基因组学概述ppt课件

合集下载

基因组学

基因组学
又称后基因组学(postgenomics) 基因的识别、鉴定、克隆 基因结构、功能及其相互关系
基因表达调控的研究
蛋白质组学(proteomics) • 鉴定蛋白质的产生过程、结构、功能和 相互作用方式
2 基因组图谱的构建
基因组计划的主 要任务是获得全 基因组序列 但是,现在的测 序方法每次只能 测800~1000bp 小基因组物种常 用鸟枪射击法
(restriction fragment length polymorphism,RFLP)
如有两个 DNA 分子(一对染色体),一 个具有某一种酶的酶切位点,而另一个 没有这个位点,酶切后形成的DNA片段长 度就有差异,即多态性。
• 利用限制性内切酶消化基因组DNA,形成大小 不等、数量不同的分子片段, • 经电泳分离, • 通过Southern印迹将DNA片段转移至支持膜 (尼 龙膜或硝酸纤维素膜)上, • 然后用放射性同位素(32P)或非同位素 (如地高 辛,荧光素)标记的探针与支持膜上的DNA片 段进行杂交。 • 不同基因组DNA酶切位点的改变,会使得 RFLP谱带表现出不同程度的多态性.
中英联合实验室
双脱氧终止法测序反应体系包括:
DNA polymerase
Template:(单链DNA模板)
Primer:(带有3-OH末端的单链寡核苷酸引物)
Mg2+ dNTP(dATP,dGTP,dCTP和dTTP) ddNTP(ddATP,ddGTP,ddCTP和ddTTP)
DNA自动测序
形态标记
能够用肉眼识别和观察、明确显示遗传多样性 的外观性状。 形态性状:株高、颜色、白化症等 又称表型标记 简单直观 数量少 很多突变是致死的 受环境、生育期等因素的影响

基因组学PPT课件

基因组学PPT课件
9
人类基因组计划的背景-----基因组计划最早始于美国
初衷1945年原子弹事件
1984年12月犹他大学魏特受美国能源部的委托,美国能源部
的广岛之争:突变率调查
资助召开的环境诱变物和致癌物的防护的会议上,
讨论DNA重组技术的发展及测定人类整个基因组
1985年6月,美国加州的会议上, DNA序列的意义,第一次提出测定人体基因和全部DNA序列,
1990年10月1日正式启动实施
目标:完成对人的基因组的30亿个核苷酸对的 全部序列测定工作,阐明人体中全部基因的位置、 功能、结构、表达调控方、德、日、中六国科学家的共同努力下, 2000年6月26日, 国际人类基因组计划与塞莱拉公司联合发布“人类基因组工作草图”。 2001年2月12日 两大科研小组联合发布人类基因组图谱及“基本信息”。宣告人类基因组计划基本完成。10
人类基因组计划是与曼哈顿原子计划、阿波罗登月计划一样伟大宏伟。
人类基因组计划的研究内容
美国的人类基因组计划总体规划是: 拟在15年内至少投入30亿美元,进行对人类全基因组的
分析。 1993年作了修订,其主要内容包括: 人类基因组的基因图构建与序列分析; 人类基因的鉴定; 基因组研究技术的建立; 人类基因组研究的模式生物; 信息系统的建立。 人类基因组研究的社会、法律与伦理问题, 交叉学科的技术训练, 技术的转让, 研究计划的外延等共9方面的内容。
美国能源部正式提出了展开人类
并检测所有的突变,计算真实的突变率。
基因组测序工作,形成了能源部 的“人类基因组计划”初步草案。
1986年6月,新墨西哥州冷泉港吉尔伯特及伯格主持的讨论会上, 进行了可行性讨论。美能源部宣布实施草案。意裔美肿瘤分子生
1987年,美国国家医学研究 院和能源部联合提出了这一 宏伟计划,即HGP),先期

