第13讲 立体几何选择填空压轴题专练-2021届高考数学(理)培优专题提升训练(解析版)

合集下载

高考数学高考数学压轴题立体几何多选题分类精编及答案

高考数学高考数学压轴题立体几何多选题分类精编及答案

高考数学高考数学压轴题立体几何多选题分类精编及答案一、立体几何多选题1. 如图,在直三棱柱ABC-A}B}C}中,AC = BC = AA i=2, ZACB = 90°, D, E, F分别为AC, AB的中点.则下列结论正确的是()B. B、CJ /平而DEFD.点d到平面DFF的距离为比C. EF与4G所成的角为90。

2【答案】BCD【分析】利用异而直线的位這关系,线而平行的判泄方法,利用空间直角坐标系异而直线所成角和点到面的距离,对各个选项逐一判断.【详解】对选项A,由图知4C|U平而ACC.A. , EFD平面ACQA^E,且E AC r由异面直线的建义可知AC】与EF异面,故A错误: 对于选项B,在直三棱柱ABC — AQG中,BG HBC.•.•D,F分别是AC, AB的中点,• •FDIIBC, :・B\C\ IIFD.又••• BQ] (Z 平面DEF, DF u 平而DEF, ・・BG //平而DEF.故B正确:对于选项C,由题意,建立如图所示的空间直角坐标系,则C(0,0, 0), A(2,0t 0), 5(0,2, 0),人(2,0, 2),坊(0,2, 2), C 】(0,0, 2),D(l,o, 0), E(2,0, 1), F(1,1, 0)..\EF = (-1,1, T), AC ;=(—2,0, 2).•.•EFAC ; = 2+0—2 = 0, :.EF 丄 AC ;, 丄 A©.•.•EF 与AC ;所成的角为90。

,故c 正确:对于选项D,设向量匝= (x,y, Z)是平而DEF 的一个法向疑.・••万E = (ho ・ 1) , DF = (0,l, 0),取 X = 1 ♦则 z=—1 ‘ ・••帀=(h 0, —1),设点耳到平而DEF 的距离为d ・二点d 到平而DEF 的距离为空,故D 正确.2故选:BCD【点睛】本题主要考查异而直线的位置关系,线而平行的判定,异而直线所成角以及点到而的距 离,还考查思维能力及综合分析能力,属难题.2. 已知球O 为正方体ABCD-AgD 、的内切球,平而A {C }B 截球O 的而积为24兀, 下列命题中正确的有()A. 异而直线AC 与所成的角为60。

