,β(3)y=30-0.5t,常量是30,0.5,变量是y,t(4)w=(n-2)×180°,常量是2,180°,变量是w,n(5)s=y-10t,常量是y,10,变量是s,t【能力提升】8、(1)65、101(2)w=n²+1(3)常量是1,变量是n,w19.1.1变量与函数第2课时答案【基础知识】1、d2、b3、c4、x≥15、y=5n;n;y;n6、y=360-9x;x;40,且x为正整数7、y=x(30-x/2)8、q/πa²【能力提升】9、(1)x≠2(2)x≥0,且x≠1(3)x≤2(4)x取任意实数10、(1)q=1000-60;(2)0≤t≤50/3(3)当t=10时,q=400(m²)(4)当q=520时,1000-60t=520 ∴t=8(h)19.1.1变量与函数第3课时答案【基础知识】1、c2、d3、a4、d5、q=30-1/2t;0≤t≤60;406、-3/27、y=2x8、s=4(n-1)9、(1)y=12+0.5x(2)17cm【能力提升】10、y=4(5-x)=-4x+20(0【探索研究】11、y=1/2x²-10x+5019.1.2函数的图象第1课时答案【基础知识】1、b2、a3、b4、6;-125、-46、207、略8、(1)-4≤x≤4(2)x=-4,-2,4时,y的值分别为2,-2,0(3)当y=0时,x的值为-3,-1,4(4)当x=3/2时,y的值最大;当x=-2时,y的值最小(5)当-2≤x≤3/2时,y随x的增大而增大当-4≤x≤-2或3/2≤x≤4时,y随x的增大而减小9、(1)距离和时间(2)10千米;30千米(3)10时30分~11时;13时【能力提升】10、略19.1.2函数的图象第2课时答案【基础知识】1、b2、d3、c4、提示:注意画图象的三个步骤:①列表;②描点;③连线,图表略5、(1)6(2)39.5;36.8(3)第一天6~12时下降最快,第三天12~18时比较稳定6、(1)c(2)a(3)b【能力提升】7、(1)任意实数(2)y≤2(3)28、(1)共4段时间加速,即12~13时,15~16时,19~20时,2~2.5时(2)共有5段时间匀速,即13~15时,16~17时,30~22时,23~24时,2.5~3.5时;其速度分别为:50km/h,60km/h,80km/h,60km/h,45km/h(3)共有4段时间减速,即17~18时,22~23时,24~1时,3.5~4时(4)略【探索研究】9、略19.2.1正比例函数第1课时答案【基础知识】1、a2、c3、c4、-15、(1)y=2.5x,时正比例函数(2)y=18-x/2,不是正比例函数6、解:设y=kx(k≠0),∴3=1/2k,∴k=6,∴y=6x.7、解:∵k²-9=0,∴k=±3,又∵k≠3,∴k=-3,∴y=-6x,当x=-4时,y=24.【能力提升】8、解:由题意得y=1.6x,当x=50时,y=1.6×50=80.9、(1)y=-x-3(2)-6(3)-3 2/3【探索研究】10、解:设y=k1x(k1≠0),z=k2y(k2≠0),∴z=k1k2x,∵k1k2≠0.∴z与x成正比例19.2.1正比例函数第2课时答案【基础知识】1、b2、c3、c4、d5、d6、(1,2)7、>18、一条直线;09、0.2;增大9、x;减小;二、四10、(1)k=2或k=-2(2)k=2(3)k=-2(4)略(5)点a在y=5/2x上,点b在y=-3/2x上【能力提升】11、解:设y+1=kx(k≠0),∴k=2x-1.当点(a,-2)在函数图像上时,有2a-1=-2,∴a=-1/212、(1)30km/h(2)当t=1时,s=30.(3)当s=100时,t=10/3【探索研究】13、y=360x,时正比例函数学子斋 > 课后答案 > 八年级下册课后答案 > 人教版八年级下册数学配套练习册答案 >19.2.1正比例函数第3课时答案【基础知识】1、c2、a3、a4、b5、>-2;一、三;6【能力提升】9、y=2x+210、(1)100(2)甲(3)8【探索研究】11、(1)15、4/15(2)s=4/45t(0≤t≤45) 19.2.2一次函数第1课时答案【基础知识】1、d2、d3、c4、a5、(1)(2)(4)(6)6、y=600-10t;一次7、3/4;-38、减小9、y=5x-210、y=-x11、-312、k=213、-2;514、(1)(-4,5)(2)(2,2),(10,-2)【能力提升】15、y=2x-516、a=-1【探索研究】17、(1)s=-2x+12(2)019.2.2一次函数第2课时答案【基础知识】1、1、d2、a3、b4、d5、a6、b7、38、y=2x+59、三条直线互相平行10、v=3.5t;7.5m/s11、y=t-0.6;2.4;6.412、1【能力提升】13、(1)k=1;b=2(2)a=-2【探索研究】14、(1)2;6毫克(2)3毫克(3)y=3x(0≤x≤2);y=-x+2(0(4)4h19.2.2一次函数第3课时答案【基础知识】1、(1)2