浙江大学概率论与数理统计第4版复习笔记详解

合集下载

浙江大学《概率论与数理统计》(第4版)【名校笔记+课后习题+考研真题】第13章 马尔可夫链【圣才出品

浙江大学《概率论与数理统计》(第4版)【名校笔记+课后习题+考研真题】第13章 马尔可夫链【圣才出品

1 / 17
圣才电子书 十万种考研考证电子书、题库视频学习平台

X m1的状态
a1
Xm 的
a1 p11
a2
p21
状 态
ai
pi1
a2 aj
p12 p1j
p22 p2 j
=P 1 记成P
pi2 pij
二、多步转移概率的确定
1.C-K 方程
Pij (u v) Pik (u)Pkj (v), i, j 1, 2, k 1
π=πP 或
满足条件
N
j i pij , j 1, 2, N i 1
N
j 0, j 1 j 1
的唯一解。
13.2 课后习题详解
1.从数 1,2,…,N 中任取一数,记为 X1;再从 1,2,…,X1 中任取一数,记为 X2; 如此继续,从 1,2,…,Xn-1 中任取一数,记为 Xn,说明{Xn,n≥1}构成一齐次马氏链,
则此链具有遍历性,若 j 1,则 (1, 2 ,) 为链的极限分布。
j
2.有限链遍历性的充分条件
设齐次马氏链{Xn,n≥l}的状态空间为 I {a1, a2 ,, aN} ,P 是它的一步转移概率矩阵, 如果∃m∈N+,使对∀ ai , aj I ,都有
Pij (m) 0,i, j 1, 2,, N 则此链具有遍历性,且有极限分布 (1, 2 ,, N ) ,它是方程组
无关,那么,n 步转移概率也一定与 m 无关,马氏链就必定是齐次的。
4 / 17
圣才电子书 十万种考研考证电子书、题库视频学习平台

2.说明第十二章§1 例 5 中的随机过程都是齐次马氏链,并写出它们的状态空间和一步
转移概率矩阵。

概率论和数理统计浙江大学第四版-课后习题答案解析[完全版]

概率论和数理统计浙江大学第四版-课后习题答案解析[完全版]

概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。

表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答

解 (1)高该小班有 n 个人,每个人数学考试的分数的可能取值为 0,1,2,…,100,n
个人分数这和的可能取值为 0,1,2,…,100n,平均分数的可能取值为 0 , 1 ,..., 100n , 则 nn n
样本空间为
S=
k n
k
=
0,1, 2,⋯,100n
(2)样本空间 S={10,11,…},S 中含有可数无限多个样本点。 (3)设 1 表示正品,0 有示次品,则样本空间为
而 AB= {(1,6),(6,1)}。由条件概率公式,得
P(B
A)
=
P( AB) P( A)
∑200
P(B) = P( A2 ∪ A3 ∪⋯∪, A200)= P( Ai )
i=2
显然,这种解法太麻烦,用对立事件求解就很简单。令事件 B ={恰有 0 个次品或恰有
1 个次品},即 B = A0 ∪ A1 ,而
P(B)
=
P( A0

A1 )
=
P( A0 ) +
P( A1)
=
C 200 1100
{ } S= (x, y) x2 + y2 ≤ 1
------------------------------------------------------------------------------2.设 A,B,C 为三个事件,用 A,B,C 的运算关系表示下列事件。 (1)A 发生,B 与 C 不发生; (2)A 与 B 都发生,而 C 不发生; (3)A,B,C 中至少有一个发生; (4)A,B,C 都发生; (5)A,B,C 都不发生; (6)A,B,C 中不多于一个发生; (7)A,B,C 中不多于两个发生; (8)A,B,C 中至少有两个发生。

(浙大四版)概率论与数理统计知识点总结(word文档物超所值)

(浙大四版)概率论与数理统计知识点总结(word文档物超所值)

1° 1, 2 L n ,

P(1 ) P( 2 ) L
P( n )

