中考数学培优

合集下载

中考数学培优 易错 难题(含解析)之一元二次方程含详细答案

中考数学培优 易错 难题(含解析)之一元二次方程含详细答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.2.已知关于x 的一元二次方程()220x m x m -++=(m 为常数) (1)求证:不论m 为何值,方程总有两个不相等的实数根;(2)若方程有一个根是2,求m 的值及方程的另一个根.【答案】(1)见解析;(2) 即m 的值为0,方程的另一个根为0.【解析】【分析】(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根;(2)设方程的另一个根为t ,利用根与系数的关系得到2+t=21m + ,2t=m,最终解出关于t 和m 的方程组即可.【详解】(1)证明:△=(m+2)2−4×1⋅m=m 2+4,∵无论m 为何值时m 2≥0,∴m 2+4≥4>0,即△>0,所以无论m 为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t ,()220x m x m -++=根据题意得2+t=21m + ,2t=m , 解得t=0,所以m=0,即m 的值为0,方程的另一个根为0.【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t ,用根于系数关系列出方程组,在求解.3.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m =时,活动区的面积达到21344m【解析】【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--=解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.4.已知关于x的一元二次方程有两个实数x2+2x+a﹣2=0,有两个实数根x1,x2.(1)求实数a的取值范围;(2)若x12x22+4x1+4x2=1,求a的值.【答案】(1)a≤3;(2)a=﹣1.【解析】试题分析:(1)由根的个数,根据根的判别式可求出a的取值范围;(2)根据一元二次方程根与系数的关系,代换求值即可得到a的值.试题解析:(1)∵方程有两个实数根,∴△≥0,即22﹣4×1×(a﹣2)≥0,解得a≤3;(2)由题意可得x1+x2=﹣2,x1x2=a﹣2,∵x12x22+4x1+4x2=1,∴(a﹣2)2﹣8=1,解得a=5或a=﹣1,∵a≤3,∴a=﹣1.5.校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.【解析】【分析】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,根据题意得:x(32﹣2x)=126,解得:x1=7,x2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,根据题意得:y(36﹣2y)=170,整理得:y2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.6.已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.【答案】(1)k=1;(2)证明见解析.【解析】【分析】(1)把x=1代入方程,即可求得k的值;(2)求出根的判别式是非负数即可.【详解】(1)把x=1代入方程x2﹣(k+3)x+3k=0得1﹣(k﹣3)+3k=0,1﹣k﹣3+3k=0解得k=1;(2)证明:1,(3),3a b k c k==-+=24b ac∆=-∴△=(k+3)2﹣4•3k =(k﹣3)2≥0,所以不论k取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键.7.今年以来猪肉价格不断走高,引起了民众与区政府的高度关注,当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至11月 10 日,猪排骨价格不断走高,11 月 10 日比年初价格上涨了 75%.今年 11 月 10 日某市民于 A 超市购买 5 千克猪排骨花费 350 元.(1)A 超市 11 月排骨的进货价为年初排骨售价的32倍,按 11 月 10 日价格出售,平均一天能销售出 100 千克,超市统计发现:若排骨的售价每千克下降 1 元,其日销售量就增加20千克,超市为了实现销售排骨每天有 1000 元的利润,为了尽可能让顾客优惠应该将排骨的售价定位为每千克多少元?(2)11 月 11 日,区政府决定投入储备猪肉并规定排骨在 11 月 10 日售价的基础上下调a%出售,A 超市按规定价出售一批储备排骨,该超市在非储备排骨的价格不变情况下,该天的两种猪排骨总销量比 11 月 10 日增加了a%,且储备排骨的销量占总销量的57,两种排骨销售的总金额比 11 月 10 日提高了128a %,求 a 的值. 【答案】(1)售价为每千克65元;(2)a =35.【解析】【分析】 (1)先根据题意计算出11月10的售价和11月的进货价,设每千克降价x 元,则每千克的利润为10-x 元,日销量为100+20x 千克,根据销量×单利润=总利润列出方程求解,并根据为了尽可能让顾客优惠,对所得的解筛选;(2)根据销售总金额=储备排骨销售单价×储备排骨销售数量+非储备排骨销售单价×非储备排骨销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)11月10日的售价为350÷5=70元/千克年初的售价为:350÷5÷175%=40元/千克,11月的进货价为: 340602元/千克设每千克降价x 元,则每千克的利润为70-60-x=10-x 元,日销量为100+20x 千克 则(10020)(10)1000x x ,解得10x =,25x =因为为了尽可能让顾客优惠,所以降价5元,则售价为每千克65元. (2)根据题意可得52170(1%)100(1%)70100(1%)701001%7728a a a a ⎛⎫-++⨯+=⨯+ ⎪⎝⎭解得135a =,20a =(舍去)所以a =35.【点睛】 本题考查一元二次方程的应用,(1)中理清销售量随着单价的变化而变化的数量关系是解题关键;(2)中在求解时有些难度,可先设令%a t =,解方程求出t 后再求a 的值.8.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a 元,在不考虑其他因素的条件下,当a 定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.9. ∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m 吨(或水费是按y=1.7x 来计算的),五月份用水量超过m 吨(或水费是按来计算的) 则有151=1.7×80+(80-m )×即m 2-80m+1500=0解得m 1=30,m 2=50.又∵四月份用水量为35吨,m 1=30<35,∴m 1=30舍去.∴m=50【解析】10.我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答: (1)每千克茶叶应降价多少元?(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?【答案】(1)每千克茶叶应降价30元或80元;(2)该店应按原售价的8折出售.【解析】【分析】(1)设每千克茶叶应降价x 元,利用销售量×每件利润=41600元列出方程求解即可; (2)为了让利于顾客因此应下降价80元,求出此时的销售单价即可确定几折.【详解】(1)设每千克茶叶应降价x 元.根据题意,得:(400﹣x ﹣240)(200+10x ×40)=41600. 化简,得:x 2﹣10x +240=0.解得:x 1=30,x 2=80.答:每千克茶叶应降价30元或80元.(2)由(1)可知每千克茶叶可降价30元或80元.因为要尽可能让利于顾客,所以每千克茶叶某应降价80元.此时,售价为:400﹣80=320(元),320100%80%400⨯=. 答:该店应按原售价的8折出售.【点睛】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.。

2023中考数学培优专题讲座

2023中考数学培优专题讲座

2023中考数学培优专题讲座摘要本文将为大家介绍2023年中考中数学培优的相关内容。

我们将从数学培优的定义和意义开始,逐步介绍培优的方法和技巧。

希望通过本文的阅读,能够帮助学生们更好地备战2023年中考数学科目。

一、数学培优的定义和意义数学培优指的是针对某一学科中具有较强数学能力的学生,通过一系列培训和教育活动,进一步提升他们的数学学科能力。

数学培优的目的是发现和培养潜在的数学人才,为他们提供更高层次的数学学习机会。

数学培优的意义在于:1.培养数学兴趣:通过培优活动,学生们可以接触到更多有趣的数学问题和挑战,激发他们对数学的兴趣。

2.提高数学能力:培优活动将主要关注于针对学生数学能力的提升,通过学习更高层次的数学知识和解题方法,帮助学生们更好地掌握数学技巧。

3.培养解决问题的能力:数学培优不只着眼于纯粹的数学知识,还注重培养学生解决实际问题的能力,提高他们的思维逻辑和分析能力。

二、数学培优的方法和技巧数学培优的方法和技巧包括以下几个方面:1. 多元化学习资源为了提高数学学科能力,学生们可以利用各种学习资源,包括课本、习题集、参考书籍、网络资源等。

通过多样化的学习资源,学生们可以更全面地掌握数学知识。

2. 培养解题思维解题思维是数学学习中至关重要的一环。

学生们可以通过练习不同类型的数学题目,培养解决问题的思维模式。

同时,学生们还可以参加解题比赛等活动,锻炼解题能力。

3. 积极参与数学讲座和讨论数学讲座和讨论是学生们学习数学的重要方式。

通过参加数学讲座,学生们可以了解最新的数学发展动态,同时与其他数学爱好者进行交流,拓宽数学知识视野。

4. 寻找数学学习小组学习小组是互帮互助的学习方式,可以加强学生们的学习氛围和动力。

通过组建数学学习小组,学生们可以共同讨论问题、解决难题,相互促进,提高数学学科能力。

5. 定期进行模拟测试和复习定期进行模拟测试和复习是对学生们学习效果的检测和总结。

通过模拟测试,学生们可以了解自己的数学水平,及时发现问题并加以改进。

2023年中考数学第一轮专题培优训练:正比例函数的意义【含答案】

2023年中考数学第一轮专题培优训练:正比例函数的意义【含答案】

2023年中考数学第一轮专题培优训练:正比例函数的意义一、单选题1.对于函数y=-k 2x(k 是常数,k≠0)的图象,下列说法不正确的是( )A .是一条直线B .过点( ,-k)1k C .经过第一、三象限或第二、四象限D .y 随着x 的增大而减小2.已知y 与x 成正比例,并且当x=1时,y=8,那么y 与x 之间的函数表达式为( )A .y=8xB .y=2xC .y=6xD .y=5x3.在平面直角坐标系中,若一个正比例函数的图象经过A (m ,6),B (5,n )两点,则m ,n 一定满足的关系式为( ) A .m -n=1B .m +n=11C . =D .m n 65mn =304.下列各式中,表示正比例函数的是()A .B .C .D .y =3x y =3x +1y 2=3xy =3x 25.某商贩卖某种水果,出售时在进价的基础上加上一定的利润,其销售数量x 与售价y 的关系如下表,王阿姨想买这种水果6千克,她应付款( )销售数量x(千克)12345…售价y(元)4+0.58+1.012+1.516+2.020+2.5…A .27元B .24元C .7元D .26.5元6.若函数y =(k﹣3)x+k 2﹣9是正比例函数,则( )A .k≠3B .k =±3C .k =3D .k =﹣37.下列各点一定不在正比例函数y=3x 的图象上的是( )A .(1,3)B .( , )1213C .(-2,-6)D .(-3,-9)8.若当 时,正比例函数 与反比例函数的值相x =4y =k 1x(k 1≠0)y =k 2x(k 2≠0)等,则 与 的比是( ).k 1k 2A .16:1B .4:1C .1:4D .1:169.在式子 中,若y 是x 的正比例函数,则m ,n 应满足的条件是( y =(m−1)x +n ) A .B . ,且 m ≠1m ≠1n =0C . ,且 D .m =1n =0n =010.若正比例函数图象过点,则下列说法正确的是( )(1,−2)A .函数图象过一、三象限B .函数图象过点(−2,−4)C .函数值随自变量的增大而增大D .函数图象向右平移1个单位后的函数的解析式是y =−2x +211.已知y-3与x 成正比例,当x=2时,y=7,则y 与x 的函数关系式为( )A .y=2x+3B .y=2x-3C .y-3=2x+3D .y=3x-312.若y+3与x-2成正比例,则y 是x 的( )A .正比例函数B .不存在函数关系C .一次函数D .以上都有可能二、填空题13.若函数y=(a+1)x a2+b-2是正比例函数,则(a-b)2021的值是 14.已知函数y =(k -1)x +k 2-1,当k  时,它是一次函数;当k = 时,它是正比例函数.15.如果函数y=(m- )x m2-1是正比例函数,那么m=  .216.已知a 、b 、c 满足 ,从下列四点:(1, ),(2,1),b a +c =a c +b =c a +b =k12(1,- ),(1,﹣1)中任意取一点恰好在正比例函数y =kx 图象上的概率是 12.17.若y=(a-3)x+a 2-9为正比例函数,则此函数图象经过第  象限.18.已知函数 为正比例函数,则常数m 的值为  .y =mx +m 2+m 三、综合题19.已知 与 成正比例,且 时, .y−1x +2x =−1y =3(1)求 与 之间的函数关系式;y x (2)若点 是该函数图象上的一点,求 的值.(2m +1,−1)m 20.已知y =(m +1)x 2-|m|+n +4.(1)当m ,n 取何值时,y 是x 的一次函数? (2)当m ,n 取何值时,y 是x 的正比例函数?21.图是正比例函数的图象.(1)求这个函数的表达式;(2)判断点A(4,-2)、点B(-1.5,3)是否在这个函数图象上;(3)图象上有两点C(x1,y1)、D(x2,y2),x1>x2,比较y1、y2的大小.y x−1x=3y=422.已知与成正比例,且当时,.y x(1)求出与之间的函数关系式;A(−2,m)B(5,n)m n (2)点、都在(1)中的函数图象上,判定和的大小关系,并说明理由.y−1x=−2y=423.已知与x成正比例,当时,.(1)求出y与x的函数关系式;(2)点P1(m,y1)、P2(m+1,y2)在(1)中函数的图象上,比较y1与y2的大小.y−5x+3x=1y=−324.已知与成正比例,且当时,.(1)写出y与x之间的函数关系式;x=−7(2)求当时,y的值.答案解析部分1.【答案】C2.【答案】A3.【答案】D4.【答案】A5.【答案】A6.【答案】D7.【答案】B8.【答案】D9.【答案】B10.【答案】D11.【答案】A12.【答案】C13.【答案】-114.【答案】≠1;=-115.【答案】- 216.【答案】3 417.【答案】二、四18.【答案】-119.【答案】(1y−1=k(x+2)将,代入得,解得x=−1y=33−1=k(−1+2)k=2即,化简得;y−1=2(x+2)y=2x+5(2)将点代入函数关系式,得(2m+1,−1)y=2x+5−1=2(2m+1)+5解得m=−220.【答案】(1)解:根据一次函数的定义,得:2-|m|=1,解得m=±1,又∵m+1≠0即m≠-1,∴当m=1,n为任意实数时,这个函数是一次函数(2)解:根据正比例函数的定义,得:2-|m|=1,n+4=0,解得m=±1,n=-4,又∵m+1≠0即m≠-1,∴当m=1,n=-4时,这个函数是正比例函数.21.【答案】(1)解:设正比例函数的表达式为y=kx( k≠0),由题图得函数图象过点E(1,-2),所以k=-2,所以函数的表达式为y=-2x.(2)解:将x=4代入y=-2x得,y=-2x4=-8≠-2,将x=-1.5代入y=-2x得y=-2x(-1.5)=3.故点A 不在函数图象上,点B 在函数图象上.(3)解:由于k=-2<0,故y 随x 的增大而减小, 因为x 1>x 2,所以y 1<y 222.【答案】(1)设y=k (x-1),∵当 时, ,x =3y =4∴2k=4,解得k=2,∴y=2(x-1)=2x-2;(2)m<n理由:∵ ,k=2>0,y =2x−2∴函数值y 随着自变量x 的增大而增大,∵-2<5,∴ .m <n 23.【答案】(1)解:与x 成正比例,∵y−1设y−1=kx当时,.∵x =−2y =4∴4−1=−2k解得k =−32∴y =−32x +1(2)解:点P 1(m ,y 1)、P 2(m+1,y 2)在的图象上,∵y =−32x +1k =−32<0y 随x 的增大而减小,∴∵m <m +1∴y 1>y 224.【答案】(1)解:∵与成正比例,y−5x +3∴设y−5=k(x +3),当时,.x =1y =−3∴4k =−8,解得:k =−2,∴函数关系式为: 即.y−5=−2(x +3),y =−2x−1(2)解:当时,x =−7∴y=−2x−1=−2×(−7)−1=13。