(2)y=2x+30(0(3)由2x+30>49,得x>9.5,即至少放入10个小球时水溢出2、(1)h=9d-20(2)24cm3、(1)y=9/5x(0≤x≤15),y=2.5x-10.5(x>15)(2)当x=21时,y=42(元)4、y=1/10x-2(x≥20)【能力提升】5、(1)y甲=300x,y乙=350(x-3)(2)当人数为20人时,选乙旅行社比较合算,当人数为21人时,两旅行社费用一样多6、(1)y=7/5x+14/5(x≥3)(2)当x=2.5时,y=7(元)(3)当x=13时,y=7/5×13+14/5=21(元)(4)x=20(km)【探索研究】7、(1)8;10;12(2)图象略(3)提示:根据一次函数列方程求解19.2.3一次函数与方程、不等式第1课时答案【基础知识】1、d2、c3、a4、c5、66、(-3/2,0);x=-3/27、8、x24x,即02时,一半植树棵数多2、解:设团队中由游客x人,购买方式a、b得消费全额为ya元,yb元,由题意有:ya=20×0.8x=16x,yb=5×20+0.7×20(x-5)=14x+30.当16x=14x+30,即x=15时,两种方式一样,当16x>14x+30,即x>15时,选择方式b合算;当16x600+0.04x,即020000时,b公司工资待遇高.4、解:(1)y甲=1500+x,y乙=2.5x(2)图像略(3)当x=800时,y甲=2300,y乙=2000.∴选择乙印刷厂比较合算;当y=3000时,x甲=1500,x乙=1200.∴甲印刷厂印制的宣传材料多【探索研究】5、(1)200元(2)800页(3)有图象知,当每月复印页数在1200页左右时,y甲>y乙,∴选乙复印社合算第十九章综合练习答案一、选择#formattableid_0# 二、8、(3,0)(0,1)9、x≥-1且x≠010、-1;;211、略(答案不唯一)12、y=-2x+1;y=-2x-113、a>014、9三、15、y=x-516、y=x+317、图像略(1)(1,0)(2)当x>1时,y118、y=-3x+919、(1)m=3(2)-1/2≤m≤320、(1)4/3km/min(2)7min(3)s=2t-2021、提示:(1)设a型x套,b型(80-x)套,则2090≤25x+28×(80-x)≤2096,即48≤x≤50,∴有三种方案,即a型48套,b型32套;a型49套,b型31套;a型50套,b型30套(2)设利润为w万元,则w=(30-25)x+(34-28)(80-x),即w=-x+480,∴当x越小时,w越大.∴当x=48时,w=-48+480=432,∴a型48套,b型32套(3)w=(34-28)(80-x)+(30-25+a)x=(a-1)x+480,∴当a>1时,w=50(a-1)+480;当0∴当a>1时,a型50套,b型30套;当0。
19.1.1变量与函数
小结:行驶路程随时间的变化而变化,关系 式 s= 60t,即s随 t 的变化而变化;
每张电影票的售价为10元,如果早场售出票150张, 日场售出205张,晚场售出310张,三场电影票的票房 收入各多少元?
早场票房收入 = 10×150 = 1500 (元) 日场票房收入 = 10×205 = 2050 (元) 晚场票房收入 = 10×310 = 3100 (元) 请说明道理:票房收入= 售价×售票张数 若设一场电影售出票x张,票房收入为y元,怎样
变量
V=
50 t
速度V千米/时 路程50千米
变量 常量
写出下列各问题中的关系式,并指出其中的常量与变量: (1)圆的周长C与半径r 的关系式;
解: C=2π r ( r 0 )
2、π是常量, r、C是变量
(2)火车以60千米/时的速度行驶,它驶过的路程S
(千米)和所用时间 t(时)的关系式;
t 0 解: S=60t (
用含x的式子表示y? y = 10x
小结:票房收入随售出的电影票数变化而 变化,即 y随 x 的变化而变化;
3.在一根弹簧的下端悬挂重物,改变并记录重 物的质量,观察并记录弹簧长度的变化,探索 它们的变化规律。如果弹簧原长10cm,每1kg 的重物使弹簧伸长0.5cm,怎样用含有重物质 量m的的式子表示受力后弹簧的长度l?
(2)在 l =0.5m+10中,
l 是 m 的函数, m 是自变量;
例 下列问题中的变量y是不是x的函数?
(1)在 y = 2x 中的y与x; 是
(2)在 y = x2 中的y与x; 是
(3)在 y 2= x 中的y与x; 不是
(4)在 y x 中的对yy总与于有xx唯的;一每确一是定个的值, (5)在 y x 中的值是y与与x的它x函对;数应。,不y才是
八年级数学下册 第19章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案
售出票数x
100
120
140
160
180
……
票房收入y
①找一名学生填表,让学生一起分析y与x是不是单值对应关系;
②描述y与x的单值对应关系.