1 n

设任一事件 A ,它是由1, 2 L m 组成的,则有
P(A)=(1 ) U ( 2 ) UL U ( m ) = P(1 ) P( 2 ) L P( m )
P(Bi ) ,( i 1 , 2 ,…, n ),通常叫先验概率。 P(Bi / A) ,( i 1 , 2 ,…, n ),通常称为后验概率。贝叶斯公式
3 / 29
(17)伯 努利概型
反映了“因果”的概率规律,并作出了“由果朔因”的推断。 我们作了 n 次实验,且满足 每次实验只有两种可能结果, A 发生或 A 不发生; n 次实验是重复进行的,即 A 发生的概率每次均一样; 每次实验是独立的,即每次实验 A 发生与否与其他次实验 A 发生与否是互不影响的。
第 1 章 随机事件及其概率
(1)排 列组合公 式
Pmn

m! 从 (m n)!
m
个人中挑出
n
个人进行排列的可能数
C
n m

m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能数
(2)加 法和乘法 原理
(3)一 些常见排 列 (4)随 机实验和 随机事件
(5)基 本事件、 样本空间 和事件
C Pn(k)
k n
pk qnk

k
0,1,2,L
,n 。
第二章 随机变量及其分布
设离散型随机变量 X 的可能取值为 Xk(k=1,2,…)且取各个值的 概率,即事件(X=Xk)的概率为
P(X=xk)=pk,k=1,2,…, 则称上式为离散型随机变量 X 的概率分布或分布律。有时也用

(浙大第四版)概率论与数理统计知识点总结(word文档物超所值)

(浙大第四版)概率论与数理统计知识点总结(word文档物超所值)
必然事件 和不可能事件 Ø 与任何事件都相互独立。 Ø 与任何事件都互斥。
②多个事件的独立性
设 ABC 是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
并且同时满足 P(ABC)=P(A)P(B)P(C) 那么 A、B、C 相互独立。

B1 , B2 ,…, Bn 两两互不相容,
P(Bi) >0, i 1,2,…, n ,
n
U A Bi

i1 , P( A) 0 ,(已经知道结果 求原因

P(Bi / A)
P(Bi )P( A / Bi )
n
,i=1,2,…n。
P(Bj )P(A/ Bj )
j 1
1
概率论与数理统计 公式(全)
X
| x1, x2,L , xk,L
P( X xk) p1, p2,L , pk,L 。
显然分布律应满足下列条件:

pk 1
(1) pk 0 , k 1,2,L , (2) k1

设 F (x) 是随机变量 X 的分布函数,若存在非负函数 f (x) ,对任意实 数 x ,有
x
(5)八 大分布
对于离散型随机变量, F (x) pk ; xk x
x
对于连续型随机变量, F (x) f (x)dx 。
0-1 分布 P(X=1)=p, P(X=0)=q
1
概率论与数理统计 公式(全)
知识点总结
二项分布
在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生的次数是随机变量,设为 X ,则 X 可能取值为

(浙大第四版)概率论与数理统计知识点总结.

(浙大第四版)概率论与数理统计知识点总结.

1
概率论与数理统计 公式(全) 知识点总结
当 A=Ω 时,P( B )=1- P(B)
P ( AB) 为事件 A 发生条 P ( A) P ( AB) ( 12 ) 条 件下,事件 B 发生的条件概率,记为 P( B / A) 。 件概率 P ( A) 条件概率是概率的一种,所有概率的性质都适合于条件概率。 例如 P(Ω /B)=1 P( B /A)=1-P(B/A) 乘法公式: P( AB) P( A) P( B / A) ( 13 ) 乘 更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0,则有 P( A1 A2 … An ) P( A1) P( A2 | A1) P( A3 | A1 A2) …… P( An | A1 A2 … 法公式 An 1) 。
A、B 中至少有一个发生的事件:A B,或者 A+B。
属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为
A-B, 也可表示为 A-AB 或者 A B , 它表示 A 发生而 B 不发生的事件。
1
概率论与数理统计 公式(全) 知识点总结
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同
p
k


f ( x)dx

P(X=1)=p, P(X=0)=q
1
概率论与数理统计 公式(全) 知识点总结
二项分布
在 n 重贝努里试验中, 设事件 A 发生的概率为 p 。 事件 A 发生的次数是随机变量,设为 X ,则 X 可能取值为
0,1,2,, n 。
k k nk P( X k ) Pn(k ) Cn p q
F ( ) lim F ( x) 0 ,