新高考数学高考数学压轴题 立体几何多选题分类精编附答案

新高考数学高考数学压轴题 立体几何多选题分类精编附答案

新高考数学高考数学压轴题 立体几何多选题分类精编附答案一、立体几何多选题1.如图①,矩形ABCD 的边2BC =,设AB x =,0x >,三角形BCM 为等边三角形,沿BC 将三角形BCM 折起,构成四棱锥M ABCD -如图②,则下列说法正确的有( )A .若T 为BC 中点,则在线段MC 上存在点P ,使得//PD 平面MATB .当)3,2x ∈时,则在翻折过程中,不存在某个位置满足平面MAD ⊥平面ABCDC .若使点M 在平面ABCD 内的射影落在线段AD 上,则此时该四棱锥的体积最大值为1 D .若1x =,且当点M 在平面ABCD 内的射影点H 落在线段AD 上时,三棱锥M HAB -6322++【答案】BCD 【分析】对于A ,延长AT 与DC 的延长线交于点N ,此时,DP 与MN 必有交点; 对于B ,取AD 的中点H ,表示出2223MH MT HT x --,验证当)3,2x ∈时,无解即可; 对于C ,利用体积公式21233V x x =⨯⨯-,借助基本不等式求最值即可; 对于D ,要求外接球半径与内切球半径,找外接圆的圆心,又内接圆半径为2323r =++【详解】对于A ,如图,延长AT 与DC 的延长线交于点N ,则面ATM ⋂面()MDC N MN =.此时,DP 与MN 必有交点,则DP 与面ATM 相交,故A 错误; 对于B ,取AD 的中点H ,连接MH ,则MH AD ⊥.若面MAD ⊥面ABCD ,则有2223MH MT HT x =-=- 当)3,2x ∈时,无解,所以在翻折过程中,不存在某个位置满足平面MAD ⊥平面ABCD故B 正确;对于C ,由题可知,此时面MAD ⊥面ABCD ,由B 可知,(3x ∈,所以()22222221223232331333232x x V x x x x ⎛⎫+-⎛⎫=⨯⨯-=-≤== ⎪ ⎪⎝⎭⎝⎭当且仅当223x x =-,即6x =时等号成立.故C 正确; 对于D ,由题可知,此时面MAD ⊥面ABCD ,且2MH =因为AHB ,MHB 都是直角三角形,所以M ABH -底面外接圆的圆心是中点,所以1R =,由等体积法,可求得内接圆半径为2323r =++,故61322R r +=,故D 正确.故选:BCD . 【点睛】本题从多个角度深度考查了立体几何的相关内容,注意辅助线的作法,以及求内接圆半径的公式、基本不等式、构造函数等核心思想.2.在棱长为1的正方体1111ABCD A B C D -中,P 为底面ABCD 内(含边界)一点.( ) A .若13A P P 点有且只有一个 B .若12A P ,则点P 的轨迹是一段圆弧 C .若1//A P 平面11B D C ,则1A P 2D .若12A P 且1//A P 平面11B DC ,则平面11A PC 截正方体外接球所得截面的面积为23π【答案】ABD 【分析】选项A ,B 可利用球的截面小圆的半径来判断;由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD 上,1A P 2P 与B 或D 重合,利用12sin 60A P r =︒,求出63r =,进而求出面积. 【详解】对A 选项,如下图:由13A P =P 在以1A 3的球上,又因为P 在底面ABCD 内(含边界),底面截球可得一个小圆,由1A A ⊥底面ABCD ,知点P 的轨迹是在底面上以A 为圆心的小圆圆弧,半径为22112r A P A A =-=,则只有唯一一点C满足,故A 正确;对B 选项,同理可得点P 在以A 为圆心,半径为22111r A P A A =-=的小圆圆弧上,在底面ABCD 内(含边界)中,可得点P 轨迹为四分之一圆弧BD .故B 正确;对C 选项,移动点P 可得两相交的动直线与平面11B D C 平行,则点P 必在过1A 且与平面11B D C 平行的平面内,由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD上,则1A P 长的最大值为12A B =,则C 不正确; 对选项D ,由以上推理可知,点P 既在以A 为圆心,半径为1的小圆圆弧上,又在线段BD 上,即与B 或D 重合,不妨取点B ,则平面11A PC 截正方体外接球所得截面为11A BC 的外接圆,利用2126622,,sin 603A B r r S r ππ==∴=∴==︒.故D 正确.故选:ABD 【点睛】(1)平面截球所得截面为圆面,且满足222=R r d +(其中R 为球半径,r 为小圆半径,d 为球心到小圆距离);(2)过定点A 的动直线平行一平面α,则这些动直线都在过A 且与α平行的平面内.3.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长都等于1,且它们彼此的夹角都是60,下列说法中正确的是( )A .()()2212AA AB ADAC ++=B .1A 在底面ABCD 上的射影是线段BD 的中点C .1AA 与平面ABCD 所成角大于45 D .1BD 与AC 6 【答案】AC 【分析】对A ,分别计算()21++AA AB AD 和2AC ,进行判断;对B ,设BD 中点为O ,连接1A O ,假设1A 在底面ABCD 上的射影是线段BD 的中点,应得10⋅=O AB A ,计算10⋅≠O AB A ,即可判断1A 在底面ABCD 上的射影不是线段BD 的中点;对C ,计算11,,A A AC AC ,根据勾股定理逆定理判断得11⊥A A AC ,1AA 与平面ABCD 所成角为1A AC ∠,再计算1tan ∠A AC ;对D ,计算1,AC BD 以及1BD AC ⋅,再利用向量的夹角公式代入计算夹角的余弦值. 【详解】对A ,由题意,11111cos602⋅=⋅=⋅=⨯⨯=AA AB AA AD AD AB ,所以()2222111112*********++=+++⋅+⋅+⋅=+++⨯⨯=AA AB ADAA AB AD AA AB AB AD AA AD ,AC AB AD =+,所以()222221113=+=+⋅+=++=AC AB ADAB AB AD AD ,所以()()22126++==AA AB AD AC ,故A 正确;对B ,设BD 中点为O ,连接1A O ,1111111222=+=+=++AO A A AO A A AC A A AD AB ,若1A 在底面ABCD 上的射影是线段BD 的中点,则1A O ⊥平面ABCD ,则应10⋅=O AB A ,又因为21111111111110222222224⎛⎫⋅=++⋅=-⋅+⋅+=-+⨯+=≠⎪⎝⎭O AB A A AD AB AB AA AB AD AB AB A ,故B 错误;对D ,11,BD AD AA AB AC AB AD=+-=+, 所以()()2211=2,=3=+-=+AD A B A AB AC AB AD D ,()()2211111⋅=+-⋅+=⋅++⋅+⋅--⋅=AC AD AA AB AB AD AD AB AD AA AB AA AD ABAB AD BD ,1116cos ,23⋅<>===⋅B AC D BD BD AC AC,故D 不正确;对C ,112==AC BD ,在1A AC 中,111,2,3===A A AC AC ,所以22211+=A A AC AC ,所以11⊥A A AC ,所以1AA 与平面ABCD 所成角为1A AC ∠,又1tan 21∠=>A AC ,即145∠>A AC ,故C 正确;故选:AC【点睛】方法点睛:用向量方法解决立体几何问题,需要树立“基底”意识,利用基向量进行线性运算,要理解空间向量概念、性质、运算,注意和平面向量类比;同时对于立体几何中角的计算问题,往往可以利用空间向量法,利用向量的夹角公式求解.4.如图,直三棱柱11,ABC A B C -,ABC 为等腰直角三角形,AB BC ⊥,且12AC AA ==,E ,F 分别是AC ,11A C 的中点,D ,M 分别是1AA ,1BB 上的两个动点,则( )A .FM 与BD 一定是异面直线B .三棱锥D MEF -的体积为定值14C .直线11B C 与BD 所成角为2π D .若D 为1AA 中点,则四棱锥1D BB FE -55【答案】CD 【分析】A 当特殊情况M 与B 重合有FM 与BD 相交且共面;B 根据线面垂直、面面垂直判定可证面1BEFB ⊥面11ACC A ,可知EMFS、D 到面1BEFB 的距离,可求D EMF V -;C 根据线面垂直的判定及性质即可确定11B C 与BD 所成角;D 由面面垂直、勾股、矩形性质等确定外接球半径,进而求体积,即可判断各项的正误. 【详解】A :当M 与B 重合时,FM 与BD 相交且共面,错误; B :由题意知:BE AC ⊥,AC EF ⊥且BEEF E =,则AC ⊥面1BEFB ,又AC ⊂面11ACC A ,面1BEFB ⋂面11ACC A EF =,所以面1BEFB ⊥面11ACC A ,又1121122EMFSEF BE =⋅⋅=⨯⨯=,D 到面1BEFB 的距离为1h =,所以1133D EMF EMFV h S-=⋅⋅=,错误; C :由AB BC ⊥,1BC B B ⊥,1B BAB B =,所以BC ⊥面11ABB A ,又11//BC B C ,即11B C ⊥面11ABB A ,而BD ⊂面11ABB A ,则11BD B C ⊥,正确;D :由B 中,面1BEFB ⊥面11ACC A ,即面DEF ⊥面1BEFB ,则D 到面1BEFB 的距离为1h =,又D 为1AA 中点,若1,BF EB 交点为O ,G 为EF 中点,连接,,OG GD OD ,则OG GD ⊥,故2252OD OG GD =+=,由矩形的性质知:15OB OE OF OB ====令四棱锥1D BB FE -的外接球半径为R ,则52R =,所以四棱锥1D BB FE -的外接球体积为35435V R ππ==,正确. 故选:CD. 【点睛】关键点点睛:利用线面、面面关系确定几何体的高,结合棱锥体积公式求体积,根据线面垂直、勾股定理及矩形性质确定外接球半径,结合球体体积公式求体积.5.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得1CN AB ⊥ B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -外接球的体积是43π 【答案】BD 【分析】对于A ,取AD 中点E ,连接EC 交MD 与F ,可得到EN NF ⊥,又EN CN ⊥,且三线,,NE NF NC 共面共点,不可能;对于B ,可得由1NEC MAB ∠=∠(定值),112NE AB =(定值),AM EC =(定值),由余弦定理可得NC 是定值.对于C ,取AM 中点O ,连接1,B O DO ,假设1AM B D ⊥,易得AM ⊥面1ODB ,即可得OD AM ⊥,从而AD MD =,显然不一定成立.对于D ,当平面B 1AM ⊥平面AMD 时,三棱锥B 1﹣AMD 的体积最大,可得球半径为1,体积是43π. 【详解】对于A 选项:如图1,取AD 中点E ,连接EC 交MD 与F , 则11////NE AB NF MB ,,又11AB MB ⊥,所以EN NF ⊥, 如果1CN AB ⊥,可得EN CN ⊥,且三线,,NE NF NC 共面共点, 不可能,故A 选项不正确;对于B 选项:如图1,由A 选项可得1AMB EFN ≈△△,故1NEC MAB ∠=∠(定值),112NE AB =(定值),AM EC =(定值), 故在NEC 中,由余弦定理得222cos CN CE NE NE CE NEC =+-⋅⋅∠,整理得222212422AB AB AB CN AM AM BC AB AM =+-⋅⋅=+ 故CN 为定值,故B 选项正确.对于C 选项:如图,取AM 中点O ,连接1,B O DO , 由AB BM =,得1B O AM ⊥,假设1AM B D ⊥,111B D B O B =,所以AM ⊥面1ODB ,所以OD AM ⊥,从而AD MD =,显然不恒成立,所以假设不成立,可得C 选项不正确.对于D 选项:由题易知当平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大,此时1B O ⊥平面AMD ,则1B O OE ⊥,由1AB BM ==,易求得12BO =2DM =22221122122B E OB OE ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 因此1EB EA ED EM ===,E 为三棱锥1B AMD -的外接球球心,此外接球半径为1,体积是43π.