【设计意图】通过模仿训练,尝试初步理解单值对应的含义.
3、圆形水波慢慢地扩大,在这一过程中,圆的半径r 厘米 ,圆的面积为S 平方厘米,圆周率(圆周长与直径之比)为π.
(4)思考问题4中,矩形的宽y为自变量,矩形的长x是y的函数是否正确
①强调辨别函数的关键是:是否有两个变量,并且变量是否是单值对应关系;
②补充说明:一般地,主动变化的量是自变量,随之变化的量是函数。
【设计意图】借此例,将自变量与函数互换,说明只要满足单值对应,就可以用函数来表示这种关系,灵活理解函数的定义。
【设计意图】通过这三道例题,使学生学会根据定义判断函数关系,经过反复训练,突破难点.
4、P是数轴上的一个动点,它到原点的距离记为 x,它的坐标记为 y,y 是 x 的函数吗?为什么?
【设计意图】通过这道题,说明点的坐标y与绝对值x不是单值对应关系,所以不是函数;但反过来,x却是y的函数,采用小组讨论的方式,升华对函数定义的理解.
练习1:指出下列变化过程中的变量和常量:
1、某市的自来水价为4元/吨,现要抽取若干户居民调查水费支出情况,记某户月用水量为 x 吨,月应交水费为 y 元;
2、某地手机通话费为0.2元/分,李明在手机话费卡中存入30元,记此后他的手机通话时间为t 分,话费卡中的余额为w 元;
3、水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径之比)为π;
19.1.1 变量与函数 课件(共16张PPT) 人教版初中数学八年级下册
当堂检测
指出下列问题中的变量和常量: (1)购买一些铅笔,单价为0.2元/支,记某同学购买铅笔 的数量为x支,应付的总价为y元;关系式为 y=0.2x 。 其中的变量是 x、y ,常量是 0.2 。
例3、根据销售记录,某型号的服装每天的售价x(元/件 )与当日的销售量y(件)的变化关系如下表:
每天的销售价 x(元/件) 200 190 180 170 160 150 140 …
每天的销售量 y(件) 80 90 100 110 120 130 140 …
(1)在这个变化过程中,有哪些变量?是哪一个量随 哪一个量的变化而变化?并指出其中的常量. 变量有:服装每天的售价x(元/件)和当日的销售量y(件), 当日的销售量y随服装每天的售价x的变化而变化.
t/h s/km
1 2345 60 120 180 240 300
在这个变化的过程中,行驶的 速度 60km/h 是固
定不变的,行驶的 路程s和时间t
是不断变化的.
路程s 着 时间t 的变化而变化.
试用含t的式子表示s 是__s_=6_0_t____
探究 (2)电影票售价为10元/张,第一场售出150张票,第二场售出205 张票,第三场售出310张票,三场电影的票房收入各多少元?设一场 电影售出x张票,票房收入y元. y的值随x的值的变化而变化吗?
x
a
图1
图2
瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数 y与层数x之间的关系式.
x1 2 3 …
x
y 1 1+2 1+2+3 … 1+2+3+ …+x
八年级数学下册19.1函数19.1.1变量与函数教案新版新人教版
19.1.1 变量与函数大家好!今天我要说课的内容是义务教育教科书人教版八年级下册第十九章《一次函数》第一节《变量与函数》。
下面我将从教材、教法、学法、教学程序四个方面来进行阐述。
一、说教材1、教材的地位及作用人教版八年级下册第十九章《一次函数》是《课程标准》中“数与代数”领域的重要内容。
函数是研究运动变化的重要数学模型,它来源于客观实际,又服务于客观实际。
而本节课是一次函数的启蒙课,在这里学生初步接触了变量的概念,它是函数学习的入门,也为以后学习一次函数、二次函数、反比例函数的内容打下基础。
本节课内容不但对培养学生比较、分析、概括的思维能力有作用,而且对培养学生运动变化等辨证唯物主义观点和形成良好的个性品质也有一定的帮助。
2、根据课程标准的要求和基于对教材的理解与分析,考虑到学生已有的知识水平和认知经验,我制定了如下的教学目标。
知识和能力:(1)掌握常量、变量的概念,体验在一个过程中常量与变量是相对存在的;(2)会在较复杂问题中辨别常量与变量。
过程和方法:通过实践与探索,让学生参与变量的发现过程,强化数学的应用意识,学会将实际问题抽象成数学问题。
情感态度价值观:通过学生列举身边的事例,激发学生探究问题的兴趣,体会数学应用价值,在探索活动中获得成功的体验。
为达成以上的教学目标,结合学生实际情况,确定本节课的教学重点为,常量和变量的概念;要突破的教学难点是:较复杂问题中常量与变量的识别。
二、说教法现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点,根据这一教学理论,结合本节课的内容特点和八年级学生的认知特征,本节课我采用自主学习、合作探究、引领提升的方式展开教学,从实例出发,通过创设情境,引导学生自主探究、思考、归纳、应用,激发学生的好奇心,调动学生的求知欲。
在新知识学习中,给学生提供足够的思考时间和空间,教师始终以引导者的形象出现并在恰当的时候给予点拨、归纳。
19.1.1变量与函数3