九年级数学下册2023年中考专题培优训练(培优篇):函数

九年级数学下册2023年中考专题培优训练(培优篇):函数

九年级数学下册2023年中考专题培优训练(培优篇):函数一、单选题1.下列曲线中不能..表示y 是x 的函数的是( ) A . B .C .D .2.如图,直线1:3L y x =+与直线2:L y ax b =+相交于点()4A m ,,则关于x 的不等式3x ax b +≤+的解集是( ).A .4x ≥B .4x ≤C .1x ≥D .1x ≤3.若直线3y x =与x 轴所夹的锐角为α,则sin α的值为( ) A 3B .12C 3D 34.下列四个选项中,不符合直线3y x =--的性质特征的选项是( ) A .经过第二、三、四象限 B .y 随x 的增大而减小 C .与x 轴交于()3,0 D .与y 轴交于()0,3-5.已知反比例函数()0ky k x=≠,当21x -≤≤-时,y 的最大值是6,则当2x ≥时,y 有( )A .最小值6-B .最小值3-C .最大值6-D .最大值3-6.如图,正比例函数y ax =(a 为常数,且0a ≠)和反比例函数ky x=(k 为常数,且0k ≠)的图像相交于)(2,A m -和B 两点,则不等式kax x<的解集为( )A .<2x -或2x >B .22x -<<C .20x -<<或2x >D .<2x -或02x <<7.对于反比例函数2023y x=,下列说法正确的是( ) A .图象分布在第二、四象限内 B .图象经过点()1,2023-- C .y 随x 的增大而减小 D .0x <时,y 随x 的增大而增大8.如图,P 是反比例函数()50y x x=>的图象上一点,PA x ⊥轴于点A ,动点B 从原点O 出发,沿y 轴正方向移动,连接AB ,BP .在点B 移动过程中,PAB 的面积( )A .越来越大B .不变C .越来越小D .先变大后变小9.对于二次函数()222y x =-+的图像,下列说法正确的是( ) A .对称轴为直线2x =- B .最低点的坐标为()2,2 C .与x 轴有两个公共点D .与y 轴交点坐标为()0,210.如图,在平面直角坐标系中,点()12,A m y -,()2,B m y 都在二次函数()21y x n =-+的图象上.若12y y >,则m 的取值范围是( )A .1m <B .1m >C .2m <D .>2m11.如图,一场篮球比赛中,一名篮球运动员投篮,球沿抛物线20.2y x bx c =-++运行,然后准确落入篮筐内,已知球出手时离地面高2.25米,距篮筐中心的水平距离OH 是4米,篮筐的中心离地面的高度为3.05m ,该抛物线的表达式为( )A .20.2 2.25y x x =--+B .20.2 2.25y x x =-++C .20.22 2.25y x x =--+D .20.22 2.25y x x =-++12.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,其对称轴为直线12x =-,且与x轴的一个交点坐标为()2,0-.下列结论:①0abc >;①a b =;①930a b c -+>;①20a c +=;①关于x 的一元二次方程20ax bx c ++=有两个相等的实数根.其中正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题13.如图,点A 是反比例函数ky x=图象上一点,过点A 作AH x ⊥轴,垂足为H ,连接OA ,已知AOH △的面积是6,则k 的值是__________.14.把抛物线2(1)3y x =-++向左平移2个单位长度,然后向下平移3个单位长度,平移后抛物线的表达式为__________.15.一辆汽车匀速通过某段公路,所需时间t (h )与行驶速度v (km/h )满足函数关系kt v=,其图象为如图所示的一段曲线,且端点为()40,1A 和(),0.5B m .若行驶速度不得超过60km/h ,则汽车通过该路段最少需要_________h ?16.反比例数4y x =-,当4y <时,x 的取值范围是______.17.如图,在平面直角坐标系中,OAC 的顶点A 在反比例函数ky x=的图象上,点C 在x 轴上,AC 边交反比例函数图象于点B ,若2BOCS=,且2AB BC =,则k 的值为___________.18.如图,直线334y x =--与x 轴、y 轴分别交于点A 和点B ,点C 是x 轴上的一个动点,将ABC 沿BC 所在直线折叠后,点A 恰好落在y 轴上点D 处,则点C 的坐标为______.三、解答题19.如图,直线1l :23y ax =+与x 轴和y 轴分别交于B ,C 两点,直线2l :23y x b =-+与x轴交于点A ,并且这两直线交点P 的坐标为()22,.(1)求两直线的解析式; (2)求四边形AOCP 的面积.20.李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段时间内,水温y (①)与加热时间x (s )之间近似满足一次函数关系,根据记录的数据,画函数图象如下:(1)加热前水温是 ①.(2)求乙壶中水温y 关于加热时间x 的函数解析式. (3)当甲壶中水温刚达到80①时,乙壶中水温是 ①.21.如图,直线2y ax =+与x 轴、y 轴分别相交于A 、B 两点,与双曲线()0k y x x=>相交于点P ,PC x ⊥轴于点C ,且4PC =,点A 的坐标为()4,0-.(1)求一次函数的解析式; (2)求双曲线的解析式;(3)若点Q 为双曲线上点P 右侧的一点,且QH x ⊥轴于H ,当以点Q 、C 、H 为顶点的三角形与AOB 相似时,求点Q 的坐标. 22.如图,已知一次函数112y x =-与反比例函数()0k y k x =≠相交于点(),1A m 、()2,B n -.过点A 分别向x 轴、y 轴作垂线,垂足分别为点M 、N .连接,,OA OB AB .(1)求反比例函数的解析式;(2)若四边形OMAN 的面积记作1S ,AOB 的面积记作2S ,求12S S 的值. 23.为了做好校园疫情防控工作,学校每周要对办公室和教室进行药物喷洒消毒,消毒药物在每间教室内空气中的浓度y (单位:3mg/m )与时间x (单位:min )的函数关系如图所示.在进行药物喷洒时y 与x 的函数关系式为2y x =,药物喷洒完成后y 与x 成反比例函数关系,两个函数图象的交点为(5,)A n .(1)n 的值为__________;(2)当5x ≥时,y 与x 的反比例函数关系式为__________;(3)当教室空气中的药物浓度不高于31mg/m 时,对人体健康无危害.当教室药物喷洒完成45min 后,学生能否进入教室?请通过计算说明.24.某果园有100棵橙子树,平均每棵树结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.假设果园增种x 棵橙子树,增种后果园橙子的总产量为y 个,那么请你求出当果园增种多少棵橙子树时,橙子的总产量最多,并求出此时的总产量.25.如图,抛物线2y ax bx c =++经过点()()2,0,4,0A B -,与y 轴正半轴交于点C ,且2OC OA =,抛物线的顶点为D ,直线y mx n =+经过B ,C 两点,与对称轴交于点E .(1)求抛物线及直线BC 的函数表达式;(2)点M 是直线BC 上方抛物线上的动点,连接,MB ME ,得到MBE △,求出MBE △面积的最大值及此时点M 的坐标;(3)直线()0y kx k =>交线段BC 于点H ,若以点O ,B ,H 为顶点的三角形与CDE 相似,求k 的值;(4)点N 在对称轴上,满足BNC ABC ∠=∠,求出点N 的坐标.。

中考数学备考培优专题卷:《切线长定理》(解析版)

中考数学备考培优专题卷:《切线长定理》(解析版)