概率论与数理统计(第4版)浙江大学 盛聚编

概率论与数理统计(第4版)浙江大学 盛聚编
置信区间也不是唯一的.
对同一个参数,我们(wǒ men)可以构造许多置信区间.
1.在概率密度为单峰且对称(duìchèn)的情形,当a =-b 时求得的置信区间的长度为最短.
2.即使在概率密度不对称的情形,如 分布, F分布,习惯上仍取对称的分位点来计算未知参数的 置信区间.
17
共十八页
内容(nèiróng)总结
前面,我们讨论了参数点估计. 它是用样本(yàngběn)算得的一个值去 估计未知参数. 但是,点估计值仅仅。X1,X2,。可靠度与精度是一对 矛盾,一般是。按伯努利大数定理, 在这样多的区间中,。个区间, 使得 U取值于该区间的概率为置信水平.。从例1解题的过程,我们归纳出 求置信区间的一般步骤如下:。T(X1,X2,。的分布为已知, 不依赖于任何 未知参数 .。而这与总体分布有关,所以,总体分布的形式是。17
7
共十八页
2、置信区间的求法 在求置信区间时,要查表求分位点.
若 X 为连续型随机变量(suí jī biàn liànɡ) , 则有
所求置信区间为
8
共十八页
同样 对 (tóngyàng) 于
所求置信区间为
共十八页
由此可见,置 信水平为 的置信区间是 不唯一的。
9
例 设X1,…Xn是取自
的样本,
共十八页
第四节 区间 估计 (qū jiān)
前面,我们讨论了参数点估计. 它是用样本算得的一个 (yī ɡè)值去估计未知参数. 但是,点估计值仅仅 是未知参数的一个近似值,它没有反映出这个近似值的误 差范围,使用起来把握不大. 区间估计正好弥补了点估计 的这个缺陷 .
1
共十八页
1、 置信区间定义(dìngyì)
3. 寻找一个待估参数 和估计量 T 的函数 U(T, ),且其分布为已知.

(浙大第四版)概率论与数理统计知识点总结(最新整理)

(浙大第四版)概率论与数理统计知识点总结(最新整理)

步骤可由 n 种方法来完成,则这件事可由 m×n 种方法来完成。
(3)一些 常见排列
重复排列和非重复排列(有序) 对立事件(至少有一个) 顺序问题
(4)随机 试验和随 机事件
如果一个试验在相同条件下可以重复进行,而每次试验的可能结果 不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则 称这种试验为随机试验。 试验的可能结果称为随机事件。
1° 1, 2 n ,

P(1 )
P( 2 )
P( n )
1 n

设任一事件 A ,它是由1, 2 m 组成的,则有
P(A)=(1 ) ( 2 ) ( m ) = P(1 ) P( 2 ) P( m )
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,
(9)几何 同时样本空间中的每一个基本事件可以使用一个有界区域来描述,
发生): A B
如果同时有 A B , B A ,则称事件 A 与事件 B 等价,或称 A 等
于 B:A=B。
A、B 中至少有一个发生的事件:A B,或者 A+B。
(6)事件 的关系与 运算
属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B, 也可表示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。 A、B 同时发生:A B,或者 AB。A B=?,则表示 A 与 B 不可能同 时发生,称事件 A 与事件 B 互不相容或者互斥。基本事件是互不
分布函数具有如下性质:
1° 0 F (x) 1, x ;
2° F (x) 是单调不减的函数,即 x1 x2 时,有 F (x1) F (x2) ;
3° F () lim F (x) 0 , F () lim F (x) 1;

浙江大学《概率论与数理统计》(第4版)【名校笔记+课后习题+考研真题】第3章 多维随机变量及其分布【

浙江大学《概率论与数理统计》(第4版)【名校笔记+课后习题+考研真题】第3章 多维随机变量及其分布【
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 3 章 多维随机变量及其分布
3.1 复习笔记
一、二维随机变量(X,Y)的分布函数 性质 (1)单调性:F(x,y)分别对每个变量是单调不减的,当 x2>x1,F(x2,y)≥F(x1; y);当 y2>y1,F(x,y2)≥F(x;y1)。 (2)有界性:∀x,y,0≤F(x,y)≤1,且
2 2
其中1 0,2 0, 1 1。
注:若(X,Y)~N(μ1,μ2,σ12,σ22,ρ),则
(1)X~N(μ1,σ12),Y~N(μ2,σ22);
(2)X 与 Y 独立⇔ρ=0;
(3) aX
bY
~
N (a1
b2
,
a
2
2 1
2ab1 2
b2
2 2
)