第十九章一次函数第三课时函数的图像(1)学习目标1.掌握用描点法画出一些简单函数的图象;2.理解解析法和图象法表示函数关系的相互转换.重点难点1.结合实际问题,经历探索用图象表示函数的过程;2.通过学生自己动手,体会用描点法画函数的图象的步骤.教学过程一、复习引入问题1 在前面,我们曾经从如图所示的气温曲线上获得许多信息,回答了一些问题.现在让我们来回顾一下.你是如何从图上找到各个时刻的气温的?二、探究学习、初步认知1.正方形边长为x,面积为S.(1)S关于x的函数式: ____________,x的取值范围_______。
(2)由函数式填写下表:x 0 0.5 1 1.5 2 2.5 3 3.5 4S(3)在下边的格子上建立适当的直角坐标系(4)把上表格中各对数值所对应的点描在直角坐标系中(5)用平滑的曲线连接这些点,便得到函数的图象。
三、巩固练习、深化理解例1 画出函数y =x +1的图象. 列表:x y描点,连线:例2 画出函数221x y 的图象. 解 列表:x y描点,连线:四、变式提高、有所领悟1.在所给的直角坐标系中画出函数x y 21=的图象(先填写下表,再描点、连线).2.画出函数xy 6-=的图象(先填写下表,再描点、然后用光滑曲线顺次连结各点).(题1) (题2) 五、课堂小结 总结:由函数解析式画函数图象,一般按下列步骤进行: 1.列表:列表给出自变量与函数的一些对应值;2.描点:以表中对应值为坐标,在坐标平面内描出相应的点;3.连线:按照自变量由小到大的顺序,把所描各点用光滑的曲线连结起来.描出的点越多,图象越精确.有时不能把所有的点都描出,就用光滑的曲线连结画出的点,从而得到函数的近似的图象.六、课后作业1.(1)画出函数y=2x-1的图象(在-2与2之间,每隔0.5取一个x值,列表;并在直角坐标系中描点画图).(2)判断下列各有序实数对是不是函数y=2x-1的自变量x与函数y的一对对应值,如果是,检验一下具有相应坐标的点是否在你所画的函数图象上:(-2.5,-4),(0.25,-0.5),(1,3),(2.5,4).2.画出下列函数的图像(1)y=2x-1第一步:列表yx第二步:描点第三步:连线题2 题3a) 由y=2x-1图像可以看出,直线从左向右(填“上升”或“下降”),即当x由小变大时,y=2x-1随之;b) 判断点A(-2.5,-4),B(1,3),C(2.5,4)是否在函数y=2x-1的图像上。
洛阳市第九中学八年级数学下册 第十九章 一次函数19.1 函数19.1.1 变量与函数教案 新人教版
19.1 函数变量与函数【知识与技能】运用丰富的实例,使学生了解常量与变量的含义,理解函数的概念,能根据所给条件写出简单的函数关系式.【过程与方法】通过丰富的实例,分析变化过程中的常量与变量,经历从实际问题中得到函数关系式的过程,发展学生的数学应用能力.【情感态度】引导学生探索实际问题中的数量关系,培养学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心.【教学重点】理解常量、变量和函数的概念,并能根据具体问题得出相应的函数关系式.【教学难点】确定函数关系式及自变量的取值范围.一、情境导入,初步认识【教学说明】选取学生熟悉的生活情境,让学生感受其中的变化,从这些感受中逐渐领悟知识.情境1 汽车以60km/h的速度匀速行驶,行驶里程为s km,行驶时间为t h.填写下列表格,再试着用含t的式子表示s.情境2 已知每张电影票的售价为10元,如果早场售出150张,午场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收入y元,怎样用含x的式子表示y?情境3 要画一个面积为10cm2的圆,圆的半径应取多少?画面积为20cm2的圆呢?怎样用含圆面积S的式子表示圆半径r?二、思考探究,获取新知问题1 在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,填入下表:如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量m(kg)的式子表示受力后的弹簧长度l(cm)?问题2 用10cm长的绳子围成长方形.试改变长方形的长度,观察长方形的面积怎样变化.记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律(用表格表示).设长方形的长为xcm,面积为Scm2,怎样用含x的式子表示S?将学生分成若干小组,分别探究两个问题,再汇总交流.【教学说明】在小组实践探究时,教师应参与小组活动,然后再作出总结.上面的问题和探究都反映了不同事物的变化过程,其中有些量(时间t,里程s;出售票数x,票房收入y;……)的值是按照某种规律变化的.在一个变化过程中,数值发生变化的量,我们称为变量.也有些量是始终不变的,如上面问题中的速度60(km/h),票价10(元)等,即为常量.一般来说,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值.提出自变量取值范围的概念,总结求自变量取值范围的规律:(1)自变量以整式形式出现,取值范围是全体实数.(2)自变量以分式形式出现,取值范围是使分母不为0的数.(3)自变量以偶次方根形式出现,取值范围为使被开方数为非负数的实数;自变量以立方根形式出现,取值为全体实数.(4)自变量以零次幂形式出现,取值范围为使底数不为0的数.(5)自变量取值范围还应考虑实际意义.三、典例精析,掌握新知例1 根据下列题意写出适当的关系式,并指出其中的变量和常量.