培优专题卷:《切线长定理》一.选择题1.如图,PA、PB、DE分别切⊙O于A、B、C点,若圆O的半径为6,OP=10,则△PDE的周长为()A.10 B.12 C.16 D.202.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB 均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是()A.9 B.10 C.12 D.143.如图所示,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是上任意一点,过C作⊙O的切线分别交PA,PB于D,E.若△PDE的周长为12,则PA的长为()A.12 B.6 C.8 D.44.如图中,CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点.若∠1=60°,∠2=65°,判断AB、CD、CE的长度,下列关系何者正确()A.AB>CE>CD B.AB=CE>CD C.AB>CD>CE D.AB=CD=CE5.如图,⊙O是△ABC的内切圆,点D、E分别为边AC、BC上的点,且DE为⊙O的切线,若△ABC的周长为25,BC的长是9,则△ADE的周长是()A.7 B.8 C.9 D.166.如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线,与边BC交于点E,若AD=,AC=3.则DE长为()A.B.2 C.D.7.以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点F,交AB边于点E,若△CDE的周长为12,则直角梯形ABCE周长为()A.12 B.13 C.14 D.158.已知:如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P 作半圆O的切线分别交过A、B两点的切线于D、C,连接OC、BP,过点O作OM∥CD分别交BC与BP于点M、N.下列结论:=AB•CD;①S四边形ABCD②AD=AB;③AD=ON;④AB为过O、C、D三点的圆的切线.其中正确的个数有()A.1个B.2个C.3个D.4个9.如图,正方形ABCD边长为4cm,以正方形的一边BC为直径在正方形ABCD内作半圆,过A作半圆的切线,与半圆相切于F点,与DC相交于E点,则△ADE的面积()A.12 B.24 C.8 D.610.如图,在平面直角坐标系xOy中,直线AB经过点A(6,0)、B(0,6),⊙O的半径为2(O为坐标原点),点P是直线AB上的一动点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.B.3 C.3D.二.填空题11.如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B 作⊙O的切线交CD于点E,若AB=CD=2,则CE=.12.如图所示,DE是△ABC的内切圆I的切线,又BC=2cm,△ADE的周长为4cm,则△ABC 的周长是cm.13.如图,PA、PB、DE分别切⊙O于点A、B、C,DE交PA、PB于点D、E,已知PA长8cm.则△PDE的周长为;若∠P=40°,则∠DOE=.14.如图示PA、PB是⊙O的切线,切点分别为A、B,直线EF也是⊙O的切线,Q是切点,交PA、PB于E、F点.若PA=10cm,则△PEF的周长为cm;若∠APB=50°,则∠EOF的度数为.15.如图,△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,已知AD=10cm,小明准备用剪刀沿着与⊙O相切的任意一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长为.16.如图所示,⊙D的半径为3,A是圆D外一点且AD=5,AB,AC分别与⊙D相切于点B,C.G是劣弧BC上任意一点,过G作⊙D的切线,交AB于点E,交AC于点F.(1)△AEF的周长是;(2)当G为线段AD与⊙D的交点时,连结CD,则五边形DBEFC的面积是.三.解答题17.如图,四边形ABCD外切于⊙O,切点分别是E、F、G、H.(1)请探索四边形ABCD四边AB、BC、CD、AD之间的关系;(2)圆的外切平行四边形是形;(3)圆的外切矩形是形;(4)若AB:BC:CD:DA=1:3:4:x,且四边形ABCD的周长为20cm,则x=,AD=.18.如图,P是半径为cm的⊙O外一点,PA,PB分别和⊙O切于点A,B,PA=PB=3cm,∠APB=60°,C是弧AB上一点,过C作⊙O的切线交PA,PB于点D,E.(1)求△PDE的周长;(2)若DE=cm,求图中阴影部分的面积.19.如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O 的切线,交BC于点E;(1)求证:BE=CE;(2)若以O、D、E、C为顶点的四边形是正方形,⊙O的半径为r,求△ABC的面积;(3)若EC=4,BD=,求⊙O的半径OC的长.20.已知:AB为⊙O的直径,∠A=∠B=90°,DE与⊙O相切于E,⊙O的半径为,AD =2.①求BC的长;②延长AE交BC的延长线于G点,求EG的长.参考答案一.选择1.解:∵PA、PB、DE分别切⊙O于A、B、C点,∴AD=CD,CE=BE,PA=PB,OA⊥AP.在直角三角形OAP中,根据勾股定理,得AP=8,∴△PDE的周长为2AP=16.故选:C.2.解:根据切线长定理,得AD=AE,BC=BE,所以梯形的周长是5×2+4=14.故选D.3.解:∵PA,PB分别和⊙O切于A,B两点,∴PA=PB,∵DE是⊙O的切线,∴DA=DC,EB=EC,∵△PDE的周长为12,即PD+DE+PE=PD+DC+EC+PE=PD+AD+EB+PE=PA+PB=2PA=12,∴PA=6.故选:B.4.解:∵∠1=60°,∠2=65°,∴∠ABC=180°﹣∠1﹣∠2=180°﹣60°﹣65°=55°,∴∠2>∠1>∠ABC,∴AB>BC>AC,∵CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点,∴AC=CD,BC=CE,∴AB>CE>CD.故选:A.5.解:∵AB、AC、BC、DE都和⊙O相切,∴BI=BG,CI=CH,DG=DF,EF=EH.∴BG+CH=BI+CI=BC=9,∴C△ADE =AD+AE+DE=AD+AE+DF+EF=AD+DG+EH+AE=AG+AH=C△ABC﹣(BG+EH+BC)=25﹣2×9=7.故选:A.6.解:连接OD,CD.∵AC为⊙O的直径,∴∠ADC=90°,∵AD=,AC=3.∴CD=,∵OD=OC=OA,∴∠OCD=∠ODC,∵DE是切线,∴∠CDE+∠ODC=90°.∵∠OCD+∠DCB=90°,∴∠BCD=∠CDE,∴DE=CE.∴△ADC∽△ACB,∴∠B=∠ACD,∴=,∴BC===4,∵∠ACD+∠DCB=90°,∴∠B+∠DCB=90°,∠B+∠CDE=90°,∠CDE+∠BDE=90°,∴∠B=∠BDE,∴BE=DE,∴BE=CE=DE.∴DE=BC=×4=2.故选:B.7.解:设AE的长为x,正方形ABCD的边长为a,∵CE与半圆O相切于点F,∴AE=EF,BC=CF,∵EF+FC+CD+ED=12,∴AE+ED+CD+BC=12,∵AD=CD=BC=AB,∴正方形ABCD的边长为4;在Rt△CDE中,ED2+CD2=CE2,即(4﹣x)2+42=(4+x)2,解得:x=1,∵AE+EF+FC+BC+AB=14,∴直角梯形ABCE周长为14.故选:C.8.解:连接OD、AP,∵DA、DP、BC分别是圆的切线,切点分别是A、P、B,∴DA=DP,CP=CB,∠A=90°=∠B=∠DPO,∴AD+BC=DP+CP=CD,=(AD+BC)•AB=AB•CD,∴①正确;∴S四边形ABCD∵AD=DP<OD,∵四边形ODPN是平行四边形,得到OD=NP<BP<AB,则AD<AB,∴②错误;∵AB是圆的直径,∴∠APB=90°,∵DP=AD,AO=OP,∴D、O在AP的垂直平分线上,∴OD⊥AP,∵∠DPO=∠APB=90°,∴∠OPB=∠DPA=∠DOP,∵OM∥CD,∴∠POM=∠DPO=90°,在△DPO和△NOP中∠PON=∠DPO,OP=OP,∠DOP=∠OPN,∴△DPO≌△NOP,∴ON=DP=AD,∴③正确;∵AP⊥OD,OA=OP,∴∠AOD=∠POD,同理∠BOC=∠POC,∴∠DOC=×180°=90°,∴△CDO的外接圆的直径是CD,∵∠A=∠B=90°,取CD的中点Q,连接OQ,∵OA=OB,∴AD∥OQ∥BC,∴∠AOQ=90°,∴④正确.故选:C.9.解:∵AE与圆O切于点F,显然根据切线长定理有AF=AB=4cm,EF=EC,设EF=EC=xcm,则DE=(4﹣x)cm,AE=(4+x)cm,在三角形ADE中由勾股定理得:(4﹣x)2+42=(4+x)2,∴x=1cm,∴CE=1cm,∴DE=4﹣1=3cm,=AD•DE÷2=3×4÷2=6cm2.∴S△ADE故选:D.10.解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2﹣OQ2,∵当PO⊥AB时,线段PQ最短;又∵A(﹣6,0)、B(0,6),∴OA=OB=6,∴AB=6∴OP=AB=3,∵OQ=2,∴PQ==,故选:D.二.填空题(共6小题)11.解:∵CD是⊙O的切线,∴CD2=CB•CA,∵AB=CD=2,∴4=BC(BC+2),解得BC=﹣1+,∵CD是⊙O的切线,BE为⊙O的切线,∴∠CBE=∠CDO=90°,∴△BCE∽△DCO,∴=,即=,解得,CE=,故答案为.12.解:∵⊙I与EC、ED、BC、BD分别相切于G、H、M、F,∴EG=EH,DH=DF,BF=BM,CG=CM,∴EG+DF=EH+DH=DE,CG+BF=CM+BM=BC,∵BC=2,AD+AE+DE=4,∴△ABC的周长=AD+AE+(EG+DF)+(CG+BF)+BC=(AD+AE+DE)+BC+BC=4+2+2=8.故答案为:8.13.解:∵PA、PB、DE是⊙O的切线,∴DA=DC,EC=EB,∴△PDE的周长=PD+DC+EC+PE=PA+PB=2PA=16cm.连接OA、OB、OD、OE、OC,则∠AOB=180°﹣∠P=140°,∴∠DOE=∠COD+∠COE=(∠BOC+∠AOC)=∠AOB=70°.故答案为:16cm、70°.14.解:∵PA、PB是⊙O的切线,∴PA=PB,∵EF也是⊙O的切线,∴EA=EQ,FB=FQ,∴△PEF的周长=PA+PB=10+10=20cm,∵∠APB=50°,∴∠AOB=130°,∴∠EOF=65°.故答案为:20,65°.15.解:∵△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,AD=10cm,∴设E、F分别是⊙O的切点,故DM=MF,FN=EN,AD=AE,∴AM+AN+MN=AD+AE=10+10=20(cm).故答案是:20cm.16.解:(1)如图1所示:连接ED,DG,FD,CD,∵AB,AC分别与⊙D相切于点B,C,∴AB=AC,∠ABD=∠ACD=90°,∵⊙D的半径为3,A是圆D外一点且AD=5,∴AB==4,∵过G作⊙D的切线,交AB于点E,交AC于点F,∴BE=EG,FG=FC,则△AEF的周长是:AE+EG+FG+AF=AB+AC=8.故答案为:8;(2)如图2,AG=AD﹣DG=5﹣3=2.∵在△AEG和△ADB中,∠ABD=∠AGD=90°,∠BAD=∠EAG,∴△AEG∽△ADB,∴=,即=,∴EG=,∴EF=2EG=3,∴S△AEF=EF•AG=×3×2=3.又∵S四边形ABDC =2S△ABD=AB•BD=3×4=12,∴S五边形DBEFC=12﹣3=9.故答案是:9.三.解答题(共4小题)17.解:(1)∵四边形ABCD外切于⊙O,切点分别是E、F、G、H,∴AH=AE,BE=BF,CF=CG,DG=DH,∴AH+DH+CF+BF=DG+CG+AE+BE,即AD+BC=AB+DC;(2)由(1)得,圆的外切四边形对边和相等,则圆的外切平行四边形是:菱形;故答案为:菱;(3)由(1)得,圆的外切四边形对边和相等,则圆的外切矩形是正方形;故答案为:正方;(4)∵AB :BC :CD :DA =1:3:4:x ,AD +BC =AB +DC ,∴1+4=3+x ,则x =2,∵四边形ABCD 的周长为20cm ,∴20÷(1+3+4+2)=2,∴AD =2×2=4(cm ).故答案为:2,4cm .18.解:(1)∵PA 、PB 、DE 是⊙O 的切线,∴PA =PB =3cm ,CE =BE ,AD =DC ,∴△PDE 的周长=PE +DE +PD =PE +CE +CD +PD=PE +BE +AD +PD=PA +PB=3cm +3cm=6cm ;(2)连接OB 、OA 、OE ,OD ,如图,∵PA 、PB 、OC 是⊙O 的切线,∴OB ⊥PB ,OA ⊥PA ,OC ⊥DE ,∴∠OBP =∠OPA =90°,∵∠APB =60°,∴∠BOA =120°,∵BE =CE ,DC =DA ,∴S △OCE =S △OBE ,S △OCD =S △ODA ,∴S 五边AOBED =2S △ODE =2×××=4,∴图中阴影部分的面积=S五边AOBED ﹣S扇形AOB=4﹣=(4﹣π)cm2.19.(1)证明:连接CD,由AC是直径知CD⊥AB;DE、CE都是切线,所以DE=CE,∠EDC=∠ECD;又∠B+∠ECD=90°,∠BDE+∠EDC=90°;所以∠B=∠BDE,所以BE=DE,从而BE=CE;(2)解:连接OD,当以O、D、E、C为顶点的四边形是正方形时,DE=EC=OC=OD=r;从而BE=r,即△ABC是一个等腰直角三角形;AC=AB=2r,S△ABC=2r2;(3)解:若EC=4,BD=4,则BC=8;在Rt△BDC中,cos∠CBD==;所以∠CBD=30°;在Rt△ABC中,=tan30°,即AC=BC tan30°=8×=,OC==;另解:设OC=r,AD=x;由EC=4,BD=4得BC=8,DC=4;则:,解得;即OC=.20.解:①过点D作DF⊥BC于点F,∵AB为⊙O的直径,∠A=∠B=90°,∴四边形ABFD是矩形,AD与BC是⊙O的切线,∴DF=AB=2,BF=AD=2,∵DE与⊙O相切,∴DE=AD=2,CE=BC,设BC=x,则CF=BC﹣BF=x﹣2,DC=DE+CE=2+x,在Rt△DCF中,DC2=CF2+DF2,即(2+x)2=(x﹣2)2+(2)2,解得:x=,即BC=;②∵AB为⊙O的直径,∠A=∠B=90°,∴AD∥BC,∴△ADE∽△GCE,∴AD:CG=DE:CE,AE:EG=AD:CG,∵AD=DE=2,∴CG=CE=BC=,∴BG=BC+CG=5,∴AE:EG=4:5,在Rt△ABG中,AG==3,∴EG=AG=.。

九年级数学培优辅差计划

九年级数学培优辅差计划

九年级数学培优辅差计划九年级数学培优辅差计划篇1一、指导思想:提高优生的自主和自觉学习能力,进一步巩固并提高中等生的学习成绩,帮助”潜能生”取得适当进步,让”潜能生”在教师的辅导和优生的帮助下,逐步提高学习成绩,并培养较好的学习习惯,形成基本能力。

培化计划要落到实处,发掘并培养一批尖子,挖掘他们的潜能,从培养能力入手,训练良好学习习惯,从而形成较扎实基础,并能协助老师进行辅差活动,提高整个班级的素养和成绩二、学生情况分析从上学期的学习情况及知识技能掌握情况看,3(9)和3(10)班大部分学生学习积极性高,学习目的明确,上课认真,作业能按时按量完成,且质量较好,但也有少部分学生,基础知识薄弱,学习态度欠端正,书写较潦草,作业有时不能及时完成,因此本学期除在教学过程中要注重学生的个体差异外,我准备在提高学生学习兴趣上下功夫,通过培优辅潜的'方式使优秀学生得到更好的发展,潜能生得到较大进步。

三、具体措施1、认真备好每一次培优辅潜教案,努力做好学习过程的趣味性和知识性相结合。

2、加强交流,了解潜能生、优异生的家庭、学习的具体情况,尽量排除学习上遇到的困难。

3、做好家访工作,及时了解学生家庭情况,交流并听取建议。

4、沟通思想,切实解决潜能生在学习上的困难。

5、坚持辅潜工作,每周不少于一次。

6、根据学生的个体差异,安排不同的作业。

7.采用一优生带一”潜能生”的一帮一行动。

8.请优生介绍学习经验,”潜能生”加以学习。

9.课堂上创造机会,用优生学习思维、方法来影响”潜能生”。

对”潜能生”实施多做多练措施。

优生适当增加题目难度,不断提高做题能力。

10.采用激励机制,对”潜能生”的每一点进步都给予肯定,并鼓励其继续进取,在优生中树立榜样,给机会表现,调动他们的学习积极性和成功感。

充分了解”潜能生”现行学习方法,给予正确引导,朝正确方向发展,保证”潜能生”改善目前学习差的状况,提高学习成绩。

九年级数学培优辅差计划篇2一、第一轮复习1、第一轮复习的形式第一轮复习的目的是要“过三关”:(1)过记忆关。

2023年九年级数学下册中考综合培优测试卷:圆的综合题【含答案】

2023年九年级数学下册中考综合培优测试卷:圆的综合题【含答案】

2023年九年级数学下册中考综合培优测试卷:圆的综合题一、单选题1.如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为( )A .B .C .D .18552245951252.如图,在以AB 为直径的半圆O 中,C 是它的中点,若AC=2,则△ABC 的面积是( )A .1.5B .2C .3D .43.如图, 、 分别是 的直径和弦,且 , ,交 于点AD AC ⊙O ∠CAD =30°OB ⊥AD AC B ,若 ,则 的长为( )OB =3BCA .B .3C .D .3233334.如图,直线AB 与⊙O 相切于点A ,弦CD ∥AB ,若⊙O 的直径为5,CD=4,则弦AC 的长为( )A .4B .C .5D .6255.如图,四边形ABCD 是⊙O 的内接四边形,若∠BOD=88°,则∠BCD 的度数是( )A .88°B .92°C .106°D .136°6.如图,AB 是⊙O 的直径, ,∠COD =38°,则∠AEO 的度数是( )BC =CD =DEA .52°B .57°C .66°D .78°7.将圆心角为90°,面积为4π的扇形围成一个圆锥的一个侧面,所围成圆锥的底面半径为( )A .1B .2C .3D .48.如图,△ABC 的三个顶点都在⊙O 上,∠BAC 的平分线交BC 于点D ,交⊙O 于点E ,则与△ABD 相似的三角形有( )A .3个B .2个C .1个D .0个9.如图,已知点A ,B 在⊙O 上,⊙O 的半径为3,且△OAB 为正三角形,则 的长为( )ABA .B .π2C .D .3π2x 1=−163(舍去),x 2=010.如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧弧AB 上任意一点(与点B 不重合),则∠BPC的度数为( )A.30°B.45°C.60°D.90°AB=AC11.如图所示,在⊙O中,,∠A=30°,则∠B=( )A.150°B.75°C.60°D.15°⊙O ABCDE AE CD∠AOC12.如图,与正五边形的两边,相切于A,C两点,则的度数是( )108°120°144°150°A.B.C.D.二、填空题13.如图,已知∠OCB=20°,则∠A= 度.14.如图①,在边长为8的等边△ABC中,CD⊥AB,垂足为D,⊙O的圆心与点D重合,⊙O与线段CD交于点E,若将⊙O沿DC方向向上平移1cm后,如图②,⊙O恰与△ABC的边AC,BC相切,则图①中CE的长为 cm.15.如图,△ABC 内接于⊙O ,D 是弧BC 的中点,OD 交BC 于点H ,且OH=DH ,连接AD ,过点B 作BE ⊥AD 于点E ,连接EH ,BF ⊥AC 于M ,若AC=5,EH= ,则AF=  .3216.如图,⊙O 的半径为1,正方形ABCD 顶点B 坐标为(5,0),顶点D 在 ⊙O 上运动,则正方形面积最大时,正方形与⊙O 重叠部分的面积是 .17.已知⊙O 是以坐标原点为圆心,半径为1,函数y=x 与⊙O 交与点A 、B ,点P (x ,0)在x 轴上运动,过点P 且与OA 平行的直线与⊙O 有公共点,则x 的范围是 .18.若一个圆锥的侧面展开图是一个半径为10cm ,圆心角为144°的扇形,则该圆锥的底面半径为 cm .三、综合题19.如图,AB 是⊙O 的直径,BC 为⊙O 的切线,D 为⊙O 上的一点,CD=CB ,延长CD 交BA 的延长线于点E .(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)20.如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点,以BD为直径的⊙O与AC交于点E,连接DE并延长交BC的延长线于点F,且BF=BD.(1)求证:AC为⊙O的切线;(2)若CF=1,tan∠EDB=2,求⊙O的半径.21.如图,已知ʘO是Rt△ABC的外接圆,点D是ʘO上的一个动点,且C,D位于AB的两侧,联结AD,BD,过点C作CE⊥BD,垂足为E。

