菱形知识点及经典题

合集下载

初三数学上册《菱形》知识讲解及例题演练(含解析)

初三数学上册《菱形》知识讲解及例题演练(含解析)

初三数学上册《菱形》知识讲解及例题演练(含解析)
菱形
【学习目标】
1. 理解菱形的概念.
2. 掌握菱形的性质定理及判定定理.
【要点梳理】
要点一、菱形的定义
有一组邻边相等的平行四边形叫做菱形.
要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.
要点二、菱形的性质
菱形除了具有平行四边形的一切性质外,还有一些特殊性质:
1.菱形的四条边都相等;
2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.
要点诠释:
(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.
(2)菱形的面积由两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.
(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.
要点三、菱形的判定
菱形的判定方法有三种:
1.定义:有一组邻边相等的平行四边形是菱形.
2.对角线互相垂直的平行四边形是菱形.
3.四条边相等的四边形是菱形.
要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.。

(初中)数学《菱形的性质与判定》中考专项复习训练典型试题梳理汇总

(初中)数学《菱形的性质与判定》中考专项复习训练典型试题梳理汇总

(初中)数学《菱形的性质与判定》中考专项复习训练典型试题梳理汇总菱形的性质与判定基础同步过关知识点一:菱形的性质定理1.如图,四边形ABCD的对角线互相平分,则添加下列条件之一,不能使它成为菱形的是()A.AB=ADB.AC=BDC.BD平分∠ABCD.AC∠BD2.如图,顺次连接四边形ABCD各边的中点得到四边形EFGH,要使四边形EFGH为菱形,应添加的条件是。

3.如图,下列对菱形ABCD表述正确的有。

∠AC=BD;∠∠OAB=∠OBA;∠AC∠BD;∠有4条对称轴;∠AD=BD;∠∠OAB=∠OAD。

4.如图,四边形ABCD是菱形,AC BD相交于点O,AC=8,BD=6,DH∠AB于点H,则DH的长为。

第1题图第2题图第3题图第4题图5.如图,在菱形ABCD中,AB=2,∠ABC=120°,则菱形ABCD的面积是。

6.如图,在菱形ABCD中,对角线AC与BD交于点O,OE∠AB,垂足为E,若∠ADC=128°,则∠AOE的度数为()A.62°B.52°C.68°D.64°7.如图,在菱形ABCD中,∠B=60°,AB=3,点E是BC边上的一个动点(点E与点C不重合),点F,G分别是AE,CE的中点,则线段FG的长度为()B.3第5第6题图第7题图知识点二:菱形的判定定理8.已知四边形ABCD中,AC∠BD,再补充一个条件使得四边形ABCD为菱形,这个条件可以是()A.AC=BDB.AB=BCC.AC与BD互相平分D.∠ABC=90°9.如图,将∠ABC沿BC方向平移得到∠DCE,连接AD.下列条件中,能够判定四边形ACED为菱形的是()A .AB=BC B. AC=BC C.∠ABC=60° D.∠ACB=60°10.AC,BD相交于点O,点E,F,G,H分别是OA,OB,OC,OD的中点,若要使四边形EFGH成为菱形,(写出一种即可)11.折纸游戏一直很受大家的欢迎,小丽同学要用一张矩形纸片折出一个菱形,她用沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四边形AECF(如图)。

《菱形》 知识清单

《菱形》 知识清单

《菱形》知识清单一、菱形的定义在同一平面内,有一组邻边相等的平行四边形叫做菱形。

需要注意的是,菱形首先是平行四边形,然后在此基础上增加了“一组邻边相等”这个条件。

二、菱形的性质1、边菱形的四条边都相等。

这是菱形最基本也是最显著的特征之一。

因为菱形是平行四边形,平行四边形对边相等,再加上菱形的一组邻边相等,所以四条边都相等。

2、角菱形的对角相等,邻角互补。

这一点与平行四边形的性质相同。

3、对角线(1)菱形的对角线互相垂直且平分。

两条对角线把菱形分成四个全等的直角三角形。

(2)菱形的对角线平分一组对角。

也就是说,两条对角线与菱形的边所形成的夹角分别相等。

4、对称性菱形是中心对称图形,对称中心是两条对角线的交点。

同时,菱形也是轴对称图形,两条对角线所在的直线就是它的对称轴。

5、面积(1)菱形的面积可以用底乘以高来计算。

(2)由于菱形的对角线互相垂直,所以菱形的面积还可以用对角线乘积的一半来计算。

三、菱形的判定1、一组邻边相等的平行四边形是菱形。

这是根据菱形的定义直接得出的判定方法。

2、对角线互相垂直的平行四边形是菱形。

因为对角线互相垂直的平行四边形,其四条边都相等,满足菱形的定义。

3、四条边都相等的四边形是菱形。

这是从边的角度直接判定一个四边形为菱形。

四、菱形性质与判定的应用1、在几何证明题中如果已知一个四边形是菱形,那么可以利用菱形的性质来得出边、角、对角线等方面的关系,从而解决问题。

如果要证明一个四边形是菱形,则需要根据给定的条件,选择合适的判定方法进行证明。

2、在实际生活中的应用菱形的图案和结构在建筑、艺术设计、纺织等领域都有广泛的应用。

例如,一些窗户的设计采用菱形的格子,既美观又能保证结构的稳定性;在纺织品的花纹设计中,菱形图案也经常出现。

五、与菱形相关的常见题型1、计算型题目(1)已知菱形的边长、对角线长度等,求菱形的面积、周长等。

(2)根据菱形的面积和其中一条对角线的长度,求另一条对角线的长度。

菱形知识点复习和习题

菱形知识点复习和习题

菱形的性质与判定 1. 概念:一组邻边相等的平行四边形叫做菱形。

如图(1)有一组邻边_______的平行四边形是菱形。

(2)对角线________的平行四边形是菱形。

(3)四条边都______的四边形是菱形。

例1:如图,已知菱形ABCD 的边长为2,∠DAB=60°,则对角线BD 的长是________.例1图 例2图 例3图例2,:如图,已知菱形ABCD 的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD 的面积为_______.例3:如图,AC 是平行四边形ABCD 的对角线,∠BAC=∠DAC (1) 求证:AB=BC(2) 若AB=2,AC=2 ,求平行四边形ABCD 的面积。

nmEDA BC60°DABCDA B CC例4:如图:AC 是平行四边形ABCD 的一条对角线,过AC 中点O 的直线分别交AD 、BC 于点E 、F 。

(1) 求证:△AOE ≌△COF(2) 当EF 与AC 满足什么条件时,四边形AFCE 是菱形?说明理由。

例5:如图,将等腰△ABC 绕顶点B 逆时针方向旋转角α到△A 1BC 1的位置,AB 与A 1C 1相交于点D ,AC 与A 1C 1、BC 1分别相交于点E 、F 。

(1) 求证△BCF ≌△BA 1D(2) 当∠C=α时,判定四边形A 1BCE 的形状并请说明理由。

例6:如图,在菱形ABCD 中,AB=2,∠ABC=60°,对角线AC 、BC 相交于点O ,将对角线AC 所在的直线绕点O 顺时针旋转角α(0<α<90°)后得直线l ,直线l 与AD 、BC 两边分别相交于点E 和点F 。

(1) 求证△AOE ≌△COF(2) 当α=30°时,求线段EF 的长度EOFDABCC1CF BA1EDA lEOFDABC。

八年级数学《菱形》知识总结及经典例题

八年级数学《菱形》知识总结及经典例题

八年级数学《菱形》知识总结及经典例题学习目标1.掌握菱形的概念.2.理解菱形的性质及识别方法.3.能利用菱形的性质及识别方法,解决一些问题.学法指导把平行四边形、矩形、菱形的性质及识别方法对照起来学习,了解它们的相同点和不同点.基础知识讲解1.菱形的定义四条边都相等的平行四边形(或一组邻边相等的平行四边形)叫做菱形.由菱形的定义可知,菱形是一种特殊的平行四边形,菱形的定义包含两个条件,①是平行四边形,②邻边相等,这两个条件缺一不可.2.菱形的性质(1)它具有平行四边形的一切性质(2)它除具有平行四边形的性质外,还具有自己的特殊性质.①菱形的四条边都相等.②菱形的对角线互相垂直平分,而且每条对角线平分一组对角.③菱形是轴对称图形,对称轴是两条对角线所在的直线.④菱形的对角线分菱形为4个全等的直角三角形.3.菱形的识别方法菱形的识别方法,除用定义来识别外,还有其它的识别方法,用定义来识别是最基本的识别方法.其它的识别方法有①四条边都相等的四边形,也为菱形.②对角线互相垂直的平行四边形,也是菱形,运用这个识别方法必须符合两个条件,一是对角线互相垂直,二是平行四边形.4.菱形的面积计算由菱形的对角线把菱形分成4个全等的直角三角形,可得出,菱形的面积=4×S Rt △. 设对角线长分别为a ,b .则菱形的面积=4×21×(22b a )=21ab ,即菱形的面积等于对角线乘积的一半.5.菱形的性质及识别方法的作用利用它们可以证明线段相等、垂直、平分、平行等关系.证明角相等,平分等关系,证明一个四边形为菱形和进行有关的计算.重点难点重点:菱形的性质,识别方法及其在生活、生产中的应用.难点:运用菱形的性质及识别方法,灵活地解答一些问题.易错误区分析运用菱形的定义时易忽略,邻边相等的平行四边形中的平行四边形这个条件. 例1.判断下列说法对不对(1)邻边相等的四边形为菱形.( )(2)两边相等的平行四边形为菱形.( )错误分析:(1)中应为邻边相等的平行四边形.(2)中是指邻边相等而不是两边相等. 错解:(1)(√) (2)(×)正解:(2)(×) (2)(×)运用菱形的识别方法“对角线”互相垂直且平分的平行四边形中有时忽略垂直或者平分,有时忽略平行四边形这些条件.由于本节的性质判别方法较多,利用本节解题时易犯推理不严密的错误.例2.如图在菱形ABCD 中,E ,F 分别是BC ,CD 的中点连结AE ,AF.求证:AE =AF错误分析:本题证明错在BE =DF ,因为并未证明BC =CD ,推理不严格错证:∵菱形ABCD ,∴AB =CD ,∠B =∠D又∵E ,F 分别为BC ,CD 的中点,∴BE =DF∴△ABE ≌△ADF ∴AE =AF正证:∵菱形ABCD ∵AB =AD ,∠B =∠D , ∴21BC=21CD 又∵EF 分别为BC ,CD 的中点 ∴BE =DF ,∴△ABE ≌△ADF ∴AE =AF典型例题例l .已知,如图所示,菱形ABCD 中,E ,F 分别是BC 、CD 上的一点,∠D=∠EAF=∠AEF =60°.∠BAE =18°,求∠CEF 的度数.分析:要求∠CEF 的度数,可先求∠AEB 的度数,而要求∠AEB 的度数则必须求∠B 的度数,这一点则可由菱形是特殊的平行四边形可得到.另外,由∠D =60°.如连结AC 得等边△ABC 与△ACD ,从而△ABE ≌△ACF ,有AE =AF ,则△AEF 为等边三角形,再由外角等于不相邻的两个内角和,可求∠CEF解法一:因为菱形是特殊的平行四边形.所∠B =∠D =60°.因为∠BAE =18°,∠AEB+∠B+∠BAE =180°所以∠AEB+60°+18°=180°.即∠AEB=180°-60°-18°=102°.又∠AEF =60°,∠AEB+∠AEF+∠CEF =180°所以∠CEF =180°-60°-102°=18°解法二:连结AC ∴四边形ABCD 为菱形,∴∠B =∠D =60°,AB =BC =CD =AD .∴△ABC 和△CDA 为等边三角形 ∴AB =AC ,∠B =∠ACD =∠BAC =60°∵∠EAF =60° ∴△BAE=∠CAF ∴△ABE ≌△ACF ∴AE =AF又∵∠EAF =60° ∴△EAF 为等边三角形 ∴∠AEF =60°∵∠AEC=∠B+∠BAE=∠AEF+∠CEF∴60°+18°=60°+∠CEF ∴∠CEF =18°解法三:利用辅助线把菱形转化为三角形来解答,这是一种常用的作辅助线的方法.例2.已知:如图,△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,BE 平分∠ABC ,交AD 于点M ,AN 平分∠DAC ,交BC 于点N.求证:四边形AMNE 是菱形.分析:要证AMNE 是菱形,可以根据定义,证得它是平行四边形,并且有一组邻边相等,也可以根据判定定理,证它四边相等;或证两条对角线互相垂直平分,注意到AN 是∠DAC 的平分线,只要证AM =AE ,则AN 垂直平分ME ,若证AN ⊥ME ,则再由BE 平分∠ABN 易知BE 也垂直平分AN ,即AN 与ME 互相垂直平分,故有AM =MN =NE =AE ,即AMNE 是菱形,此为证法一.显然,在上述证法中,证得BE 垂直平分AN 后,可得AM =MN ,所以∠MNA =∠MAN =∠NAE ,所以MN AE ,则AMNE 是平行四边形,又AM =MN 所以AMNE 是菱形.证法一:因为∠BAC =90°,AD ⊥BC ,所以∠BAD =∠C因为BE 平分∠ABC ,所以∠ABE =∠EBC .因为∠AME =∠BAD+∠ABE =∠C+∠EBC =∠AEM ,所以AM =AE ,又因为AN 平分∠DAC ,所以AM =MN ,所以AM =MN =NE =AE .所以AMNE 是菱形.证法二:同上,若证AN 垂直平分ME ,再证BE 垂直平分AN ,则AM =MN ,所以∠MNA=∠MNA=∠NAE.所以MN AE .所以AMNE 是平行四边形,由AM =MN 得AMNE 是菱形.例3.已知:如图菱形ABCD 中,DE ⊥AB 于点E ,且OA =DE ,边长AD =8,求菱形ABCD 的面积.分析:由菱形的对角线互相垂直知OA 是△ABD 的边BD 上的高,又由DE ⊥AB ,OA =DE ,易知△AOD ≌△DEA 从而知△ABD 是等边三角形,从而菱形ABCD 面积可求.解:在菱形ABCD 中,因为AC ⊥BD ,所以△AOD 是直角三角形,因为DE ⊥AB ,所以△AED 是直角三角形.在Rt △AOD 和Rt △AED 中,因为AD =AD ,DE =OA ,所以Rt △AOD ≌Rt △DEA .所以∠ADO =∠DAE ,因为ABCD 为菱形,所以∠ADO =∠ABO ,所以△ABD 是等边三角形.因为AD =8,DE ⊥AB ,所以AE =21AD =4,在Rt △AED 中,DE =22AE AD =43.从而S 菱形ABCD =AB ·DE =8×43=323注意:题中是将菱形的面积按一般的平行四边形面积公式计算的,当然也可以求出对角线AC ,BD 的长,按S 菱形ABCD =21AC ·BD 来计算,但后者较繁复. 例4.已知:如图,□ABCD 中,AD =2AB ,将CD 向两边分别延长到E ,F 使CD =CE =DF. 求证:AE ⊥BF分析:注意□ABCD 中,AD =2AB 这一特殊条件,因此□ABCD 能分成两个菱形.从而可以通过菱形的对角线互相垂直来证明.证明:设AE 交BC 于点G ,BF 交AD 于点H ,连结GH.因为AB ∥DF ,所以∠F=∠ABH , ∠FDH=∠BAH.又因为AB =CD =DF ,所以△ABH ≌△DFH.所以AH =HD=21AD=AB.所以BC AH ,BG=AB .则四边形ABGH 是菱形,所以AE ⊥BF.例5.如图所示,AD 是△ABC 的角平分线,EF 垂直平分AD ,分别交AB 于E ,交AC 于F ,则四边形AEDF 是菱形吗?请说明理由.分析:由已知判断△AOF 和△DOF 是关于直线EF 成轴对称图形,再由轴对称的特征,得到∠OAF =∠ODF ,再结合已知得到∠ODF =∠OAE ,从而判断DF ∥AE ,得到AEDF 是平行四边形,进一步推出对角线互相垂直平分,得到AEDF 是菱形。