三、条件分布 1.条件分布律 Y=yj 条件下 X 的条件分布律
X
0
若第一次取出的是正品
1 若第一次取出的是次品
Y
0
1
若第二次取出的是正品 若第二次取出的是次品
试分别就(1)、(2)两种情况,写出 X 和 Y 的联合分布律。
解:(1)放回抽样
第一次、第二次取到正品(或次品)的概率相同,且两次所得的结果相互独立,即有
P{X=0}=P{Y=0}=5/6
P{X=1}=P{Y=1}=1/6
放回抽样情况下,X 和 Y 的联合分布律如下
表 3-2-1
(2)不放回抽样 由乘法公式 P{X=i,Y=j}=P{Y=j|X=i}P{X=i},i,j=0,1,则
6 / 58
圣才电子书 十万种考研考证电子书、题库视频学习平台

F x, F , y F , 0, F , 1

(完整word版)(浙大第四版)概率论与数理统计知识点总结详解

(完整word版)(浙大第四版)概率论与数理统计知识点总结详解
A 不发生的事件。互斥未必对立。 ②运算: 结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
(7)概率 的公理化 定义
Ai Ai
德摩根率: i1
i1
AB AB,AB AB
设 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满足下列三个条件:
件下,事件 B 发生的条件概率,记为 P(B / A) P( AB) 。 P( A)
条件概率是概率的一种,所有概率的性质都适合于条件概率。 例如 P(Ω/B)=1 P( B /A)=1-P(B/A) 乘法公式: P(AB) P(A)P(B / A) 更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0,则有
P( A1A2 … An) P( A1)P( A2 | A1)P( A3 | A1A2) …… P( An | A1A2 …
An 1) 。 ①两个事件的独立性
设事件 A 、B 满足 P(AB) P(A)P(B) ,则称事件 A 、B 是相互独 立的。
若事件 A 、 B 相互独立,且 P(A) 0 ,则有
A-B,也可表示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。
1
概率论与数理统计 公式(全)
知识点总结
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同
时发生,称事件 A 与事件 B 互不相容或者互斥。基本事件是互不 相容的。
-A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A 。它表示
1
概率论与数理统计 公式(全)
知识点总结
当 A=Ω时,P( B )=1- P(B)

浙江大学概率论与数理统计(盛骤第四版)——概率论部分1-90页精品文档

浙江大学概率论与数理统计(盛骤第四版)——概率论部分1-90页精品文档
fn ( A )
# 频率 反映了事件A发生的频繁程度。
15
n
Ai Ai A1 A2
n
n
An; Ai Ai=A1A2 An;
i1
i1
i1
i1
例:设A={ 甲来听课 },B={ 乙来听课 } ,则:
A B {甲、乙至少有一人来}
都不来}
A BAB{甲、乙至少有一人不来}
14
§3 频率与概率
例:



称S中的元素e为基本事件或样本点.
一枚硬币抛一次 S={正面,反面}; 记录一城市一日中发生交通事故次数
S={0,1,2,…}; 记录某地一昼夜最高温度x,最低温度y
S={(x,y)|T0≤y≤x≤T1}; 记录一批产品的寿命x S={ x|a≤x≤b }
10
(二) 随机事件
一般我们称S的子集A为E的随机事件A,当且 仅当A所包含的一个样本点发生称事件A发生。 例:观察89路公交车浙大站候车人数,S={0,1,2,…};
概率论与数理统计是研究随机现象 数量规律的一门学科。
1
第一章 概率论的基本概念
• 1.1 随机试验 • 1.2 样本空间 • 1.3 概率和频率 • 1.4 等可能概型(古典概型) • 1.5 条件概率 • 1.6 独立性
第二章 随机变量及其分布
• 2.1 随机变量 • 2.2 离散型随机变量及其分布 • 2.3 随机变量的分布函数 • 2.4 连续型随机变量及其概率密度 • 2.5 随机变量的函数的分布
记 A={至少有10人候车}={10,11,12,…} S, A为随机事件,A可能发生,也可能不发生。
如果将S亦视作事件,则每次试验S总是发生, 故又称S为必然事件。 为方便起见,记Φ 为不可能事件,Φ 不包含