故D 选项正确. 故答案为:BD . 【点睛】本题主要考查了线面、面面平行与垂直的判定和性质定理,考查了空间想象能力和推理论证能力,属于难题.本题C 选项的解题的关键在于采用反证法证明,进而推出矛盾解题,D 选项求解的关键在于把握平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大.6.在三棱锥M ABC -中,下列命题正确的是( )A .若1233AD AB AC =+,则3BC BD = B .若G 为ABC 的重心,则111333MG MA MB MC =++C .若0MA BC ⋅=,0MC AB ⋅=,则0MB AC ⋅=D .若三棱锥M ABC -的棱长都为2,P ,Q 分别为MA ,BC 中点,则2PQ = 【答案】BC 【分析】作出三棱锥M ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】对于A ,由已知12322233AD AB AC AD AC AB AD AC AB AD =+⇒=+⇒-=-,即2CD DB =,则32BD BD DC BC =+=,故A 错误; 对于B ,由G 为ABC 的重心,得0GA GB GC ++=,又MG MA AG =+,MG MB BG =+,MG MC CG =+,3MA MB MC MG ∴++=,即111333MG MA MB MC =++,故B 正确;对于C ,若0MA BC ⋅=,0MC AB ⋅=,则0MC MA BC AB ⋅+⋅=,即()00MA BC AC CB MA BC AC C MC C M B M C ⋅++=⇒⋅++⋅⋅=⋅()00MA BC A MC MC MC MC C BC MA BC AC ⋅⋅⋅⇒⋅+-=⇒-+=⋅()000MC M CA BC AC AC CB AC CB AC C MC ⇒+=⇒+=⇒+=⋅⋅⋅⋅⋅,即0MB AC ⋅=,故C 正确;对于D ,111()()222PQ MQ MP MB MC MA MB MC MA ∴=-=+-=+- ()21122PQ MB MC MA MB MC MA ∴=+-=+-,又()2222222MB MC MA MB MC MA MB MC MB MA MC MA+-=+++⋅-⋅-⋅2221112222222222228222=+++⨯⨯⨯-⨯⨯⨯-⨯⨯⨯=,1822PQ ∴==,故D 错误. 故选:BC 【点睛】关键点睛:本题考查向量的运算,用已知向量表示某一向量的三个关键点:(1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键. (2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. (3)在立体几何中三角形法则、平行四边形法则仍然成立.7.如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26的正三角形,底面ABCD 为矩形,23CD =,点Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 所成角的余弦值为223C .三棱锥B ACQ -的体积为62D .四棱锥Q ABCD -外接球的内接正四面体的表面积为3【答案】BD 【分析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,则由已知可得OP ⊥平面 ABCD ,而底面ABCD 为矩形,所以以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,利用空间向量依次求解即可. 【详解】解:取AD 的中点O ,BC 的中点E ,连接,OE OP , 因为三角形PAD 为等边三角形,所以OP AD ⊥, 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD , 因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴, 建立空间直角坐标系,则(0,0,0),(6,0,0),(6,0,0)O D A ,(0,0,32),6,23,0),(6,23,0)P C B ,因为点Q 是PD 的中点,所以632,0,)22Q , 平面PAD 的一个法向量为(0,1,0)m =,6(QC=,显然m与QC不共线,所以CQ与平面PAD不垂直,所以A不正确;3632(6,23,32),(,0,),(26,22PC AQ AC=-==,设平面AQC的法向量为(,,)n x y z=,则3622260n AQ xzn AC⎧⋅=+=⎪⎨⎪⋅=+=⎩,令=1x ,则y z==,所以(1,2,n=-,设PC与平面AQC所成角为θ,则21sin36n PCn PCθ⋅===,所以cos3θ=,所以B正确;三棱锥B ACQ-的体积为1132B ACQ Q ABC ABCV V S OP--==⋅1116322=⨯⨯⨯=,所以C不正确;设四棱锥QABCD-外接球的球心为)Ma,则MQ MD=,所以22222222a a⎛⎫⎛⎫++-=++⎪ ⎪⎪ ⎪⎝⎭⎝⎭,解得0a=,即M为矩形ABCD对角线的交点,所以四棱锥Q ABCD-外接球的半径为3,设四棱锥Q ABCD-外接球的内接正四面体的棱长为x,将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为2x,所以22362x⎛⎫=⎪⎪⎝⎭,得224x=,所以正四面体的表面积为244x⨯=,所以D正确.故选:BD【点睛】此题考查线面垂直,线面角,棱锥的体积,棱锥的外接球等知识,综合性强,考查了计算能力,属于较难题.8.如图所示,在长方体1111ABCD A B C D -中,11,2,AB BC AA P ===是1A B 上的一动点,则下列选项正确的是( )A .DP 35B .DP 5C .1AP PC +6D .1AP PC +170【答案】AD 【分析】DP 的最小值,即求1DA B △底边1A B 上的高即可;旋转11A BC 所在平面到平面11ABB A ,1AP PC +的最小值转化为求AC '即可.【详解】求DP 的最小值,即求1DA B △底边1A B 上的高,易知115,2A B A D BD ===,所以1A B 边上的高为355h =111,AC BC ,得11A BC ,以1A B 所在直线为轴,将11A BC 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则AC '即为所求的最小值,易知11122,2,cos AA AC AAC ''==∠=,所以217042222()105AC '=+-⨯⨯⨯-=. 故选:AD. 【点睛】本题考查利用旋转求解线段最小值问题.求解翻折、旋转问题的关键是弄清原有的性质变化与否, (1)点的变化,点与点的重合及点的位置变化;(2)线的变化,翻折、旋转前后应注意其位置关系的变化;(3)长度、角度等几何度量的变化.9.如图,已知矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1A C 的中点,则ADE ∆在翻折过程中,下列说法正确的是( )A .线段BM 的长是定值B .存在某个位置,使1DE AC ⊥ C .点M 的运动轨迹是一个圆D .存在某个位置,使MB ⊥平面1A DE 【答案】AC 【分析】取CD 中点F ,连接BF ,MF ,根据面面平行的判定定理可得平面//BMF 平面1A DE ,由面面平行的性质定理可知//BM 平面1A DE ,可判断D ;在BFM ∆中,利用余弦定理可求得BM a =为定值,可判断A 和C ;假设1DE A C ⊥,由线面垂直的判定定理可得DE ⊥平面1A CE ,由线面垂直的性质定理可知1DE A E ⊥,与11DA A E ⊥矛盾,可判断B . 【详解】解:取CD 的中点F ,连接BF ,MF ,∵M ,F 分别为1A C 、CD 中点, ∴1MF A D ∥,∵1A D ⊂平面1A DE ,MF ⊄平面1A DE , ∴MF 平面1A DE , ∵DF BE ∥且DF BE =, ∴四边形BEDF 为平行四边形, ∴BFDE ,∵DE ⊂平面1A DE ,BF ⊄平面1A DE , ∴BF ∥平面1A DE , 又BFMF F =,BF 、MF ⊂平面BMF ,∴平面//BMF 平面1A DE , ∵BM ⊂平面BMF , ∴BM ∥平面1A DE ,即D 错误,设22AB AD a ==,则112MF A D a ==,BF DE ==,145A DE MFB ︒∠=∠=,∴BM a ==,即BM 为定值,所以A 正确,∴点M 的轨迹是以B 为圆心,a 为半径的圆,即C 正确, ∵DE CE ==,2CD AB a ==,∴222DE CE CD +=,∴DE CE ⊥, 设1DE A C ⊥,∵1A C 、CE ⊂平面1A CE ,1AC CE C =,∴DE ⊥平面1A CE , ∵1A E ⊂平面1A CE ,∴1DE A E ⊥,与11DA A E ⊥矛盾, 所以假设不成立,即B 错误. 故选:AC . 【点睛】本题考查立体几何中的翻折问题,涉及到线段长度的求解、直线与平面位置关系的判定、点的轨迹的求解、反证法的应用等知识点,考查学生的空间立体感和推理论证能力.10.如图,正四棱锥S -BCDE 底面边长与侧棱长均为a ,正三棱锥A -SBE 底面边长与侧棱长均为a ,则下列说法正确的是( )A .AS ⊥CDB .正四棱锥S -BCDE 的外接球半径为2a C .正四棱锥S -BCDE 的内切球半径为212a ⎛⎫- ⎪ ⎪⎝⎭ D .由正四棱锥S -BCDE 与正三棱锥A -SBE 拼成的多面体是一个三棱柱 【答案】ABD 【分析】取BE 中点H ,证明BE ⊥平面SAH 即可证AS CD ⊥;设底面中心为1O ,有1122O B O S a ==,可求得球半径为22a ;用等体积法求内切球半径即可判断;由////SA DE BC 且==SA DE BC 可知多面体是一个三棱柱.【详解】 如图所示:A 选项:取BE 中点H 连接,AH SH ,正三棱锥A SBE -中,,AH BE SH BE ⊥⊥ 又AHSH H =,所以BE ⊥平面SAH ,则BE AS ⊥,又//BE CD 所以AS CD ⊥ ,故A 正确;B 选项:设底面中心为1O ,球心为O 半径为R ,因为正四棱锥S -BCDE 外接球球心在1O S 上,所以OS OB R ==,因为,正四棱锥S -BCDE 底面边长与侧棱长均为a所以112O B O S ==,由()22211OB O B O S OS =+-得22222R a R ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭解得2R =,故B 正确; C 选项:设内切球半径为r,易求得侧面面积为221sin 23S a π=⋅=,由等体积法得222111432334a a a r a r ⋅=⋅+⋅⋅⋅解得4a r = ,故C 错;D 选项:取SE 中点F ,连结AF ,DF ,BF ,则BFD ∠和BFA ∠分别是D SE B --和A SE B --的二面角的平面角,由)22222221cos 2322BF DF BD BFD BF DF a ⎫⎫+-⎪⎪+-⎝⎭⎝⎭∠===-⋅⎛⎫⎪⎝⎭22222221cos 232a AF BF BA AFD AF BF ⎫⎫+-⎪⎪+-⎝⎭⎝⎭∠===⋅⎫⎪⎝⎭,故BFD ∠与BFA ∠互补,所以ASDE 共面,又因为AS AE ED SD ===,则ASDE 为平行四边形,故////AS ED BC 故正四棱锥S -BCDE 与正三棱锥A -SBE 拼成的多面体是一个三棱柱,所以D 正确 故选:ABD 【点睛】求外接球半径的常用方法:(1)补形法:侧面为直角三角形或正四面体或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;(2)利用球的性质:几何体在不同面均对直角的棱必然是球的直径;(3)定义法:到各个顶点距离均相等的点为球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.。