小学菱形知识点总结

小学菱形知识点总结

小学菱形知识点总结菱形是一种四边形,它的特点是四条边都相等,相对的角也相等。

在小学数学中,学生会接触到菱形的概念,并学习关于菱形的性质、面积、周长等知识点。

本文将对小学菱形的知识点进行总结,帮助学生更好地理解和掌握这一内容。

一、菱形的基本概念1. 定义:菱形是一种特殊的四边形,它的四条边长度相等,相对的角也相等。

通常用符号“◇”来表示。

2. 特点:菱形的特点是四条边相等,相对的角也相等,且对角线互相垂直且平分。

3. 实例:常见的例子有菱形路标、菱形钻石等。

二、菱形的性质1. 对角线垂直平分:菱形的两条对角线互相垂直且平分。

2. 对角线相等:菱形的两条对角线长度相等。

3. 对角线交点:菱形的两条对角线交点称为菱形的中心,也是对角线的交点。

4. 对角线长:菱形的对角线长度可以通过菱形的边长和对角角度来计算。

5. 内角度:菱形的每个内角度为90度。

三、菱形的周长和面积1. 周长:菱形的周长等于四条边长度的和,即4倍边长。

2. 面积:菱形的面积可以通过对角线的长度来计算,公式为(对角线1乘以对角线2)除以2。

四、菱形的相关题目1. 练习题目1:已知菱形的一条对角线长度为8cm,另外一条对角线长度为6cm,求菱形的周长和面积。

2. 练习题目2:菱形的一个内角是120度,求另外三个内角的度数。

3. 练习题目3:已知菱形的周长为24cm,求菱形的边长。

以上是小学菱形的基本知识点总结,通过掌握这些内容,学生可以更好地理解和运用菱形的性质和计算方法。

希望学生能够在老师的指导下,认真学习并掌握这一部分内容,为进一步学习数学打下坚实的基础。

菱形的性质与判定复习题

菱形的性质与判定复习题

菱形练习题知识点1 菱形的定义菱形的定义:有一组邻边相等的平行四边形叫做菱形;数学语言:如图,在平行四边形ABCD中,如果AB=AD,那么平行四边形ABCD 是菱形;知识点2 菱形的性质(1)菱形的四条边都相等;(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;(3)对称性:既是关于对角线的交点成中心对称图形,又是以对角线所在直线为对称轴的轴对称图形;(4)菱形的面积公式:①菱形的面积=底×高;②菱形的面积=两条对角线乘积的一半巩固练习1.菱形的对角线长分别为6和8,则菱形的边为 ,菱形的面积为 ;2.若菱形周长为52cm,一条对角线长为10cm,则其面积为A.240 cm2 B.120 cm2 C.60 cm2 D.30 cm23.如下图,菱形ABCD中,O是对角线AC BDAO=,则,的交点,5cmAB=,4cmBD=____________cm.4、如上图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点O到边AB的距离___________5.一个菱形两条对角线之比为1︰2,一条较短的对角线长为4cm,那么菱形的边长为A .2cmB .4cmC .(225)cm +D .25cm6.如图,菱形ABCD 的边长为2,45ABC ∠=,则点D 的坐标为 .7.如图,将一个长为10cm,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线虚线剪下,再打开,得到的菱形的面积为A .210cmB .220cmC .240cmD .280cm8.如图所示,菱形ABCD 中,对角线AC BD 、相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 . 9.菱形ABCD 中,AE 垂直平分BC ,垂足为E ,AB =4cm .那么,菱形ABCD 的面积是 ,对角线BD 的长是 . 10.如图,点E ,F 分别是菱形ABCD 中BC ,CD 边上的点E ,F 不与B ,C ,D 重合在不连辅助线的情况下请添加一个条件,说明AE =AF .11、如图,在菱形ABCD 中,AE⊥BC,E 为垂足.且BE=CE,AB=2.求:1∠BAD 的度数;2对角线AC 的长及菱形ABCD 的周长.AD CE BO B AD x yC B AHD CO12.如图,在菱形ABCD 中,E 是AB 的中点,且DE ⊥AB ,AB =4.求:1∠ABC 的度数;2菱形ABCD 的面积. 13.在菱形ABCD 中,对角线AC 与BD 相交于点O,AB=5,AC=6.过点D 作DE∥AC 交BC 的延长线于点E.1求△BDE 的周长; 2点P 为线段BC 上的点,连接PO 并延长交AD 于点Q,求证:BP=DQ. 14.如图,四边形ABCD 是菱形,DE ⊥AB 交BA 的延长线于E ,DF ⊥BC ,交BC 的延长线于F ;请你猜想DE 与DF 的大小有什么关系并证明你的猜想.有一个角为60°的特殊菱形1.若菱形的边长为1cm,其中一内角为60°,则它的面积为A .23cm 2B .23cmC .22cmD .223cm 2.已知菱形的周长为96㎝,两个邻角的比是1︰2,则较短对角线的长是A .21㎝B .22㎝C .23㎝D .24㎝3.如图,在菱形ABCD 中,60A ∠=°,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD 的边长是_____________.4.如图,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是B C .CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为A . 32B . 33C . 34D . 3提高题1.如图,菱形111AB C D 的边长为1,160B ∠=;作211AD B C ⊥于点2D ,以2AD 为一边,做第二个菱形222AB C D ,使260B ∠=;作322AD B C ⊥于点3D ,以3AD 为一边做第三个菱形333AB C D ,使360B ∠=;依此类推,这样做的第n 个菱形n n n AB C D 的边n AD 的长是 . A D FC E B2.如图,在菱形ABCD 中,∠A =110°,E ,F 分别是边AB 和BC 的中点,EP ⊥CD 于点P ,则∠FPC =A .35° B.45° C.50° D.55°知识点3 菱形的判定方法(1) 有一组邻边相等的平行四边形是菱形;(2) 对角线互相垂直的平行四边形是菱形;(3) 四条边都相等的四边形是菱形.1.把菱形ABCD 沿对角线AC 的方向平移到菱形A′B′C′D′的位置,它们重叠部分的四边形A′FCE 是A .正方形B .矩形C .菱形D .不确定2.如图,下列条件之一能使平行四边形ABCD 是菱形的为①AC BD ⊥ ②90BAD ∠= ③AB BC = ④AC BD =A .①③B .②③C .③④D .①②③ 3.如图,□ABCD 中,AE 、CF 分别是∠BAD 和∠BCD 的角平分线,根据现有的图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个条件可以是 只需写出一个即可,图中不能再添加别的“点”和“线”.4.如图,在三角形ABC 中,AB >AC ,D 、E 分别是AB 、AC 上的点,△ADE 沿线段DE 翻折,使点A 落在边BC 上,记为A '.若四边形ADA E '是菱形,则下列说法正确的是1D B A C BCDB DC ABC DA.DE是△ABC的中位线 B.AA'是BC边上的中线C.AA'是BC边上的高 D.AA'是△ABC的角平分线5.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD= BC;⑤AD∥BC.这5个条件中任选三个,能使四边形ABCD是菱形的选法有.A.1种 B.2种 C.3种 D.4种证明题1.如图,在△ABC中,AB=AC,点D、E、F分别是AB、BC、AC的中点,求证:四边形ADEF是菱形2.两个完全相同的矩形纸片ABCD、BFDE如图放置,AB=BF.求证:四边形BNDM为菱形.3、如图,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=6cm,∠ABC=60°,则四边形ABCD的面积等于__________cm2.4、如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点 E、F分别是CD的中点,过点A 作AG∥BD,交CB的延长线于点G;求证:四边形DEBF是菱形;5、如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.1说明四边形ACEF是平行四边形;2当∠B满足什么条件时,四边形ACEF是菱形,并说明理由;6.在矩形ABCD中,AB=6cm, BC=8cm,若将矩形对角线BD对折,使B点与D 点重合,折痕为EF,问:四边形EBFD是菱形吗请说明理由,并求这个菱形的边长.7.如图,□ABCD中,AB⊥AC,AB=1,BC=5.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.1证明:当旋转角为90°时,四边形ABEF是平行四边形;2试说明在旋转过程中,线段AF与EC总保持相等;3在旋转过程中,四边形BEDF可能是菱形吗如果不能,请说明理由;如果能,画出图形并写出此时AC绕点O顺时针旋转的度数.8.如图,ABC△中,点O是边AC上一个动点,过O作直线MN BC∥,设MN交BCA∠的平分线于点E,交BCA∠的外角平分线于点F.1探究:线段OE与OF的数量关系并加以证明;2当点O在边AC上运动时,四边形BCFE有可能是菱形吗若是,请证明,若不是,则说明理由AF NDCBM E O。

九年级- 菱形知识点典型例题及练习

九年级- 菱形知识点典型例题及练习

菱形一、菱形的性质菱形的定义 一组邻边相等的平行四边形叫做菱形. 菱形的性质①具有平行四边形的一切性质; ②菱形的四条边都相等;③菱形的对角线互相垂直平分,并且每一条对角线平分一组对角; ④菱形是轴对称和中心对称图形.推论 对角线垂直的四边形面积=两条对角线乘积的一半(由对角线互相垂直可得)二、菱形的判定①有一组邻边相等的平行四边形是菱形. ②四条边都相等的四边形是菱形. ③对角线互相垂直的平行四边形是菱形. ④对角线垂直且平分的四边形是菱形.⑤每一条对角线平分一组对角的四边形是菱形. 例题分析例题1 下列命题中,正确的是( ) A.对角线互相垂直且相等的四边形是菱形 B.有一组邻边相等的平行四边形是菱形 C.对角线互相平分且相等的四边形是菱形 D.对角线相等的四边形是菱形例题2 如图1-1-1,将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案。

设菱形中较小角为x 度,平行四边形中较大角为y 度,则y 与x 的关系式是( )︒+=9031.x y A x y B 21.= ︒+=9021.x y C x y D 31.=图1-1-1图1-1-2例题3 如图1-1-2,在菱形ABCD 中,对角线AC 与BD 相交于点O ,∠BAD=60° ,BD=6,求菱形的边长AB 和对角线AC 的长.例题4 如图1-1-3,已知菱形ABCD 的对角线AC=16cm ,BD=12cm ,DE 垂直BC 于点E ,求DE 的长.例题 5 如图1-1-4,在菱形ABCD 中,F E ,分别是CD BC 、上的点,且CEF BAE EAF B ∠18∠60∠∠求,,°=°==的度数.例题6 如图1-1-5,在菱形ABCD 中,作一个正∆AEF ,且AE=AB ,那么∠C 的度数是多少?例题7 已知菱形ABCD 的两条对角线AC ,BD 的乘积等于菱形的一条边长的平方,求菱形的四个内角.图1-1-3图1-1-4图1-1-5例题8 如图1-1-6,在菱形ABCD中, ABC=120°,点E平分DC,点P在BD上,且PE+PC=1,求边长AB的最大值.1-1-6课堂练习1.下列命题中,正确的是( )A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线互相垂直且相等的四边形是菱形D.对角线互相垂直平分的四边形是菱形2.菱形的周长为100 cm,一条对角线长为14 cm,它的面积是()A.168 cm2B.336 cm2C.672 cm2 D.84 cm23.在菱形ABCD中,∠BAD=80°,AB的垂直平分线交AC于F,交AB于E,则,∠CDF=()A、80°B、70°C、65°D、60°4.在凸四边形ABCD中,E,F,G,H分别为AB,BD,CD,AC的中点,要使四边形EFGH为菱形,则四边形ABCD需要满足什么条件()A.四边形ABCD是梯形B.四边形ABCD是平行四边形C.对角线AC=BDD.AD=BC5.顺次连接一个凸四边形各边的中点,得到一个菱形,则这个四边形一定是()A.任意四边形B.两条对角线相等的四边形C.矩形D.平行四边形6.若菱形的面积为120,一条对角线长为10,则另一条对角线长为_______,边长为________,一条边上的高为_________。

菱形基础习题

菱形基础习题

菱形复习一 定义:一组邻边相等的平行四边形叫做菱形.二 性质:边:菱形的两组对边分别平行.菱形的四条边相等.角:菱形的两组对角分别相等,邻角互补.对角线:菱形的两条对角线互相垂直平分.菱形的每一条对角线都平分一组对角对称性:菱形是轴对称图形三 判定:边: 有一组邻边相等的平行四边形是菱形.四条边都相等的四边形是菱形.对角线:对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形.对角线平分一组对角的平行四边形是菱形.四 菱形面积的计算:菱形的面积等于两条对角线乘积的一半. 即假设用a 、b 表示菱形的两条对角线,那么菱形的面积为: 有关菱形问题可转化为直角三角形或等腰三角形的问题来解决.五 典型例题:一 如图,已知AD 平分∠BAC ,DE//AC ,DF//AB,AE=5.〔1〕判断四边形AEDF 的形状?〔2〕四边形AEDF 的周长为多少?二 如图,CD 为Rt △ABC 斜边AB 上的高,∠BAC 的平分线交CD 于E ,交BC 于F ,FG ⊥AB 于G .求证:四边形EGFC 为菱形.〔图在本子上〕三 如图,已知在□ABCD 中,AD=2AB ,E 、F 在直线AB 上,CE 与AD 交与点M , DF 与CB 交与点N ,且AE=AB=BF , 求证:CE ⊥DF.四 如下图,已知菱形ABCD 中,E 、F 分别在BC 和CD 上,且∠B=∠EAF=60°,∠BAE=15°,求∠CEF 的度数。

AB C F D Eb a S ⋅=21五如图,在△ABC中,AB=BC,D、E、F分别是BC、AC、AB上的中点,〔1〕求证四边形BDEF是菱形。

〔2〕假设AB=12cm,求菱形BDEF的周长?六.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.七已知:如下图,ABCD为菱形,通过它的对角线的交点O作AB、BC的垂线,与AB、BC,CD,DA分别相交于点E、F、G、H,求证:四边形EFGH为矩形。