浙江大学《概率论与数理统计》(第4版)【名校笔记+课后习题+考研真题】第7章 参数估计【圣才出品】

浙江大学《概率论与数理统计》(第4版)【名校笔记+课后习题+考研真题】第7章 参数估计【圣才出品】

各总体的概率密度或分布律中的未知参数的矩估计量和矩估计值:
(1)
f
x
c
x 1
xc
,其中 c>0 为已知,θ>1,θ为未知参数;
0
其他
(2)
f
x
x 1
0 x 1
,其中θ>0,θ为未知参数;
0
其他
(3) PX
x
m x
p
x
1
p mx , x
0,1, 2,...m
,其中 0<p<1,p 为未知参数。
X
r i
替换总体矩
A1
1 (ˆ1 ,ˆ2
, ,ˆk
)
A2 2 (ˆ1,ˆ2 ,,ˆk )
Ak
k (ˆ1,ˆ2,,ˆk
)
③解方程组,得到 k 个参数的矩估计
未知参数的矩估计量为
i i ( A1, A2 , Ak )
矩估计量的观察值称为矩估计值。
2.最大似然估计法 (1)似然函数
1 / 40
3.求上题中各未知参数的最大似然估计值和估计量。
解:(1)由题意知,似然函数为
L L
x1, x2,..., xn;
n c xi 1 = c
i 1
n n
1
i1 xi
对似然函数两边同时取对数得
n
ln L n ln ln c 1 ln xi i 1

d
d
ln L
n
1
然估计,则
u
u(
)

u(
)
的最大似然估计。
二、估计量的评选标准
1.无偏性

E
(
)
存在,且∀

浙江大学《概率论与数理统计》(第4版)【名校笔记+课后习题+考研真题】(第13章 马尔可夫链——第1

浙江大学《概率论与数理统计》(第4版)【名校笔记+课后习题+考研真题】(第13章 马尔可夫链——第1

第13章 马尔可夫链13.1 复习笔记一、马尔可夫过程及其概率分布 马尔可夫过程的概率分布 (1)转移概率及其转移概率矩阵 ①转移概率(,){|}ij m n j m i P m m n P X a X a ++===为马氏链在m 时处于a i 的条件下,到m +n 时转移到状态a j 的转移概率。

1(,)1,1,2,ij j P m m n i +∞=+==∑②转移概率矩阵 (,)((,))ij P m m n P m m n +=+性质:各元素非负,每行之和为1(2)齐次马氏链的转移概率及转移概率矩阵 一步转移概率为(){}11ij ij m j m i p P P X a X a +====一步转移概率矩阵()11211112122122212=1m j j mj i i i ijX a a a a p p p X a p pp P P a p p p +⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦的状态的记成状态二、多步转移概率的确定1.C-K 方程1()()(),,1,2,ij ik kj k P u v P u P v i j +∞=+==∑2.n 歩转移概率齐次马尔可夫链的n 歩转移概率矩阵P (n )=P n三、遍历性 1.定义转移概率()ij P n 存在极限或()()121212jj n jP n P n πππππππππ⎡⎤⎢⎥⎢⎥⎢⎥=→∞⎢⎥⎢⎥⎢⎥⎣⎦则此链具有遍历性,若1jjπ=∑,则12(,,)πππ=为链的极限分布。

2.有限链遍历性的充分条件设齐次马氏链{X n ,n ≥l}的状态空间为12{,,,}N I a a a =,P 是它的一步转移概率矩阵,如果∃m ∈N +,使对∀,i j a a I ∈,都有()0,,1,2,,ij P m i j N >=则此链具有遍历性,且有极限分布12(,,,)N ππππ=,它是方程组π=πP 或1,1,2,Nj i ij i p j Nππ===∑满足条件10,1Nj j j ππ=>=∑的唯一解。