新高考数学重难点培优专题讲义——立体几何小题专练(含详细答案解析)

新高考数学重难点培优专题讲义——立体几何小题专练(含详细答案解析)

立体几何小题培优讲义高考规律立体几何是高考的热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上.知识梳理【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解.,其中是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的轨迹问题及其解题策略】1.立体几何中的轨迹问题立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.2.立体几何中的轨迹问题的求解方法解决立体几何中的轨迹问题有两种方法:一是几何法:对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法:在图形中,建立恰当的空间直角坐标系,利用空间向量进行求解.【知识点6 以立体几何为载体的情境题的求解策略】1.以立体几何为载体的几类情境题以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.2.以立体几何为载体的情境题的求解思路以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.此类问题的求解过程主要分四步:一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【题型1 求几何体的体积与表面积】【例1】(2023·江苏徐州·沛县湖西中学模拟预测)在三棱锥P−ABC中,三条侧棱P A,PB,PC两两垂直,且PA=PB=PC=2,若三棱锥P−ABC的所有顶点都在同一个球的表面上,则该球的体积是()A.4√3πB.4√2πC.6πD.12π【变式1-1】(2023·陕西铜川·统考一模)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸,若盆中积水深九寸,则平地降雨量是()(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③V台=13(S上+S下+√S上⋅S下)ℎ)A.6寸B.4寸C.3寸D.2寸【变式1-2】(2023·全国·模拟预测)如图,已知正四棱台ABCD−A1B1C1D1的高为2,AB=2A1B1,P,Q分别为B1C1,C1D1的中点,若四边形PQDB的面积为152,则该四棱台的体积为()A.563B.56C.283D.28【变式1-3】(2023·山东·统考一模)陀螺起源于我国,在山西夏县新石器时代的遗址中,就出土了目前发现的最早的石制陀螺因此,陀螺的历史至少也有四千年,如图所示为一个陀螺的立体结构图,若该陀螺底面圆的直径AB=12cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=4cm,则这个陀螺的表面积是()A.(144+12√13)πcm2B.(144+24√13)πcm2C.(108+12√13)πcm2D.(108+24√13)πcm2【题型2 与球有关的截面问题】【例2】(2023·陕西咸阳·武功县普集高级中学校考模拟预测)已知球O的一个截面的面积为2π,球心O到该截面的距离比球的半径小1,则球O的表面积为()A.8πB.9πC.12πD.16π【变式2-1】(2023·全国·校联考模拟预测)上、下底面均为等边三角形的三棱台的所有顶点都在同一球面上,若三棱台的高为3,上、下底面边长分别为√15,2√6,则该球的表面积为()A.32πB.36πC.40πD.42π【变式2-2】(2023·河南·信阳高中校联考模拟预测)如图,在三棱锥A−BCD中,AB,AC,AD两两垂直,且AB=AC=AD=3,以A为球心,√6为半径作球,则球面与底面BCD的交线长度的和为()A.2√3πB.√3πC.√3π2D.√3π4【变式2-3】(2023·江西南昌·江西师大附中校考三模)已知正方体ABCD−A1B1C1D1的棱长为2,E为棱CC1上的一点,且满足平面BDE⊥平面A1BD,则平面A1BD截四面体ABCE的外接球所得截面的面积为()A.136πB.2512πC.83πD.23π【题型3 体积、面积、周长、距离的最值与范围问题】【例3】(2023·福建莆田·莆田一中校考一模)如图,在边长为a的正三角形的三个角处各剪去一个四边形.这个四边形是由两个全等的直角三角形组成的,并且这三个四边形也全等,如图①.若用剩下的部分折成一个无盖的正三棱柱形容器,如图②.则这个容器的容积的最大值为()A.a327B.a336C.a354D.a372【变式3-1】(2023·全国·模拟预测)在直三棱柱ABC−A1B1C1中,∠BAC=60°,侧面BCC1B1的面积为2√3,则直三棱柱ABC−A1B1C1外接球的表面积的最小值为()A.4πB.8πC.4√3πD.8√3π【变式3-2】(2023·山东·山东省实验中学校考二模)正四棱柱ABCD−A1B1C1D1中,AB=2,P为底面A1B1C1D1的中心,M是棱AB的中点,正四棱柱的高ℎ∈[√2,2√2],点M到平面PCD的距离的最大值为()A.2√63B.83C.4√23D.329【变式3-3】(2023·湖南长沙·长沙一中校考模拟预测)已知A,B,C,D是体积为20√53π的球体表面上四点,若AB=4,AC=2,BC=2√3,且三棱锥A-BCD的体积为2√3,则线段CD长度的最大值为()A.2√3B.3√2C.√13D.2√5【题型4 几何体与球的切、接问题】【例4】(2023·河北邯郸·统考三模)三棱锥S−ABC中,SA⊥平面ABC,AB⊥BC,SA=AB=BC.过点A分别作AE⊥SB,AF⊥SC交SB、SC于点E、F,记三棱锥S−FAE的外接球表面积为S1,三棱锥S−ABC的外接球表面积为S2,则S1S2=()A.√33B.13C.√22D.12【变式4-1】(2023·福建龙岩·统考模拟预测)如图,已知正方体的棱长为2,以其所有面的中心为顶点的多面体为正八面体,则该正八面体的内切球表面积为()A.π6B.πC.4π3D.4π【变式4-2】(2023·全国·模拟预测)为了便于制作工艺品,某工厂将一根底面半径为6cm,高为4cm的圆柱形木料裁截成一个正四棱台木料,已知该正四棱台上底面的边长不大于4√2cm,则当该正四棱台的体积最大时,该正四棱台外接球的表面积为()A.128πcm2B.145πcm2C.153πcm2D.160πcm2【变式4-3】(2023·浙江温州·乐清市知临中学校考二模)如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD棱长为2√6,则模型中九个球的表面积和为()A.6πB.9πC.31π4D.21π【题型5 空间线段以及线段之和最值问题】【例5】(2023·湖南长沙·长郡中学校联考模拟预测)已知底面边长为a的正四棱柱ABCD−A1B1C1D1内接于半径为√3的球内,E,F分别为B1C1,C1D1的中点,G,H分别为线段AC1,EF上的动点,M为线段AB1的中点,当正四棱柱ABCD−A1B1C1D1的体积最大时,|GH|+|GM|的最小值为()A.√2B.3√22C.2D.1+√2【变式5-1】(2023·安徽合肥·合肥市第六中学校考模拟预测)已知在长方体ABCD−A1B1C1D1中,AB=BC= 1,AA1=√3,在线段A1D上取点M,在CD1上取点N,使得直线MN//平面ACC1A1,则线段MN长度的最小值为()A.√33B.√213C.√37D.√217【变式5-2】(2023·四川绵阳·模拟预测)如图,棱长为2的正方体ABCD−A1B1C1D1中,点P在线段AD1上运动,以下四个命题:;④|C1P|+①三棱锥D−BPC1的体积为定值;②C1P⊥CB1;③直线DC1与平面ABC1D1所成角的正弦值为12|DP|的最小值为√10.其中真命题有()A.1个B.2个C.3个D.4个【变式5-3】(2023·天津和平·耀华中学校考二模)粽子,古称“角黍”,早在春秋时期就已出现,到晋代成为了端午节的节庆食物.现将两个正四面体进行拼接,得到如图所示的粽子形状的六面体,其中点G在线,则下列说法正确的是()段CD(含端点)上运动,若此六面体的体积为163A.EF=2B.EF=4C.EG+FG的最小值为3√2D.EG+FG的最小值为2√6【题型6 空间角问题】【例6】(2023·全国·模拟预测)已知正三棱柱ABC−A1B1C1的侧面积是底面积的6√3倍,点E为四边形ABB1A1的中心,点F为棱CC1的中点,则异面直线BF与CE所成角的余弦值为()A.2√3913B.√3913C.√3926D.3√3926【变式6-1】(2023·河北保定·统考二模)如图,在长方体ABCD−A1B1C1D1中,AB=BC=1,AA1=2,对角线B1D与平面A1BC1交于E点.则A1E与面AA1D1D所成角的余弦值为()A.13B.√33C.23D.√53【变式6-2】(2023·全国·模拟预测)在正方体ABCD−A1B1C1D1中,若点N是棱BB1上的动点,点M是线段A1C1(不含线段的端点)上的动点,则下列说法正确的是()A.存在直线MN,使MN//B1C B.异面直线CM与AB所成的角可能为π3C.直线CM与平面BND所成的角为π3D.平面BMC//平面C1NA【变式6-3】(2023·四川遂宁·统考三模)如图,正方体ABCD−A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F(E在F的左边),且EF=√2.下列说法不正确的是()A.当E运动时,二面角E−AB−C的最小值为45∘B.当E,F运动时,三棱锥体积B−AEF不变C.