2023年九年级数学下册中考综合培优测试卷:二次函数与一次函数的综合应用【含答案】

2023年九年级数学下册中考综合培优测试卷:二次函数与一次函数的综合应用【含答案】

2023年九年级数学下册中考综合培优测试卷:二次函数与一次函数的综合应用一、单选题1.新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数(为y =x 2−x +c c 常数)在的图象上存在两个二倍点,则的取值范围是( )−2<x <4c A .B .C .D .−2<c <14−4<c <94−4<c <14−10<c <942.已知直线 过一、二、三象限,则直线 与抛物线 的交点y =kx +2y =kx +2y =x 2−2x +3个数为( ) A .0个B .1个C .2个D .1个或2个3.抛物线 (其中b ,c 是常数)过点A (2,6),且抛物线的对称轴与线段y =x 2+bx +c ( )有交点,则c 的值不可能是( ) y =2x−11≤x <3A .5B .7C .10D .144.函数y=ax+b 和y=ax 2+bx+c 在同一直角坐标系内的图象大致是( )A .B .C .D .5.已知0<x <1,10<y <20,且y 随x 的增大而增大,则y 与x 的关系式不可以是( )A .y =10x+10B .y =﹣10(x﹣1)2+20C .y =10x 2+10D .y =﹣10x+206.在同一坐标系中,函数y=ax 2与y=ax+a (a <0)的图象的大致位置可能是( )A .B .C .D .7.对于题目“一段抛物线L :y=﹣x (x﹣3)+c (0≤x≤3)与直线l :y=x+2有唯一公共点,若c 为整数,确定所有c 的值,”甲的结果是c=1,乙的结果是c=3或4,则( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确8.将二次函数 的图象在x 轴上方的部分沿x 轴翻折后,所得新函数的图象如图y =−x 2+2x +3所示.当直线 与新函数的图象恰有3个公共点时,b 的值为( )y =x +bA . 或B . 或 −214−3−134−3C . 或D . 或 214−3134−39.已知抛物线 与直线 相交,若 ,则 的取值范围是( y 1=−2x 2+2y 2=2x +2y 1>y 2x ).A .B .x >−1x <0C .D . 或 −1<x <0x >0x <−110.给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:①直线y=0是抛物线y= x 2的切线;14②直线x=﹣2与抛物线y= x 2 相切于点(﹣2,1);14③若直线y=x+b 与抛物线y= x 2相切,则相切于点(2,1);14④若直线y=kx﹣2与抛物线y= x 2相切,则实数k= .142其中正确命题的是( )A .①②④B .①③C .②③D .①③④11.一次函数与二次函数的图象交点( )y =2x +1y =x 2−4x +3A .只有一个B .恰好有两个C .可以有一个,也可以有两个D .无交点12.将抛物线y=x 2+2x+3向下平移3个单位长度后,所得到的抛物线与直线y=3的交点坐标是( )A .(0,3)或(﹣2,3)B .(﹣3,0)或(1,0)C .(3,3)或(﹣1,3)D .(﹣3,3)或(1,3)二、填空题13.如图,在平面直角坐标系中,抛物线 交y 轴于点A ,直线AB 交x 轴正半轴于y =x 2−2x +2点B ,交抛物线的对称轴于点C ,若 ,则点C 的坐标为  .OB =2OA14.函数 与 的图象如图所示,有以下结论:① ,②y =x 2+bx +c y =x b 2−4c >0 ,③ ,④当 时, .则正确的个数为 b +c +1=03b +c +6=01<x <3x 2+(b−1)x +c <0个.15.已知一次函数y 1=kx+m (k≠0)和二次函数y 2=ax 2+bx+c (a≠0)部分自变量和对应的函数值如表:x…﹣10245…y1…01356…y2…0﹣1059…当y2>y1时,自变量x的取值范围是 .y=ax2+c y=mx+n A(−1,p)B(3,q)16.如图,抛物线与直线交于,两点,则不等式ax2+mx+c<n的解集是 .17.如图,在平面直角坐标系xOy中,直线y1=kx+m(k≠0)的抛物线y2=ax2+bx+c(a≠0)交于点A(0,4),B(3,1),当y1≤y2时,x的取值范围是 .y=ax+b(a<0,b>0)18.如图,一次函数的图像与x轴,y轴分别相交于点A,点B,将它绕点O逆时针旋转90°后,与x轴相交于点C,我们将图像过点A,B,C的二次函数叫做与这个一次函y=−kx+k(k>0)数关联的二次函数.如果一次函数的关联二次函数是y=mx2+2mx+c m≠0(),那么这个一次函数的解析式为 .三、综合题19.如图,边长为4的等边三角形AOB的顶点O在坐标原点,点A在x轴的正半轴上,点B在第一象限.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P 运动的时间是t 秒.将线段BP 的中点绕点P 按顺时针方向旋转60°得点C ,点C 随点P 的运动而运动,连接CP 、CA .过点P 作PD ⊥OB 于D 点(1)直接写出BD 的长并求出点C 的坐标(用含t 的代数式表示)(2)在点P 从O 向A 运动的过程中,△PCA 能否成为直角三角形?若能,求t 的值.若不能,请说明理由;(3)点P 从点O 运动到点A 时,点C 运动路线的长是多少?20.如图,函数 的图象与函数 ( )的图象相交于点P (3,k ),Q 两点.y =2x y =ax 2−3a ≠0(1) = , =  ;a k (2)当 在什么范围内取值时, > ;x 2x ax 2−3(3)解关于 的不等式: >1.x |ax 2−3|21.如图,抛物线与 轴交于 , 两点,点 , 分别位于原点的y =3+3x 2+bx +c x A B A B 左、右两侧, ,过点 的直线与 轴正半轴和抛物线的交点分别为 , , BO =3AO =3B y C D .BC =3CD(1)求 , 的值;b c (2)求直线 的函数解析式;BD 22.如图,抛物线y=-x 2+bx+c 的图像过点A(-1,0)、C(0,3),顶点为M 。