九年级数学上菱形知识点

九年级数学上菱形知识点

九年级数学上菱形知识点在九年级数学学习中,菱形是一个重要的几何形状。

菱形具有特殊的性质和定理,学好菱形的知识将有助于我们更好地理解几何的相关概念和应用。

本文将介绍九年级数学上与菱形相关的重要知识点。

一、菱形的定义与性质菱形是一个四边形,它有以下两个特点:1. 所有边相等:菱形的四个边长度相等,可以表示为AB=BC=CD=DA。

2. 对角线相互垂直且平分:菱形的对角线互相垂直,并且平分对方的对角线,即AC和BD互为对方的平分线。

二、菱形的面积计算菱形的面积计算公式为:面积 = 对角线1 ×对角线2 ÷ 2,即S = d1 × d2 ÷ 2,其中d1和d2分别表示对角线的长度。

三、菱形的周长计算菱形的周长计算公式为:周长 = 4 ×边长,即P = 4 × a,其中a 表示菱形的边长。

四、菱形的定理1. 菱形内角定理:菱形的内角都是锐角,且相邻内角的和为180度。

2. 菱形的对角线垂直定理:菱形的对角线相互垂直。

3. 菱形的对角线长度关系定理:菱形的对角线长度满足d1² + d2² = 4a²,其中d1和d2分别表示对角线的长度,a表示边长。

五、菱形的应用1. 建筑设计:菱形作为一种美观、稳定的几何形状,常被应用于建筑设计中,如屋顶、玻璃幕墙等。

2. 电子产品:许多电子产品的外观和按键都采用了菱形设计,例如手机屏幕、电视遥控器等。

3. 菱形区域划分:在地理勘探、城市规划等领域,菱形常被用来划分区域,以实现一定的空间分隔和布局。

六、菱形的例题解析例题1:已知菱形ABCD,AD=10cm,BD=24cm,计算菱形的面积和周长。

解析:先计算菱形的边长a,由于BD互为对角线的平分线,因此可以将菱形分为两个等腰三角形。

根据勾股定理可得,(AD/2)² + (BD/2)² = a²,代入已知数据计算得a=14cm。

第十八章 菱形的性质及判定知识点梳理及练习

第十八章  菱形的性质及判定知识点梳理及练习

1第十八章 菱形的性质及判定知识点梳理及练习【目标知识点】1. 菱形的定义:有一组邻边相等的平行四边形叫做菱形。

2. 菱形的性质:①菱形具有平行四边形的一切性质。

②菱形的四条边都相等。

证明:几何语言:例1:如图,已知菱形ABCD 的周长为12,∠A=60°,则BD 的长为( )A .3B .4C .6D .8③菱形的对角线相互垂直且平分每一组对角。

证明:几何语言:例2:如图,在菱形ABCD 中,AC=8,BD=6,则△ABC 的周长是( )A .14B .16C .18D .203. 菱形的判定:①有一组邻边相等的平行四边形是菱形(根据定义)。

几何语言:例3:已知:如图中,AD 是∠A 的角平分线,DE ∥AC ,DF ∥AB .求证:四边形AEDF 是菱形.2例4:如图:在平行四边形ABCD 中,AC 的垂直平分线分别交CD 、AB 于E 、F 两点,交AC 于O 点,试判断四边形AECF 的形状,并说明理由.②对角线相互垂直的平行四边形是菱形。

证明:几何语言:例5:如图:在平行四边形ABCD 中,AC 的垂直平分线分别交CD 、AB 于E 、F 两点,交AC 于O 点,试判断四边形AECF 的形状,并说明理由.③四条边都相等的四边形是菱形。

证明:几何语言:例6:如图,在△ABC 中,AD 是∠BAC 的平分线,EF 垂直平分AD 交AB 于E ,交AC 于F .求证:四边形AEDF 是菱形.4. 菱形面积公式:推导:Array例7:菱形的两条对角线长分别为9cm与4cm,则此菱形的面积为()cm2.A.12 B.18 C.20 D.36【例题精讲】1、下列性质中菱形不一定具有的性质是()A.对角线互相平分 B.对角线互相垂直 C.对角线相等 D.是轴对称图形2、已知菱形的边长等于2cm,菱形的一条对角线也是长2cm,则另一条对角线长是()A.4cm B.2cm C .cm D.3cm3、菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是()A.(3,1)B.(3,﹣1)C.(1,﹣3)D.(1,3)4、下列语句正确的是()A.对角线互相垂直的四边形是菱形 B.矩形的对角线相等C.有两边及一角对应相等的两个三角形全等 D.平行四边形是轴对称图形5、菱形ABCD中,∠A:∠B=1:5,高是8cm,则菱形的周长是cm.6、菱形ABCD中,∠A=60°,其周长为24cm,则菱形的面积为cm2.7、已知菱形的一条对角线长为6cm,面积为24cm2,则菱形的周长是cm.38、如图,点E,F分别在菱形ABCD的边DC,DA上,且CE=AF.求证:∠ABF=∠CBE.9、如图,已知菱形ABCD的对角线AC、BD相交于点O,点E是菱形外一点,且DE∥AC,CE∥BD,连接OE.求证:OE=CD.10、如图,菱形的对角线BD,AC的长分别是6和8,求菱形的周长与面积.【目标检测题】1、如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于()A.4cm B.5cm C.6cm D.8cm2、下列条件中,不能判定四边形ABCD为菱形的是()A.AC⊥BD,AC与BD互相平分B.AB=BC=CD=DAC.AB=BC,AD=CD,AC⊥BD D.AB=CD,AD=BC,AC⊥BD43、如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC4、下列四边形中不一定为菱形的是()A.对角线相等的平行四边形 B.每条对角线平分一组对角的四边形C.对角线互相垂直的平行四边形 D.用两个全等的等边三角形拼成的四边形5、如图,D、E、F分别是△ABC的边AB、BC、AC的中点.若四边形ADEF是菱形,则△ABC必须满足的条件是()A.AB⊥AC B.AB=AC C.AB=BC D.AC=BC6、如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得点A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.5cm B.4.8cm C.4.6cm D.4cm7、如图,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是.形ABCD的周长是.56 9、如图,用完全相同的两个矩形纸片交叉叠合得到四边形ABCD ,则四边形ABCD 的形状是 .10、如图,四边形ABCD 是菱形,对角线AC 与BD 相交于O ,AB=6,BO=3.求AC 的长及∠BAD 的度数.11、如图,菱形ABCD 中,点E 、F 分别是BC 、CD 边的中点.求证:AE=AF .12、如图,在△ABC 中,∠BAC=90°,线段AC 的垂直平分线交AC 于D 点,交BC 于E 点,过点A 作BC 的平行线交直线ED 于F 点,连接AE ,CF .(1)求证:四边形AECF 是菱形;(2)若AB=10,∠ACB=30°,求菱形AECF 的面积.13、如图,在菱形ABCD 中,点E 、F 在对角线AC 上,且AE=CF .求证:(1)△ABE ≌△ADE .(2)四边形BFDE 是菱形.。

菱形几何知识点总结

菱形几何知识点总结

菱形几何知识点总结一、菱形的定义菱形是一种特殊的四边形,具有以下几个特点:1. 四条边相等:菱形的四条边长都相等,记作AB=BC=CD=DA。

2. 对角线相等:菱形的两条对角线相等,记作AC=BD。

3. 对角相等:菱形的四个角都相等,每个角为90度。

二、菱形的性质1. 对角相等:菱形的四个角都是直角,即每个角都等于90度。

2. 对角线相交于垂直平分点:菱形的两条对角线在交点处互相垂直,并且将对角互相平分。

3. 相邻角互补:菱形的相邻角之和等于180度。

例如角A+角B=180度,角B+角C=180度等。

这是因为菱形的相邻角是对角。

4. 边相等:菱形的四条边都相等。

5. 对角线的长度:菱形的对角线长度相等,即AC=BD。

6. 等腰梯形:两对相邻的边相等,所以菱形也是一个等腰梯形。

三、菱形的相关定理1. 相反角相等定理:在菱形中,对角相等。

2. 对角线平分相交角定理:菱形的对角线平分相交角。

3. 对角线长度相等定理:在菱形中,对角线相等。

4. 菱形的边平分角定理:菱形的对角线相交的交点平分菱形的各个顶角。

5. 菱形的角平分边定理:在菱形中,菱形的对角线平分菱形的各个角。

通过掌握以上定理,我们可以更好地理解和运用菱形的相关知识。

四、菱形的相关例题下面我们通过一些例题来练习和应用菱形的相关知识。

例题1:在菱形ABCD中,AC=6cm,BD=8cm,求菱形ABCD的周长。

解:由于菱形的所有边长相等,所以菱形ABCD的周长为4*6=24cm。

例题2:在菱形ABCD中,AC=10cm,角A=60度,求菱形ABCD的面积。

解:由于菱形的对角相等,所以菱形ABCD的面积可以通过角A的三角函数求得,设菱形ABCD的对角为2θ,其中θ=30度,则菱形ABCD的面积为S=AC^2*sinθ*cosθ=100cm^2。

例题3:在菱形ABCD中,AC=6cm,对角线BD=8cm,求菱形ABCD的面积。

解:根据菱形的对角线长度相等定理,对于菱形ABCD,AC=BD=8cm,所以菱形ABCD的面积为S=AC*BD/2=24cm^2。

九年级上数学1.1菱形知识点总结及习题含答案 Word

九年级上数学1.1菱形知识点总结及习题含答案 Word

菱形性质与判定练习题纯题部分一.选择题(共4小题)1.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A、163B、16C、83D、82.菱形的周长为4,一个内角为60°,则较短的对角线长为()A.2 B.C.1 D.3.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为() 4.5题图A.3:1 B.4:1 C.5:1 D.6:14.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为()A.15 B.C.7.5 D.5.如图,菱形ABCD的周长是16,∠A=60°,则对角线BD的长度为()A.2 B. C.4 D.二.填空题(共15小题)6.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是_________cm2.7.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_________.8.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.7题图8题图9题图10题图9.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为_________.10.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO= _________度.11.如图,活动菱形衣架的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1=度.11题图13题14题图15题图12.已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为_________.13.如图,两个全等菱形的边长为1米,一机器人由A点开始按A—B—C—D—E—F—C—G—A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在_____点.14.如图,P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是_________cm.15.已知:菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为______.16.已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为_________cm2.17.已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是_________cm2.18.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC 交AB于E,PF∥CD交AD于F,则阴影部分的面积是_________.18题图19题图20题图19.如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是_________.20.如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE=度.三.解答题21.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.求证:DE=BE.22.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.23.如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.24.如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E连接BE.(1)证明:∠APD=∠CBE;(2)若∠DAB=60°,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的,为什么?25.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C运动,点P、Q的速度都是1cm/s.(1)在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?(2)分别求出菱形AQCP的周长、面积.菱形性质与判定练习题答案部分一.选择题(共4小题)1.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是(C)A、163B、16C、83D、82.菱形的周长为4,一个内角为60°,则较短的对角线长为(C)A.2 B.C.1 D.3.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为(C)A.3:1 B.4:1 C.5:1 D.6:14.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为(A)A.15 B.C.7.5 D.5.如图,菱形ABCD的周长是16,∠A=60°,则对角线BD的长度为( C ) 4.5题图A.2 B. C.4 D.二.填空题(共15小题)6.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是____3_____cm2.7.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_2.4________.8.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD2.7题图8题图9题图10题图9.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为_60________.10.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO=__65°_______度.11.如图,活动菱形衣架的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1= 120°度.11题图13题14题图15题图12.已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为2或6_________.13.如图,两个全等菱形的边长为1米,一机器人由A点开始按A—B—C—D—E—F—C—G—A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在_B____点.14.如图,P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是____3_____cm.15.如图:菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为_16_____.16.已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为_96________cm2.17.已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是__120_______cm2.18.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是__2.5_(示AP与EF交于Q.S厶FQP=S厶EQA_.18题图19题图20题图19.(2003•温州)如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB PE+PB=PE+PD=ED_______.20.如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE=45度.提示连接AC证厶ABE 厶ACF 得到AE=AF 得出∠AFE=60°三.解答题21.(2011•广安)如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.求证:DE=BE.22.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.60°作DF⊥AB则F是AB的中直E是BF的中点BE=123.(2010•宁洱县)如图,四边形ABCD 是菱形,BE ⊥AD 、BF ⊥CD ,垂足分别为E 、F . (1)求证:BE=BF ;(2)当菱形ABCD 的对角线AC=8,BD=6时,求BE 的长.(2)提示: 连接AC. BD 用勾3股4得AB=5再用等积法求BE11528622BE ⨯⋅⋅=⨯⨯24.如图,在菱形ABCD 中,P 是AB 上的一个动点(不与A 、B 重合),连接DP 交对角线AC 于E 连接BE .(1)证明:∠APD=∠CBE ;(2)若∠DAB=60°,试问P 点运动到什么位置时,△ADP 的面积等于菱形ABCD 面积的,为什么?(1) ∆ ∴ ∠ DB 关于AC 对称 ∴∠EDC=∠CBE 而 ∠CDP=∠DPA ∴∠APD=∠CBE(2)当P 点运动到AB 的中点位置时,△ADP 的面积等于菱形ABCD 面积的,因为S ∆APD=APh= .AB h s 囗=ABh25.如图所示,在矩形ABCD 中,AB=4cm ,BC=8cm 、点P 从点D 出发向点A 运动,同时点Q 从点B 出发向点C 运动,点P 、Q 的速度都是1cm/s .(1)在运动过程中,四边形AQCP 可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP 是菱形?(2)分别求出菱形AQCP 的周长、面积.解(1) 设运动了x 秒 则得方程 8x =- 得x=3(2)C=4(8-3)=20cm s=(8-3)4=202cm解法二: 可以建立直角平面BA 为y 轴 BC 为x 轴, 在AC 的中点坐标(4.2) 和AC 的钭率, 求出直线QP, 从而可求出Q.P 的坐标, 找到PD 的长就能求出秒数。

第1讲 菱形的性质与判定(解析版)

第1讲  菱形的性质与判定(解析版)

第1讲 菱形的性质与判定 1.理解掌握菱形的概念性质及判定定理2.会用菱形的有关知识进行证明,会计算菱形的面积 知识点01 菱形的性质(1)菱形的定义:有一组邻边相等的平行四边形叫做菱形.(2)菱形的性质①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.(3)菱形的面积计算①利用平行四边形的面积公式. ②菱形面积12ab .(a 、b 是两条对角线的长度) 【知识拓展1】菱形的两条对角线长的比是32,面积是cm 12,则它的对角线的长分别是 cm , cm . (★)解答方法:∵ 设菱形的两条对角线的长分别为厘米厘米x x 3,2,∴ 122132=⋅⋅=x x S 菱形,∴ 解得舍去)(2,221-==x x , ∴ 对角线的长分别为cm cm 6,4。