当E,F运动时,存在点E,F使得AE//BFD.当E,F运动时,二面角C−EF−B为定值【题型7 翻折问题】【例7】(2023·四川泸州·统考一模)已知菱形ABCD的边长为6,∠BAD=60°,将△BCD沿对角线BD翻折,使点C到点P处,且二面角A−BD−P为120°,则此时三棱锥P−ABD的外接球的表面积为()A.21πB.28√21πC.52πD.84π【变式7-1】(2023·福建福州·福建省福州第一中学校考模拟预测)在矩形ABCD中,AB=3,AD=4,将△ABD 沿对角线BD翻折至△A′BD的位置,使得平面A′BD⊥平面BCD,则在三棱锥A′−BCD的外接球中,以A′C为直径的截面到球心的距离为()A.√43510B.6√25C.√23910D.√11310【变式7-2】(2023·湖北恩施·校考模拟预测)如图,矩形ABCD中,E、F分别为BC、AD的中点,且BC=2AB=2,现将△ABE沿AE向上翻折,使B点移到P点,则在翻折过程中,下列结论不正确的是()A.存在点P,使得PE∥CFB.存在点P,使得PE⊥EDC.三棱锥P−AED的体积最大值为√26D.当三棱锥P−AED的体积达到最大值时,三棱锥P−AED外接球表面积为4π【变式7-3】(2023·四川·校联考模拟预测)如图,已知△ABC是边长为4的等边三角形,D,E分别是AB,AC 的中点,将△ADE沿着DE翻折,使点A到点P处,得到四棱锥P−BCED,则下列命题错误的是()A.翻折过程中,该四棱锥的体积有最大值为3B.存在某个点P位置,满足平面PDE⊥平面PBCC.当PB⊥PC时,直线PB与平面BCED所成角的正弦值为√33πD.当PB=√10时,该四棱锥的五个顶点所在球的表面积为523【题型8 立体几何中的轨迹问题】【例8】(2023·全国·模拟预测)如图,正方体ABCD−A1B1C1D1的棱长为3,点P是平面ACB1内的动点,M,N分别为C1D1,B1C的中点,若直线BP与MN所成的角为θ,且sinθ=√55,则动点P的轨迹所围成的图形的面积为()A.3π4B.π2C.π3D.π4【变式8-1】(2023·海南省直辖县级单位·文昌中学校考模拟预测)已知四棱柱ABCD−A1B1C1D1的底面ABCD 为正方形,侧棱与底面垂直,点P是侧棱DD1上的点,且DP=2PD1,AA1=3,AB=1.若点Q在侧面BCC1B1(包括其边界)上运动,且总保持AQ⊥BP,则动点Q的轨迹长度为()A.√3B.√2C.2√33D.√52【变式8-2】(2023·河北·统考模拟预测)已知正四棱锥(底面为正方形,且顶点在底面的射影为正方形的中心的棱锥为正四棱锥)P-ABCD的底面正方形边长为2,其内切球O的表面积为π3,动点Q在正方形ABCD 内运动,且满足OQ=OP,则动点Q形成轨迹的周长为()A.2π11B.3π11C.4π11D.5π11【变式8-3】(2023·全国·校联考模拟预测)如图,已知正方体ABCD−A1B1C1D1的棱长为2,P为空间中一点且满足∠APB1=∠ADB1,则以下说法正确的有()A.若P在面AB1C1D上,则其轨迹周长为8√6π9B.若A1P⊥AB1,则D1P的最小值为√3+1−√6C.P的轨迹围成的封闭曲面体积为32√6π227+4√3πD.四棱锥P-ABCD体积最大值为4(2√6+√2+3)9【题型9 以立体几何为载体的情境题】【例9】(2023·云南大理·统考一模)我国古代数学名著《数书九章》中有“天池盆测雨”题,在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为36寸,盆底直径为12寸,盆深18寸.若某次下雨盆中积水的深度恰好是盆深的一半,则该天池盆中水的体积为()A.1404π立方寸B.1080π立方寸C.756π立方寸D.702π立方寸【变式9-1】(2023·广东广州·广东实验中学校考一模)阿基米德多面体是由边数不全相同的正多边形为面的多面体.如图所示的阿基米德多面体有四个全等的正三角形面和四个全等的正六边形面,该多面体是由过正四面体各棱的三等分点的平面截去四个小正四面体得到.若该多面体的所有顶点都在球O的表面上,且点O到正六边形面的距离为√62,则球O的体积为()A.7√1424πB.7√143πC.11√2224πD.11√223π【变式9-2】(2023·河南·校联考模拟预测)如图1所示,宫灯又称宫廷花灯,是中国彩灯中富有特色的汉民族传统手工艺品之一.图2是小明为自家设计的一个花灯的直观图,该花灯由上面的正六棱台与下面的正六棱柱组成,若正六棱台的上、下两个底面的边长分别为4dm和2dm,正六棱台与正六棱柱的高分别为1dm 和6dm,则该花灯的表面积为()A.(108+30√3)dm2B.(72+30√3)dm2C.(64+24√3)dm2D.(48+24√3)dm2【变式9-3】(2023·河南郑州·统考模拟预测)《九章算术·商功》:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,其一为鳖臑”.意思是一个长方体沿对角面斜解(图1),得到一模一样的两个堑堵(图2),再沿一个堑堵的一个顶点和相对的棱斜解(图2),得一个四棱锥称为阳马(图3),一个三棱锥称为鳖臑(图4).若长方体的体积为V,由该长方体斜解所得到的堑堵、阳马和鳖臑的体积分别为V1,V2,V3,则下列等式错误的是()A.V1+V2+V3=V B.V1=2V2C.V2=2V3D.V2−V3=V61.(2023·北京·统考高考真题)坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若AB=25m,BC=AD=10m,且等腰梯形所在的平面、等腰三角形所在的平,则该五面体的所有棱长之和为()面与平面ABCD的夹角的正切值均为√145A.102m B.112mC.117m D.125m2.(2023·全国·统考高考真题)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C−AB−D为150°,则直线CD与平面ABC所成角的正切值为()A.15B.√25C.√35D.253.(2023·全国·统考高考真题)已知圆锥PO的底面半径为√3,O为底面圆心,P A,PB为圆锥的母线,∠AOB=120°,若△PAB的面积等于9√34,则该圆锥的体积为()A.πB.√6πC.3πD.3√6π4.(2023·天津·统考高考真题)在三棱锥P−ABC中,点M,N分别在棱PC,PB上,且PM=13PC,PN=23PB,则三棱锥P−AMN和三棱锥P−ABC的体积之比为()A.19B.29C.13D.495.(2021·浙江·统考高考真题)如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B16.(2023·全国·统考高考真题)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A.直径为0.99m的球体B.所有棱长均为1.4m的四面体C.底面直径为0.01m,高为1.8m的圆柱体D.底面直径为1.2m,高为0.01m的圆柱体7.(2023·全国·统考高考真题)已知圆锥的顶点为P,底面圆心为O,AB为底面直径,∠APB=120°,PA=2,点C在底面圆周上,且二面角P−AC−O为45°,则().A.该圆锥的体积为πB.该圆锥的侧面积为4√3πC.AC=2√2D.△PAC的面积为√38.(2023·全国·统考高考真题)已知点S,A,B,C均在半径为2的球面上,△ABC是边长为3的等边三角形,SA⊥平面ABC,则SA=.9.(2023·全国·统考高考真题)在正方体ABCD−A1B1C1D1中,AB=4,O为AC1的中点,若该正方体的棱与球O的球面有公共点,则球O的半径的取值范围是.10.(2023·全国·统考高考真题)在正方体ABCD−A1B1C1D1中,E,F分别为AB,C1D1的中点,以EF为直径的球的球面与该正方体的棱共有个公共点.11.(2023·全国·统考高考真题)在正四棱台ABCD−A1B1C1D1中,AB=2,A1B1=1,AA1=√2,则该棱台的体积为.12.(2023·全国·统考高考真题)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为.立体几何小题【题型1 求几何体的体积与表面积】 (4)【题型2 与球有关的截面问题】 (7)【题型3 体积、面积、周长、距离的最值与范围问题】 (10)【题型4 几何体与球的切、接问题】 (13)【题型5 空间线段以及线段之和最值问题】 (18)【题型6 空间角问题】 (23)【题型7 翻折问题】 (30)【题型8 立体几何中的轨迹问题】 (35)【题型9 以立体几何为载体的情境题】 (40)立体几何是高考的热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上.【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解.是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的轨迹问题及其解题策略】1.立体几何中的轨迹问题立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.2.立体几何中的轨迹问题的求解方法解决立体几何中的轨迹问题有两种方法:一是几何法:对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法:在图形中,建立恰当的空间直角坐标系,利用空间向量进行求解.【知识点6 以立体几何为载体的情境题的求解策略】1.以立体几何为载体的几类情境题以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.。