2024年中考数学培优计划

2024年中考数学培优计划

标题:《2024年中考数学培优计划》引言:在中考这场至关重要的升学考试中,数学作为核心科目之一,其重要性不言而喻。

为了帮助学生在中考中取得优异的数学成绩,特制定本培优计划。

本计划旨在通过对学生数学能力的全面培养,提升他们的数学素养和应试能力,为他们的未来发展奠定坚实的基础。

一、培优目标1.知识掌握:确保学生全面掌握初中数学的核心知识点,包括但不限于数与代数、图形与几何、概率与统计等。

2.能力提升:培养学生的逻辑思维能力、问题解决能力、空间想象能力以及数学表达能力。

3.应试技巧:教授学生有效的应试策略,包括时间管理、答题技巧和心态调整等,以提高他们在考试中的表现。

4.学习习惯:养成良好的学习习惯,如预习、复习、做笔记、独立思考等,为终身学习打下基础。

二、培优内容1.基础夯实:通过系统复习,确保学生对基础概念、基本运算和基本图形等有扎实的理解。

2.专题训练:针对中考数学的难点和重点,如函数、几何证明、数据分析等,进行专题训练,帮助学生深入理解并灵活运用相关知识。

3.模拟考试:定期组织模拟考试,让学生熟悉考试流程和时间压力,同时检验学习效果并查漏补缺。

4.个性化辅导:根据学生的不同学习情况和需求,提供个性化的辅导和针对性训练。

三、培优方法与策略1.互动教学:采用启发式、讨论式和探究式的教学方法,激发学生的学习兴趣和主动性。

2.小组合作:通过小组讨论和合作学习,培养学生的团队协作能力和沟通能力。

3.错题分析:引导学生对错题进行深入分析,找出错误原因并总结经验教训。

4.学习反馈:定期收集学生的学习反馈,调整教学策略,确保培优计划的有效性。

四、培优时间安排1.长期规划:根据中考时间表,提前规划培优课程,确保每个阶段的培优目标都能得到有效实施。

2.短期计划:制定每周、每月的小计划,确保学习内容的连贯性和节奏感。

五、培优资源与工具1.教材与教辅:精选优质的教材和教辅资料,确保学习内容的权威性和实用性。

2.在线资源:利用互联网上的优质教育资源,如在线课程、模拟试题等,丰富学习内容和形式。

中考数学培优(含解析)之平行四边形含答案

中考数学培优(含解析)之平行四边形含答案

一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.2.如图1,正方形ABCD的一边AB在直尺一边所在直线MN上,点O是对角线AC、BD 的交点,过点O作OE⊥MN于点E.(1)如图1,线段AB与OE之间的数量关系为.(请直接填结论)(2)保证点A始终在直线MN上,正方形ABCD绕点A旋转θ(0<θ<90°),过点 B作BF⊥MN于点F.①如图2,当点O、B两点均在直线MN右侧时,试猜想线段AF、BF与OE之间存在怎样的数量关系?请说明理由.②如图3,当点O、B两点分别在直线MN两侧时,此时①中结论是否依然成立呢?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.③当正方形ABCD绕点A旋转到如图4的位置时,线段AF、BF与OE之间的数量关系为.(请直接填结论)【答案】(1)AB=2OE;(2)①AF+BF=2OE,证明见解析;②AF﹣BF=2OE 证明见解析;③BF ﹣AF=2OE,【解析】试题分析:(1)利用直角三角形斜边的中线等于斜边的一半即可得出结论;(2)①过点B作BH⊥OE于H,可得四边形BHEF是矩形,根据矩形的对边相等可得EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH,然后利用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;②过点B作BH⊥OE交OE的延长线于H,可得四边形BHEF是矩形,根据矩形的对边相等可得EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH,然后利用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;③同②的方法可证.试题解析:(1)∵AC,BD是正方形的对角线,∴OA=OC=OB,∠BAD=∠ABC=90°,∵OE⊥AB,∴OE=12 AB,∴AB=2OE,(2)①AF+BF=2OE证明:如图2,过点B作BH⊥OE于点H∴∠BHE=∠BHO=90°∵OE⊥MN,BF⊥MN∴∠BFE=∠OEF=90°∴四边形EFBH为矩形∴BF=EH,EF=BH∵四边形ABCD为正方形∴OA=OB,∠AOB=90°∴∠AOE+∠HOB=∠OBH+∠HOB=90°∴∠AOE=∠OBH∴△AEO≌△OHB(AAS)∴AE=OH,OE=BH∴AF+BF=AE+EF+BF=OH+BH+EH=OE+OE=2OE.②AF﹣BF=2OE证明:如图3,延长OE,过点B作BH⊥OE于点H∴∠EHB=90°∵OE⊥MN,BF⊥MN∴∠AEO=∠HEF=∠BFE=90°∴四边形HBFE为矩形∴BF=HE,EF=BH∵四边形ABCD是正方形∴OA=OB,∠AOB=90°∴∠AOE+∠BOH=∠OBH+∠BOH∴∠AOE=∠OBH∴△AOE≌△OBH(AAS)∴AE=OH,OE=BH,∴AF﹣BF=AE+EF﹣HE=OH﹣HE+OE=OE+OE=2OE③BF﹣AF=2OE,如图4,作OG⊥BF于G,则四边形EFGO是矩形,∴EF=GO,GF=EO,∠GOE=90°,∴∠AOE+∠AOG=90°.在正方形ABCD中,OA=OB,∠AOB=90°,∴∠AOG+∠BOG=90°,∴∠AOE=∠BOG.∵OG⊥BF,OE⊥AE,∴∠AEO=∠BGO=90°.∴△AOE≌△BOG(AAS),∴OE=OG,AE=BG,∵AE﹣EF=AF,EF=OG=OE,AE=BG=AF+EF=OE+AF,∴BF﹣AF=BG+GF﹣(AE﹣EF)=AE+OE﹣AE+EF=OE+OE=2OE,∴BF﹣AF=2OE.3.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由(3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23.【解析】【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.【详解】(1)如图1中,延长EO交CF于K,∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,∵△EFK是直角三角形,∴OF=12EK=OE;(2)如图2中,延长EO交CF于K,∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,∵|CF﹣AE|=2,EF=23,AE=CK,∴FK=2,在Rt△EFK中,tan∠FEK=33,∴∠FEK=30°,∠EKF=60°,∴EK=2FK=4,OF=12EK=2,∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,在Rt△PHF中,PH=12PF=1,HF=3,OH=2﹣3,∴OP=()2212362+-=-.如图4中,点P在线段OC上,当PO=PF时,∠POF=∠PFO=30°,∴∠BOP=90°,∴OP=33OE=33,综上所述:OP6223.【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.4.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E 是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形ADBC的面积.【答案】(1)见解析;(2)S平行四边形ADBC=32.【解析】【分析】(1)在Rt△ABC中,E为AB的中点,则CE=12AB,BE=12AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD//BC,则四边形BCFD是平行四边形.(2)在Rt△ABC中,求出BC,AC即可解决问题;【详解】解:(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E为AB的中点,∴AE=BE,又∵∠AEF=∠BEC,∴△AEF≌△BEC,在△ABC中,∠ACB=90°,E为AB的中点,∴CE=12AB,BE=12AB,∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC∥BD,又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC,∴四边形BCFD是平行四边形;(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=33∴S平行四边形BCFD=3×3393,S△ACF=12×3×3332,S平行四边形ADBC=32.【点睛】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.5.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.(1)证明:BE=CF.(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.【答案】(1)见解析;(2)43;(3)见解析【解析】试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC===;(3)解:由“垂线段最短”可知,当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.由(2)得,S△CEF=S四边形AECF﹣S△AEF=﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE≌△ACF是解题的关键.6.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE=BE,∴DE是Rt△ADB斜边上的中线,∴DE=AE=BE,∵AE=BD,∴DE=BD=BE,∴△DBE是等边三角形,∴∠EDB=∠DBE=60°,∵AB∥DC,∴∠DBC=∠DBE=60°,∴∠EDF=120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度7.(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.(拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.(应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)【答案】见解析【解析】试题分析:探究:由四边形ABCD 、四边形CEFG 均为菱形,利用SAS 易证得△BCE ≌△DCG ,则可得BE=DG ;应用:由AD ∥BC ,BE=DG ,可得S △ABE +S △CDE =S △BEC =S △CDG =8,又由AE=3ED ,可求得△CDE 的面积,继而求得答案.试题解析:探究:∵四边形ABCD 、四边形CEFG 均为菱形,∴BC=CD ,CE=CG ,∠BCD=∠A ,∠ECG=∠F .∵∠A=∠F ,∴∠BCD=∠ECG .∴∠BCD-∠ECD=∠ECG-∠ECD ,即∠BCE=∠DCG .在△BCE 和△DCG 中,BC CD BCE DCG CE CG ⎧⎪∠∠⎨⎪⎩=== ∴△BCE ≌△DCG (SAS ),∴BE=DG .应用:∵四边形ABCD 为菱形,∴AD ∥BC ,∵BE=DG ,∴S △ABE +S △CDE =S △BEC =S △CDG =8,∵AE=3ED ,∴S △CDE =1824⨯= , ∴S △ECG =S △CDE +S △CDG =10∴S 菱形CEFG =2S △ECG =20.8.(1)问题发现:如图①,在等边三角形ABC 中,点M 为BC 边上异于B 、C 的一点,以AM 为边作等边三角形AMN ,连接CN ,NC 与AB的位置关系为 ; (2)深入探究:如图②,在等腰三角形ABC 中,BA=BC ,点M 为BC 边上异于B 、C 的一点,以AM 为边作等腰三角形AMN ,使∠ABC=∠AMN ,AM=MN ,连接CN ,试探究∠ABC 与∠ACN 的数量关系,并说明理由;(3)拓展延伸:如图③,在正方形ADBC 中,AD=AC ,点M 为BC 边上异于B 、C 的一点,以AM 为边作正方形AMEF ,点N 为正方形AMEF 的中点,连接CN ,若BC=10,CN=2,试求EF 的长.【答案】(1)NC ∥AB ;理由见解析;(2)∠ABC=∠ACN ;理由见解析;(3)241;【解析】分析:(1)根据△ABC ,△AMN 为等边三角形,得到AB=AC ,AM=AN 且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM ,即∠BAM=∠CAN ,证明△BAM ≌△CAN ,即可得到BM=CN .(2)根据△ABC ,△AMN 为等腰三角形,得到AB :BC=1:1且∠ABC=∠AMN ,根据相似三角形的性质得到AB AC AM AN=,利用等腰三角形的性质得到∠BAC=∠MAN ,根据相似三角形的性质即可得到结论; (3)如图3,连接AB ,AN ,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出BM AB CN AC=,得到BM=2,CM=8,再根据勾股定理即可得到答案. 详解:(1)NC ∥AB ,理由如下:∵△ABC 与△MN 是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN =60°,∴∠BAM=∠CAN ,在△ABM 与△ACN 中, AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩, ∴△ABM ≌△ACN (SAS ),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN ∥AB ;(2)∠ABC=∠ACN ,理由如下: ∵AB AM BC MN==1且∠ABC=∠AMN , ∴△ABC ~△AMN ∴AB AC AM AN=, ∵AB=BC , ∴∠BAC=12(180°﹣∠ABC ), ∵AM=MN∴∠MAN=12(180°﹣∠AMN ), ∵∠ABC=∠AMN ,∴∠BAC=∠MAN ,∴∠BAM=∠CAN ,∴△ABM ~△ACN ,∴∠ABC=∠ACN ;(3)如图3,连接AB ,AN , ∵四边形ADBC ,AMEF 为正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC ﹣∠MAC=∠MAN ﹣∠MAC即∠BAM=∠CAN ,∵AB AM BC AN == ∴AB AC AM AN=, ∴△ABM ~△ACN ∴BM AB CN AC =,∴CN AC BM AB ==cos45°=2,∴=, ∴BM=2,∴CM=BC ﹣BM=8,在Rt △AMC ,==,∴EF=AM=241.点睛:本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.9.如图,AB 为⊙O 的直径,点E 在⊙O 上,过点E 的切线与AB 的延长线交于点D ,连接BE ,过点O 作BE 的平行线,交⊙O 于点F ,交切线于点C ,连接AC(1)求证:AC 是⊙O 的切线;(2)连接EF ,当∠D= °时,四边形FOBE 是菱形.【答案】(1)见解析;(2)30. 【解析】【分析】(1)由等角的转换证明出OCA OCE ∆∆≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ∆为等边三角形,而得出60BOE ∠=︒,根据三角形内角和即可求出答案.【详解】(1)证明:∵CD 与⊙O 相切于点E ,∴OE CD ⊥,∴90CEO ∠=︒,又∵OC BE ,∴COE OEB ∠=∠,∠OBE=∠COA∵OE=OB ,∴OEB OBE ∠=∠,∴COE COA ∠=∠,又∵OC=OC ,OA=OE ,∴OCA OCE SAS ∆∆≌(), ∴90CAO CEO ∠=∠=︒,又∵AB 为⊙O 的直径,∴AC 为⊙O 的切线;(2)解:∵四边形FOBE 是菱形,∴OF=OB=BF=EF ,∴OE=OB=BE ,∴OBE ∆为等边三角形,∴60BOE ∠=︒,而OE CD ⊥,∴30D ∠=︒.故答案为30.【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.10.如图1,若分别以△ABC 的AC 、BC 两边为边向外侧作的四边形ACDE 和BCFG 为正方形,则称这两个正方形为外展双叶正方形.(1)发现:如图2,当∠C =90°时,求证:△ABC 与△DCF 的面积相等.(2)引申:如果∠C ≠90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;(3)运用:如图3,分别以△ABC 的三边为边向外侧作的四边形ACDE 、BCFG 和ABMN 为正方形,则称这三个正方形为外展三叶正方形.已知△ABC 中,AC =3,BC =4.当∠C =_____°时,图中阴影部分的面积和有最大值是________.【答案】(1)证明见解析;(2)成立,证明见解析;(3)18.【解析】试题分析:(1)因为AC=DC ,∠ACB=∠DCF=90°,BC=FC ,所以△ABC ≌△DFC ,从而△ABC 与△DFC 的面积相等;(2)延长BC 到点P ,过点A 作AP ⊥BP 于点P ;过点D 作DQ ⊥FC 于点Q .得到四边形ACDE ,BCFG 均为正方形,AC=CD ,BC=CF ,∠ACP=∠DCQ .所以△APC ≌△DQC .于是AP=DQ.又因为S△ABC=12 BC•AP,S△DFC=12FC•DQ,所以S△ABC=S△DFC;(3)根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.所以S阴影部分面积和=3S△ABC=3×12×3×4=18.(1)证明:在△ABC与△DFC中,∵{AC DCACB DCFBC FC∠∠===,∴△ABC≌△DFC.∴△ABC与△DFC的面积相等;(2)解:成立.理由如下:如图,延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.∴∠APC=∠DQC=90°.∵四边形ACDE,BCFG均为正方形,∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,∴∠ACP=∠DCQ.∴{APC DQCACP DCQAC CD∠∠∠∠===,△APC≌△DQC(AAS),∴AP=DQ.又∵S△ABC=12BC•AP,S△DFC=12FC•DQ,∴S△ABC=S△DFC;(3)解:根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,∴当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.∴S阴影部分面积和=3S△ABC=3×12×3×4=18.考点:四边形综合题。