(1)多边形的内角和W 与边数n 的关系.(2)甲、乙两地相距y km,一自行车以10km/h 的速度从甲地驶向乙地,试用行驶时间t(h)表示自行车离乙地的距离 s(km).【分析】弄清题意,找准其中的等量关系,并注意字母表示的量不一定是变量,如(2)中的y. 解:根据题意列表为:例2 求下列函数中自变量的取值范围.(1)y=x 2-2x-1; (2)24y x =-; (3)24y x =- (4)3y x =+; (5)1362y x x =--; (6)y=(x-1)0. 【教学说明】观察含自变量的式子,进行归类,再依各自特征求范围.【答案】(1)一切实数; (2)x≠4; (3)x≥2; (4)x>-3; (5)1≤x≤3; (6)x≠1.【归纳总结】含自变量的式子有时包含多种特征(如有分母,有被开方数等),这时要综合考虑各种要求,准确界定范围.例3 小强在劳动技术课中要制作一个周长为80cm 的等腰三角形,请你写出底边长y(cm)与一腰长x(cm)的函数关系式,并求出自变量x 的取值范围.【分析】(1)周长等于三边的长度和,由此求得函数关系式;(2)自变量x 要使腰、底为正数,即x>0,y>0.同时还要满足任意两边的和大于第三边,得到不等式组求解.解:由题意,得2x+y=80,所以y=80-2x.由解析式本身有意义,得x 为全体实数.又由使实际问题有意义,则要考虑到边长为正数,且要满足三边关系定理,故有0,0,2.x y x y >⎧⎪>⎨⎪>⎩.即0,2800,2280.x x x x >-⎧+>>-+⎪⎨⎪⎩解得20<x<40.故y=80-2x(20<x<40).四、运用新知,深化理解1.分别指出下列关系式中的变量与常量:(1)一个物体从高处自由落下,该物体下落的距离h(m)与它下落的时间t(s)的关系式为212h gt (其中g≈9.8m/s 2); (2)等腰三角形的顶角y 与底角x 存在关系y=180°-2x ;(3)长方体的体积V(cm 3)与长a (cm ),宽b(cm),高h(cm)之间的关系式为V=abh.2.人心跳速度通常和人的年龄有关,如果a 表示一个人的年龄,b 表示正常情况下每分钟心跳的最高次数.经过大量试验,有如下的关系:b=0.8(220-a).(1)上述关系中的常量和变量各是什么?(2)一个15岁的学生正常情况下每分钟心跳的最高次数是多少?3.(1)齿轮每分钟转120转,如果用n 表示总转数,t(分)表示时间,那么n 关于t 的函数关系式是_____________.(2)火车离开A 站10km 后,以55km/h 的平均速度前进了t(h)小时,那么火车离开A 站的距离s(km)与时间t(h)之间的函数关系式是_____________________.4.某水果店卖苹果,其售出质量x(kg)与售价y(元)之间的关系如表:(1)试写出售价y(元)与售出质量x(kg)之间的函数关系式;(2)计算当x=6时,y 的值;(3)求售价为19.4元时,售出苹果的质量.【教学说明】用字母表示的量不一定是变量,如π、g 等表示的是常量,要从变与不变的实质出发来分辨变量和常量.【答案】1.(1)时间t 可以取不同值,随t 的变化,h 值也改变,因此时间t 、距离h 是变量,12、g 的值始终不变,是常量.(2)底角x 可以取不同值,y 随x 的改变而改变,因此x 、y 是变量,而180°与2是常量.(3)长a ,宽b ,高h 都可以取不同的值,V 的对应值也是变化的,故a 、b 、h 、V 都是变量.2.(1)变量是b 、a ,常量是0.8、220.(2)把a=15代入b=0.8(220-a),得b=0.8×(220-15)=164.3.(1)n=120t;(2)s=10+55t.4.(1)根据信息:售出质量每增加1千克,售价则增加2.4元,售价中另一部分0.2元不变,可求出y与x之间的函数关系式.(2)把x=6代入函数关系式可求出y值;(3)实际上是求当y=19.4时,它所对应的x的值.解:(1)从表中提供的信息看,质量每增加1千克,售价增加2.4元,所以y=2.4x+0.2.(2)当x=6时,y=2.4×6+0.2=14.6.五、师生互动,课堂小结由学生谈本节课的收获及仍存在的疑问等.教师根据学生的发言,予以点评总结.1.布置作业:从教材“习题19.1”中选取.2.完成练习册中本课时练习.本课时内容是学生的认识,由常量到变量的一个飞跃,教学时应根据学生的认知基础,创设丰富的现实情境,使学生感知变量存在的意义,体会变量间的相互依存关系和变化规律,掌握函数的知识.教学重在引导学生探究新知,在观察、分析后归纳、概括,注重学生的过程经历和体验,让学生领悟到现实生活中存在着多姿多彩的数学问题,提高研究与应用能力.《分式》说课稿尊敬的各位评委老师:大家好!我是____号考生,今天我说课的内容是《分式》。
19.1.1【教学设计】《变量与函数》(人教版)
《19.1.1变量与函数》
本课是函数的起始课,函数是刻画运动变化现象的重要数学模型,要从数学的角度研究变化现象,把握变化规律,首先要关注变化过程中量的变化,这就是变量,本课在充分体会运动变化过程中数量变化的基础上,领会变量与常量的含义.进一步研究运动变化过程中变量之间的对应关系,在观察具体问题中变量之间对应关系的基础上,抽象出函数的概念.进一步讨论函数的自变量取值范围,用解析法和列表法表示函数关系,初步体会用函数描述和分析运动变化规律.