高考数学一轮复习提高题专题复习立体几何多选题练习题附解析

高考数学一轮复习提高题专题复习立体几何多选题练习题附解析

高考数学一轮复习提高题专题复习立体几何多选题练习题附解析一、立体几何多选题1.已知球O 为正方体1111ABCD A B C D -的内切球,平面11A C B 截球O 的面积为24π,下列命题中正确的有( )A .异面直线AC 与1BC 所成的角为60°B .1BD ⊥平面11AC B C .球O 的表面积为36πD .三棱锥111B AC B -的体积为288 【答案】AD 【分析】连接11A C ,1A B ,通过平移将AC 与1BC 所成角转化为11A C 与1BC 所成角可判断A ;通过反证法证明B ;由已知平面11A C B 截球O 的面积为24π求出正方体棱长,进而求出内切球的表面积可判断C ;利用等体积法可求得三棱锥111B AC B -的体积可判断D. 【详解】对于A ,连接11A C ,1A B ,由正方体1111ABCD A B C D -,可知11//A C AC ,11AC B ∴∠为异面直线AC 与1BC 所成的角,设正方体边长为a,则1111AC A B BC ==,由等边三角形知1160A C B ∠=,即异面直线AC 与1BC 所成的角为60,故A 正确; 对于B ,假设1BD ⊥平面11A C B ,又1A B ⊂平面11A C B ,则11BD B A ⊥,设正方体边长为a ,则11A D a =,1A B =,1BD =,由勾股定理知111A D B A ⊥,与假设矛盾,假设不成立,故1BD 不垂直于平面11A C B ,故B 错误; 对于C ,设正方体边长为a,则11AC =,内切球半径为2a,设内切球的球心O 在面11A C B 上的投影为O ',由等边三角形性质可知O '为等边11A C B △的重心,则11123233O A AC a ='=⨯=,又12OA a =,∴球心O 到面11A C B 的距离6a ==,又球心与截面圆心的连线垂直于截面,∴=,又截面圆的面积2246S a ππ⎛⎫= ⎪ ⎪⎝⎭=,解得12a =,则内切球半径为6,内切球表面积214644S ππ==⨯,故C 错误;对于D ,由等体积法知111111111111212122812383B A C B B A C B A C B V V S a --==⨯⨯=⨯⨯=,故D 正确; 故选:AD【点睛】关键点点睛:本题考查了正方体和它的内切球的几何结构特征,关键是想象出截面图的形状,从而求出正方体的棱长,进而求出内切球的表面积及三棱锥的体积,考查了空间想象能力,数形结合的思想,属于较难题.2.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,090B F ∠=∠=,060,45,A D BC DE ∠=∠==,现将两块三角形板拼接在一起,得三棱锥F CAB -,取BC 中点O 与AC 中点M ,则下列判断中正确的是( )A .BC FM ⊥B .AC 与平面MOF 3C .平面MOF 与平面AFB 所成的二面角的平面角为45°D .设平面ABF 平面MOF l =,则有//l AB【答案】AD 【分析】证明BC ⊥面FOM 可判断A ;根据AC 与平面MOF 所成的角为060CMO ∠=判断B ;利用特殊位置判断C ;先证明//AB 面MOF ,由线面平行的性质定理可判断D ; 【详解】由三角形中位线定理以及等腰三角形的性质可得,,BC OF BC OM OM OF O ⊥⊥=,所以BC ⊥面FOM BC FM ⇒⊥,故A 正确;因为BC ⊥面FOM ,所以AC 与平面MOF 所成的角为060CMO ∠=,所以余弦值为12,故B 错误; 对于C 选项可以考虑特殊位置法,由BC ⊥面FOM 得面ABC ⊥面FOM ,所以点F 在平面ABC 内的射影在直线OM 上,不妨设点F 平面ABC 内的射影为M ,过点M 作//BC MN ,连结NF .易证AB ⊥面MNF ,则l ⊥面MNF ,所以MFN ∠为平面MOF与平面AFB 所成的二面角的平面角,不妨设2AB =,因为060A,所以23BC =,则13,12OF BC OM ===,显然MFN ∠不等于45°,故C 错误. 设面MOF 与平面ABF 的交线为l ,又因为//,AB OM AB ⊄面MOF ,OM ⊂面MOF ,所以//AB 面MOF ,由线面平行的性质定理可得://l AB ,故D 正确; 故选:AD.【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.3.在长方体1111ABCD A B C D -中,4AB BC ==,18AA =,点P 在线段11A C 上,M 为AB 的中点,则( ) A .BD ⊥平面PACB .当P 为11AC 的中点时,四棱锥P ABCD -外接球半径为72C .三棱锥A PCD -体积为定值D .过点M 作长方体1111ABCD A B C D -的外接球截面,所得截面圆的面积的最小值为4π 【答案】ACD 【分析】利用线面垂直的判定定理可判断A 选项的正误;判断出四棱锥P ABCD -为正四棱锥,求出该四棱锥的外接球半径,可判断B 选项的正误;利用等体积法可判断C 选项的正误;计算出截面圆半径的最小值,求出截面圆面积的最小值,可判断D 选项的正误. 【详解】对于A 选项,因为AB BC =,所以,矩形ABCD 为正方形,所以,BD AC ⊥, 在长方体1111ABCD A B C D -中,1AA ⊥底面ABCD ,BD ⊂平面ABCD ,1BD AA ∴⊥,1AC AA A ⋂=,AC 、1AA ⊂平面PAC ,所以,BD ⊥平面PAC ,A 选项正确;对于B 选项,当点P 为11A C 的中点时,PA ===同理可得PB PC PD ===因为四边形ABCD 为正方形,所以,四棱锥P ABCD -为正四棱锥, 取AC 的中点N ,则PN 平面ABCD ,且四棱锥P ABCD -的外接球球心在直线PN上,设该四棱锥的外接球半径为R ,由几何关系可得222PN R AN R -+=, 即2288R R -+=,解得92R =,B 选项错误; 对于C 选项,2114822ACDSAD CD =⋅=⨯=, 三棱锥P ACD -的高为18AA =,因此,116433A PCD P ACD ACD V V S AA --==⋅=△,C 选项正确;对于D 选项,设长方体1111ABCD A B C D -的外接球球心为E ,则E 为1BD 的中点, 连接EN 、MN ,则1142EN DD ==,122MN AD ==, E 、N 分别为1BD 、BD 的中点,则1//EN DD , 1DD ⊥平面ABCD ,EN ∴⊥平面ABCD ,MN ⊂平面ABCD ,EN MN ∴⊥,EM ∴==过点M 作长方体1111ABCD A B C D -的外接球截面为平面α,点E 到平面α的距离为d ,直线EM 与平面α所成的角为θ,则sin d EM θθ==≤ 当且仅当2πθ=时,等号成立,长方体1111ABCD A B C D -的外接球半径为R '==,所以,截面圆的半径2r =≥=,因此,截面圆面积的最小值为4π,D 选项正确.故选:ACD. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.4.如图,已知正方体1ABCD ABC D -的棱长为a ,E 是棱CD 上的动点.则下列结论中正确的有( )A .11EB AD ⊥B .二面角11E A B A --的大小为4π C .三棱锥11A B D E -体积的最小值为313a D .1//D E 平面11A B BA 【答案】ABD 【分析】连接1A D 、1B C ,则易证1AD ⊥平面11A DCB ,1EB ⊂平面11A DCB ,则由线面垂直的性质定理可以判断选项A 正确;二面角11E A B A --的平面角为1DA A ∠,易知14DA A π∠=,则可判断选项B 正确;用等体积法,将求三棱锥11A B D E -的体积转化为求三棱锥11E AB D -的体积,当点E 与D 重合时,三棱锥11E AB D -的体积最小,此时的值为316a ,则选项C 错误;易知平面11//D DCC 平面11A B BA ,而1D E ⊂平面11D DCC ,则根据面面平行的性质定理可得1//D E 平面11A B BA ,可判断选项D 正确. 【详解】选项A ,连接1A D 、1B C ,则由正方体1ABCD ABC D -可知,11A D AD ⊥,111A B AD ⊥,1111A DA B A =,则1AD ⊥平面11A DCB ,又因为1EB ⊂平面11A DCB ,所以11EB AD ⊥,选项A 正确; 选项B ,因为11//DE A B ,则二面角11E A B A --即为二面角11D A B A --, 由正方体1ABCD ABC D -可知,11A B ⊥平面1DA A , 则1DA A ∠为二面角11D A B A --的平面角,且14DA A π∠=,所以选项B 正确;选项C ,设点E 到平面11AB D 的距离为d , 则11111113A B D E E AB D AB D V V S d --==⋅,连接1C D 、1C B ,易证平面1//BDC 平面11AB D ,则在棱CD 上,点D 到平面11AB D 的距离最短,即点E 与D 重合时,三棱锥11A B D E -的体积最小, 由正方体1ABCD ABC D -知11A B ⊥平面1ADD , 所以1111123111113326D AB D B ADDADD a V V S A B a a --==⋅=⋅⋅=, 则选项C 错误;选项D ,由正方体1ABCD ABC D -知,平面11//CC D D 平面11A B BA ,且1D E ⊂平面11CC D D , 则由面面平行的性质定理可知1//D E 平面11A B BA ,则选项D 正确. 故选:ABD. 【点睛】关键点点睛:本题对于选项C 的判断中,利用等体积法求三棱锥的体积是解题的关键.5.如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26的正三角形,底面ABCD 为矩形,23CD =,点Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 所成角的余弦值为223C .三棱锥B ACQ -的体积为62D .四棱锥Q ABCD -外接球的内接正四面体的表面积为3【答案】BD 【分析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,则由已知可得OP ⊥平面 ABCD ,而底面ABCD 为矩形,所以以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,利用空间向量依次求解即可. 【详解】解:取AD 的中点O ,BC 的中点E ,连接,OE OP , 因为三角形PAD 为等边三角形,所以OP AD ⊥, 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD ,因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,则(0,0,0),(O D A ,(P C B ,因为点Q 是PD的中点,所以Q , 平面PAD 的一个法向量为(0,1,0)m =,6(2QC =-,显然 m 与QC 不共线, 所以CQ 与平面PAD 不垂直,所以A 不正确;3632(6,23,32),(,0,),(26,2PC AQ AC =-==, 设平面AQC 的法向量为(,,)n x y z =,则360260n AQ x z nAC ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令=1x ,则y z ==, 所以(1,2,n =-, 设PC 与平面AQC 所成角为θ,则21sin 36n PC n PCθ⋅===, 所以cos 3θ=,所以B 正确; 三棱锥B ACQ -的体积为1132B ACQ Q ABC ABCV V SOP --==⋅ 1116322=⨯⨯⨯=, 所以C不正确;设四棱锥Q ABCD -外接球的球心为)M a ,则MQ MD=,所以222222a a⎛++-=++ ⎝⎭⎝⎭,解得0a =,即M 为矩形ABCD 对角线的交点,所以四棱锥Q ABCD -外接球的半径为3,设四棱锥Q ABCD -外接球的内接正四面体的棱长为x , 将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为2x ,所以222362x ⎛⎫= ⎪ ⎪⎝⎭,得224x =, 所以正四面体的表面积为234243x ⨯=,所以D 正确. 故选:BD【点睛】此题考查线面垂直,线面角,棱锥的体积,棱锥的外接球等知识,综合性强,考查了计算能力,属于较难题.6.在边长为2的等边三角形ABC 中,点,D E 分别是边,AC AB 上的点,满足//DE BC 且AD ACλ=,(()01λ∈,),将ADE 沿直线DE 折到A DE '△的位置.在翻折过程中,下列结论不成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面A CD 'B .存在102λ∈⎛⎫⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDEC .若12λ=,当二面角A DE B '--为直二面角时,||10A B '= D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ23【答案】ABC 【分析】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,即可判断出结论.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,即可判断出结论. 对于C ,12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,可得AM ⊥平面BCDE .可得22A B AM BM '=+,结合余弦定理即可得出.对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,利用导数研究函数的单调性即可得出.【详解】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,如图所示,则可得FN 平行且等于BG ,即四边形BGNF 为平行四边形, ∴//NG BE ,而GN 始终与平面ACD 相交,因此在边A E '上不存在点F ,使得在翻折过程中,满足//BF 平面A CD ',A 不正确.对于B ,102λ∈⎛⎫ ⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,因此不满足平面A BC '⊥平面BCDE ,因此B 不正确. 对于C.12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,如图所示:可得AM ⊥平面BCDE ,则22223111010()1()21cos120222A B AM BM '=+=++-⨯⨯⨯︒=≠,因此C 不正确; 对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,()213f λλ'=-,可得3λ=时,函数()f λ取得最大值()312313f λ⎛⎫=-= ⎪⎝⎭,因此D 正确. 综上所述,不成立的为ABC.故选:ABC.【点睛】本题考查了利用运动的观点理解空间线面面面位置关系、四棱锥的体积计算公式、余弦定理、利用导数研究函数的单调性极值与最值,考查了推理能力空间想象能力与计算能力,属于难题.7.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得CN AB ⊥B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π【答案】BD【分析】对于选项A ,取AD 中点E ,取1AB 中点K ,连结KN ,BK ,通过假设CN AB ⊥,推出AB ⊥平面BCNK ,得到AB BK ⊥,则22AK AB BK AB =+>,即可判断;对于选项B ,在判断A 的图基础上,连结EC 交MD 于点F ,连结NF ,易得1NEC MAB ∠=∠,由余弦定理,求得CN 为定值即可;对于选项C ,取AM 中点O ,1B O ,DO ,由线面平行的性质定理导出矛盾,即可判断; 对于选项D ,易知当平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大,说明此时AD 中点E 为外接球球心即可.【详解】如图1,取AD 中点E ,取1AB 中点K ,连结EC 交MD 于点F ,连结NF ,KN ,BK ,则易知1//NE AB ,1//NF B M ,//EF AM ,//KN AD ,112NE AB =,EC AM = 由翻折可知,1MAB MAB ∠=∠,1AB AB =, 对于选项A ,易得//KN BC ,则K 、N 、C 、B 四点共面,由题可知AB BC ⊥,若CN AB ⊥,可得AB ⊥平面BCNK ,故AB BK ⊥,则22AK AB BK AB =+>,不可能,故A 错误;对于选项B ,易得1NEC MAB ∠=∠,在NEC 中,由余弦定理得222cos CN CE NE NE CE NEC =+-⋅⋅∠,整理得222212422AB AB AB CN AM AM BC AB AM =+-⋅⋅=+, 故CN 为定值,故B 正确;如图2,取AD 中点E ,取AM 中点O ,连结1B E ,OE ,1B O ,DO ,,对于选项C ,由AB BM =得1B O AM ⊥,若1AM B D ⊥,易得AM ⊥平面1B OD ,故有AM OD ⊥,从而AD MD =,显然不可能,故C 错误;对于选项D ,由题易知当平面1AB M 与平面AMD 垂直时,三棱锥B 1﹣AMD 的体积最大,此时1B O ⊥平面AMD ,则1B O OE ⊥,由1AB BM ==,易求得122BO =,2DM =,故22221122122B E OB OE ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因此1EB EA ED EM ===,E 为三棱锥1B AMD -的外接球球心,此外接球半径为1,表面积为4π,故D 正确.故选:BD.【点睛】本题主要考查了立体几何中的翻折问题以及空间图形的位置关系,考查了空间想象能力,属于较难题.8.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )A .0MN EF ⋅=B .ME NE =C .四边形MENF 的面积最小值与最大值之比为2:3D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3【答案】ABD【分析】证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积12S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可.【详解】对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EF BB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,因此0MN EF ⋅=,故A 正确.对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.对于C 选项,由B 易得四边形MENF 的面积12S MN EF =⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小,此时MN EF ==,即面积S 的最小值为1; 当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最大,此时MN =,即面积S所以四边形MENF 的面积最小值与最大值之比为2C 不正确.对于D 选项,四棱锥A MENF -的体积11113346M AEF N AEF AEF V V V DB S --=+=⋅==△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,则它们的体积也是相同的,因此多面体ABCD EMFN -的体积21122ABCD A B C D V V ''''-==正方体, 所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .【点睛】本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体ABCD EMFN -的体积转化为正方体的体积的一半求解.。