基因组学ppt课件

基因组学ppt课件
锁图。这一方法包括杂交实验,家系分析。遗传图距 单位为厘摩(cM), 每单位厘摩定义为1%交换率。
2)物理作图(Physical mapping) 采用分子生物学 技术直接将DNA分子标记、基因或克隆标定在基因组
实际位置。物理图的距离依作图方法而异,如辐射杂 种(radiation hybrid)作图的计算单位为厘镭(cR), 限 制性片段作图与克隆作图的图距为DNA的分子长度, 即碱基对(bp, kb)。
散的顺序按原来位置组装,需要图譜 进行指导. - 基因组存在大量重复顺序,会干扰排序, 因此要高密度基因组图.
2)由于一些分子标记同基因座位紧密连锁,为靶基因 的图位克隆(map based cloning)提供了可能。
3)遗传图和物理图各有优缺点,必须相互整合校正.
5
二、遗传图与物理图
1)遗传作图(Genetic mapping) 采用遗传学分析方 法将基因或其它DNA分子标记标定在染色体上构建连
由于同源染色体同一区段DNA序列的 差异,当用限制酶处理时,可产生 长度不同的限制性片段。
14
什么是RFLP标记?(2)
Var. A
Var. B
EcoR I will not cut this squence 15
什么是RFLP标记?(3)
16
(二) RFLP methodology
Cutting DNA into smaller fragments by restriction enzymes
2)生化特征表型。如人类血型系列分 析。
10
基因标记并非理想的标记,因为: - 可用作标记的基因十分有限。许多
性状都涉及多基因。 - 用基因做标记将在遗传图中留下大
片的无标记区段,因为存在大量的 基因间区。

第三章--基因与基因组的结构PPT课件

第三章--基因与基因组的结构PPT课件

-
4
③近20年来,由于重组DNA技术的完善和应 用,人们已经改变了从表型到基因型的传统 研究基因的途径,而能够直接从克隆目的基 因出发,研究基因的功能及其与表型之间的 关系,使基因的研究进入了反向生物学阶段。
-
5
• 反向生物学:指利用重组DNA技术和离体 定向诱变的方法研究已知结构的基因相应的 功能,在体外使基因突变,再导入体内,检 测突变的遗传效应即表型的过程。
• 例如,对于大肠杆菌和其他细菌,用三个小写
字母表示一个操纵子,接着的大写字母表示不
同基因座,lac 操纵子的基因座:lacZ,lacY, lacA;其表达产物蛋白质则是lacZ,lacY,
lacA。
-
37
• 3.质粒和其他染色体外成分的命名 • 自然产生的质粒,用三个正体字母表示,第—
个字母大写,例如:ColEⅠ;
血破裂而使血红蛋白计数减少,造成贫血。
• 其本质是其血红蛋白的β-链与正常野生型
β-链之间的第6位氨基酸,由Val取代了 Glu所致。
-
32
• 这种贫血病是由基因突变造成的一种分子病,
除溶血后发生贫血外,还会堵塞血管形成栓塞, 从而伤及多种器官。
• 它的纯合子(通过单倍体形成的纯系双倍体)患
者在童年就夭折。
-
40
• 6.线虫基因的命名
• 用三个小写斜体字母表示突变表型,如存
在不止一个基因座,则在连字符后用数字
表示,如基因unc-86,ced-9;蛋白UNC-
86;CED-9。
-
41
• 7.植物基因的命名
• 多数用1~3个小写英文斜体字母表示。
-
42
• 8.脊椎动物基因的命名

第01讲微生物基因组学102页PPT

第01讲微生物基因组学102页PPT

• Genomics is the study of the molecular organization of genomes, their information content, and the gene products they encode.
--Prescott-Harley-Klein: Microbiology, Fifth Edition
关于基因组学的范畴
• 随着基因组和基因组学这两个术语变得流行起来,一系列 新的术语也被创造出来,每个新的研究领域都冠以“…… 组学”(-omic)的名称,而被研究的对象则被称为“ …… 组”(-ome)。例如蛋白质组和蛋白质组学。
• 一个蛋白质组(proteome)表示某个时刻在一个细胞或生 物体中全部的蛋白质组成。其它类似的词还有转录组、代 谢组、糖组和变异组。这些新兴的领域能否归到“基因组 学”之下,尚有较大的争议。
• 1987年,Victor Mckusick 和 Frank Ruddle 一起创 办了“genomics”杂志,这是第一次“genomics” 这个词在科学界得到广泛的应用。
• 基因组学领域包括DNA测序、在物种内进行基因组多 样性的采集以及基因转录调控的研究,即基因组学覆 盖了从DNA序列分析到研究生物体对环境干扰的响应 这样比较广的范围。
“基因是迄今为止最为复杂的程 序”
——Bill Gates
(二)DNA测序技术的诞生与发展
1975,Frederick Sanger双脱氧链终止法; 1977,Maxam和Gilbert 氧化法
(1976年,在英国的Gordon会议 上两个小组同时宣布, 但Maxam和Gilbert直到1980年才正式发表研究结果)
基因组基 学因 研组 究学 的研 究3大的 主3 题大 和主 题6个和 层6 面个 层 面