答案:cm cm 6,4。

【总结方法】菱形的面积等于对角线乘积的一半。

【即学即练】两对角线分别是6cm 和8cm 的菱形面积是 _________ cm 2,周长是 _________ cm . (★) 解答方法:菱形面积是224286cm =÷⨯;∵菱形的对角线互相垂直平分,根据勾股定理可得,边长为5cm ,则周长是20cm . 知识精讲目标导航故答案为24,20.解答:24,20【知识拓展2】菱形的周长是它的高的8倍,则菱形较小的一个角为()(★★) A.60°B.45°C.30°D.15°解答方法:菱形的周长为边长的4倍,又∵菱形周长为高的8倍,∴AB=2AE,∵△ABE为直角三角形,∴∠ABC=30°.故选 C.答案:C【总结方法】本题考查了菱形各边长相等的性质,考查了直角三角形中的特殊角,本题中根据特殊角求得∠ABC=30°是解题的关键.【即学即练1】菱形的一条对角线与边长相等,则菱形中较小的内角是()(★★) A.60°B.15°C.30°D.90°解答方法:因为菱形的一条对角线与边长相等,所以该对角线和菱形的两边组成的是等边三角形,可得该菱形较小内角的度数是60°.解答:A【即学即练2】如果菱形的周长等于一条对角线长的4倍,那么这个菱形较小的一个内角等于度.(★★)解答方法:∵菱形的周长等于一条对角线长的4倍,∴AB=BD=AD,∴△ABD是等边三角形,∴∠A=60°.即这个菱形较小的一个内角等于60°.解答:60【知识拓展3】已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE. (★★)答案:证明:∵ 四边形ABCD 是菱形,∴ BCD CA CD CB ∠=平分,.∴ CE CE DCE BCE =∠=∠又.,∴ △BCE ≌△COB (SAS ).∴ ∠CBE=∠CDE .∵ 在菱形ABCD 中,AB ∥CD , ∴∠AFD=∠FDC∴ ∠AFD=∠CBE .【总结方法】通过菱形的基本性质可以得到三角形全等,进而推出对应角相等,然后利用平行内错角相等进行转化即可得到要证明的结论。

菱形的判定(5种题型)(解析版)

菱形的判定(5种题型)(解析版)

菱形的判定(5种题型)【知识梳理】一、菱形的判定:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.几何语言:∵AB=BC=CD=DA∴四边形ABCD是菱形;③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).几何语言:∵AC⊥BD,四边形ABCD是平行四边形∴平行四边形ABCD是菱形要点诠释:前一种方法是在四边形的基础上加上四条边相等.后两种方法都是在平行四边形的基础上外加一个条件来判定菱形。