1.了解变量与常量的意义;
2.体会运动变化过程中的数量变化.
3.进一步体会运动变化过程中的数量变化;
4.从典型实例中抽象概括出函数的概念,了解函数的概念.
5.了解解析法和列表法,并能用这两种方法表示简单实际问题中的函数关系;
6.能确定简单实际问题中函数的自变量取值范围;
7.会初步分析简单实际问题中函数关系,讨论变量的变化情况.
1.了解变量与常量的意义,充分体会运动变化过程中量的变化.
2.概括并理解函数概念中的对应关系.
3.用解析法和列表法表示函数关系,确定简单实际问题的自变量取值范围.
多媒体:PPT课件、电子白板
第一课时
一、初步感知统领全章:
1.观察图片,体会变化:
【活动导语】“万物皆变”——行星在宇宙中的位置随时间而变化,气温随海拔而变化,。
人教版数学八年级下册19.1.1《变量与函数》说课稿
人教版数学八年级下册19.1.1《变量与函数》说课稿一. 教材分析《变量与函数》是人教版数学八年级下册第19.1.1节的内容,属于初中数学的函数单元。
本节内容主要介绍了变量的概念,函数的定义及其表示方法,旨在让学生理解变量之间的关系,掌握函数的基本概念和表示方法。
二. 学情分析学生在学习本节内容前,已经学习了代数基础知识,对代数表达式有一定的理解,但对于变量的概念和函数的定义可能还比较陌生。
因此,在教学过程中需要引导学生理解变量之间的关系,逐步引入函数的概念,并通过实例让学生掌握函数的表示方法。
三. 说教学目标1.知识与技能目标:让学生理解变量之间的关系,掌握函数的定义及其表示方法,能够识别和表示简单的函数关系。
2.过程与方法目标:通过观察、分析实例,培养学生的抽象思维能力,提高学生分析问题和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的探究精神和合作意识。
四. 说教学重难点1.教学重点:函数的定义及其表示方法。
2.教学难点:理解变量之间的关系,掌握函数的表示方法。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作学习法等,引导学生主动探究,积极参与课堂活动。
2.教学手段:利用多媒体课件、教学卡片、黑板等辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过展示实际生活中的实例,引导学生观察和分析变量之间的关系,引出函数的概念。
2.探究新知:让学生通过小组合作,探讨函数的定义及其表示方法,教师进行引导和讲解。
3.巩固新知:通过练习题让学生巩固函数的概念和表示方法,教师进行点评和指导。
4.应用拓展:让学生运用函数的知识解决实际问题,提高学生解决问题的能力。
5.课堂小结:对本节课的内容进行总结,强调函数的概念和表示方法。
七. 说板书设计板书设计要清晰、简洁,能够突出函数的概念和表示方法。
主要包括以下几个部分:1.变量与函数的定义2.函数的表示方法3.函数的性质八. 说教学评价教学评价主要包括学生的学习效果评价和教师的教学评价两个方面。
人教版变量与函数免费课件
展
1.阅读课本71页.找出下面问题中的常量和变量: (1)汽油的价格是7.4元/升,加油 x L,车主加油付油费 y 元. (2)小明看一本200 页的小说,看完这本小说需要t 天,平均每天所看的页数 为 n页. (3)用长为40 cm 的绳子围矩形,围成的矩形一边长为 x cm,其面积为 S cm2 . (4)圆形水波慢慢地扩大,在这一过程中,当圆的半径r,圆的面积S cm2 .
•
2.该 类 题 目 考 察学 生对文 本的理 解,在 一定程 度上是 在考察 学生对 这类题 型答题 思路。 因此一 定要将 这些答 题技巧 熟记于 心,才 能自如 运用。
•
3. 结 合 实 际 , 结合 原文, 根据知 识库存 ,发散 思维, 大胆想 象。由 文章内 容延伸 到现实 生活, 对现实 生活中 相关现 象进行 解释。 对人类 关注的 环境问 题等提 出解决 的方法 ,这种 题考查 的是学 生的综 合能力 ,考查 的是学 生对生 活的关 注情况 。
感谢观看,欢迎指导!