基因组学ppt课件

基因组学ppt课件

编辑课件
6
染色体带型命名
人类染色体带型最早确定的命名方式是从着丝粒向两侧按数字编号, 短臂以p代表 (p=petit),长臂以q代表. 短臂和长臂又可进一步分区,每个区又分为数个亚区, 亚区又可划分为不同的区带,有的区带又可细分为区亚带。
编辑课件
7
人类染色体核型
编辑课件
8
四、基因组的结构成分
1) SAR和MAR 2) CpG岛 3) 等高线
5) MAR或SAR之间的距离平均为30 kb, 染色体DNA环突
长约25-600 kb, 因此并非所有MAR或SAR均与基质或
骨架结合. 或这说MAR(或SAR)与基质或骨架结合的
位置是动态的, 不固定的.
编辑课件
11
SAR和MAR的应用
由于发现许多功能基因的两侧含有SAR或 MAR的结构,并证实SAR和MAR具有阻止 异染色质位置效应和隔离相邻基因彼此干 扰的功能, 因此为了提高转基因的表达水平, 在构建表达载体时可在基因两侧安装SAR 或MAR顺序, 以减少转基因沉默效应.
编辑课件
12
MAR
的 分 离
编辑课件
13
(2)什么是CpG岛
满足CpG岛的条件为: 1. 连续200 bp的DNA顺序(已修改为500 bp); 2. C+G含量大于50%(已修改为55%); 3. 观测到的CpG双碱基数目与预期的数目
之比大于0.6(已修改为0.65).
(Gardiner-Garden, J.Mol.Bio., 196:261, 1987; Proc Natl Acad Sci USA 99:3740-3745, 2002 )
第6章 真核生物基因组解剖
编辑课件

动物基因组学基础PPT课件

动物基因组学基础PPT课件
第39页/共86页
Байду номын сангаас
物理作图的方法
• 基因组物理图谱的构建主要有三种途径: ①限制性酶图谱 ②荧光原位杂交技术(FISH) ③序列标签位点(STS)
如表达的序列标签(EST),来自cDNA
第40页/共86页
描述染色体上限制性内切酶切割 位点之间距离和顺序的图谱 识别位点较多的内切酶:如 NotⅠ,其8个核苷酸出现的频率为 1/48=1/65536bp,而识别位点为 6个核苷酸的出现频率为 1/46=1/4094bp
• 基因组学的重要组成部分是基因组计划,如人类、水稻基因组计划
第2页/共86页
人类基因组计划
➢ 1990,美国国立卫生研究所和能源部投资$30亿,启动了被誉为“人体阿波罗计划”的 “人类基因组计划”(human genome project,HGP),预计15年时间完成人类基因组 全部序列的测定
➢ 在美国提出人类基因组计划后,英、法、日、前苏联、中等,也相继启动了类似的研究 项目
生化标记
• 又称蛋白质标记,就是利用蛋白质 的多态性作为遗传标记
如:同工酶、等位酶
• 优点:数量较多,受环境影响小 • 缺点:受发育时间的影响、有组织 特异性、只反映基因编码区的信息
第13页/共86页
DNA分子标记
简称分子标记,以DNA序列的多态性作为遗传标记 优点: • 不受时间和环境的限制 • 遍布整个基因组,数量无限 • 不影响性状表达 • 自然存在的变异丰富,多态性好 • 共显性,能鉴别纯合体和杂合体
第27页/共86页
RAPD 标记特 点 • PCR反应产物通过电泳分离:不同样品间可能存在差
异 • 主要用于分析群体间的遗传距离 • 引物短,不同生物基因组可以共用一套引物 • 实验快速简便,成本低,无需预先了解基因组DNA序