2023年九年级数学下册中考数学综合培优测试卷:一次函数图像与几何变换【含答案】

2023年九年级数学下册中考数学综合培优测试卷:一次函数图像与几何变换【含答案】

2023年九年级数学下册中考数学综合培优测试卷:一次函数图像与几何变换一、单选题1.在平面直角坐标系中,把直线y=3x 向左平移2个单位长度,平移后的直线解析式是( )A .y=3x+2B .y=3x-2C .y=3x+6D .y=3x-62.若一次函数y=2x-3的图象平移后经过点(3,1),则下列叙述正确的是( )A .沿x 轴向右平移3个单位长度B .沿x 轴向右平移1个单位长度C .沿x 轴向左平移3个单位长度D .沿x 轴向左平移1个单位长度3.在平面直角坐标系中,将直线沿y 轴向下平移6个单位后,得到一条新的直线,该直y =−32x +3线与x 轴的交点坐标是( )A .B .C .D .(0,3)(−2,0)(4,0)(6,0)4.已知直线向下平移2个单位长度后得到直线,且直线与直线关于l 1:y =kx +3l 2l 2l 3:y =−x +1y 轴对称,则k 的值为( ).A .B .1C .2D .3−15.在平面直角坐标系中,将函数 的图象向上平移6个单位长度,则平移后的图象与x 轴的y =3x 交点坐标为( ) A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)6.把直线y=-x+1向上平移3个单位长度后得到的直线的解析式为( )A .y=-x+4B .C .y=x+4D .y=x-27.将直线沿x 轴向左平移3个单位得到直线L ,则直线L 的解析式是( )y =2x +5A .y =2x +2B .y =2x +8C .y =2x -1D .y =2x +118.对于一次函数y =﹣2x+4,下列结论错误的是( )A .函数的图象不经过第三象限B .函数的图象与x 轴的交点坐标是(2,0)C .函数的图象向下平移4个单位长度得y =﹣2x 的图象D .若两点A(x 1,y 1),B(x 2,y 2)在该函数图象上,且x 1<x 2,则y 1<y 29.将一次函数y =﹣3x 的图象沿y 轴向下平移4个单位长度后,所得图象的函数表达式为( )A .y =﹣3(x ﹣4)B .y =﹣3x +4C .y =﹣3(x +4)D .y =﹣3x ﹣410.在平面直角坐标系中,将直线 先关于 轴作轴对称变换,再将所得直线关于y =−3x +4x y 轴作轴对称变换,则经两次变换后所得直线的表达式是( )A .B .C .D .y =4x−3y =−4x +3y =3x +4y =−3x−411.将直线向上平移2个单位长度,则平移后的直线所对应的函数解析式为( )y =−2x +3A .B .C .D .y =−2x +1y =−4x +5y =−2x +5y =−4x +112.将直线向上平移5个单位长度后得到直线,则下列关于直线的说y =x +1y =kx +b y =kx +b 法错误的是( )A .函数图象经过第一、二、三象限B .函数图象与轴的交点在轴的正半轴x xC .点在函数图象上(−2,4)D .随的增大而增大y x 二、填空题13.直线 +3的图像是由正比例函数  图像向 (填上或下)平移 y =3x 个单位得到或由正比例函数 图像向 (填左或右)平移 个单位得到可以得到的一条直线14.直线 沿 轴平移3个单位,则平移后直线与 轴的交点坐标为  .y =2x−1y y 15.在平面直角坐标系中,把直线y=2x 向左平移1个单位长度,平移后的直线解析式是 .16.将正比例函数y=﹣2x 的图象沿y 轴向上平移5个单位,则平移后所得图象的解析式是 .17.如图,在平面直角坐标系中,A (1,0),B (3,0),点C 在第一象限,∠ABC=90°,AC=25,直线l 的关系式为: .将△ABC 沿x 轴向左平移,当点C 落在直线l 上时,线段AC 扫y =−x−3过的面积为  平方单位.18.已知直线与直线关于y 轴对称,当时,,当y 1=ax +b(a ≠0)y 2=kx +5(k ≠0)x >−52y 1>0时,,则直线 .x >52y 2<0y 1=三、综合题19.如图,直线 与 轴、 轴交于点 、 ,直线 与 轴l 1:y =2x +1x y D A l 2:y =mx +4x y 轴分别交于点 、 ,两直线相交于点 .C B P(1,b)(1)求 , 的值; b m (2)求 的值;S △PDC −S △PAB (3)垂直于 轴的直线 与直线 , 分别交于点 , ,若线段 的长为x x =a l 1l 2M N MN 2,求 的值.a 20.如图,直线y =kx +4的图象与y 轴交于点A ,与x 轴交于点B (2,0),直线AF 交x 轴负半轴于点F ,且OF =2OA .(1)求出k 的值为 ,直线AF 的解析式为 ;(2)若将直线AB 沿y 轴向下平移,平移后的直线恰好经过C (﹣3,0),与y 轴相交于点D ,且直线CD 与直线AF 交于点E ,求点E 的坐标.21.如图,一次函数 的图象与反比例函数( 为常数且 )的图象相交于y =x +5y =kx k k ≠0 , 两点.A(−1,m)B(1)求反比例函数的表达式;(2)将一次函数 的图象沿 轴向下平移 个单位 ,使平移后的图象与反y =x +5y b (b >0)比例函数的图象有且只有一个交点,求 的值.y =kx b 22.已知反比例函数与正比例函数 相交于 .y 1=kx y 2=x A(2,2)(1)求 值.k (2)画出反比例函数的图象.(3)当 时,直接写出 的范围?y 1>y 2x (4)根据图象,解不等式 .kx <x−323.背景知识:已知两直线 , ,若 ,则m :y 1=k 1x +b 1n :y 2=k 2x +b 2(k 1k 2≠0)m ⊥n ;若 ,则 .k 1k 2=−1m//n k 1=k 2应用:在平面直线坐标系 中,直线 交x 轴于点C ,交y 轴于点D ,若 xoy l 1:y =x−1l 2⊥l 1于点 ,交y 轴于点A ,交x 轴于点B.P(2,1)(1)求直线 的表达式; l 2(2)求 的面积;△ABC (3)若将直线 向下平移 个单位,得到新的直线 ,交y 轴于点E ,交直线 于点F ,l 1q l 3l 2使得 ,求 的值.S △AEF =16q 24.已知:如图1,在平面直角坐标系中,一次函数y = x+3交x 轴于点A ,交y 轴于点B ,点C34是点A 关于y 轴对称的点,过点C 作y 轴平行的射线CD ,交直线AB 与点D ,点P 是射线CD 上的一个动点.(1)求点A ,B 的坐标.(2)如图2,将△ACP 沿着AP 翻折,当点C 的对应点C′落在直线AB 上时,求点P 的坐标. (3)若直线OP 与直线AD 有交点,不妨设交点为Q(不与点D 重合),连接CQ ,是否存在点P ,使得S △CPQ =2S △DPQ ,若存在,请求出对应的点Q 坐标;若不存在,请说明理由.答案解析部分1.【答案】C 2.【答案】B 3.【答案】B 4.【答案】B 5.【答案】B 6.【答案】A 7.【答案】D 8.【答案】D 9.【答案】D 10.【答案】D 11.【答案】C 12.【答案】B13.【答案】y=3x ;上;3;y=3x ;左;114.【答案】(0,2)或(0, )−415.【答案】y=2x+216.【答案】y =-2x+517.【答案】4018.【答案】或2x +55+2x19.【答案】(1)解:∵点 在直线 上,∴ ,P(1,b)l 1:y =2x +1b =2×1+1=3∵ 在直线 上,∴ ,∴P(1,3)l 2:y =mx +43=m +4m =−1(2)解:∵直线 与 轴、 轴交于点 、 ,l 2:y =−x +4x y D A ∴ ,,A(0,1)D(−12,0)∵直线 与 轴、 轴分别交于点 、 ,l 2:y =−x +4x y C B ∴ , ,B(0,4)C(4,0)∴S △PDC −S △PAB =12DC ⋅y P −12AB ⋅x P =12×(12+4)×3−12×(4−1)×1=214(3)解:设直线 与直线 , 分别交于点 , , x =a l 1l 2M N 当 时, ;当 时, ,x =a y M =2a +1x =a y N =4−a ∵ ,∴ ,解得或 ,MN =2|2a +1−(4−a)|=2a =13a =53所以 的值为 或 a 135320.【答案】(1)-2;y =+412x (2)解:∵直线AB 沿y 轴向下平移,平移后的直线恰好经过C (﹣3,0), ∴设直线DC 的解析式为y =﹣2x+d ,把C (﹣3,0)代入得d =﹣6,∴直线DC 的解析式为y =﹣2x﹣6.解得,{y =−2x−6y =12x +4{x =−4y =2∴E (﹣4,2).21.【答案】(1)解:由题意,将点 代入一次函数 得: A(−1,m)y =x +5m =−1+5=4∴A(−1,4)将点 代入得: ,解得 A(−1,4)y =k x k−1=4k =−4则反比例函数的表达式为;y =−4x (2)解:将一次函数 的图象沿 轴向下平移 个单位得到的一次函数的解析式为 y =x +5y b y =x +5−b 联立{y =x +5−by =−4x 整理得: x 2+(5−b)x +4=0一次函数 的图象与反比例函数 的图象有且只有一个交点∵y =x +5−b y =−4x 关于x 的一元二次方程 只有一个实数根∴x 2+(5−b)x +4=0 此方程的根的判别式 ∴Δ=(5−b)2−4×4=0解得 b 1=1,b 2=9则b 的值为1或9.22.【答案】(1)解:∵反比例函数y 1= 与正比例函数y 2=x 相交于A (2,2).kx ∴k=2×2=4(2)解:描出点(1,4),(2,2),(4,1), 用平滑的曲线连接,画出反比例函数的图象如图,(3)解:由图象可知,当0<x<2和x<-2时,y1>y2.(4)解:观察图象,直线y=x向下平移3个单位,与反比例函数的交点为(4,1)和(-1,-4),∴不等式 <x-3的解集为:-1<x <0和x >4.kx 23.【答案】(1)解:由 ,得 ,l 1:y =x−1k 1=1 , ,∵l 2⊥l 1∴k 2⋅k 1=−1,∴k 2=−1设 ,把 代入解析式得:b=3,l 2:y =−x +b P(2,1) ;∴l 2:y =−x +3(2)解:由图象可得:, 与x 轴交于点B 、C , 令y=0,则有 ∵l 2:y =−x +3l 1:y =x−1∴B(3,0),C(1,0),又 与y 轴交于点A , 令x=0,则有 ,∵l 2:y =−x +3∴A(0,3) OA=3,BC=2, ;∴∴S △ABC =12BC ⋅OA =3(3)解: 将直线 向下平移 个单位,得到新的直线 ,∵l 1q l 3 ,令x=0则 , ,∴l 3:y =x−1−q y =−1−q ∴E(0,−1−q) ,∴AE =3−(−1−q)=4+q 交直线 于点F , 解得,∵l 3l 2∴{y =−x +3y =x−1−q {x =4+q 2y =2−q 2 , ,∵S △AEF =12AE ⋅F x =16∴12×(4+q)⋅4+q 2=16解得 (不符题意,舍去).q 1=4,q 2=−12 .∴q =424.【答案】(1)解:令x=0,则y=3,∴B (0,3),令y=0,则 x+3=0,34∴x=﹣4,∴A (﹣4,0);(2)解:∵点C 是点A 关于y 轴对称的点, ∴C (4,0),∵CD ⊥x 轴,∴x=4时,y=6,∴D (4,6),∴AC=8,CD=6,AD=10,由折叠知,AC'=AC=8,∴C'D=AD﹣AC'=2,设PC=a ,∴PC'=a ,DP=6﹣a ,在Rt △DC'P 中,a2+4=(6﹣a )2,∴a= ,83∴P (4, );83(3)解:设P (4,m ), ∴CP=m ,DP=|m﹣6|,∵S △CPQ =2S △DPQ ,∴CP=2PD ,∴2|m﹣6|=m ,∴m=4或m=12,∴P (4,4)或P (4,12),∵直线AB 的解析式为y= x+3①,34当P (4,4)时,直线OP 的解析式为y=x ②,联立①②解得,x=12,y=12,∴Q (12,12),当P (4,12)时,直线OP 解析式为y=3x ③,联立①③解得,x= ,y=4,43∴Q ( ,4),43。

2023年中考数学一轮综合培优测试卷:反比例函数的图象与性质【含答案】

2023年中考数学一轮综合培优测试卷:反比例函数的图象与性质【含答案】

2023年中考数学一轮综合培优测试卷:反比例函数的图象与性质一、单选题1.下列3个图形中,阴影部分的面积为1的个数为( )A .3个B .2个C .1个D .0个2.如图,在平面直角坐标系中,直角梯形AOBC 的边OB 在x 轴的负半轴上,AC ∥OB ,∠OBC=90°,过A 点的双曲线y= 的一支在第二象限交梯形的对角线OC 于点D ,交边BC 于点E ,且k x ODCD =2,S △AOC =15,则图中阴影部分(S △EBO +S △ACD )的面积为( )A .18B .17C .16D .153.反比例函数图象的两个分支分别位于第一、三象限,则一次函数的图象大y =kx (k ≠0)y =kx−k 致是( )A .B .C .D .4.已知反比例函数y=﹣,下列结论不正确的是( )3x A .图象必经过点(﹣1,3)B .若x >1,则﹣3<y <0C .图象在第二、四象限内D .y 随x 的增大而增大5.已知两点(x 1,y 1),(x 2,y 2) 在函数y= - 的图象上,当x 1>x 2>0时,下列结论正确的是( 5x )A .y 1>y 2>0B .y 1<y 2<0C .y 2>y 1>0D .y 2<y 1<06.已知点,,都在反比例函数的图象上,则( )A (1,y 1)B (2,y 2)C (−2,y 3)y =k x (k >0)A .B .C .D .y 1>y 2>y 3y 3>y 2>y 1y 2>y 3>y 1y 2>y 1>y 37.在反比例函数图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( y =k−3x ) A .k >3B .k >0C .k <3D .k <08.如图,是等边三角形,且与x 轴重合,反比例函数的图象经过点B ,则△OAB OA y =−43x 的面积为( )△OABA .B .12C .D .12243839.设点A (x 1,y 1)和点B (x 2,y 2)是反比例函数y= 图象上的两点,当x 1<x 2<0时,y 1>y 2,kx 则一次函数y=﹣2x+k 的图象不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限10.已知点在反比例函数的图象上,则下列说法正确的是( )A(3,−4)y =kx A .图象位于第一、三象限B .点(2,6)在该函数图象上C .当时,y 随x 的增大而增大D .当时,x <0y ≥−4x ≥311.如图,直线AB 经过原点O ,且交反比例函数的图象于点B ,A ,点C 在x 轴上,且y =kx .若,则k 的值为( )BC =12BA S△BCA =12A .12B .C .D .6−12−612.根据图1所示的程序,得到了y 与x 的函数图象,如图2.若点M 是y 轴正半轴上任意一点,过点M 作PQ ∥x 轴交图象于点P ,Q ,连接OP ,OQ .则以下结论:①x <0 时,②△OPQ 的面积为定值.y =2x ③x >0时,y 随x 的增大而增大.④ MQ=2PM .⑤∠POQ 可以等于90°.其中正确结论是( )A .①②④B .②④⑤C .③④⑤D .②③⑤二、填空题13.如图,在平面直角坐标系xOy 中,点A ,B 在双曲线y= (k 是常数,且k≠0)上,过点A 作kx AD ⊥x 轴于点D ,过点B 作BC ⊥y 轴于点C ,已知点A 的坐标为(4, ),四边形ABCD 的面积32为4,则点B 的坐标为 .14.已知反比例函数y= ,当x >3时,y 的取值范围是  .6x 15.如图,直线AB 交双曲线于A 、B 两点,交x 轴于点C ,且B 恰为线段AC 的中点,连y =kx 结OA.若,则k 的值为 .S △OAC =7216.如图,已知直线y=-2x+4与x 轴交于点A ,与y 轴交于点B ,将△AOB 沿直线AB 翻折后,设点O 的对应点为点C ,双曲线y=(x>0)经过点C ,则k 的值为  .kx17.反比例函数y= 的图象经过点(1,6)和(m+1,﹣3),则m=  .kx 18.如图,在直角坐标系中,O 为坐标原点与 (a >b >0)在第一象限的图象分别为y =a x y =bx 曲线C 1,C 2,点P 为曲线C 1上的任意一点,过点P 作y 轴的垂线交C 2于点A ,作x 轴的垂线交C 2于点B ,则阴影部分的面积S △AOB =  .(结果用a ,b 表示)三、综合题19.已知点A(x 1,y 1),B(x 2,y 2)是反比例函数y= (k≠0)图象上两点。

2024年中考数学总复习第一部分考点培优专题3方程、函数思想

2024年中考数学总复习第一部分考点培优专题3方程、函数思想

底边长为( D )
A.24.24 千米
B.72.72 千米
C.242.4 千米
D.727.2 千米
3.(2023·金华模拟)清明期间,甲、乙两人同时登 云雾山,甲、乙两人距地面的高度 y(米)与登山时 间 x(分)之间的函数图象如图所示,且乙提速后乙
的速度是甲的 3 倍.则下列说法错误的是( D )
46 件,此时生产成本最小.
(3)设从甲城运往 A 地区的产品数量为 m 件,
甲、乙两城总运费为 p,则从甲城运往 B 地的
产品数量为(4-m)件,从乙城运往 A 地的产品
数量为(40-m)件,从乙城运往 B 地的产品数
量 为 (10 - 4 + m) 件 . 由 题 意 可 得
4-m≥0,
40-m≥0, 10-4+m≥0,
(2)若甲、乙两城一共生产 50 件产品,请设计一种 方案,使得总生产成本最小. (3)从甲城把产品运往 A,B 两地的运费(万元)与件 数(件)的关系式为 y 甲 A=nx,y 甲 B=3x;从乙城把 产品运往 A,B 两地的运费(万元)与件数(件)的关系 为 y 乙 A=x,y 乙 B=2x.现在 A 地需要 40 件,B 地 需要 10 件,在(2)的条件下,求总运 费的最小值.(用含 n 的式子表示)
边上的点 E 处,连结 EC,过点 B 作 BF⊥EC,
垂足为 F,若 CD=1,CF=2,则线段 AE 的
长为( A )
A. 5 -2 B. 3 -1
C.1 3
D.1 2
5.(2023·大连)如图,在菱形 ABCD 中,∠A=60°, AB=4.动点 M,N 同时从 A 点出发,点 M 以每秒 2 个单位长度沿折线 A-B-C 向终点 C 运动;点 N 以每秒 1 个单位长度沿线段 AD 向终点 D 运动, 当其中一点运动至终点时,另一点随之停止运 动.设运动时间为 x 秒,△AMN 的面积为 y 个平 方单位,则下列正确表示 y 与 x 函数关系的图象是