二.菱形的判定与性质(1)依次连接四边形各边中点所得的四边形称为中点四边形.不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形.(2)菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为矩形,对角线相等的四边形的中点四边形定为菱形.)(3)菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.(4)正方形是特殊的菱形,菱形不一定是正方形,所以,在同一平面上四边相等的图形不只是正方形.【考点剖析】题型一:添加一个条件使四边形为菱形∥,例1.(2023·安徽·校联考一模)如图,四边形ABCD的对角线AC,BD相交于点O,若AB CD =,想要判断四边形ABCD是菱形,则可以添加一个条件是_____________.AO CO【答案】AB AD =(答案不唯一)【分析】根据菱形的判定方法进行解答即可.【详解】解:∵AB CD ∥,∴OAB OCD ∠=∠,OBA ODC ∠=∠,∵AO CO =,∴△≌△AO B C O D , ∴AB CD =,∵AB CD ∥,∴四边形ABCD 为平行四边形,如果添加AB AD =,可以通过有一组邻边相等的平行四边形是菱形,判断四边形ABCD 为菱形; 故答案为:AB AD =.【点睛】本题主要考查了三角形全等的判定和性质,平行四边形的判定,平行线的性质,菱形的判定,解题的关键是熟练掌握菱形的判定方法.【变式】如图,▱ABCD 的对角线AC ,BD 相交于点O ,请添加一个条件: ,使▱ABCD 是菱形.【分析】根据菱形的定义得出答案即可.【解答】解:∵邻边相等的平行四边形是菱形,∴当AD =DC ,▱ABCD 为菱形;故答案为:AD =DC (答案不唯一).【点评】此题主要考查了菱形的判定以及平行四边形的性质,根据菱形的定义得出是解题关键.题型二:证明四边形为菱形例2.如图,在△ABC中,AC=BC,点D,E,F分别是AB,AC,BC的中点,连接DE,DF.求证:四边形DFCE 是菱形.【分析】根据三角形的中位线的性质和菱形的判定定理即可得到结论;【解答】证明:∵点D,E,F分别是AB,AC,BC的中点,∴DE∥CF,DE=BC,DF∥CE,DF=AC,∴四边形DECF是平行四边形,∵AC=BC,∴DE=DF,∴四边形DFCE是菱形;【点评】本题考查了菱形的判定和性质,等腰三角形的性质,三角形的中位线的性质,熟练掌握菱形的判定定理是解题的关键.例3.如图,四边形ABCD为平行四边形,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于E,F,且BE=BP,求证:(1)∠E=∠F;(2)四边形ABCD是菱形.【分析】(1)首先判定四边形BPFD是平行四边形,所以BP∥DF,利用平行线的性质可得∠F=∠BPE,又因为BE=BP,可得∠E=∠F;(2)利用平行线的性质以及菱形的判定方法进而得出即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴BP∥DF,∵EF∥BD,∴四边形BPFD是平行四边形,∴BP∥DF,∴∠F=∠BPE,∵BE=BP,∴∠E=∠BPE,∴∠E=∠F;(2)∵EF∥BD,∴∠E=∠ABD,∠F=∠ADB∴∠ABD=∠ADB,又∵四边形ABCD为平行四边形,∴四边形ABCD是菱形.【点评】本题考查了平行四边形的性质和判定、菱形的判定等知识,得出四边形BPFD是平行四边形是解题关键.【变式】如图,已知平行四边形ABCD,点E在AC的延长线上,连接BE、DE,过点D作DF∥EB交CA的延长线于点F,连接FB(1)求证:△DAF≌△BCE;(2)如果四边形ABCD是菱形,求证:四边形BEDF是菱形.【分析】(1)由平行四边形的性质得出AD=CB,AD∥CB,证出∠DAF=∠BCE,∠DFA=∠BEC,由AAS证明△DAF≌△BCE即可;(2)先证明四边形BEDF是平行四边形,再由菱形的性质得出AC⊥BD,即可得出四边形BEDF是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∴∠DAC=∠BCA,∴∠DAF=∠BCE,∵DF∥EB,∴∠DFA=∠BEC,在△DAF和△BCE中,,∴△DAF≌△BCE(AAS);(2)证明:连接BD,如图所示:由(1)得:△DAF≌△BCE,∴DF=BE,又∵DF∥BE,∴四边形BEDF是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,即EF⊥BD,∴四边形BEDF是菱形.【点评】本题考查了菱形的判定与性质、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.题型三:根据菱形的判定与性质求角度 例4.(2023春·福建福州·九年级统考期中)如图,在ABC 中,30ACB ∠=︒,将ABC 绕点C 顺时针旋转60︒得到DEC ,连接AE .(1)求证:AB AE =;(2)若A ABC CB =∠∠,证明:直线AE 与BC 互相垂直.【分析】(1)由ABC 绕点C 顺时针旋转60︒得到DEC ,可得60BCE ∠=︒,BC EC =,而30ACB ∠=︒,即得30ACE ACB ∠=︒=∠,可证()SAS ACB ACE △≌△,故AB AE =;(2)根据ABC 绕点C 顺时针旋转得到DEC ,AB AC =,可得AC DC DE AE ===,证明四边形ACDE 是菱形,得到DA CD ∥;又306090BCD ∠=︒+︒=︒,进而推导出AE BC ⊥.【详解】(1)证明:ABC 绕点C 顺时针旋转60︒得到DEC ,60BCE ∴∠=︒,BC EC =,30ACB ∠=︒,30ACE ACB ∴∠=︒=∠,AC AC =,()SAS ACB ACE ∴≌,AB AE =∴; (2)解:ABC 绕点C 顺时针旋转得到DEC ,AC DC ∴=,AB DE =,由(1)可知AB AE =,AE DE ∴=,若AB AC =,则AC AE =,AC DC DE AE ∴===,∴四边形ACDE 是菱形,AE CD ∴∥;30ACB ∠=︒,将ABC 绕点C 顺时针旋转60︒得到DEC ,306090BCD ∴∠=︒+︒=︒,即CD BC ⊥,AE BC ∴⊥,即直线AE 与BC 互相垂直.【点睛】本题考查三角形的旋转问题,涉及菱形的判定及全等三角形的判定与性质,解题的关键是掌握旋转的性质,证明ACB ACE △≌△. 模拟预测)如图,在正方形网格中,ABC 的顶点在格点上,请仅用无刻度的直尺 (1)在图1中,作45CAE ∠=︒.(2)在图2中,作ABC 的角平分线CF .【分析】(1)如图,取格点E ,连接AE ,则CAE ∠即为所作;(2)如图,取格点F ,作射线CF ,则射线CF 即为所作;【详解】(1)解:如图,CAE ∠即为所作,由图可得:2AN CM ==,1CN EM ==,90ANC CME ∠=∠=︒,∴()SAS ANC CME ≌,∴CAN ECM ∠=∠,AC CE =,∵90CAN ACN ∠+∠=︒,∴90ECM ACN ∠∠=︒,∴90ACE ∠=︒,∵AC CE =,∴45CAE CEA ∠=∠=︒;(2)解:如图,射线CF 即为所作,由图可得:AC CG GF AF ===∴四边形ACGF 为菱形,∴CF 平分ACG ∠,即CF 是ABC 的角平分线【点睛】本题考查网格作图,全等三角形判定与性质,等腰直角三角形,菱形的判定与性质,熟练掌握菱形的判定与性质是解题的关键.题型四:根据菱形的判定与性质求线段长 例5.(2023·山西长治·校联考二模)如图,在ABCD Y 中,对角线AC ,BD 相交于点O ,E 为OD 的中点,连接AE ,CE .(1)实践与操作:利用尺规在线段OB 上作出点F ,使得四边形AFCE 为平行四边形,连接AF ,CF ;(要求:尺规作图并保留作图痕迹,不写作法,标明字母)(2)应用与求解:若4,60AB BC ABC ==∠=︒,求EF 的长.【答案】(1)见解析(2)【分析】(1)利用圆规在OB 上作OF OE =,根据对角线互相平分的四边形是平行四边形可得四边形AFCE 为平行四边形;(2)先根据平行四边形的性质和已知条件证明EF OB =,再证ABC 是等边三角形,求出4AC =,再证四边形ABCD 是菱形,推出BO AC ⊥,最后根据勾股定理求出OB 即可.【详解】(1)解:如图所示:以点O 为圆心,OE 长为半径作弧,与线段OB 的交点即为点F ,连接AF ,CF .(2)解:由(1)知OF OE =,ABCD Y 中,E 为OD 的中点,∴1122OE OD OB ==, ∴12OF OE OB ==,∴EF OB =,4,60AB BC ABC ==∠=︒,∴ABC 是等边三角形,∴4AC =,ABCD Y 中,AB BC =,∴四边形ABCD 是菱形,∴BD AC ⊥,即BO AC ⊥, ∴122AO AC ==,∴OB ==∴EF =【点睛】本题考查尺规作图,平行四边形的判定与性质,菱形的判定与性质,等边三角形的判定与性质,勾股定理等,解题的关键是掌握菱形、平行四边形、等腰三角形的性质.【变式】如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点E ,点F 为四边形ABCD 外一点,DA 平分∠BDF ,∠ADF =∠BAD ,且AF ⊥AC .(1)求证:四边形ABDF 是菱形;(2)若AB =5,求AC 的长.【分析】(1)首先证明四边形ABDF 是平行四边形,再证明邻边相等即可证明.(2)在Rt △AFC 中,利用勾股定理求解即可.【解答】(1)证明:∵∠ADF =∠BAD ,∴AB ∥DF ,∵AF ⊥AC ,BD ⊥AC ,∴AF ∥BD ,∴四边形ABDF 是平行四边形;∵DA 平分∠BDF ,∴∠ADF =∠BDA ,∴∠BAD =∠BDA ,∴BD =AB ,∴四边形ABDF 是菱形.(2)解:∵DA 平分∠BDF ,∴∠ADF =∠BDA ,∵BD垂直平分线段AC,∴DA=DC,∴∠ADB=∠BDC=∠ADF,∵DA=DF=DC,∴∠DAF=∠F,∠DAC=∠DCA,∴∠ADC=180°﹣2∠DAC,∠ADF=180°﹣2∠DAF,∵∠DAF+∠DAC=90°,∴∠ADF+∠ADC=360°﹣2(∠DAC+∠DAF)=180°,∴C,D,F三点共线,∴∠ADB=∠BDC=∠ADF=60°,∵FA=FD,∴△ADF是等边三角形,∴AF=DF=CD=5,∵∠FAC=90°,∴AC==5.【点评】本题考查了平行四边形的判定和性质、菱形的判定、角平分线的性质,勾股定理的应用,解题的关键是利用勾股定理列方程,属于中考常考题型.题型五:根据菱形的判定与性质求面积例6.已知,如图,在▱ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,CE=3,求四边形ABCD的面积.【分析】(1)先证明四边形ABEF是平行四边形,再证明邻边相等即可证明.(2)作FG⊥BC于G,根据S菱形ABEF=•AE•BF=BE•FG,先求出FG即可解决问题.【解答】(1)证明:∵四边形ABCD是平行四边形∴AD∥BC,∴∠EBF=∠AFB,∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∴AB=AF,∵BO⊥AE,∴∠AOB=∠EOB=90°,∵BO=BO,∴△BOA≌△BOE(ASA),∴AB=BE,∴BE=AF,BE∥AF,∴四边形ABEF是平行四边形,∵AB=AF.∴四边形ABEF是菱形.(2)解:作FG⊥BC于G,∵四边形ABEF是菱形,AE=6,BF=8,∴AE⊥BF,OE=AE=3,OB=BF=4,∴BE==5,∵S菱形ABEF=•AE•BF=BE•FG,∴GF=,∴S平行四边形ABCD=BC•FG=.【点评】本题考查平行四边形的性质、菱形的判定和性质、勾股定理等知识,解题的关键是利用面积法求出高FG,记住菱形的三种判定方法,属于中考常考题型.【变式】如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到F,使EF=BE,连接CF.(1)求证:四边形BCFE为菱形;(2)若CE=8,∠CFE=60°,求四边形BCFE的面积.【分析】(1)证明DE是△ABC的中位线,由三角形中位线定理得出DE∥BC,BC=2DE,由已知条件得出EF =BC,证出四边形BCFE是平行四边形,再由EF=BE,即可得出结论;(2)作CM⊥DF于M,由菱形的性质得出EF=CF,证出△CEF是等边三角形,得出CF=CE=8,由三角函数求出CM,即可得出四边形BCFE的面积.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,BC=2DE,∴EF∥BC,∵BE=2DE,∴BC=BE,∵EF=BE,∴EF =BC ,∴四边形BCFE 是平行四边形,又∵EF =BE ,∴四边形BCFE 为菱形;(2)解:作CM ⊥DF 于M ,如图所示:由(1)得:四边形BCFE 为菱形,∴EF =CF ,∵∠CFE =60°,∴△CEF 是等边三角形,∴CF =CE =8,∴CM =CF •sin60°=8×=4,∴四边形BCFE 的面积=EF •CM =8×4=32.【点评】三角形中位线定理、等边三角形的判定与性质;熟练掌握菱形的判定与性质,证明△CEF 是等边三角形是解决问题(2)的突破口.【过关检测】一、单选题 1.(2023·陕西西安·校考二模)在下列条件中,能判定平行四边形ABCD 为菱形的是( )A .AB BC ⊥B .AC BD = C .AB BC = D .AB AC =【答案】C【分析】根据菱形的判定定理,即可进行解答.【详解】解:A 、若AB BC ⊥,则平行四边形ABCD 为矩形;不符合题意;B 、若AC BD =,则平行四边形ABCD 为正方形;不符合题意; C 、若AB BC =,则平行四边形ABCD 为菱形;符合题意;D 、若AB BC =,则平行四边形不是特殊的平行四边形;不符合题意;故选:C .【点睛】本题主要考查了菱形的判定,解题的关键是掌握有一组另邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形. A .点O 为ABCD Y 的对称中心C .::ABE BDF S S AE ED =△△【答案】B 【分析】由作图知,EF 是线段BD 的垂直平分线,利用平行四边形的性质可判断选项A ;根据菱形的判定定理可判断选项C ;根据菱形的性质得到BDF BDE S S =△△,可判断选项D ;BE 不一定平分ABD ∠,选项B 不正确.【详解】解:由作图知,EF 是线段BD 的垂直平分线,即点O 为ABCD Y 的对称中心,故选项A 正确,不符合题意;∵四边形ABCD 是平行四边形,∴DE BF ∥,∴DEF BFE ∠=∠,∵EF 是线段BD 的垂直平分线,∴BE ED =,BF FD =,BFE EFD ∠=∠,∴DEF EFD ∠=∠,∴DE DF =,∴DE DF BE BF ===,∴四边形BEDF 为菱形,故选项D 正确,不符合题意;∴BDF BDE S S =△△,∴:::ABE BDF ABE BDE S S S S AE ED ==△△△△,故选项C 正确,不符合题意;BE 不一定平分ABD ∠,故选项B 不正确,符合题意;故选:B .【点睛】本题考查平行四边形的性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 3.(2023·陕西西安·校考一模)在平行四边形ABCD 中,添加下列条件,能判定平行四边形ABCD 是菱形的是( )A .AB AD =B .AC BD = C .90ABC ∠= D .AB CD =【答案】A【分析】根据一组邻边相等的平行四边形是菱形即可求得答案.【详解】解:∵四边形ABCD 是平行四边形,又AB AD =, ∴平行四边形ABCD 是菱形,故选:A .【点睛】本题考查菱形的判定,熟记菱形的判定是解题的关键. 4.(2023·河北衡水·校联考模拟预测)春节期间,某广场布置了一个菱形花坛,两条对角线长分别为2310m ⨯和2410m ⨯,其面积用科学记数法表示为( )A .42610m ⨯B .421.210m ⨯C .521.210m ⨯D .22610m ⨯【答案】A 【分析】利用菱形的面积等于对角线乘积的一半进行计算,或者利用菱形对角线垂直的性质进行面积求解,最后化为科学记数法的形式即可.【详解】菱形的对角线相互垂直()2222ABD CBD ABCD BD AO OC BD AO BD CO BD AC S S S ⨯+⨯⨯⨯=+=+==四边形∴菱形的面积=对角线成绩的一半=224131********⨯⨯⨯⨯=⨯2m 【点睛】本题考查用对角线计算菱形的面积及科学记数法,也可以利用对角线垂直的性质进行面积的计算,注意所有对角线垂直的四边形面积均等于对角线乘积的一半.正确的使用公式和理解科学记数法的写法是解题的关键. 5.(2023·陕西西安·西安市铁一中学校考模拟预测)在下列条件中,能够判定ABCD Y 为菱形的是( )A .AB AC =B .AC BD ⊥ C .90A ∠=︒ D .AC BD = 【答案】B【分析】由菱形的判定和矩形的判定分别对各个选项进行判断即可.【详解】解:A 、由AB AC =,不能判定ABCD Y 为菱形,故选项不符合题意;B 、由AC BD ⊥,能判定ABCD Y 为菱形,故选项符合题意;C 、由90A ∠=︒,不能判定ABCD Y 为菱形,故选项不符合题意;D 、由AC BD =,能判定ABCD Y 为矩形,不能判定ABCD Y 为菱形,故选项不符合题意;故选:B .【点睛】本题考查了菱形的判定,熟练掌握菱形的判定定理是解题的关键.二、填空题【答案】2【分析】由菱形的性质可得OA OD 、的长,则可求得AD 的长,再由三角形中位线定理即可求得结果.【详解】解:在菱形ABCD 中,114322OA AC OD OB BD =====、,AC BD ⊥,由勾股定理得:5AD ,∵H是AB的中点,∴OH是ABD△的中位线,∴1522 OH AD==,故答案为:5 2.【点睛】本题考查了菱形的性质,勾股定理,三角形中位线定理,熟悉这些性质与定理是解题的关键.7.(2023·宁夏石嘴山·统考一模)如图,是小明作线段AB的垂直平分线的作法及作图痕迹,则四边形ADBC一定是______________.【答案】菱形【分析】根据作图方法可知AC BC AD BD===,再根据四条边相等的四边形是菱形即可得到答案.【详解】解:由作图方法可知,AC BC AD BD===,∴四边形ABCD是菱形,故答案为:菱形.【点睛】本题主要考查了菱形的判定,线段垂直平分线的尺规作图,熟知菱形的判定条件是解题的关键.8.(2023·广东广州·广州市育才中学校考一模)菱形的两个内角的度数比是1:3,一边上的高长是4,则菱形的面积是__________.【答案】【分析】根据菱形相邻的两个角度之比求出对应的角度,利用等腰直角三角形的性质求出菱形的边长,然后用菱形面积公式计算即可.【详解】如左图所示,∵菱形对角相等,互补,且两个内角的度数比是1:3,118045,1804513513A C B D ∴∠=∠=⨯︒=︒∠=∠=︒−︒=︒+,如图1所示,过点D 作BC 边上的高交BC 于点H ,则4DH =,90DHC ∠=︒,45C ∠=︒,∴△CDH 是等腰直角三角形,4CH DH ∴==,CD ∴=∵菱形四条边都相等,BC CD ∴==4ABCD S BC DH =⋅==菱如图2,当过点A 作CD 边上的高交CD 于点H ,同理可证△ADH 为等腰直角三角形,可求得CD AD ==4ABCD S CD AH =⋅==菱故答案为: 【点睛】本题考查了菱形的性质,等腰直角三角形的性质,解题的关键在于求出菱形的边长. 9.(2023春·四川成都·九年级成都嘉祥外国语学校校考阶段练习)如图,在ABCD Y 中,尺规作图:以点A 为圆心,AB 的长为半径画弧交AD 于点F ,分别以点B ,F 为圆心,以大于BF 的长为半径画弧交于点P ,作射线AP 交BC 与点E ,若12BF =,10AB =,则AE AB +的值为________.【答案】26【分析】证明四边形ABEF 是菱形,利用勾股定理求出OA 即可解决问题.【详解】解:由题意可知:AB AF =,AE BF ⊥,OB OF ∴=,BAE EAF ∠=∠,四边形ABCD 是平行四边形,AD BC ∴∥,EAF AEB ∴∠=∠,BAE AEB ∴∠=∠,AB BE AF \==,AF BE ∥,∴四边形ABEF 是平行四边形,AB AF =,∴四边形ABEF 是菱形,OA OE ∴=,162OB OF BF ===,在Rt AOB △中,8OA ,216AE OA ∴==,26AE AB ∴+=.故答案为:26.【点睛】本题考查了平行四边形的性质、菱形的判定和性质、勾股定理等知识,解题的关键是判定四边形ABEF 是菱形.【答案】8【分析】如图所示,连接EF ,设AE BF 、交于O ,由作图方法可知,AE 是线段BF 的垂直平分线,则BE FE =,OB OF =,证明OAF OEB △≌△,得到AF BE =,进而证明四边形ABEF 是菱形,则13902OB BF AE OA AOB ====︒,,∠ ,由勾股定理得4OA ==,则28AE OA ==.【详解】解:如图所示,连接EF ,设AE BF 、交于O ,由作图方法可知,AE 是线段BF 的垂直平分线,∴BE FE =,OB OF =,∵四边形ABCD 是平行四边形,∴AD BC ∥,∴OAF OEB OFA OBE ==∠∠,∠∠,∴()AAS OAF OEB △≌△,∴AF BE =,∴AF AB EF BE ===,∴四边形ABEF 是菱形,∴13902OB BF AE OA AOB ====︒,,∠ ,在Rt ABO △中,由勾股定理得4OA ==,∴28AE OA ==,故答案为:8.【点睛】本题主要考查了菱形的性质与判定,平行四边形的性质,勾股定理,线段垂直平分线的性质和尺规作图,证明四边形ABEF 是菱形是解题的关键. 11.(2023春·四川成都·九年级专题练习)如图,在ABC 中,AB AC =,分别以C 、B 为圆心,取AB 的长为半径作弧,两弧交于点D .连接BD 、AD .若130ABD ∠=︒,则CAD ∠=__________.【答案】25︒/25度【分析】由题意和作法可知:AB AC BD CD ===,可得四边形ABDC 是菱形,再根据菱形及等腰三角形的性质,即可求解.【详解】解:如图:连接CD ,由题意和作法可知:AB AC BD CD ===,∴四边形ABDC 是菱形,)()11180180130252BAD ABD ∠︒−∠=︒−︒=︒,25CAD BAD ∴∠=∠=︒,故答案为:25︒.【点睛】本题考查了菱形的判定与性质,等腰三角形的性质,证得四边形ABDC 是菱形是解决本题的关键.12.(2023·甘肃陇南·校考一模)如图,在平行四边形ABCD 中,2AB BC ==,60BAD ∠=︒,点M 为CD 的中点,连接AM BE AM ⊥,于点E ,则BE 的长为 ___________.【答案】【分析】连接BD BM ,,由题意可得△BCD 是等边三角形,BM CD ⊥,利用勾股定理分别求出BM AM 、,再由等积法求BE 的长即可.【详解】解:连接BD BM ,,∵四边形ABCD 是平行四边形,2AB BC ==,∴四边形ABCD 是菱形,∴2AB BC CD DA ====,CD AB ∥∵60BAD ∠=︒,∴60C ∠=︒,∴BCD △是等边三角形,∵M 是CD 的中点,∴BM CD ⊥, ∴112CM DM CD ===,AB BM ⊥,∵21BC CM ==,,∴BM =在Rt ABM 中,AM ===∵BE AM ⊥,∴AB BM BE AM ⋅==,故答案为:.【点睛】本题考查平行四边形的性质,菱形的判定及性质,等边三角形的判定与性质,熟练掌握菱形的判定及性质,等边三角形的性质,勾股定理,等积法是解题的关键. 13.(2023·湖北襄阳·校考一模)如图,▱ABCD 中,AB AD =,点E 是AB 上一点,连接CE 、DE ,且BC CE =,若40BCE ∠=︒,则ADE ∠=______.【答案】15︒/15度【分析】首先证明四边形ABCD 是菱形,然后根据等腰三角形的性质可得()118040702CEB B ∠=∠=︒−︒=︒,利用三角形内角和定理即可解决问题.【详解】解:在▱ABCD 中,AB AD =, ∴四边形ABCD 是菱形,AB AD BC CD ∴===,//AB CD ,BC CE =,CD CE ∴=,CED CDE ∴∠=∠,40BCE ∠=︒,()118040702CEB B ∴∠=∠=︒−︒=︒,70ADC B ∴∠=∠=︒,70ECD BEC ∠=∠=︒,()118070552CDE CED ∴∠=∠=︒−︒=︒,705515ADE ∴∠=︒−︒=︒.故答案为:15︒.【点睛】本题考查了平行四边形的性质,菱形的判定与性质,等腰三角形的性质,解决本题的关键是掌握菱形的判定与性质.三、解答题 14.(2023·陕西榆林·统考二模)如图,在ABC 中,BAC ∠的平分线AD 交BC 于点D .请利用尺规分别在AB 、AC 上求作点E 、F ,使得四边形AEDF 是菱形.(保留作图痕迹,不写作法)【答案】见解析【分析】作AD 的垂直平分线交,AC AB 于点,E F ,则点,E F 即为所求.【详解】解:如图所示,作AD 的垂直平分线交,AC AB 于点,E F ,则点,E F 即为所求理由如下,∵EF 是AD 的垂直平分线,∴,==EA ED FA FD ,∴EAD EDA ∠=∠,∵BAC ∠的平分线AD 交BC 于点D ,∴∠∠E A D F A D =,∴EDA FAD ∠=∠,∴AF DE ∥,同理可得AE DF ∥,∴四边形AEDF 是平行四边形,∵EA ED =,∴四边形AEDF 是菱形.【点睛】本题考查了作垂直平分线,角平分线的定义,菱形的判定,熟练掌握基本作图是解题的关键. (1)求证:ABC ADC ≅.(2)若EO CO =,试判断四边形【答案】(1)见解析(2)四边形BCDE 是菱形,理由见解析【分析】(1)根据SSS 定理推出即可;(2)先判断AC 为BD 的垂直平分线得到AC BD OB OD ⊥=,,再由EO CO =,可判断四边形BCDE 为平行四边形,然后利用AC BD ⊥可判断四边形BCDE 是菱形.【详解】(1)在ABC 与ADC △中,AB AD BC DCAC AC =⎧⎪=⎨⎪=⎩,∴()ΑSSS BC ADC ≅.(2)四边形BCDE 是菱形,理由如下:∵AB AD CB CD ==,,∴AC 垂直平分BD ,即AC BD ⊥且BO DO =.∵EO CO =,∴四边形BCDE 是平行四边形.∵AC BD ⊥,∴四边形BCDE 是菱形.【点睛】本题考查了全等三角形的判定,线段的垂直平分线的判定和性质及菱形的判定,解题的关键是了解菱形的判定方法,难度不大. 九年级专题练习)如图,在ABC 中,上的中点,将ABC 绕着点 【答案】(1)见解析(2)【分析】(1)根据旋转的性质可得,AC BD AD BC ==,从而得到AC BD AD BC ===,即可求证;(2)过点A 作AE BC ⊥于点E ,先证明ABC 是等边三角形,可得112BE BC ==,2AB BC ==,再由勾股定理可得AE【详解】(1)证明:∵将ABC 绕着点O 旋转180︒得ABD △,∴,AC BD AD BC ==,∵AC BC =,∴AC BD AD BC ===,∴四边形AECD 是菱形;(2)解:如图,过点A 作AE BC ⊥于点E ,∵60,2B BC AC ∠=︒==,∴ABC 是等边三角形, ∴112BE BC ==,2AB BC ==,∴AE∴菱形AECD 的面积为AE BC ⨯=【点睛】等边三角形的判定和性质,勾股定理,熟练掌握菱形的判定和性质,等边三角形的判定和性质,勾股定理是解题的关键. 17.(2023·黑龙江哈尔滨·统考一模)如图,方格纸中每个小正方形的边长均为1,ABC 的顶点和点O 均在小正方形的顶点上.(1)在方格纸中画出DEF ,使DEF 和ABC 关于点O 对称(点A 、B 、C 的关于点O 的对称点分别为点D 、E 、F );(2)在方格纸中画出以线段EF 为一边的菱形EFMN ,且菱形EFMN 的面积为3,连接CN .请直接写出线段CN 的长.【答案】(1)见解析(2)图见解析;CN =【分析】(1)作出点A 、B 、C 关于点O 的对称点D 、E 、F ,顺次连接即可得出DEF ;(2)找出格点M 、N ,连接MF 、MN 、NE ,即可得出菱形EFMN ,求出线段CN 的长即可.【详解】(1)解:如图,作出点A 、B 、C 关于点O 的对称点D 、E 、F ,顺次连接,则DEF 即为所求.(2)解:如图,找出格点M 、N ,连接MF 、MN 、NE 、CN ,则菱形EFMN 即为所求作的菱形;根据格点特点可知,EF MF MN EN ===,∴四边形EFMN 为菱形,1334211132EFMN S =⨯−⨯⨯⨯−−=菱形,CN【点睛】本题主要考查了作中心对称图形,菱形的判断,勾股定理,解题的关键是数形结合,熟练掌握方格纸的特点.【答案】见解析【分析】先利用ABD BDC ∠=∠,证明AB DC ,进而证明四边形ABCD 为平行四边形,再有勾股定理逆定理证明AOB 为直角三角形,得到AC BD ⊥,则问题可证.【详解】证明:∵ABD BDC ∠=∠,∴AB DC ,∵AB CD =∴四边形ABCD 为平行四边形,∵AB CD =2OA =,1OB =,∴22222221OA OB AB +=+==,∴AOB 为直角三角形,即AC BD ⊥,∴四边形ABCD 是菱形.【点睛】本题考查了菱形的判定和勾股定理逆定理,解答关键是熟练掌握菱形的判定方法. (1)求证:四边形AECF 是菱形;(2)若1BE =,4EC =,求EF 【答案】(1)见解析(2)EF 的长为【分析】(1)由D 是AC 的中点,可得AD CD =,由DF DE =,可证四边形AECF 是平行四边形,由DE AC ⊥,可证平行四边形AECF 是菱形;(2)由题意知4AE CE ==,在Rt ABE △中,由勾股定理,得AB =,计算求AB 的值,在Rt ABC△中,由勾股定理,得AC =AC 的值,根据12AECF S EF AC AB EC =⋅=⋅菱形,计算求解即可.【详解】(1)证明:∵D 是AC 的中点,∴AD CD =,∵DF DE =,∴四边形AECF 是平行四边形,又∵DE AC ⊥,∴平行四边形AECF 是菱形;(2)解:∵1BE =,4EC =,四边形AECF 是菱形,∴4AE CE ==,∴在Rt ABE △中,由勾股定理,得AB =∴在Rt ABC △中,由勾股定理,得AC = ∵12AECF S EF AC AB EC =⋅=⋅菱形,∴EF =∴EF 的长为【点睛】本题考查了菱形的判定与性质,勾股定理.解题的关键在于对知识的熟练掌握与灵活运用. 20.(2023春·辽宁本溪·九年级统考开学考试)如图,ABCD Y 的对角线AC ,BD 相交于点O ,点O 作AC 的垂线,与AD ,BC 分别相文于点E ,F ,连接EC ,AF .(1)求证:四边形AECF 是菱形;(2)若4=EC ED ,DOE 的面积是2,求ABCD Y 的面积.【答案】(1)见解析(2)40【分析】(1)由平行四边形的性质得到OA OC =,AD BC ∥,进一步证明()AAS AOE COF △≌△,则AE CF =,即可证明四边形AECF 是平行四边形,由EF AC ⊥即可得到结论;(2)由菱形的性质得到AE CE =,进一步得到4AE EC ED ==,则48==AOE DOE S S △△,即可得到10=+=AOD AOE DOE S S S △△△,由平行四边形的性质即可得到ABCD Y 的面积.【详解】(1)证明:∵四边形ABCD 为平行四边形,∴OA OC =,AD BC ∥,∴DAC ACF ∠=∠,AEF EFC ∠=∠,∴()AAS AOE COF △≌△,∴AE CF =,∵AE CF ∥,∴四边形AECF 是平行四边形,∵EF AC ⊥,∴四边形AECF 是菱形;(2)解:∵四边形AECF 是菱形,∴AE CE =,∵4=EC ED ,∴4AE EC ED ==,∴48==AOE DOE S S △△,∴10=+=AOD AOE DOE S S S △△△,∵四边形ABCD 是平行四边形,∴AC 与BD 互相平分,∴AOD COD BOC AOB S S S S ===△△△△, ∴4=ABCD AOD S S △, ∴40=ABCDS 答:ABCD Y 的面积为40.【点睛】此题考查了平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等,熟练掌握相关判定和性质是关键. 21.(2023·陕西宝鸡·统考二模)如图,在四边形ABCD 中,AB CD =,过A 作AE BD ⊥交BD 于点E ,过C 作CF BD ⊥交BD 于F ,且AE CF =.请你在不添加辅助线的情况下,添一个条件______,使得四边形ABCD 是菱形,并说明理由.【答案】答案不唯一,见解析【分析】添加条件AB AD =,根据HL 证明Rt Rt ABE CDF ≌△△,从而得到ABE CDF ∠=∠,再根据平等线的判断得到AB CD =,从而得到结论.【详解】解:AB AD =.理由:∵AE BD ⊥,CF BD ⊥,∴90AEB CFD ∠=∠=︒,在Rt ABE △和Rt CDF △中,AB CD AE CF =⎧⎨=⎩,∴()Rt Rt HL ABE CDF ≌△△,∴ABE CDF ∠=∠,∴AB CD ∥,∵AB CD =,∴四边形ABCD 是平行四边形.∵AB AD =,∴四边形ABCD 是菱形.(注:答案不唯一)【点睛】本题考查了菱形的判定,熟练掌握全等三角形的性质与判定,平行线的性质与判定和菱形的判定是解题的关键. 的交点.若将BED 沿直线 (1)求证:四边形BEDF 是菱形;(2)若::1:3:22AE DE AB =【答案】(1)证明见解析(2)【分析】(1)由平行四边形的性质可得DE BF ∥,则EDB FBD ∠=∠,由折叠的性质可得DE DF =,EDB FDB ∠=∠,则FBD FDB ∠=∠,BF DF DE ==,进而结论得证;(2)设AE a =,则3DE a =,AB =,3BE a =,4AD a =,由()()222293a a a +==,即222AE AB BE +=,可得ABE 是直角三角形,且90BAE ∠=︒,则四边形ABCD 是矩形,由平行四边形ABCD的面积为可得AD AB ⨯=即4a ⨯=解得22a =,根据2BEDF BD EF S DE AB ⋅=⋅=菱形 ,计算求解即可得EF BD ⋅的值.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴DE BF ∥,∴EDB FBD ∠=∠,。