•
6.另 外 , 木 质 材料 受温度 、湿度 的影响 比较大 ,榫卯 同质同 构的链 接方式 使得连 接的两 端共同 收缩或 舒张, 整体结 构更加 牢固。 而铁钉 等金属 构件与 木质材 料在同 样的热 力感应 下,因 膨胀系 数的不 同,从 而在连 接处引 起松动 ,影响 整体的 使用寿 命。
•
4.做 好 这 类 题 首先 要让学 生对所 给材料 有准确 的把握 ,然后 充分调 动已有 的知识 和经验 再迁移 到文段 中来。 开放性 试题, 虽然没 有规定 唯一的 答案, 可以各 抒已见 ,但在 答题时 要就材 料内容 来回答 问题。
•
5.木 质 材 料 由 纵向 纤维构 成,只 在纵向 上具备 强度和 韧性, 横向容 易折断 。榫卯 通过变 换其受 力方式 ,使受 力点作 用于纵 向,避 弱就强 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们把 做这个函数当x=1时的函数值
2
怎样求函数值? 把自变量的值代入计算即可
例5、已知函数 y= 2x ,4 求
5
(1)当x = 1时,函数y的值。
(2)当y = 3时,自变量x的值。
解:(1)把x = 1代入函数式,得
y 21 4 = 6
5
5
(2)把y=3代入函数式,得
3 2x 4 5
函数y =
5 1x 2
中自变量x的取值范围是 x≤1。0
例2、求下列函数的自变量x的取值范围。
1
y
x1 x2 1
2 y x 2 5 x
(3) y 1 x x 1
解(1) x2 1 0 ∴x可以取全体实数
(2) x+2≥0 5-x≥0
(3) 1-x≥0 x+1≠0
2.对于反映实际问题的函数关系,要使实际问题有 意义
例4.在问题3中,当MA=1 cm时,重叠部
分的面积是多少?
解:设重叠部分面积为y cm2,
MA长为x cm,y与x之间的
xy x
函数关系式为
y
1
x2
当x=1时, y 1 12 1
2
2
∴MA=1cm时,重叠部分的面积是1 cm2
1
2
解: y是x的函数,其关系式为: y 50 x
(3)一个铜球在0 ℃的体积为1000cm3,加热后温度每增加
1℃,体积增加0.051cm3,t ℃时球的体积为 V cm3 。
解: v是 t 的函数,其关系式为: v = 0.051t+1000
填写如图所示的加法表,然后把所有填 有10的格子涂黑,看看你能发现什么? 解 如图,能发现涂黑的格子成一条直线.
解:电费y与用电量x的函数式为:y = 0.8(x-100)+57 (x≥100)
(2)若小明家8月份用了125度电,则应缴电费少?
解:当x=125时,y = 0.8×(125-100)+57= 77
∴应缴电费77元。 (3)若小华家七月份缴电费45.6元,则该月用电多少度? 解:∵缴电费小于57元
怎样求自变量的取值范围
1.整式: 取全体实数 2.分式: 取使分母不为0的值 3.二次根式: 取使“被开方数≥0”的值 4.三次根式: 取全体实数 5.对于混合式:取使每一个式子有意义的值
知识拓展
例3、小明用30元钱去购买每件价格为5元的某种 商品,求他剩余的钱y(元)与购买这种商品的件 数x之间的函数关系式,并写出自变量的取值范围
例1 求下列函数中自变量x的取值范围:
(1) y=3x-1 (2) y=2x2+7
(3) y = 1 (4) y=
x2
x2
(5) y 3 x 5
解:(1)任意实数
(2)任意实数
(3) x≠-2
(4) x≥2
(5)任意实数
怎样求自变量的取值范围
1.整式: 取全体实数 2.分式: 取使分母不为0的值 3.二次根式: 取使“被开方数≥0”的值 4.三次根式: 取全体实数
xY x
y 1 x2 2
(0 x 10)
2.在上面问题(1)中,当涂黑的格子横向 的加数为3时,纵向的加数是多少?当纵向 的加数为6时,横向的加数是多少?