浙江大学《概率论与数理统计》(第4版)【名校笔记+课后习题+考研真题】第6章 样本及抽样分布【圣才出

浙江大学《概率论与数理统计》(第4版)【名校笔记+课后习题+考研真题】第6章 样本及抽样分布【圣才出
圣才电子书

十万种考研考证电子书、题库视频学习平台
第 6 章 样本及抽样分布
6.1 复习笔记
一、抽样分布 1.样本统计量 (1)常用的统计量(见表 6-1-1)
表 6-1-1 常用统计量
2.经验分布函数 设 x1,x2,…, xn 是总体 F 的一个容量为 n 的样本值,将 x1,x2,…,xn 按从小到大的
1
4 / 5 4 / 5
0.2628
(2)记 M=max{X1,X2,X3,X4,X5},因 Xi X i 的分布函数为Φ((x-12)/2),则
M 的分布函数为
FM(m)=[Φ((m-12)/2)]5
因而
P{max{X1,X2,X3,X4,X5}>15}=P{M>15}=1-P{M≤15}=1-FM(15)=1-[Φ ((15-12)/2)]5=0.2923
①定理一
设 X1,X2,…,Xn 是来自正态总体 N (, 2 ) 的样本,其样本均值和样本方差为
X
1 n
n i 1
Xi,S2
1 n 1
n i 1
Xi X
2
a.
(n 1)S 2 2
~
2 (n 1)
b. X ~ N (, 2 ) n
c. X 与 S2 相互独立。
③定理二
设 X1,X2,…,Xn 是来自正态总体 N (, 2 ) 的样本, X ,S2 分别是该样本的均值和
且两者是相互独立,因此
X1 X 2 X3 ~ N 0,1 , X 4 X5 X 6 ~ N 0,1
3
3
又两者相互独立,按χ2 分布的定义
(X1+X2+X3)2/3+(X4+X5+X6)2/3~χ2(2)
即 1/3Y~χ2(2),因此所求常数 C=1/3。

浙大四版《概率论与数理统计》第一章内容提要及课后习题解答

浙大四版《概率论与数理统计》第一章内容提要及课后习题解答

第一章概率论的基本概念内容提要考试要求1. 了解样本空间的概念, 理解随机事件的概念, 掌握事件的关系与运算.2. 理解概率、条件概率的概念, 掌握概率的基本性质, 会计算古典型概率和几何型概率, 掌握概率的加法公式、减法公式、乘法公式、全概率公式, 以及贝叶斯公式.3. 理解事件独立性的概念, 掌握用事件独立性进行概率计算;理解独立重复试验的概率, 掌握计算有关事件概率的方法.一、古典概型与几何概型1.随机试验,样本空间与事件.2.古典概型:设样本空间为一个有限集,且每个样本点的出现具有等可能性,则3.几何概型:设为欧氏空间中的一个有界区域, 样本点的出现具有等可能性,则二事件的关系与概率的性质1. 事件之间的关系与运算律(与集合对应), 其中特别重要的关系有:(1)A与B互斥(互不相容)(2)A与B互逆(对立事件),(3)A与B相互独立P(AB)=P(A)P(B).P(B|A)=P(B)(P(A)>0).(0<P(A)<1).P(B|A)=P(B|)(0 < P(A)< 1 )注: 若(0<P(B)<1),则独立P(A|B)=P(A)(P(B)>0)(0<P(B)<1).P(A|B)=P(A|)(0<P(B)<1)P(|B)=P(|)(0<P(B)<1)(4)A, B, C两两独立⇔P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(AC)=P(A)P(C).(5)A, B, C相互独立⇔P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(AC)=P(A)P(C);P(ABC)=P(A)P(B)P(C).2. 重要公式(1)(2)(3)(4)若A1, A2,…,A n两两互斥, 则.(5)若A, …, A相互独立, 则..(6) 条件概率公式: (P (A )>0)三、乘法公式,全概率公式,Bayes 公式与二项概率公式1. 乘法公式:2. 全概率公式:3.Bayes 公式:11(|)()(|),,,.(|)()j j j i j i i i ii P B A P A P A B A i j A P B A P A ∞∞====Φ≠=Ω∑ A 4.二项概率公式:,课后习题解答随机试验与随机事件1. 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1),n 表小班人数(2)生产产品直到得到10件正品,记录生产产品的总件数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江大学概率论与数理统计第4版复习笔记详解|才聪学习网
浙江大学《概率论与数理统计》(第4版)笔记和课后习题(含考研真题)详解
文章来源:才聪学习网/概率论与数理统计
内容简介
本书是浙江大学盛骤等主编的《概率论与数理统计》(第4版)的学习辅导书,主要包括以下内容:
(1)梳理知识脉络,浓缩学科精华。

本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。

因此,本书的内容几乎浓缩了该教材的知识精华。

(2)详解课后习题,巩固重点难点。

本书参考大量相关辅导资料,对盛骤主编的《概率论与数理统计》(第4版)的课后思考题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。