压轴题05 立体几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用-理)

压轴题05 立体几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用-理)

压轴题05立体几何压轴题题型/考向一:点、线、面间的位置关系和空间几何体的体积、表面积题型/考向二:外接球、内切球等相关问题题型/考向三:平行关系、垂直关系、二面角等相关问题一、空间几何体的体积、表面积热点一空间几何体的侧面积、表面积柱体、锥体、台体和球的表面积公式:(1)若圆柱的底面半径为r,母线长为l,则S侧=2πrl,S表=2πr(r+l).(2)若圆锥的底面半径为r,母线长为l,则S侧=πrl,S表=πr(r+l).(3)若圆台的上、下底面半径分别为r′,r,则S侧=π(r+r′)l,S表=π(r2+r′2+r′l +rl).(4)若球的半径为R,则它的表面积S=4πR2.热点二空间几何体的体积柱体、锥体、台体和球的体积公式:(1)V柱体=Sh(S为底面面积,h为高);Sh(S为底面面积,h为高);(2)V锥体=13(S上+S下+S上S下)h(S上、S下分别为上、下底面面积,h为高);(3)V台体=13(4)V球=4πR3.3二、外接球、内切球问题类型一外接球问题考向1墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长.长方体同一顶点的三条棱长分别为a,b,c,外接球半径为R.则(2R)2=a2+b2+c2,即2R=a2+b2+c2.常见的有以下三种类型:考向2对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长,如图所示,(2R )2=a 2+b 2+c 2(长方体的长、宽高分别为a ,b ,c ),即R 2=18(x 2+y 2+z 2),如图.考向3汉堡模型汉堡模型是直三棱柱、圆柱的外接球模型,模型如下,由对称性可知,球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2的连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=h 2,所以R 2=r 2+h 24.考向4垂面模型垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球;如图所示,由对称性可知球心O 的位置是△CBD 的外心O 1与△AB 2D 2的外心O 2连线的中点,算出小圆O1的半径CO1=r,OO1=h2,则R=r2+h24.类型二内切球问题内切球问题的解法(以三棱锥为例)第一步:先求出四个表面的面积和整个锥体的体积;第二步:设内切球的半径为r,建立等式V P-ABC=V O-ABC+V O-P AB+V O-P AC+V O-PBC⇒V P-ABC=13S△ABC·r+13S△P AB·r+13S△P AC·r+13S PBC·r=13(S△ABC+S△P AB+S△P AC+S△PBC)r;第三步:解出r=3V P-ABCS△ABC+S△P AB+S△P AC+S△PBC.类型三球的截面问题解决球的截面问题抓住以下几个方面:(1)球心到截面圆的距离;(2)截面圆的半径;(3)直角三角形(球心到截面圆的距离、截面圆的半径、球的半径构成的直角三角形).三、平行关系和垂直关系的证明、二面角等热点一空间线、面位置关系的判定判断空间线、面位置关系的常用方法(1)根据空间线面平行、垂直的判定定理和性质定理逐项判断,解决问题.(2)利用直线的方向向量、平面的法向量判断.(3)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线、面的位置关系,并结合有关定理进行判断.热点二几何法证明平行、垂直1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.热点三空间向量法证明平行、垂直1.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,在平面α内的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.2.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.四、空间角、距离问题热点一异面直线所成的角求异面直线所成角的方法方法一:综合法.步骤为:①利用定义构造角,可固定一条直线,平移另一条直线,或将两条直线同时平移到某个特殊的位置;②证明找到(或作出)的角即为所求角;③通过解三角形来求角.方法二:空间向量法.步骤为:①求出直线a ,b 的方向向量,分别记为m ,n ;②计算cos 〈m ,n 〉=m ·n|m ||n |;③利用cos θ=|cos 〈m ,n 〉|,以及θ,π2,求出角θ.热点二直线与平面所成的角求直线与平面所成角的方法方法一:几何法.步骤为:①找出直线l 在平面α上的射影;②证明所找的角就是所求的角;③把这个角置于一个三角形中,通过解三角形来求角.方法二:空间向量法.步骤为:①求出平面α的法向量n 与直线AB 的方向向量AB →;②计算cos 〈AB →,n 〉=AB →·n |AB →||n |;③利用sin θ=|cos 〈AB →,n 〉|,以及θ∈0,π2,求出角θ.热点三平面与平面的夹角求平面与平面的夹角方法方法一:几何法.步骤为:①找出二面角的平面角(以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角就是二面角的平面角);②证明所找的角就是要求的角;③把这个平面角置于一个三角形中,通过解三角形来求角.求二面角的平面角的口诀:点在棱上,边在面内,垂直于棱,大小确定.方法二:空间向量法.步骤为:①求两个平面α,β的法向量m ,n ;②计算cos 〈m ,n 〉=m ·n|m |·|n |;③设两个平面的夹角为θ,则cos θ=|cos 〈m ,n 〉|.热点四距离问题1.空间中点、线、面距离的相互转化关系2.空间距离的求解方法有:(1)作垂线段;(2)等体积法;(3)等价转化;(4)空间向量法.一、单选题1.在正方体1111ABCD A B C D -中,直线m 、n 分别在平面ABCD 和11ABB A 内,且m n ⊥,则下列命题中正确的是()A .若m 垂直于AB ,则n 垂直于AB B .若m 垂直于AB ,则n 不垂直于ABC .若m 不垂直于AB ,则n 垂直于ABD .若m 不垂直于AB ,则n 不垂直于AB【答案】C【详解】AB 选项,若m 垂直于AB ,由面ABCD ⊥面11ABB A ,面ABCD ⋂面11ABB A AB =,可得m 垂直于面11ABB A ,即面11ABB A 内的所有直线均与m 垂直,而n 可能垂直于AB ,也可能不垂直于AB ,故A 错误,B 错误;CD 选项,若m 不垂直于AB ,则,BC m 为面ABCD 内的两条相交直线,由题可知BC n ⊥,m n ⊥,则n 垂直面ABCD ,又AB ⊂面ABCD ,所以n 垂直于AB ,故C 正确,D 错误.故选:C2.在中国古代数学经典著作《九章算术》中,称图中的多面体ABCDEF 为“刍甍”.书中描述了刍甍的体积计算方法:求积术曰,倍下袤,上袤从之,以广乘之,又以高乘之,六而一,即()216V AB EF AD h =+⨯⨯,其中h 是刍甍的高,即点F 到平面ABCD 的距离.若底面ABCD 是边长为4的正方形,2EF =,且//EF AB ,ADE V 和BCF △是等腰三角形,90AED BFC ∠=∠= ,则该刍甍的体积为()A .3B .3C .D .403【答案】B【详解】如图所示,设点F 在底面的射影为G ,,H M 分别为,BC AD 的中点,连接,,EM FH MH ,则FG 即为刍甍的高,-P ABC 面积恰为该容器的表面积)展开后是如图所示的边长为10的正方形123APP P (其中点B 为23P P 中点,点C为12PP 中点),则该玩具的体积为()A .6253B .1253C .125D .2503【答案】B【详解】该玩具为三棱锥-P ABC ,即三棱锥A PBC -,则PA ⊥底面PBC ,且10PA =,PBC 面积为252,所以12512510323P ABC V -=⨯⨯=.故选:B.4.攒尖是中国古代建筑中屋顶的一种结构形式,宋代称为撮尖,清代称攒尖.通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.如图所示的建筑屋顶是圆形攒尖,可近似看作一个圆锥,已知其轴截面(过圆锥旋转轴的截面)是底边长为6m ,腰长为5m 的等腰三角形,则该屋顶的体积约为()A .38πmB .39πmC .310πmD .312πm 【答案】D【详解】如图所示为该圆锥轴截面,由题知该圆锥的底面半径为15.已知为两条不同的直线,,为两个不同的平面,则下列命题中正确的是()A .若//,//a b b α,则//a αB .