基因组学

基因组学

我国水稻基因组计划 • 我国超级杂交稻(籼稻)基因组计划2001年7月启动, 2002年4月5日《Science》。
☆材料:籼稻“9311”。
☆完成单位:华大基因研究中心、中科院遗传与发育生物 学研究所等12个单位。 ☆水平:水稻基因组的总基因数约为46022~55615个,工 作框架图序列已覆盖水稻整个基因组92%以上的基因。
大肠杆菌基因组是双链环状DNA , 全长4.6 ×106bp,含有4230个基因, 编码蛋白的序列占基因组的87.7%, 非编码的重复序列占0.7%,剩下 的11.6%可能起调控作用。
二、细菌和病毒基因组特点
4. 功能相关的几个基因排列在一起形成操纵子
如,乳糖操纵子结构
5. 存在重叠基因 如,ΦΧ174基因组为5386bp,
▲ 1986年3月,杜伯克在美国《科学》杂志上发 表了一篇题为《癌症研究的转折点:测序人类 基因组》的文章,这篇短文后来被称为人类基 因组计划的“标书”。
(一)人类基因组计划
• 1990年,美国国会批准美国的“人类基因组计划”在10月1日 正式启动。其总体规 划是准备在15年内(1990-2005)至少 投入30亿美元,分析人类的基因组30亿个碱基对。 • 1996,完成标记密度为0.6cM的人类基因组遗传图谱,100kb 的物理图谱 • 2000,完成草图
四、基因组学的发展
(一)人类基因组计划
与曼哈顿原子 计划、阿波罗登月计划并称的人类科学 史上的重大工程。于1990年首先在美国启 动,后有德、 日、英、法、中等国的科学家先后正式加入。
(一)人类基因组计划
▲美国从70年代起启动了 “肿瘤计划”,但是, 不惜血本的投入换来的是令人失望的结果。人 们渐渐认识到,包括癌症在内的各种人类疾病 都与基因直接或间接相关。测出基因的碱基序 列,Fra bibliotek是基因研究的基础。

基因组学.ppt1

基因组学.ppt1

James Watson
Francis Collins
• 1992年6月,Craig Venter离开国家卫生研 究院,建立了基因研究所(The Institute for GenomeResearch, TIGR),此后, TIGR从流感嗜血菌开始测了大量的细菌基 因组,流感嗜血菌也是第一个被测序的非 寄生物种
• Human genome project • Goal: characterize all human genetic material by • determining the complete sequence of the DNA in the • human genome. • HGP is accomplished by the joint effort between • U.S. Human Genome Project (HGP), composed of the • DOE (Department of Energy )and NIH (National • Institutes of Health), and Celera Genomics
• 1986年3月,1975年诺贝尔奖得主、Salk Institute的癌症研究员杜贝可(Renato Dulbecco)在“Science”期刊上发表文章,题 为“癌症研究的转折点:定出人类基因组序列”。 这片文章引起了美国社论。 • 杜贝可提出了两种基因搜寻路线,即以测序为核 心的“DNA”序列探测和以作图为中心的“基因 图位”克隆。
• 基因组学(Genomics):研究基因组及其基因的 科学。 • 最初是Thomas Roderick于1986年提出,其主 • 要内容是指基因组作图(Mapping)和测序 • (Sequencing)。 • 21世纪从生物体整体上研究生命现象 • 研究整个物种基因组碱基的组成、基因的结构、 • 基因在染色体上的分布,基因的时空表达和调控 • 网络。

第01章-基因PPT课件

第01章-基因PPT课件
● 常见的上游启动子元件
3.增强子(enhancer) 是一种较短的DNA序列,能够被反式作用因子识别与结合。与增强子元件结合后能够增强邻近基因转 录。位于转录起始点上游-100~-300 bp处
4. 反应元件 一类能介导基因对细胞外的某种信号产生反应的 特异的DNA序列 ●特点 具有较短的保守序列 通常位于启动子附近、启动子内或增强子区域
第二节 结构基因中贮存的遗传信息
一、 RNA的结构信息 二、 结构基因中贮存的蛋白质序列信息
●编码区 一个特定蛋白质多肽链的序列信息,也称 为开放阅读框(open reading frame,ORF) 功能 决定蛋白质分子的一级结构
RNA 聚合酶
转录因子
启动子类型
启动子构成
含有该类启动子的基因
I
TFI
I
核心元件, 上游调控元件
rRNA
II
TFII
II
TATA盒(TATA box)、几个上游启动子元件和转录起始位点
5.poly(A)信号 II类基因除了调控转录起始的序列外,在结构 基因的3‘端下游还有加尾信号。由AATAAA序列和GT丰富区,或T丰富区组成。 作用: 终止mRNA转录和为其加上poly(A)尾
(三) 基因的基本结构特点 1.原核生物基因的基本结构 5′-启动子-结构基因-转录终止子-3 ′ ●操纵子(operon) 功能上相关联的数个结构基因串联在一起, 由一套转录调控序列控制其转录,构成的基因 表达单位.
四、基因的结构特点
● 组成 一个编码特定多肽链的DNA序列+与蛋白质编码 无关的DNA序列(调控序列)
● 结构特点
1.原核生物结构基因的特点 结构基因在DNA上是连续的 2.真核生物结构基因的特点 结构基因在DNA上是不连续的(断裂基因)