中考数学培优(含解析)之与圆有关的概念

中考数学培优(含解析)之与圆有关的概念

与圆有关的概念聚焦考点☆温习理解1、圆的定义在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

2、弦连接圆上任意两点的线段叫做弦。

(如图中的AB)3.直径经过圆心的弦叫做直径。

(如图中的CD)直径等于半径的2倍。

4.半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

5.弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。

弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。

大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)5、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

6、圆的对称性 1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。

7、弦心距从圆心到弦的距离叫做弦心距。

名师点睛☆典例分类※考向一:圆的相关概念和性质典例1:(2018·舟山) 如图,量角器的O 度刻度线为AB .将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A 、D ,量得AD =10cm ,点D 在量角器上的读数为60°.则该直尺的宽度为 cm .B※考向二:垂径定理及运用典例2:(2017·十堰)如图,△ABC 内接于⊙O ,∠ACB =90°,∠ACB 的角平分线交⊙O 于D .若AC =6,BD =25,求BC 的长 .※考向三:圆周角定理及运用典例3:(2018·龙东)如图,AC 为⊙O 的直径,点B 在圆上,O D ⊥AC 交⊙O 于点D ,连接BD ,∠BD O =15°,则∠ACB =____.典例4:(2015•安徽)在⊙O 中,直径AB=6,BC 是弦,∠ABC=30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ .(1)如图1,当PQ ∥AB 时,求PQ 的长度;(2)如图2,当点P 在BC 上移动时,求PQ 长的最大值.※考向四:圆心角、弧、弦之间的关系典例4:(2017·东营)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,D 为半圆上一点,AC ∥OD ,AD 与OC 交于点E ,连结CD 、BD ,给出以下三个结论:①OD 平分∠COB ;②BD=CD ;③CD2=CE•CO ,其中正确结论的序号是 .典例5:((2015•雅安)如图所示,MN 是⊙O 的直径,作AB ⊥MN ,垂足为点D ,连接AM ,AN ,点C 为上一点,且=,连接CM ,交AB 于点E ,交AN 于点F ,现给出以下结论:①AD=BD ;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB ;⑤AE=21MF .其中正确结论的个数是( )A .2B .3C .4D .5※考向五:圆的有关性质与三角形、四边形等综合运用典例6:(2016·武汉)如图,点C 在以AB 为直径的⊙O 上,AD 与过点C 的切线垂直,垂足为点D ,AD 交⊙O 于点E . (1) 求证:AC 平分∠DAB ;(2) 连接BE 交AC 于点F ,若cos ∠CAD =54,求FCAF的值.课时作业☆能力提升一.选择题1 .(2018·咸宁)如图,已知⊙O 的半径为5,弦AB ,CD 所对的圆心角分别是∠AOB ,∠COD ,若∠AOB 与∠COD 互补,弦CD =6,则弦AB 的长为( )A .6B .8C .5 2D .5 32.(2018·菏泽)如图,在⊙O 中,OC ⊥AB ,∠ADC =32°,则∠OBA 的度数是( ) A .64° B .58° C .32° D .26°3.(2018·湖州)尺规作图特有的魅力曾使无数人沉湎其中,传说拿破仑通过下列尺规作图考他的大臣;①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连接OG.问:OG 的长是多少?大臣给出的正确答案应是( )A B.(1+)r C.(1+)r D r 4.(2017·阿坝州)如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB 的长为( )A.2cm B.3cm C.52cm D.32cm 5.(2018·烟台)如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E 在AD的延长线上,则∠CDE 的度数为()A.56°B.62°C.68°D.78°BAEA BCDO6.(2018·枣庄)如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP =2,BP =6, ∠APC =30°,则CD 的长为( )AB .C .D .87 (2018·荆州)如图,平面直角坐标系中,⊙P 经过三点A (8,0),O (0,0),B (0,6),点D 是⊙P 上一动点.当点D 到弦OB 的距离最大时,tan ∠BOD 的值是( ) A.2 B.3 C.4 D.5ABC 中,∠A =60°,BC =5cm .能够将△ABC 完全覆盖的最小圆形片的直径是 cm .B A9.(2017·海南)如图,AB 是⊙O 的弦,AB =5,点C 是⊙O 上的一个动点,且∠ACB =45°,若点M 、N 分别是AB 、AC 的中点,则MN 长的最大值是 .10.(2018·益阳)如图,在△ABC 中,AB=5,AC=4,BC=3,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交AB,AC 于点M,N ;②分别以M,N 为圆心,以大于21MN 的长为半径作弧,两弧相交于点E ;③作射线AE ;④以同样的方法作射线BF.AE 交BF 于点O ,连接OC,则OC=三、解答题11. (2018·定西)如图,点O 是△ABC 的边AB 上一点,⊙O 与边AC 相切于点E ,与边BC ,AB 分别相交于点D ,F ,且DE =EF . (1)求证:∠C =90°; (2)当BC =3,sinA =53时,求AF 的长.12.(2018·昆明)如图,AB 是⊙O 的直径,ED 切⊙O 于点C ,AD 交⊙O 于点F ,AC 平分∠BAD ,连接BF .(1)求证:AD ⊥ED ;(2)若CD =4,AF =2,求⊙O 的半径.E13.(2017·台州)如图,已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与B ,C 重合),PE 是△ABP 的外接圆⊙O 的直径. (1)求证:△APE 是等腰直角三角形; (2)若⊙O 的直径为2,求22PB PC 的值.14.(2018·福建)如图1,四边形ABCD是⊙O的内接四边形,AC为直径,DE⊥AB,垂足为E,交⊙O于点F.(1)延长DE交⊙O于点F,、延长DC、FB交于点P,求证:PB=PC;(2) 如图2,过点B作BG⊥AD,垂足为G,BG交DE于点H.且点O和点A都在DE的左侧,,DH=1,∠OHD=80°,求∠BDE的大小.若AB=315.(2017·深圳)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是CBD上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF 的值.16.(2018·哈尔滨)已知:⊙O是正方形ABCD的外接圆,点E在弧AB上,连接BE、DE,点F 在弧AD 上,连接BF 、DF 、BF 与DE 、DA 分别交于点G 、点H ,且DA 平分∠EDF . (1)如图1,求证:∠CBE =∠DHG ;(2)如图2,在线段AH 上取一点N (点N 不与点A 、点H 重合),连接BN 交DE 于点L ,过 点H 作HK //BN 交DE 于点K ,过点E 作EP ⊥BN ,垂足为点P ,当BP =HF 时,求证:BE =HK ; (3)如图3,在(2)的条件下,当3HF =2DF 时,延长EP 交⊙O 于点R ,连接BR ,若△BER 的面积与△DHK 的面积的差为47,求线段BR 的长.图1 图2 图3与圆有关的概念聚焦考点☆温习理解1、圆的定义在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

2024年数学培优补差计划

2024年数学培优补差计划
2024年数学培优补差计划
数学培优补差计划1
为顺利完成本学期的教学任务,提高本学期的教育教学质量,根据我班学生的实际情况,围绕教学目标,除了认真备课、上课、批改作业、定期评定学生成绩、优质完成每一节课的教学外,应采取课内外培优补差措施,制定培优补差计划,以高度的责任心投入到紧张的教学及培优补差工作中,力争在中考中取得较好的成绩。
一、培优补差对象:优秀学生;后进学生;
二、有效培优补差措施:
利用课余时间和第八节课,对各种情况的同学进行辅导、提高,“因材施教、对症下药”,根据学生的素质采取相应的方法辅导。具体方法如下:
1.课上差生板演,中等生订正,优等生解决难题。
2.安排座位时坚持“好差同桌”结为学习对子。即“兵教兵”。
3.课堂练习分成三个层次:第一层“必做题”—基础题,第二层:“选做题”—中等题,第三层“思考题”--拓广题。满足不同层次学生的.需要。
二、差生原因分析及采取措施。
寻找根源,发现造成学习困难的原因有生理因素,也有心理因素,但更多的是学生自身原因。
1、志向性障碍,学习无目的性、无积极性和主动性,对自己抱自暴自弃的态度。
2、情感性障碍,缺乏积极的学习动机,随着时间的推移,知识欠帐日益增加,成绩每况愈下,久而久之成为学习困难学生。
3、不良的学习习惯,学习困难学生通常没有良好的学习习惯,他们一般贪玩,上课注意力不集中,上课不听讲,练习不完成,作业不能独立完成,甚至抄袭作业。
(二)有效培优补差措施。
利用课余时间和第八节课,对各种情况的同学进行辅导、提高,“因材施教、对症下药”,根据学生的素质采取相应的方法辅导。具体方法如下:
1.课上差生板演,中等生订正,优等生解决难题。
2.课堂练习分成三个层次:第一层“必做题”—基础题,第二层:“选做题”—中等题,第三层“思考题”--拓广题。满足不同层次学生的需要。

初三数学培优题

初三数学培优题

初三数学培优题Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998为您提供优质放心的教育服务数学培优题]孙老师第一讲(三角形、四边形及多边形)第二讲:(三角形、四边形及多边形)第三讲与圆有关的性质第四讲直线与圆的位置关系第五讲:与圆有关的比例线段+圆内接四边形第六讲:圆的综合运用第七讲:函数图像、性质的应用第八讲:二次函数-特殊三角形第九讲:二次函数-平行四边形第十讲二次函数(面积与计算)第十一讲:三角函数及综合第十二讲一次函数与反比例函数第一讲(三角形、四边形及多边形)★你了解直线型问题的中考方向吗所谓直线型问题,包括了直线、角、三角形、四边形及其多边形,这部分内容知识点多,题型变化多样,是中考重点考察内容之一。

成都市历年中考题中,这部分知识点约占25分。

分析近三年成都和全国其他省市的中考题,我们发现:这部分知识的考题一般设置为中档题,在A卷出现比较多些,有填空、选择、解答或证明,在B 卷中出现的题量和分值配备相对少些。

但是,当这部分知识与圆相结合或与函数图象结合,常常成为压轴题的重要组成部分。

★你必须记住的考点1、平行线的性质与判定;2、三角形的内角和定理;3、三角形三边之间的关系定理;★4、三角形全等(相似)的性质与判定;5、三角形(梯形)的中位线定理;6、三角形的“五心”;★7、特殊三角形(等腰三角形、直角三角形等)的性质与判定;★8、平行四边形(包括正方形、菱形、矩形)的性质与判定;9、多边形的内角和定理;★10、三角形中的重要线段(角平分线,中线,垂线,高)★你必须掌握的方法解决直线型问题最基本的方法就是法:面对复杂几何图形时,要从不同的角度去观察,学会辨认图形。