中考数学复习----《菱形的判定》知识点总结与专项练习题(含答案)

中考数学复习----《菱形的判定》知识点总结与专项练习题(含答案)

中考数学复习----《菱形的判定》知识点总结与专项练习题(含答案)知识点总结1.直接判定:四条边都相等的四边形是菱形。

几何语言:∵AB=BC=CD=DA,∴四边形ABCD是菱形2.利用平行四边形判定:①定义:一组领边相等的平行四边形是菱形。

②对角线的特殊性:对角线相互垂直的平行四边形是菱形。

练习题1、(2022•襄阳)如图,▱ABCD的对角线AC和BD相交于点O,下列说法正确的是()A.若OB=OD,则▱ABCD是菱形B.若AC=BD,则▱ABCD是菱形C.若OA=OD,则▱ABCD是菱形D.若AC⊥BD,则▱ABCD是菱形【分析】由矩形的判定和菱形的判定分别对各个选项进行判断即可.【解答】解:A、∵四边形ABCD是平行四边形,∴OB=OD,故选项A不符合题意;B、∵四边形ABCD是平行四边形,AC=BD,∴▱ABCD是矩形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵OA=OD,∴AC=BD,∴▱ABCD是矩形,故选项C不符合题意;D、∵四边形ABCD是平行四边形,AC⊥BD,∴▱ABCD是菱形,故选项D符合题意;故选:D.2、(2022•营口)如图,将△ABC沿着BC方向平移得到△DEF,只需添加一个条件即可证明四边形ABED是菱形,这个条件可以是.(写出一个即可)【分析】由平移的性质得AB∥DE,AB=DE,则四边形ABED是平行四边形,再由菱形的判定即可得出结论.【解答】解:这个条件可以是AB=AD,理由如下:由平移的性质得:AB∥DE,AB=DE,∴四边形ABED是平行四边形,又∵AB=AD,∴平行四边形ABED是菱形,故答案为:AB=AD(答案不唯一).3、(2022•齐齐哈尔)如图,在四边形ABCD中,AC⊥BD,垂足为O,AB∥CD,要使四边形ABCD为菱形,应添加的条件是.(只需写出一个条件即可)【分析】由AB∥CD,AB=CD得四边形ABCD是平行四边形,再由菱形的判定即可得出结论.【解答】解:添加的条件是AB=CD,理由如下:∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,又∵AC⊥BD,∴平行四边形ABCD是菱形,故答案为:AB=CD(答案不唯一).4、(2022•辽宁)如图,CD是△ABC的角平分线,过点D分别作AC,BC的平行线,交BC于点E,交AC于点F.若∠ACB=60°,CD=43,则四边形CEDF的周长是.【分析】连接EF交CD于O,证明四边形CEDF是菱形,可得CD⊥EF,∠ECD=∠ACB=30°,OC=CD=2,在Rt△COE中,可得CE===4,故四边形CEDF的周长是4CE=16.【解答】解:连接EF交CD于O,如图:∵DE∥AC,DF∥BC,∴四边形CEDF是平行四边形,∵CD是△ABC的角平分线,∴∠FCD=∠ECD,∵DE∥AC,∴∠FCD=∠CDE,∴∠ECD=∠CDE,∴CE=DE,∴四边形CEDF是菱形,∴CD⊥EF,∠ECD=∠ACB=30°,OC=CD=2,在Rt△COE中,CE===4,∴四边形CEDF的周长是4CE=4×4=16,故答案为:16.。

菱形的性质及判定知识点及典型例题

菱形的性质及判定知识点及典型例题

1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质: ① 边的性质:对边平行且四边相等. ② 角的性质:邻角互补,对角相等.③ 对角线性质:对角线互相垂直平分且每条对角线平分一组对角. ④ 对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以高,等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半. 3.菱形的判定判定①:一组邻边相等的平行四边形是菱形. 判定②:对角线互相垂直的平行四边形是菱形. 判定③:四边相等的四边形是菱形.4.三角形的中位线中位线:连结三角形两边的中点所得的线段叫做三角形的中位线.也可以过三角形一边的中点作平行于三角形另外一边交于第三边所得的线段也是中位线. 以上是中位线的两种作法,第一种可以直接用中位线的性质,第二种需要说明理由为什么是中 位线,再用中位线的性质.中点中点中点平行定理:三角形的中位线平行第三边且长度等于第三边的一半.重点是菱形的性质和判定定理。

菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。

菱形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

菱形的性质 及判定难点是菱形性质的灵活应用。

由于菱形是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。

如果得到一个平行四边形是菱形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程 中应给予足够重视。

板块一、菱形的性质【例1】 菱形的两条对角线将菱形分成全等三角形的对数为【例2】 在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是【例3】 如图2,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离16cm AB BC ==,则1∠= 度.图21CBA【例4】 如图,在菱形ABCD 中,60A ∠=︒,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD的边长是______.【例5】 如图,E 是菱形ABCD 的边AD 的中点,EF AC ⊥于H ,交CB 的延长线于F ,交AB 于P ,证明:AB 与EF 互相平分.P HFE DCBA【例6】 如图1所示,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 .E FDBCA图1HO DC BA【例7】 如图,已知菱形ABCD 的对角线8cm 4cm AC BD DE BC ==⊥,,于点E ,则DE 的长为【例8】 菱形周长为52cm ,一条对角线长为10cm ,则其面积为 .【例9】 菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较短的对角线的长度为【例10】 如图2,在菱形ABCD 中,6AC =,8BD =,则菱形的边长为( )A .5B .10C .6D .8图2DCBA【例11】 如图3,在菱形ABCD 中,110A ∠=︒,E 、F 分别是边AB 和BC 的中点,EP CD ⊥于点P ,则FPC ∠=( )A .35︒B .45︒C .50︒D .55︒图3E DP CF BA【例12】 如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒的菱形,剪口与折痕所成的角α的度数应为( )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒【例13】菱形ABCD中,E、F分别是BC、CD的中点,且AE BC⊥,AF CD⊥,那么EAF∠等于.【例14】已知菱形的一个内角为60︒,一条对角线的长为,则另一条对角线的长为________.【例15】如图,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为()A.210cm B.220cm C.240cm D.280cm图1DCBA【例16】已知菱形ABCD的两条对角线AC BD,的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是【例17】如图,菱形花坛ABCD的周长为20m,60ABC∠=︒,•沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积.图2【例18】如图,在菱形ABCD中,4AB a E=,在BC上,2120BE a BAD P=∠=︒,,点在BD上,则PE PC+的最小值为EPDCBA【例19】 已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,若AE AF EF AB ===,求C ∠的度数.FEDCBA【例20】 已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBA板块二、菱形的判定【例21】 如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是 .DCAB【例22】 如图,在ABC ∆中,BD 平分ABC ∠,BD 的中垂线交AB 于点E ,交BC 于点F ,求证:四边形BEDF 是菱形FEDCBA【例23】 如图,在ABC ∆中,AB AC =,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE .当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由.EDCB A【例24】 已知:如图,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于E 、F .求证:四边形AFCE 是菱形.ODEFCAB【例25】 如图,在梯形纸片ABCD 中,//AD BC ,AD CD >,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C E '.求证:四边形CDC E '是菱形.C'DCB A E【例26】 如图,E 是菱形ABCD 的边AD 的中点,EF AC ⊥于H ,交CB 的延长线于F ,交AB 于P ,证明:AB 与EF 互相平分AB CDEF P PF EDC B A【例27】 已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE ∆沿BC 方向平移,使点E 与点C 重合,得GFC ∆.若60B ∠=︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.GF E DCBA【例28】 如图,在ABC ∆中,AB AC =,M 是BC 的中点.分别作MD AB ⊥于D ,ME AC ⊥于E ,DF AC ⊥于F ,EG AB ⊥于G .DF EG 、相交于点P .求证:四边形DMEP 是菱形.PMF E DG CBA【例29】 如图,ABC ∆中,90ACB ∠=︒,AD 是BAC ∠的平分线,交BC 于D ,CH 是AB 边上的高,交AD于F ,DE AB ⊥于E ,求证:四边形CDEF 是菱形.HF DECBA【例30】 如图,M 是矩形ABCD 内的任意一点,将MAB ∆沿AD 方向平移,使AB 与DC 重合,点M 移动到点'M 的位置⑴画出平移后的三角形; ⑵连结'MD MC MM ,,,试说明四边形'MDM C 的对角线互相垂直,且长度分别等于AB AD ,的长;⑶当M 在矩形内的什么位置时,在上述变换下,四边形'MDM C 是菱形?为什么?M'MDC BA【例31】 如图,ACD ∆、ABE ∆、BCF ∆均为直线BC 同侧的等边三角形.已知AB AC =.⑴ 顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.⑵ 当BAC ∠为 度时,四边形ADFE 为正方形.FEDCBA三、与菱形相关的几何综合题【例32】 已知等腰ABC △中,AB AC =,AD 平分BAC ∠交BC 于D 点,在线段AD 上任取一点P (A 点除外),过P 点作EF AB ∥,分别交AC 、BC 于E 、F 点,作PM AC ∥,交AB 于M 点,连结ME .⑴求证四边形AEPM 为菱形⑵当P 点在何处时,菱形AEPM 的面积为四边形EFBM 面积的一半?MPFABCDE【例33】 问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段DF 的中点,连结PG PC ,.若60ABC BEF ∠=∠=︒,探究PG 与PC 的位置关系及PGPC的值.小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决. 请你参考小聪同学的思路,探究并解决下列问题:⑴ 写出上面问题中线段PG 与PC 的位置关系及PGPC的值;⑵ 将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在⑴中得到的两个结论是否发生变化?写出你的猜想并加以证明.⑶ 若图1中()2090ABC BEF αα∠=∠=︒<<︒,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,求PGPC的值(用含α的式子表示). 图2AB CDEFG P四、中位线与平行四边形【例34】 顺次连结面积为20的矩形四边中点得到一个四边形,再顺次连结新四边形四边中点得到一个 ,其面积为 .【例35】 如图,在四边形ABCD 中,AB CD ≠,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还满足的一个条件是 ,并说明理由.HGFE D CBA【例36】 在四边形ABCD 中,AB CD =,P ,Q 分别是AD 、BC 的中点,M ,N 分别是对角线AC ,BD中点,证明:PQ 与MN 互相垂直.Q PMNCB D A【例37】 四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CD上从C 向D 移动而点R 不动时,那么下列结论成立的是 ( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减小 C .线段EF 的长不变D .线段EF 的长与点P 的位置有关P FREDCBA【例38】 如图,ABC ∆中,AD 是BAC ∠的平分线,CE AD ⊥于E ,M 为BC 的中点,14cm AB =,10cm AC =,则ME 的长为 .M EDCBA【例39】 如图,四边形ABCD 中,AB CD =,E F ,分别是BC AD ,的中点,连结EF 并延长,分别交BA CD,的延长线于点G H ,,求证:BGE CHE ∠=∠ABH G FEDCBA【例40】 如图,已知BE 、CF 分别为ABC ∆中B ∠、C ∠的平分线,AM BE ⊥于M ,AN CF ⊥于N ,求证:MN BC ∥.NMEFCBA【例41】 如图,四边形ABCD 中,E F ,分别是边AB CD ,的中点,则AD BC ,和EF 的关系是( )A .2AD BC EF +>B .2AD BC EF +≥ C .2AD BC EF +< D .2AD BC EF +≤ADFEDCBA【例42】 已知如图所示,E 、F 、G 、H 分别是四边形ABCD 的四边的中点,求证:四边形EFGH 是平行四边形.HGFEDC BA【例43】 如图,在四边形ABCD 中,E 为AB 上一点,ADE ∆和BCE ∆都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,证明四边形PQMN 为平行四边形且PQ PN =.QEP NMDCBA【例44】 如图,四边形ABCD 中,AB CD E F G H =,,,,分别是AD BC BD AC ,,,的中点,求证:EF GH,相互垂直平分ABGH GFEDCBA【例45】 ABC ∆的三条中线分别为AD 、BE 、CF ,H 为BC 边外一点,且BHCF 为平行四边形,求证:AD EH ∥.ABCDE FH【例46】 在平行四边形ABCD 的对角线BD 上取一点E ,使13BE DE =,连接AE 并延长与DC 的延长线交于F ,则2CF AB =.图1CAEDBF【例47】 如图,ABC ∆中,E 、F 分别是AB 、BC 的中点,G 、H 是AC 的三等分点,连结并延长EG 、FH 交于点D .求证:四边形ABCD 是平行四边形.HGFEDCBA【例48】 如图,在四边形ABCD 中,M 、N 分别为AD 、BC 的中点,BD AC =,BD 和AC 相交于点O ,MN 分别与AC 、BD 相交于E 、F ,求证:OE OF =.FE ONM D CBA【例49】 如图,线段AB CD ,相交于点O ,且AB CD =,连结AD BC ,,E F ,分别是AD BC ,的中点,EF分别交AB CD ,于M N ,,求证:OM ON =A CFEO N M DCBA【例50】 如图,梯形ABCD 中,AD BC AB CD =∥,,对角线AC BD ,相交于点O ,60AOD ∠=︒,E F G,,分别是OA OB CD ,,的中点,求证:EFG ∆是等边三角形A BEFO G FE DC BA【例51】 如图,求证:四边形两组对边中点连线与两对角线中点连结这三条线共点.OE FLHNMDCB A【例52】 如图,O 是平行四边形ABCD 内任意一点,E F G H ,,,分别是OA OB OC OD ,,,的中点.若DE ,CF 交于P ,DG ,AF 交于Q ,AH ,BG 交于R ,BE ,CH 交于S ,求证:PQ SR .SR QPH GOEFDCB A。

(完整版)菱形知识点及经典题-推荐文档

(完整版)菱形知识点及经典题-推荐文档

菱形【知识梳理】1.定义: 有一组邻边相等的平行四边形叫做菱形(菱形是平行四边形: 一组邻边相等)2.性质: (1)边: 四条边都相等;(2)角: 对角相等、邻角互补;(3)对角线: 对角线互相垂直平分且每条对角线平分每组对角;(4)对称性:既是轴对称图形又是中心对称图形.3.菱形的判定方法:一组邻边相等的平行四边形是菱形对角线互相垂直平分的平行四边形是菱形对角线互相垂直平分的四边形是菱形四条边都相等的四边形是菱形4.识别菱形的常用方法(1)先说明四边形ABCD为平行四边形, 再说明平行四边形ABCD的任一组邻边相等.(2)先说明四边形ABCD为平行四边形, 再说明对角线互相垂直.(3)说明四边形ABCD的四条相等.5、面积:设菱形ABCD的一边长为a, 高为h, 则S菱形=ah;若菱形的两对角线的长分别为a,b, 则S菱形=ab【经典题】一、选择题1.(201.广东省珠海市.边长为3 cm的菱形的周长是.. )A.6 cmB.9 cmC.12 cmD.15 cm3.(201.贵州省毕节地区.如图所示, 菱形ABCD 中, 对角线AC.BD 相交于点O, H 为AD 边的中点, 菱形ABCD 的周长为28, 则OH 的长等于. )A.3.5B.4C.7D.14B C(第8题图)4.(201.湖南省长沙市.如图, 已知菱形ABCD 的边长等于2, ∠DAB=60°,则对角线BD 的长....)A. 1B.C. 2D. 25.(201.江苏省徐州市.若顺次连接四边形的各边中点所得的四边形是菱形, 则该四边形一定是矩形 B.等腰梯形C.对角线相等的四边形D.对角线互相垂直的四边形6.(201.山东省枣庄市.如图, 菱形ABCD的边长为4, 过点A.C作对角线AC的垂线, 分别交CB和AD的延长线于点E, F,AE=3, 则四边形AECF的周长为.. )A. 22B. 18C. 14D. 117.(201.浙江省宁波市.菱形的两条对角线长分别是6和8, 则此菱形的边长...... .. )A.1.......B........C.......D.58.(201.黑龙江省农垦牡丹江管理局.如图, 在菱形ABCD中, E是AB边上一点, 且∠A=∠EDF=60°, 有下列结论: ①AE=BF;②△DEF是等边三角形;③△BEF是等腰三角形;④∠ADE=∠BEF, 其中结论正确的个数是()A. 3B. 4C. 1D. 29.(201.上海市.如图, 已知AC.BD是菱形ABCD的对角线, 那么下列结论一定正确的是.. ).(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的周长相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.10.(201.浙江省台州市.如图, 菱形ABCD的对角线AC=4cm, 把它沿着对角线AC方向平移1cm得到菱形EFGH, 则图中阴影部分图形的面积与四边形EMCN的面积之比为()A.4:3 B.3:2 C.14: 9 D.17: 9二、填空题11.(201.吉林省长春市.如图, 在边长为3的菱形ABCD中, 点E在边CD上, 点F为BE延长线与AD延长线的交点. 若DE=1, 则DF的长为.. .12.(201.福建省莆田市.如图, 菱形ABCD的边长为4, ∠BAD=120°, 点E是AB的中点, 点F是AC上的一动点, 则EF+BF的最小值是2 .13.(201.甘肃省陇南市.如图, 四边形ABCD是菱形, O是两条对角线的交点, 过O点的三条直线将菱形分成阴影和空白部分. 当菱形的两条对角线的长分别为6和8时, 则阴影部分的面积为12.14.(201.甘肃省兰州市.如果菱形的两条对角线的长为a 和b, 且a, b 满足(a ﹣1)2+=0, 那么菱形的面积等于 _________ .15.(201.湖北省十堰市.如图, 在△ABC 中, 点D 是BC 的中点, 点E 、F 分别在线段AD 及其延长线上, 且DE=DF, 给出下列条件: ①BE ⊥EC ;②BF ∥CE ;③AB=AC ;从中选择一个条件使四边形BECF 是菱形, 你认为这个条件.... (只填写序号)DAB C F E16.(201.江苏省宿迁市.如图, 在平面直角坐标系xOy 中, 若菱形ABCD 的顶点A, B 的坐标分别为(-3, 0), (2,0), 点D 在y 轴上, 则点C 的坐标......17.(201.辽宁省大连市.如图, 菱形ABCD 中, AC.BD 相交于点O, 若∠BCO=55°, 则∠ADO=. .18.(201.四川省宜宾市.菱形的周长为20cm, 两个相邻的内角的度数之比为l ∶2, 则较长的对角线长度是cm.19.(201.四川省凉山州.顺次连接矩形四边中点所形成的四边形... , 学校的一块菱形花圃两对角线的长分别是6m 和8m, 则这个花圃的面积......20.(201.四川省泸州市.一个平行四边形的一条边长为3, 两条对角线的长分别为4和, 则它的面积...... .21.(201.福建省漳州市.若菱形的周长为20cm, 则它的边长是 cm .22.(201.重庆市A 卷.如图, 菱形ABCD 中, ∠A=60°, BD=7, 则菱形ABCD 的周长为________.CAB23.(201.辽宁省锦州市.菱形ABCD 的边长为2, ,E 是AD 边中点, 点P 是对角线BD 上的动点, 当AP+PE 的值最小时, PC 的长是__________.24.(201.山东省淄博市.已知□ABCD, 对角线AC, BD 相交于点O, 请你添加一个适当的条件, 使□ABCD 成为一个菱形. 你添加的条件........三、证明题25.(201.福建省厦门市.如图6, 在四边形ABCD.., AD ∥BC, AM ⊥BC, 垂足为M, AN ⊥DC, 垂足为N. 若∠BAD =∠BCD, AM =AN, 求证四边形ABCD 是菱形.B D(第15题图)图626.(201.贵州省贵阳市.如图, 在Rt △ABC 中, ∠ACB=90°, D.E 分别为AB, AC 边上的中点, 连接DE, 将△ADE 绕点E 旋转180°得到△CFE, 连接AF, CD.(1)求证: 四边形ADCF 是菱形;(5分)(2)若BC =8, AC =6, 求四边形ABCF 的周长.(5分)27.(201.江苏省淮安市.如图, 在三角形ABC 中, AD 平分∠BAC, 将△ABC 折叠, 使点A 与点D 重合, 展开后折痕分别交AB.AC 于点E 、F, 连接DE 、DF.求证: 四边形AEDF 是菱形.28.(201.四川省乐山市.如图, 在△ABC 中, AB=AC, 四边形ADEF 是菱形, 求证: BE=CE.29.(201.湖南省张家界市.如图, 在四边形ABCD 中, AB =AD, CB =CD, AC 与BD 相交于O 点, OC=OA, 若E 是CD 上任意一点, 连结BE 交AC 于点F, 连结DF.(1)证明: △CBF ≌△CDF ;(2)若AC=2, BD=2,求四边形ABCD 的周长;(3)请你添加一个条件, 使得∠EFD =∠BAD, 并予以证明.第18题图 E D C A四、猜想、探究题30.(201.四川省攀枝花市.如图, 两个连接在一起的菱形的边长都是1cm, 一只电子甲虫, 从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行, 当电子甲虫爬行2014cm时停下, 则它停的位置是()A.点F B.点E C.点A D.点C。

第01讲 菱形的性质与判定(知识解读+真题演练+课后巩固)(原卷版)

第01讲 菱形的性质与判定(知识解读+真题演练+课后巩固)(原卷版)

第1讲 菱形的性质与判定1. 理解菱形的概念;2. 探索并证明菱形的性质定理和判定定理,并能运用它们进行证明和计算;3. 通过经历菱形的性质定理和判定定理的探索过程,丰富学生的数学活动经验和体验,进一步培养和发展学生的合情推理能力;4. 通过菱形的性质定理和判定定理以及相关问题的证明和计算,进一步培养和发展学生的演绎推理能力。

知识点 1:菱形的性质菱形的定义:一组邻边相等的平行四边形叫做菱形。

※菱形的性质:(1)具有平行四边形的性质(2)且四条边都相等(3)两条对角线互相垂直平分,每一条对角线平分一组对角。

注意:菱形是轴对称图形,每条对角线所在的直线都是对称轴。

知识点2:菱形的面积菱形的面积等于两条对角线长的乘积的一半BD AC BD AC S S AOB Rt ABCD •=••⨯==∆2121212144菱形知识点3:菱形的判定※菱形的判别方法:一组邻边相等的平行四边形是菱形。