微生物基因组学_PPT幻灯片

微生物基因组学_PPT幻灯片

“双脱氧末端终止”的含义
Sanger 双脱氧末端终止法测序原理
自动化测序
荧光染料标记物的发明: 使链终止法用于自动化测序,用不同的荧光 色彩标记ddNTP,如ddATP标记红色荧光, ddCTP标记蓝色荧光,ddGTP标记黄色荧光, ddTTP标记绿色荧光。由于每种ddNTP带有 各自特定的荧光颜色,而简化为由1个泳道同 时判读4种碱基。
(四)影响测序的因素 不管采用随机测序还是定向测序都可碰到下列影响因素。 1.计算机的设备 。 2.靶DNA的性质。 3.完成测序所需的时间 。 4.采用测序策略。
三.微生物基因组的注释 (一)概念:在微生物基因测序的基础上,对其基本结 构和部件进行认定,以进一步研究其功能。
(二)微生物基因组注释的内容 1.碱基组成分析,即G+C Mol%测定。 G+C含量是物种的一个重要特征,在微生物的分类上具有重要意义,是重 要参数之一。 2.开放阅读框的鉴定: 3.编码序列分析
向测序法包括引物测序法和定向缺失测序法。 ⑴引物测序法 即在第一次测序结果的基础上,设计新的寡核苷酸,来充当下一次测
序反应的引物,并依次类推,从而循序渐进获得靶DNA的全部序列。
⑵定向缺失法 定向缺失法是将一个靶DNA变成若干套嵌套的缺失突变体,使靶序列中远
不可测的区段逐渐落入可用通用引物进行测序的方法。
黏粒载体( cosmid )
P1人工染色体载体(PAC)
目前常用的人造染色体载体
23
YAC载体应含有下列元件:
酵母染色体的端粒1 EcoRI CEN4
酵母染色体的着丝粒序列 Apr
pYAC
URA3
4
酵母系统的选择标记
ori
大肠杆菌的复制子标记
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.按进入受体细胞类 型分
3.按载体来源分 4.按克隆片段得大小 (克隆能力)分
说明: 1.穿梭载体(sbuttle vector) 指在两种宿主生物体 内复制的载体分子,因而可以运载目的基因(穿梭 往返两种生物之间,如:YEP,DIDB219 2.YAC Yeast Artificial Chromsome 由酵母基因和 PBR322质粒衍生物构成,对克隆大的真核基因十分 有用,在HGP中发挥主要作用。
基因组学概述教 学
11.1 人工染色体构建
1983年,美国的Dana-Farber癌症研究所和哈佛大学 医学院的教授首次在Nature上发表文章,报道了构建 YAC(Yeast Artificial Chromosome)库的过程。1987 年,Burke等人发现,仅仅带有ARS序列(autonomous replicating sequence) 的载体虽然能够被复制,但极易在 有丝分裂时丢失。即使在选择培养基上,也只有5%20%的子代细胞带有ARS载体。加入Centromeres (CEN)能显著提高ARS质粒在有丝分裂时的稳定性, 90%以上子代细胞带有该载体。CEN还能显著降低拷贝 数,从20-50/细胞降为1-2/细胞。(Science, 236:806812)。
载体的分类
分类依据 1.按功能分成 类 别 克隆扩增或表达 √ √ √ 举 PBR322 PCDN3 PUC8 PBUDCE41 YE (1)M13 (2)plasmid (3)λ phage (4)casmid (5)BAC (6)YAC 例
(1)克隆载体 (2)表达载体 (1)原核载体 (2)真核载体 (3)穿梭载体 病毒载体+ (1)<1kb (2)<10kb (3)<22kb (4)<50kb (5)0.1-0.4Mb (6)0.5-2Mb
复制)和parA、 parB(控制拷贝数)等成分。
BAC的优点
1. 易于用电击法转化E.coli(转化效率比转化酵母高10100倍);
2. 超螺旋环状载体,易于操作;
3. F‘质粒本身所带的基因控制了质粒的复制; 4. 很少发生体内重排。
有人把人类染色体端粒DNA上单个α-卫星DNA单
元多聚化形成1Mb左右的大片段并与人类基因组DNA
• DNA测序不能从染色体进行,首先必须克隆化,构建基因组 的物理图谱。 • 先构建片段DNA克隆(以YAC或BAC为载体),并把克隆依染 色体排序,这就是“染色体的克隆图”。依片段DNA克隆在 染色体上所在的位置排序,可以得到相互重叠的一系列克隆, 叫做“克隆重叠群”(contig)。选取有关的克隆进行DNA测 序,就可以“拼装”出整个染色体或基因组的DNA序列。如 果克隆片段太大仍不便于直接测序,则需通过亚克隆,构建 更小的片段。 • 另外一种方法是对所有相互重叠的亚克隆进行测序,然后直 接通过计算机程序根据其重叠部分进行“拼装”。
3.BAC
细菌人工染色体。
YAC的主要缺点
1.存在高比例的嵌合体,即一个YAC克隆含有两个本 来不相连的独立片段; 2.部分克隆子不稳定,在转代培养中可能会发生缺失
或重排;
3.难与酵母染色体区分开,因为YAC与酵母染色体具 有相似的结构。 4.操作时容易发生染色体机械切割。
以细菌寄主系统为基础的克隆载体形成嵌合体的频 率较低,转化效率高,又易于分离。科Байду номын сангаас家用"染色体 建造"法用F质粒及其调控基因构建细菌载体,克隆大 片段DNA。该质粒主要包括oriS, repE(控制F质粒