(3)精选考研真题,培养解题思路。

本书从历年考研真题中挑选最具代表性的部分,并对之做了详尽的解析。

所选考研真题基本涵盖了每章的考点和难点,考生可以据此了解考研真题的命题风格和难易程度,并检验自己的复习效果。

目录
第1章概率论的基本概念
1.1 复习笔记
1.2 课后习题详解
1.3 考研真题详解
第2章随机变量及其分布
2.1 复习笔记
2.2 课后习题详解
2.3 考研真题详解
第3章多维随机变量及其分布3.1 复习笔记
3.2 课后习题详解
3.3 考研真题详解
第4章随机变量的数字特征4.1 复习笔记
4.2 课后习题详解
4.3 考研真题详解
第5章大数定律及中心极限定理5.1 复习笔记
5.2 课后习题详解
5.3 考研真题详解
第6章样本及抽样分布
6.1 复习笔记
6.2 课后习题详解
6.3 考研真题详解
第7章参数估计
7.1 复习笔记
7.2 课后习题详解
7.3 考研真题详解
第8章假设检验
8.1 复习笔记
8.2 课后习题详解
8.3 考研真题详解
第9章方差分析及回归分析
9.1 复习笔记
9.2 课后习题详解
9.3 考研真题详解
第10章bootstrap方法
10.1 复习笔记
10.2 课后习题详解
10.3 考研真题详解
第11章在数理统计中应用Excel软件
11.1 复习笔记
11.2 课后习题详解
11.3 考研真题详解
第12章随机过程及其统计描述
12.1 复习笔记
12.2 课后习题详解
12.3 考研真题详解
第13章马尔可夫链
13.1 复习笔记
13.2 课后习题详解
13.3 考研真题详解
第14章平稳随机过程
14.1 复习笔记
14.2 课后习题详解
14.3 考研真题详解
复习笔记详解
第1章概率论的基本概念
1.1 复习笔记
在个别试验中其结果呈现出不确定性,在大量重复试验中其结果又具有统计规律性的现象,称为随机现象.
一、随机试验
1.定义
试验包括各种各样的科学实验,甚至对某一事物的某一特征的观察也认为是一种试验.
2.试验的特点
(1)可以在相同的条件下重复地进行;
(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.
在概率论中,将具有上述三个特点的试验称为随机试验.
二、样本空间、随机事件
1.样本空间
随机试验E的所有可能结果组成的集合称为E的样本空间,记为S.样本空间的元素,即E的每个结果,称为样本点.
2.随机事件
一般地,称试验E的样本空间S的子集为E的随机事件,简称事件.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.
特别地,由一个样本点组成的单点集,称为基本事件.
样本空间S包含所有的样本点,它是S自身的子集:
(1)在每次试验中它总是发生的,S称为必然事件.
(2)空集不包含任何样本点,也是样本空间的子集,它在每次试验中都不发生,称为不可能事件.
3.事件间的关系与事件的运算
事件间的关系与事件的运算按照集合论中集合之间的关系和集合运算来处理.设试验E的样本空间为S,而A,B,A k(k=1,2,…)是S的子集.
(1)包含关系
①若,则称事件B包含事件A,即事件A发生必导致事件B发生;
②若且,即A=B,则称事件A与事件B相等.
(2)和事件
事件A∪B={x|x∈A或x∈B)称为事件A与事件B的和事件.当且仅当A,B 中至少有一个发生时,事件A B发生.
称为n个事件A1,A2,…,A n的和事件;称为可列个事件A1,A2,…的和事件.
(3)积事件
事件A∩B={x|x∈A且x∈B)称为事件A与事件B的积事件.当且仅当A,B 同时发生时,事件A∩B发生.A∩B也记作AB.
称为n个事件A1,A2,…,A n的积事件;称为可列个事件A1,A2,…的积事件.
(4)差事件
事件A-B={x|x∈A且x B)称为事件A与事件B的差事件.当且仅当A发生、B不发生时事件A-B发生.
(5)互斥
若,则称事件A与B是互不相容的,或互斥的.即事件A与事件B不能同时发生.基本事件是两两互不相容的.
(6)逆事件
若A∪B=S且,则称事件A与事件B互为逆事件,又称事件A与事件B互为对立事件.对每次试验而言,事件A、B中必有一个发生,且仅有一个发生.A的对立事件记为.
(7)定律
设A,B,C为事件,则有:
①交换律:A∪B=B∪A;A∩B=B∩A;
②结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C;
③分配律:A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A ∩C);
④德摩根律:;.。

相关文档
最新文档