即要善于从复杂图形中寻找、分离出我们最熟悉的图形,从而利用熟悉图形的性质给予解答。

同时思考问题一定要快速、准确、全面,还要综合运用分类讨论法、方程等思想方法。

★全等、相似常见模型全等模型有:旋转型、对称型、叠合型、平移型;相似常见模型:(1)平行型:(A 型,X 型) (2)交错型 (3)旋转型 (4)母子三角形★ 中考考点分析、典例解析◆ 题型一------概念型【例1】如图:直线a,b,c 表示三条相互交叉的公路,现要建一个货物中转站P ,要求它到三条公路的距离相等,则(1)可供选择的地址有( )A 、一处B 、二处C 、三处D 、四处(2)、若∠ABC=070,则∠APC=【例2】若三角形的三个角满足关系式:C B A ∠=∠=∠3121,则这个三角形是( )A 、锐角三角形B 、钝角三角形C 、直角三角形D 、等腰三角形◎ 目标训练11、等腰三角形一边长为5,另一边长为11,则其周长为( )A 、21B 、27C 、21或27D 、162、如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC ∆相似的是( )◆ 题型二------计算、证明型【例3】已知关于x 的一元二次方程(a +c )x 2+2bx +(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x =﹣1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.【例4】如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.【例5】已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P 点处.(1)如图1,已知折痕与边BC交于点O,连结AP、OP、O A.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长;(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;(3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化若变化,说明理由;若不变,求出线段EF的长度.【例6】例如图,BD是△ABC的角平分线,点E,F分别在BC、AB上,且DE∥AB,EF∥A C.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.【例7】如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,OP 交AC于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.①当t为何值时,DP⊥AC②设S △APQ +S △DCQ =y ,写出y 与t 之间的函数解析式,并探究P 点运动到第几秒到第几秒之间时,y 取得最小值.【例8】如图,已知直线l 1∥l 2,线段AB 在直线l 1上,BC 垂直于l 1交l 2于点C ,且AB =BC ,P 是线段BC 上异于两端点的一点,过点P 的直线分别交l 2、l 1于点D 、E (点A 、E 位于点B 的两侧),满足BP =BE ,连接AP 、CE .(1)求证:△ABP ≌△CBE ;(2)连结AD 、BD ,BD 与AP 相交于点F .如图2.①当=2时,求证:AP ⊥BD ;②当=n (n >1)时,设△PAD 的面积为S 1,△PCE 的面积为S 2,求的值.第二讲:(三角形、四边形及多边形)2一:知识点回顾1四边形性质2特殊四边形(平行四边形、菱形、矩形、正方形、梯形)的性质及差异 3特殊四边形的判定方法4四边形中常见的辅助线二:例题分析例1:如图,在平行四边形ABCD 中,∠C =60°,M 、N 分别是AD 、BC 的中点,BC =2C D .(1)求证:四边形MNCD 是平行四边形;(2)求证:BD =MN .例2:如图,在平行四边形ABCD 中,E 是AD 边上的中点,连接BE ,并延长BE 交CD 的延长线于点F .(1)证明:FD =AB ;(2)当平行四边形ABCD 的面积为8时,求△FED 的面积.例3:如图,在△ABC 中,AB =AC ,AD ⊥AB 于点D ,BC =10cm ,AD =8cm .点P 从点B 出发,在线段BC 上以每秒3cm 的速度向点C 匀速运动,与此同时,垂直于AD 的直线m 从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形若存在,请求出此时刻t的值;若不存在,请说明理由.例4:如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连结EF与边CD相交于点G,连结BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;(3)求证:=.例5:如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M 顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系请说明理由.例6:如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形若存在,请给予证明;若不存在,请说明理由.第三讲与圆有关的性质1.如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=3,sin∠P=35,求⊙O的直径.2.如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线.(2)求证:AF=CF.(3)若∠EAB=30°,CF=2,求GA的长.B 3.如图,在△ABC 中,∠BAC=90°,AB=AC ,AB 是⊙O 的直径,⊙O 交BC 于点D ,DE ⊥AC 于点E ,BE 交⊙O 于点F ,连接AF ,AF 的延长线交DE 于点P .(1)求证:DE 是⊙O 的切线;(2)求tan ∠ABE 的值;(3)若OA=2,求线段AP 的长.4.(2014年天津市,第21题10分)已知⊙O 的直径为10,点A ,点B ,点C 在⊙O 上,∠CAB 的平分线交⊙O 于点D .(Ⅰ)如图①,若BC 为⊙O 的直径,AB =6,求AC ,BD ,CD 的长;(Ⅱ)如图②,若∠CAB =60°,求BD 的长.5.如图,AD 是△ABC 的角平分线,以点C 为圆心,CD 为半径作圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B=∠CAE ,EF :FD=4:3.(1)求证:点F 是AD 的中点;(2)求cos ∠AED 的值;(3)如果BD=10,求半径CD 的长.6.(2014襄阳,第25题10分)如图,A ,P ,B ,C 是⊙O 上的四个点,∠APC =∠BPC =60°,过点A 作⊙O 的切线交BP 的延长线于点D .(1)求证:△ADP ∽△BDA ;(2)试探究线段PA ,PB ,PC 之间的数量关系,并证明你的结论;(3)若AD =2,PD =1,求线段BC 的长.7.如图,在Rt △ABC 中,∠A=90°,O 是BC 边上一点,以O 为圆心的半圆与AB 边相切于点D ,与AC 、BC 边分别交于点E 、F 、G ,连接OD ,已知BD=2,AE=3,tan ∠BOD=.(1)求⊙O 的半径OD ;(2)求证:AE 是⊙O 的切线;(3)求图中两部分阴影面积的和.8.已知:如图,ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交 ⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连结AD .(1)求证:∠DAC =∠DBA ;(2)求证:P 是线段AF 的中点;(3)若⊙O 的半径为5,AF = 215,求tan ∠ABF 9.已知:如图,以矩形ABCD 的对角线AC 的中点O 0,⊙O 经过B 、D 两点,过点B 作BK ⊥AC ,垂足为K .过D 作DH ∥KB ,DH 分别与AC 、AB 、⊙O 及CB 的延长线相交于点E 、F 、G 、H .(1)求证:AE=CK;(2)如果AB=a,AD=13a (a为大于零的常数),求BK的长;(3)若F是EG的中点,且DE=6,求⊙O的半径和GH的长.第四讲直线与圆的位置关系【知识点】※1. 直线和圆相交、相切相离的定义:(1)相交: 直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线.(2)相切: 直线和圆有惟一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,惟一的公共点做切点.(3)相离: 直线和圆没有公共点时,叫做直线和圆相离.※2. 直线与圆的位置关系的数量特征:设⊙O的半径为r,圆心O到直线的距离为d;①d<r <===> 直线L和⊙O相交.②d=r <===> 直线L和⊙O相切.③d>r <===> 直线L和⊙O相离.※3. 切线的总判定定理:经过半径的外端并且垂直于这个条半径的直线是圆的切线.※4. 切线的性质定理:圆的切线垂直于过切点的半径.※推论1 经过圆心且垂直于切线的直线必经过切点.※推论2 经过切点且垂直于切线的直线必经过圆心.※分析性质定理及两个推论的条件和结论间的关系,可得如下结论:如果一条直线具备下列三个条件中的任意两个,就可推出第三个.①垂直于切线; ②过切点; ③过圆心.※5. 三角形的内切圆、内心、圆的外切三角形的概念.和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心, 这个三角形叫做圆的外切三角形.※6. 三角形内心的性质:(1)三角形的内心到三边的距离相等.(2)过三角形顶点和内心的射线平分三角形的内角.由此性质引出一条重要的辅助线: 连接内心和三角形的顶点,该线平分三角形的这个内角.【例题分析】1.(2014德州,第22题10分)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC 、AD 的长;(2)试判断直线PC 与⊙O 的位置关系,并说明理由.2. 如图,直线与⊙O 相切于点D ,过圆心O 作EF ∥交⊙O于E 、F 两点,点A 是⊙O 上一点,连接AE ,AF ,并分别延长交直线于B 、C 两点;(1)求证:∠ABC+∠ACB=90°;(2)若⊙O 的半径5=R ,BD=12,求tan ∠ACB 的值.3.如图,AB 为的直径,点C 在⊙O 上,点P 是直径AB 上的一点(不与A ,B重合),过点P 作AB 的垂线交BC 的延长线于点Q 。

九年级数学培优计划及措施

九年级数学培优计划及措施

九年级数学培优计划及措施九年级数学是初中阶段数学学习的重要阶段,也是学生数学能力提升的关键时期。

为了帮助学生更好地掌握数学知识,提高数学学习兴趣和成绩,学校制定了九年级数学培优计划及相应的措施。

一、培优目标1.提高学生的数学学习兴趣,激发他们对数学的热爱和学习动力;2.提高学生的数学基础知识、解题能力和思维能力;3.培养学生的数学思维能力和创新意识;4.提高学生的数学学习成绩,为中考和日常学习打下扎实的基础。

二、培优措施1.制定详细的培优计划:学校将根据学生的数学学习情况,制定具体的培优计划和时间安排,明确培优的内容、目标和时间节点,确保培优计划的实施有条不紊。

2.提供丰富的学习资源:学校将为学生提供丰富的数学学习资源,包括教材、习题、参考书籍、教学视频等,为学生的自主学习和课外扩展提供支持。

3.设立专门的数学培优班:学校将根据学生的学习水平和需求,设立专门的数学培优班,由优秀的数学教师负责教学,帮助学生系统地学习和掌握数学知识。

4.加强学生的课外辅导:学校将鼓励学生参加数学兴趣小组、数学讨论会等课外活动,提高学生的数学学习积极性和参与度。

5.个性化辅导:学校将根据学生的具体情况,进行个性化的数学辅导和指导,帮助学生解决学习中的问题和困惑。

6.定期组织模拟考试:学校将定期组织数学模拟考试,对学生的数学学习成绩进行评估和排名,为学生提供有针对性的学习指导和辅导。

7.建立奖惩激励机制:学校将建立奖惩激励机制,对积极参与培优活动和取得优异成绩的学生进行奖励,同时对不尊重规则、不积极参与培优活动的学生进行适当的惩罚。

8.联系家长共同关注:学校将与家长建立良好的沟通渠道,及时向家长反馈学生的数学学习情况,共同关注学生的学习进展,共同制定学习计划和目标。

三、培优效果评估为了及时了解培优活动的效果和成效,学校将定期进行培优效果评估,主要包括以下几个方面:1.学生学习兴趣和学习态度:通过学生的课堂表现、课后作业完成情况、课外学习参与度等方面来评估学生的数学学习兴趣和学习态度。

初三数学培优工作计划

初三数学培优工作计划

初三数学培优工作计划初三是学生学习生涯中非常关键的一年,数学作为主要学科之一,其成绩的提高对于中考的成功至关重要。

为了帮助学生在数学科目上取得优异成绩,特制定以下培优工作计划:1. 目标设定- 明确学生在初三数学学习中的目标,包括短期目标(如每次单元测试的成绩提升)和长期目标(如中考数学成绩达到优秀)。

2. 学情分析- 通过测试和日常观察,了解学生的数学基础、学习习惯和解题技巧,为每个学生制定个性化的学习计划。

3. 课程安排- 根据教学大纲和学生的实际情况,合理安排课程内容,确保覆盖所有中考重点和难点。

4. 强化训练- 设计专项训练,如几何证明、代数运算、函数分析等,通过大量的练习来巩固知识点和提高解题速度。

5. 解题策略- 教授学生解题策略和技巧,如如何快速识别题目类型、如何运用数学思想和方法等。

6. 定期测试- 定期进行模拟测试,检验学生的学习效果,并根据测试结果调整教学计划。

7. 错题分析- 鼓励学生收集错题,进行错题分析,找出错误原因,避免重复犯错。

8. 心理辅导- 关注学生的心理健康,提供必要的心理辅导,帮助学生建立自信,减轻考试焦虑。

9. 家校合作- 与家长保持良好沟通,共同关注学生的学习进度和心理状态,形成家校共育的良好氛围。

10. 资源利用- 充分利用网络资源和教辅材料,为学生提供丰富的学习资源和学习平台。

11. 时间管理- 教会学生合理安排学习时间,确保数学学习与其他科目的学习平衡发展。

12. 总结反馈- 定期总结学生的学习情况和教学效果,及时给予反馈和调整。

通过以上计划的实施,我们期望能够帮助学生在初三这一年中数学成绩有显著提升,为中考的成功打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学培优
1.(江苏南京)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则
B、C两点的坐标分别是()
A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)
2.(江苏南京)如图,在梯形ABCD中,AD∥BC,AB=DC,AC与BD相交于P.已知A (2,3),B(1,1),D(4,3),则点P的坐标为(______,_____).
3.(江苏扬州)如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()
A.B.C.D.﹣2
4.(江苏苏州)已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点
B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,
B1C1∥B2C2∥B3C3,则点A3到x轴的距离是()
x
y
E 4C 3E 3C 2E 2E 1D 1C 1B 2A 3
A 2A 1
B 3B 1O A.3+318
错误!未找到引用源。

B. 错误!未找到引用源。

C. 错误!未找到引用源。

D.错误!未找到引用源。

5.(江苏苏州)如图①,在梯形ABCD 中,AD ∥BC ,∠A=60°,动点P 从A 点出发,以1cm/s
的速度沿着A→B→C→D 的方向不停移动,直到点P 到达点D 后才停止.已知△PAD 的
面积S (单位:错误!未找到引用源。


与点P 移动的时间t (单位:s )的函数关系式如图②所示,则点P 从开始移动到停止移动一
共用了________秒(结果保留根号)
.
(第6题)
6.(江苏泰州)如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在
这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是_________.
7.(江苏常州)如图,已知反比例函数y=(k 1>0),y=(k 2<0).点A 在y 轴的正半
轴上,过点A 作直线BC ∥x 轴,且分别与两个反比例函数的图象交于点B 和C ,连接OC 、
OB .若△BOC 的面积为,AC :AB=2:3,则k 1=___________,k 2=__________.
8.(江苏常州)已知a、b、c、d都是正实数,且a c
b d
<,给出下列四个不等式:①
a c
a+b c+d
<;

c a
c+d a+b
<;③
d b
c+d a+b
<;④
b d
a+b c+d
<。

其中不等式正确的是()A. ①③ B. ①④ C. ②④ D. ②③
9.(江苏常州)已知,在矩形ABCD中,AB=4,BC=2,点M为边BC的中点,点P为边CD上的动点(点P异于C,D两点).连接PM,过点P作PM的垂线与射线DA相交于点E(如图),设CP=x,DE=y.
(1)写出y与x之间的关系式___________________;
(2)若点E与点A重合,则x的值为______________;
(3)是否存在点P,使得点D关于直线PE的对称点D′落在边AB上?若存在,求x的值;若不存在,请说明理由.
10.(江苏扬州)如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD
以1cm/s的速度沿FG方向移动,移动开始前点A与点F重合.在移动过程中,边AD始终
与边FG重合,连接CG,过点A作CG的平行线交线段GH点P,连接PD.已知正方形ABCD
的边长为1cm,矩形EFGH的边FG、GH的长分别为4cm、3cm.设正方形移动时间为x(s),
线段GP的长为y(cm),其中0≤x≤2.5错误!未找到引用源。

.
⑴试求出y关于x的函数关系式,并求出y =3时相应x的值;
⑵记△DGP的面积为S1,△CDG的面积为S2.试说明S1-S2是常数;
⑶当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.
11.(江苏南通)如图,经过点A(0,-4)的抛物线y=1
2x
2+bx+c与x轴相交于点B(-
0,0)和C,O为坐标原点.(1)求抛物线的解析式;
(2)将抛物线y = 1 2x 2+bx +c 向上平移 7 2
个单位长度、再向左平移m(m >0)个单位长度,得到新抛物线.若新抛物线的顶点P 在△ABC 内,求m 的取值范围;
(3)设点M 在y 轴上,∠OMB +∠OAB =∠ACB ,求AM 的长.
12.(浙江省慈溪中学保送生招生考试)如图,在平面直角
坐标系中,边长为1的正方形OABC 的两顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点.将正方形OABC 绕O 点顺时针旋转,旋转角为θ,当A 点第一次落在直线y =x 上时停止旋转.旋转过程中,边交直线y =x 于点M ,BC 边交x 轴于点N .
(1)求边AB 在旋转过程中所扫过的面积;
(2)设△BMN 的周长为p ,在正方形OABC 旋转的过程中,p 值是否有变化?请证明你的结论;
(3)设MN =m ,当m 为何值时△MON 的面积最小,最小值为多少?此时旋转角θ为多少度?并求出此时△BMN 内切圆的半径.
O C B x y A M N
y =x θ。

相关文档
最新文档