人工染色体含有三种必需成分:着丝粒、端粒和复制 起点。
着丝粒(CEN)位于染色体中央,呈纽扣状结构,在有 丝分裂时结合微管并调控染色体的运动,也是姐妹染色 单体配对时的最后位点,接收细胞信号而使姐妹染色体 分开。 端粒(TEL):主要功能是防止染色体融合、降解、 确保其完整复制。端粒酶以其自身RNA为模板,在染色 体端部添加上端粒重复序列,并参与端粒长度和细胞增 殖的调控。
混合,产生了能被复制、能正常分裂并得到长期稳定 保存的人工合成的染色体,长度约为6-10Mb,称为 MAC或HAC。
人类基因组
核基因组(3200Mb) 约10% 基因和基因有关序列 约90% 基因外序列 线粒体基因组(16.6kb)
rRNA 基因
tRNA 基因
蛋白编码 基因
专一或中等重复序列 <10% >90%


复制起点: DNA复制通常由起始蛋白与特定的DNA 序列相互作用开始。
载体的概念:
1.要把一个有用的基因(目的基因 ——研究或应用基
因)通过基因工程手段送到生物细胞(受体细胞),需要 运载工具(交通工具)携带外源基因进入受体细胞,这种 运载工具就叫做载体(vector)。 2.凡来源于质粒或噬菌体的 DNA分子,可以插入或克 隆DNA片段统称为vector。 3. 基因工程所用的 vector 实际上是 DNA 分子,是用来 携带目的基因片段进入受体细胞的DNA。
70~80%
专一的或低 拷贝数序列
20~30% 中度至高度重复序列
Coding DNA
Non-coding DNA 约60% 约40% 分散重复序列
假基因
基因片段
内含子
串联重复序列/ 成簇重复序列
11.2 高通量DNA序列分析技术
在大规模DNA测序中,目标DNA分子的长度可达上百万个bp。现 在还不能直接测定整个分子的序列,然而,可以得到待测序列 的一系列序列片段。 序列片段是DNA双螺旋中的一条链的子序列(或子串)。这些序 列片段覆盖待测序列,并且序列片段之间也存在着相互覆盖或 者重叠。在一般情况下,对于一个特定的片段,我们不知道它 是属于正向链还是属于反向链,也不知道该片段相对于起点的 位置。另外,这样的序列片段中还可能隐含错误的信息。序列 片段的长度范围300-1000 bp,而目标序列的长度范围是3100 万bp,总的片段数目可达上千个。 DNA序列片段组装(sequence assembly),又称序列拼接)的任务 就是根据这些序列片段,重建目标 DNA 序列。如果能够得到 DNA一条链的序列,那么根据互补原则,另一条链的序列也就 得到了。
相关文档
最新文档