这些涂黑的格子横向的 加数用x表示,纵向的 加数用y 表示,y 与x 的函数关系式是:
函数关系式:
y=10-x
当x=3时,y=7 我们把7叫做这个函 数当x=3时的函数值
∴-2≤x≤5 ∴x≤1且x≠-1
(3) y 1 x x 1
解 1-x≥0 x+1≠0
∴x≤1且x≠-1
(5)y 1 x x 1
解
1-x≥0 X+1>
∴-01<x≤1
(4) y 1 x x 1
解 X+1> ∴x的0 取值范围是x>-1
(6) y 1 x x 1
解 x+1≠0 ∴x的取值范围是x≠-1
求出下列函数中自变量的取值范围
(1)y=2x
解: 自变量x的取值范围:x为任何实数
(2) m n 1
解: 由n-1≥0得n≥1∴自变量n的取值范围n≥1
(3)y 3 x2
解:由x+2≠0得x≠-2∴自变量x的取值范围x≠-2
函数y =
x2 3x 1
中自变量x的取值范围是
x
1 3。
解: 依题意得 y=30-5x
x 0 30 5x
0
∴x的取值范围是 0≤x≤6 且x是自然数
对于反映实际问题的函数关系,自变量的取 值应使实际问题有意义
某中学校办工厂现在年产值是15万元,计 划今后每年再增加2万元,年产值y(万元) 与年数x的函数关系式是y=2x+1其中自变量 取值范围是 X≥1且为正5 整数
(2)指出自变量x的取值范围
解:由x≥0及50-0.1x≥0得 0≤x≤500
∴自变量的取值范围是: 0≤x≤500
(3)汽车行驶200公里时,油箱中还有多少油?
解:当x=200时,函数y的值为:y=50-
=30
0.1×因2此00,当汽车行驶200公里时,油箱中还有油30升
节约资源是当前最热门的话题,我市居民每月用电不超过 100度时,按0.57元/度计算;超过100度电时,其中不超 过100度部分按0.57元/度计算,超过部分按0.8元/度计 (算1.)如果小聪家每月用电x(x≥100)度,请写出电费 y与用电量x的函数关系式
复习练习
下面各题中分别有几个变量?你能将其中某个变量看成是 另一个变量的函数吗?为什么?如果能,请写出它们的关 系式。
(1)每一个同学购一本代数书,书的单价为2元,则 x 个同学共 付 y 元。
解:y是x的函数.其关系式为: y=2x
(2)计划购买50元的乒乓球,则所购的总数y(个)与单价x (元)的关系。
y 1 x2 2
xY x
1.在上面所出现的各个函数中,自变量的取 探值索有1 限制吗?如果有,写出它的取值范围。
y 10 x
(x取1到9的 自然数)
y 180 2x
y
(0 x 90)
x
在用解析式表示函数 时,自变量的取值往 往有一定的范围,这 个范围叫做自变量的 取值范围.
交点O的一条动直线从直线AC延顺时针方向绕点O向
直线BD位置旋转(不与直线AC、BD重合)交边AB
、CD于点E、F,设AE=xcm,直线 在正方形
ABCD中扫过的面积为ycm2,正方形边长为AC=
2cm。
(1)写出y与x的函数关系式及自变量x的取值范围.
(解2)若(1B)Ey==1x.7(50cm<,x求<y2的)值。
如果把这些涂黑的格 子横向的加数用x表示, 纵向的加数用y 表示, 试写出y与x 的函数关 系式.
函数关系式:
y=10-x
试写出等腰三角形中顶角的度数y与底角的度数x
之间的函数关系式.
y
y 180 2 x
x
如 图 , 等 腰 直 角 △ ABC 的 直 角 边 长 与 正 方 形 MNPQ的边长均为10 cm,AC与MN在同一直 线上,开始时A点与M点重合,让△ABC向右运 动,最后A点与N点重合.试写出重叠部分面积 ycm2与MA长度x cm之间的函数关系式.
一支铅笔0.5元,买x支铅笔要y元,则y与x的 函数关系式是 y=0.5,x其中x的取值范围 是 X≥0且为正整数
怎样求自变量的取值范围
1.当函数关系用解析式表示时,要使解析式有意义 (1)整式: 取全体实数 (2)分式: 取使分母不为0的值 (3)二次根式:取使“被开方数≥0”的值 (4)三次根式:取全体实数 (5)对于混合式:取使每一个式子有意义的值
x 11 2
练习P28练习1,2,3, P29 4,6
小结
1.求函数自变量取值范围的方法:
(1)当函数关系用解析式来表示时,要使解析式有意义. (2)对于反映实际问题的函数关系,应使实际问题有意义
2.求函数值的方法:把所给出的自变量的值代入函数解析 式中,即可求出相应的函数值
再见
例6、如图,直线 是过正方形ABCD两对角线AC与BD
∴电费y与用电量x的关系式为: y=0.57x
由 45.6 = 0.57x 得x=80 因此该月用电80度。
x A H E B
(2)当BE=1.75cm时 2 O
x=2-1.75=0.25
∴y=x=0.25
DF
C
一辆汽车的油箱中现有汽油50升,如果不再加油, 那么油箱中的油量y(升)随行驶里程x(公里) 的增加而减少,平均耗油量为0.1升/公里。
(1)写出表示y与x的函数关系的式子。
解:函数关系式为: y=50-0.1x
19.1.1变量与函数
在某一变化过程中,可以取不同数值 的量,叫做变量.还有一种量,它的取值 始终保持不变,称之为常量.
如果在一个变化过程中,有两个变量 x和y,对于x的每一个值,y都有唯一 的值与之对应,我们就说x是自变量, y是因变量,此时也称y是x的函数.
函数关系的三种表示方法:
解析法、列表法、图象法