对角线互相垂直的平行四边形是菱形。

四条边都相等的四边形是菱形。

【题型1菱形的概念和性质】【典例1】如图,在菱形ABCD中,对角线AC,BD相交于点O,已知AC=10cm,BD=24cm,则△ABD的周长为()A.30cm B.36cm C.50cm D.52cm【变式1-1】如图,在菱形ABCD中,∠ABD=30°,则∠A的度数为()A.150°B.140°C.130°D.120°【变式1-2】在菱形ABCD中,对角线AC,BD相交于点O,下列结论中不一定正确的是()A.AB=AD B.AC⊥BD C.∠DAC=∠BAC D.AC=BD 【变式1-3】如图,菱形ABCO中的顶点O,A的坐标分别为(0,0),,点C在x轴的正半轴上,则点B的坐标为()A.B.C.D.【典例2】(2022秋•绥化期末)下列不属于菱形性质的是()A.四条边都相等B.两条对角线相等C.两条对角线互相垂直D.每一条对角线平分一组对角【变式2-1】(2022秋•舞钢市期中)下列说法不正确的是()A.菱形的四条边都相等B.菱形的对角线相等C.菱形是轴对称图形D.菱形的对角线互相垂直【变式2-2】(2022春•兰陵县期末)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=25°,则∠DHO的度数是()A.25°B.30°C.35°D.40°【变式2-3】(2022•赫章县模拟)如图,在平面直角坐标系中,四边形ABCD 为菱形,A,B两点的坐标分别是(4,0),(0,3),点C,D在坐标轴上,则菱形ABCD的周长等于()A.16B.20C.24D.26【典例3-1】(2021秋•榆林期末)如图,在菱形ABCD中,若AB=5,AC=8,则菱形ABCD的面积为()A.24B.20C.16D.12【典例3-2】(2022•文山州模拟)如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=6,DB=8,则点A到BC的距离为()A.B.6C.8D.(2021秋•深圳期末)已知菱形的两条对角线的长分别为6cm和8cm,【变式3-1】则这个菱形的面积是()A.20cm2B.24cm2C.48cm2D.100cm2【变式3-2】(2021秋•毕节市期末)如图,在菱形ABCD中,对角线AC与BD 相交于点O,且AC=6,DB=8,AE⊥BC于点E,则AE=()A.6B.8C.D.【题型2:菱形的判定】【典例4】依据所标识的数据,下列平行四边形一定为菱形的是()A.B.C.D.【变式4-1】在下列条件中,能够判定▱ABCD为菱形的是()A.AB=AC B.AC⊥BD C.AC⊥BC D.AC=BD【变式4-2】如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.∠ABC=90°D.AO=BO【变式4-3】要检验一张四边形的纸片是否为菱形,下列方案中可行的是()A.度量四个内角是否相等B.测量两条对角线是否相等C.测量两条对角线的交点到四个顶点的距离是否相等D.将这纸片分别沿两条对角线对折,看对角线两侧的部分是否每次都完全重合【典例5】(2022春•苍溪县期末)如图,在△AFC中,∠F AC=90°,B、E分别是FC、AB的中点,过点A作AD∥FC交FE的延长线于点D.(1)求证:BF=AD;(2)求证:四边形ABCD是菱形.【变式5-1】(2022秋•章丘区校级月考)已知:如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点F,E是AC的中点,过点A作AD∥BC,交FE的延长线于点D.(1)求证:四边形AFCD是平行四边形;(2)给△ABC添加一个条件,使得四边形AFCD是菱形.请证明你的结论.【变式5-2】(2022•天宁区校级一模)如图,在四边形ABCD中,AC与BD相交于点O.且AO=CO,点E在BD上,满足∠EAO=∠DCO.(1)求证:△AOE≌△COD;(2)若AB=BC,求证:四边形AECD是菱形.【题型3:菱形的性质与判定综合】【典例6】(2022•冷水滩区校级开学)如图,在△ABC中,∠BAC=90°,线段AC的垂直平分线交AC于点D,交BC于点E,过点A作BC的平行线交ED于点F,连接AE,AF.(1)求证:四边形AECF是菱形;(2)若AB=10,∠ACB=30°,求菱形AECF的面积.【变式6-1】(2022秋•龙岗区期末)如图,在四边形ABCD中,AB∥CD,AD ∥BC,AC平分∠DAB,连接BD交AC于点O,过点C作CE⊥AB交AB延长线于点E.(1)求证:四边形ABCD为菱形;(2)若OA=4,OB=3,求CE的长.【变式6-2】(2022•新市区校级一模)如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE于点F,连接AE、CF.(1)求证:四边形AECF是菱形;(2)若,∠F AC=30°,∠B=45°,求AB的长.【变式6-3】(2022春•张家港市校级月考)如图,▱ABCD对角线AC,BD相交于点O,过点D作DE∥AC且DE=OC,连接CE,OE,OE=CD.(1)求证:▱ABCD是菱形;(2)若AB=4,∠ABC=60°,求AE的长.1.(2022•河南)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E 为CD的中点.若OE=3,则菱形ABCD的周长为()A.6B.12C.24D.48 2.(2022•湘西州)如图,菱形ABCD的对角线AC、BD相交于点O,过点D 作DH⊥AB于点H,连接OH,OH=4,若菱形ABCD的面积为32,则CD的长为()A.4B.4C.8D.8 3.(2022•淄博)如图,在边长为4的菱形ABCD中,E为AD边的中点,连接CE交对角线BD于点F.若∠DEF=∠DFE,则这个菱形的面积为()A.16B.6C.12D.30 4.(2022•甘肃)如图,菱形ABCD中,对角线AC与BD相交于点O,若AB =2cm,AC=4cm,则BD的长为cm.5.(2022•北京)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.6.(2022•岳阳)如图,点E,F分别在▱ABCD的边AB,BC上,AE=CF,连接DE,DF.请从以下三个条件:①∠1=∠2;②DE=DF;③∠3=∠4中,选择一个合适的作为已知条件,使▱ABCD为菱形.(1)你添加的条件是(填序号);(2)添加了条件后,请证明▱ABCD为菱形.7.(2022•大连)如图,四边形ABCD是菱形,点E,F分别在AB,AD上,AE =AF.求证:CE=CF.8.(2022•广元)如图,在四边形ABCD中,AB∥CD,AC平分∠DAB,AB=2CD,E为AB中点,连结CE.(1)求证:四边形AECD为菱形;(2)若∠D=120°,DC=2,求△ABC的面积.9.(2022•凉山州)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD 的中点,过点A作AF∥BC交CE的延长线于点F.(1)求证:四边形ADBF是菱形;(2)若AB=8,菱形ADBF的面积为40.求AC的长.1.(2022•齐齐哈尔)如图,在四边形ABCD中,AC⊥BD,垂足为O,AB∥CD,要使四边形ABCD为菱形,应添加的条件是.(只需写出一个条件即可)2.(2021春•龙马潭区期末)如图,在菱形ABCD中,对角线AC,BD相交于点O,E是AB的中点,连结EO.若EO=2,则CD的长为()A.2B.3C.4D.5 3.(2022秋•丰城市校级期末)如图,菱形ABCD中对角线相交于点O,AB=AC,则∠ADB的度数是()A.30°B.40°C.50°D.60°4.(2022秋•南海区期中)如图,在菱形ABCD中,AC=6cm,BD=8cm,则菱形ABCD的周长是()A.14cm B.16cm C.18cm D.20cm 5.(2021秋•建平县期末)如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=2,则菱形ABCD的周长为()A.6B.8C.12D.16 6.(2022秋•碑林区校级期中)如图,已知菱形的两条对角线AC与BD长分别是12和16,则这个菱形的面积是()A.192B.48C.96D.40 7.(2022秋•三明期中)如图,在菱形ABCD中,AC交BD于点O,DE⊥BC 于点E,连接OE,若∠BCD=50°,则∠OED的度数是()A.25°B.30°C.35°D.20°9.(2022秋•浑南区期中)在下列条件中,能够判定四边形是菱形的是()A.两条对角线相等B.两条对角线互相垂直平分C.两条对角线互相垂直D.两条对角线相等且互相垂直10.(2022秋•二七区校级月考)如图▱ABCD的对角线AC和BD相交于点O,下列说法正确的是()A.若OB=OD,则▱ABCD是菱形B.若AC=BD,则▱ABCD是菱形C.若OA=OD,则▱ABCD是菱形D.若AC⊥BD,则▱ABCD是菱形11.(2022春•铁西区期末)已知:如图,在Rt△ABC中,∠ACB=90°,∠BAC =60°,BC的垂直平分线分别交BC和AB于点D和点E,点F在DE的延长线上,且AF=CE.(1)∠BCE的度数为°.(2)求证:四边形ACEF是菱形.12.(2022春•长乐区期中)如图,▱ABCD的对角线AC,BD相交于点O,且AB=13,AO=12,BO=5.求证:▱ABCD是菱形.13.(2022秋•海淀区期中)如图,在△ABC中,∠ABC=90°,BD为△ABC的中线.BE∥DC,BE=DC,连接CE.(1)求证:四边形BDCE为菱形;(2)连接DE,若∠ACB=60°,BC=4,求DE的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

菱形
【知识梳理】
1、定义:有一组邻边相等的平行四边形叫做菱形(菱形是平行四边形:一组邻边相等)
2、性质:(1)边:四条边都相等;
(2)角:对角相等、邻角互补;
(3)对角线:对角线互相垂直平分且每条对角线平分每组对角;
(4)对称性:既是轴对称图形又是中心对称图形.
3、菱形的判定方法:
一组邻边相等的平行四边形是菱形
对角线互相垂直平分的平行四边形是菱形
对角线互相垂直平分的四边形是菱形
四条边都相等的四边形是菱形
4、识别菱形的常用方法
(1)先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.
(2)先说明四边形ABCD为平行四边形,再说明对角线互相垂直.
(3)说明四边形ABCD的四条相等.
5、面积:设菱形ABCD的一边长为a,高为h,则S菱形=ah;若菱形的两对角线的长分别为a,b,则S菱
形=1
2
ab
【经典题】
一、选择题
1. (2014 广东省珠海市) 边长为3cm的菱形的周长是( )
A.6 cm
B.9 cm
C.12 cm
D.15 cm
3. (2014 贵州省毕节地区) 如图所示,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,菱形ABCD 的周长为28,则OH的长等于()
A.3.5
B.4
C.7
D.14
O
B D A
C H
(第8题图)
4. (2014 湖南省长沙市) 如图,已知菱形ABCD 的边长等于2,∠DAB=60°,则对角线BD 的长为 ( )
A . 1
B .3
C . 2
D . 23
5. (2014 江苏省徐州市) 若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是
矩形 B.等腰梯形
C.对角线相等的四边形
D.对角线互相垂直的四边形
6. (2014 山东省枣庄市) 如图,菱形ABCD 的边长为4,过点A 、C 作对角线AC 的垂线,分别交CB 和AD 的延长
线于点E ,F,AE=3,则四边形AECF 的周长为( )
A .22
B .18
C .14
D .11
7. (2014 浙江省宁波市) 菱形的两条对角线长分别是6和8,则此菱形的边长是 ( )
A.10
B. 8
C. 6
D. 5
8. (2014 黑龙江省农垦牡丹江管理局) 如图,在菱形ABCD 中,E 是AB 边上一点,且∠A=∠EDF=60°,有下列
结论:①AE=BF ;②△DEF 是等边三角形;③△BEF 是等腰三角形;④∠ADE=∠BEF ,其中结论正确的个数是( )
60° A D B
A. 3 B.4 C.1 D.2
9. (2014 上海市) 如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().
(A)△ABD与△ABC的周长相等;
(B)△ABD与△ABC的周长相等;
(C)菱形的周长等于两条对角线之和的两倍;
(D)菱形的面积等于两条对角线之积的两倍.
10. (2014 浙江省台州市)
如图,菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为()
A.4:3 B.3:2 C.14:9 D.17:9
二、填空题
11. (2014 吉林省长春市) 如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点.若DE=1,则DF的长为.
12. (2014 福建省莆田市)
如图,菱形ABCD 的边长为4,∠BAD=120°,点E 是AB 的中点,点F 是AC 上的一动点,则EF+BF 的最小值是
2 .
13. (2014 甘肃省陇南市) 如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成
阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为 12 .
14. (2014 甘肃省兰州市) 如果菱形的两条对角线的长为a 和b ,且a ,b 满足(a ﹣1)2+
=0,那么菱形
的面积等于 _________ .
15. (2014 湖北省十堰市) 如图,在△ABC 中,点D 是BC 的中点,点E 、F 分别在线段AD 及其延长线上,且DE =DF ,
给出下列条件:①BE ⊥EC ;②BF ∥CE ;③AB =AC ;从中选择一个条件使四边形BECF 是菱形,你认为这个条件是 (只填写序号)
D
A
B C F E
16. (2014 江苏省宿迁市) 如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A ,B 的坐标分别为(-3,0),
(2,0),点D 在y 轴上,则点C 的坐标是 .
17. (2014 辽宁省大连市) 如图,菱形ABCD中,AC、BD相交于点O,若∠BCO=55°,则∠ADO= .
18. (2014 四川省宜宾市) 菱形的周长为20cm,两个相邻的内角的度数之比为l∶2,则较长的对角线长度是 cm.
19. (2014 四川省凉山州) 顺次连接矩形四边中点所形成的四边形是,学校的一块菱形花圃两对角线的长分别是6m和8m,则这个花圃的面积为 .
20. (2014 四川省泸州市) 一个平行四边形的一条边长为3,两条对角线的长分别为4和5
为 .
21. (2014 福建省漳州市)
若菱形的周长为20cm,则它的边长是cm.
22. (2014 重庆市A卷) 如图,菱形ABCD中,∠A=60°,BD=7,则菱形ABCD的周长为________.
C
D
A B
23. (2014 辽宁省锦州市) 菱形ABCD的边长为2,60
∠=︒,E是AD边中点,点P是对角线BD上的动点,
ABC
当AP+PE的值最小时,PC的长是__________.
24. (2014 山东省淄博市) 已知□ABCD ,对角线AC ,BD 相交于点O ,请你添加一个适当的条件,使□ABCD 成为一个菱形.你添加的条件是 .
三、证明题
25. (2014 福建省厦门市) 如图6,在四边形ABCD 中 ,AD ∥BC ,AM ⊥BC ,垂足为M ,AN ⊥DC ,垂足为N . 若∠BAD =∠BCD ,AM =AN ,求证四边形ABCD 是菱形.
图6
26. (2014 贵州省贵阳市) 如图,在Rt △ABC 中,∠ACB =90°,D 、E 分别为AB ,AC 边上的中点,连接DE ,将△ADE 绕点E 旋转180°得到△CFE ,连接AF ,CD .
(1)求证:四边形ADCF 是菱形;(5分)
(2)若BC =8,AC =6,求四边形ABCF 的周长.(5分)
27. (2014 江苏省淮安市) 如图,在三角形ABC 中,AD 平分∠BAC ,将△ABC 折叠,使点A 与点D 重合,展开后折痕分别交AB 、AC 于点E 、F ,连接DE 、DF .求证:四边形AEDF 是菱形.
第18题图
C
A
B D
(第15题图
)
28. (2014 四川省乐山市) 如图,在△ABC中,AB=AC,四边形ADEF是菱形,求证:BE=CE.
29. (2014 湖南省张家界市) 如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连结BE交AC于点F,连结DF.
(1)证明:△CBF≌△CDF;
(2)若AC=23,BD=2,求四边形ABCD的周长;
(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.
四、猜想、探究题
30. (2014 四川省攀枝花市)
如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫,从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm时停下,则它停的位置是()
A.点F B.点E C.点A D.点C。

相关文档
最新文档