若//,,//a b a b αβ⊥,则αβ⊥C .若//,//,//a b αβαβ,则//a bD .若//,//,a b αβαβ⊥,则a b⊥【答案】B【详解】对于A ,若//,//a b b α,则//a α或a α⊂,故A 错误;对于B ,若//,//a b b β,则a β⊂或//a β,若a β⊂,因为a α⊥,则αβ⊥,若//a β,如图所示,则在平面β一定存在一条直线//m a ,因为a α⊥,所以m α⊥,又m β⊂,所以αβ⊥,综上若//,,//a b a b αβ⊥,则αβ⊥,故B 正确;对于C ,若//,//,//a b αβαβ,则直线,a b 相交或平行或异面,故C 错误;对于D ,若//,//,a b αβαβ⊥,则直线,a b 相交或平行或异面,故D 错误.故选:B.6.在直三棱柱111ABC A B C -中,ABC 为等腰直角三角形,若三棱柱111ABC A B C -的体积为32,则该三棱柱外接球表面积的最小值为()A .12πB .24πC .48πD .96π7.已知三棱锥-P ABC 中,底面ABC 是边长为的正三角形,点P 在底面上的射影为底面的中心,且三棱锥-P ABC 外接球的表面积为18π,球心在三棱锥-P ABC 内,则二面角P AB C --的平面角的余弦值为()A .12B .13C 22D 即PDC ∠为二面角P AB C --的平面角,由23AB =,得22OC OD ==,显然三棱锥线段PO 上,由三棱锥-P ABC 的外接球的表面积为8.已知三棱锥-P ABC 的四个顶点都在球O的球面上,4PB PC AB AC ====,2PA BC ==,则球O 的表面积为()A .316π15B .79π15C .158π5D .79π5而,,AB AC A AB AC =⊂ 平面ABC ,因此在等腰ABC 中,4,2AB AC BC ===,则215sin 1cos ABC ABC ∠=-∠=,二、多选题9.已知直线a ,b ,c 两两异面,且a c ⊥,b c ⊥,下列说法正确的是()A .存在平面α,β,使a α⊂,b β⊂,且c α⊥,c β⊥B .存在平面α,β,使a α⊂,b β⊂,且c α∥,c β∥C .存在平面γ,使a γ∥,b γ∥,且c γ⊥D .存在唯一的平面γ,使c γ⊂,且a ,b 与γ所成角相等【答案】ABC【详解】对于A,平移直线b 到与直线a 相交,设平移后的直线为b ',因为b c ⊥,所以b c '⊥,设直线,a b '确定的平面为α,则a c ⊥,b c '⊥,直线b '和a 相交,所以c α⊥,同理可得:c β⊥,故A 对;对于B,平移直线c 到与直线a 相交,设平移后的直线为c ',设直线,a c '确定的平面为α,因为c //c ',且α⊄c ,所以c α∥,同理可得:c β∥,故B 对;对于C,同时平移直线b 和直线a ,令平移后的直线相交,设平移后的直线为,a b '''',因为a c ⊥,b c ⊥,所以a c ''⊥,b c ''⊥,设直线,a b ''''确定的平面为γ,则a γ∥,b γ∥,且c γ⊥,故C 对;对于D ,由对称性可知,存在两个平面γ,使c γ⊂,且a ,b 与γ所成角相等,故D 错误;故选:ABC.10.已知正方体1111ABCD A B C D -的外接球表面积为12π,,,M N P 分别在线段1BB ,1CC ,1DD 上,且,,,A M N P 四点共面,则().A .AP MN=B .若四边形AMNP 为菱形,则其面积的最大值为C .四边形AMNP 在平面11AAD D 与平面11CC D D 内的正投影面积之和的最大值为6D .四边形AMNP 在平面11AA D D 与平面11CC D D 内的正投影面积之积的最大值为4设正方体1111ABCD A B C D -依题意,234π()12π2a ⋅=,解得因为平面11BCC B ∥平面ADD则M 在平面11AA D D 上的投影落在设为H ,则四边形AGHP 为四边形AMNP 由于,AM PN GM HN ==,则(当1x y ==时取“=”),故C 错误,D 正确,故选:ABD三、解答题11.如图,四棱锥S ABCD -的底面为菱形,60BAD ∠=︒,2AB =,4SD =,SD ⊥平面ABCD ,点E 在棱SB 上.(1)证明:AC DE ⊥;(2)若三棱锥E ABC -,求点E 到平面SAC 的距离.【详解】(1)证明:如图,连接BD ,因为四边形ABCD 为菱形,所以AC BD ⊥,因为SD ⊥平面ABCD ,AC ⊂平面ABCD ,所以SD AC ⊥,又因为SD BD D = ,所以AC ⊥平面SBD ,又因为DE ⊂平面SBD ,所以AC DE ⊥.(2)解:设点E 到平面ABC 则三棱锥E ABC -的体积V (11sin 18032AB BC =⨯⨯⨯⨯︒-12.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,,AB AD O =为BD 的中点.(1)证明:OA CD ⊥;(2)已知OCD 是边长为1的等边三角形,已知点E 在棱AD 的中点,且二面角E BC D --的大小为45 ,求三棱锥A BCD -的体积.【详解】(1)证明:AB AD = ,O 为BD 的中点,AO BD ∴⊥,又平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,AO ⊂平面BCD ,所以AO ⊥平面BCD ,又CD ⊂平面BCD ,AO CD ∴⊥.(2)取OD 的中点F ,因为OCD 为等边三角形,所以CF OD ⊥,过O 作//OM CF ,与BC 交于M ,则OM OD ⊥,由(1)可知OA ⊥平面BCD ,设OA a =,因为OA ⊥平面BCD ,所以设平面BCE 的一个法向量为n =3300x y n BC ⎧+=⎪⎧⋅= ○热○点○题○型二外接球、内切球等相关问题一、单选题1.已知ABC 是边长为3的等边三角形,其顶点都在球O 的球面上,若球O 的体积为323π,则球心O 到平面ABC 的距离为()A B .32C .1D 因为ABC 是边长为3的等边三角形,且所以13O B =,又因为球O 的体积为32π2.已知三棱锥-P ABC 的底面ABC 是边长为1的正三角形,侧棱,,PA PB PC 两两垂直,若此三棱锥的四个顶点都在同一个球面上,则该球的表面积是()A .3πB .πC .3π4D .3π23.一个圆锥的底面圆和顶点都恰好在一个球面上,且这个球的半径为5,则这个圆锥的体积的最大值时,圆锥的底面半径为()A .103B .2C .3D 【答案】C【详解】解:如图,设圆锥的底面半径为r ,球半径5R =,球心为O .过圆锥的顶点P 作底面的垂线2125OO r =-.所以圆锥的高h PO =4.已知圆锥的侧面积为2π,母线与底面所成角的余弦值为2,则该圆锥的内切球的体积为()A .4π3B .43π9C.27D5.如图,几何体Ω为一个圆柱和圆锥的组合体,圆锥的底面和圆柱的一个底面重合,圆锥的顶点为A ,圆柱的上、下底面的圆心分别为B 、C ,若该几何体Ω存在外接球(即圆锥的顶点与底面圆周在球面上,且圆柱的底面圆周也在球面上).已知24BC AB ==,则该组合体的体积等于()A .56πB .70π3C .48πD .64π【答案】A【详解】设该组合体外接球的球心为O ,半径为R ,易知球心在BC 中点,则224R AO ==+=.6.已知矩形ABCD的顶点都在球心为的体积为43,则球O的表面积为()A.76πB.112πC D.3故球的表面积为:2476πR π=,故选:A .7.水平桌面上放置了4个半径为2的小球,4个小球的球心构成正方形,且相邻的两个小球相切.若用一个半球形的容器罩住四个小球,则半球形容器内壁的半径的最小值为()A .4B .2C .2D .6此时,如上图示,O 为半球的球心,体的体对角线,且该小球与半球球面上的切点与8.已知三棱锥-PABC的四个顶点均在球的球面上,,PB AC== PC AB=Q为球O的球面上一动点,则点Q到平面PAB 的最大距离为()A2211BC2211D2223BD BE AB∴+==,BD2226BD BE BF∴++=,∴球在PAB中,cosABABP∠=二、填空题9.在三棱锥-P ABC 中,PA ⊥平面ABC ,14AB AC PA AB AC ⊥=+=,,,当三棱锥的体积最大时,三棱锥-P ABC 外接球的体积为______.则三棱锥-P ABC 外接球的直径为2R PA =因此,三棱锥-P ABC 外接球的体积为34π3R10.如图,在直三棱柱111中,1.设为1的中点,三棱锥D ABC -的体积为94,平面1A BC ⊥平面11ABB A ,则三棱柱111ABC A B C -外接球的表面积为______.【答案】27π【详解】取1A B 的中点E ,连接AE ,如图.因为1AA AB =,所以1AE A B ⊥.又面1A BC ⊥面11ABB A ,面1A BC ⋂面111ABB A A B =,且AE ⊂面11ABB A ,所以⊥AE 面1A BC ,BC ⊂面1A BC ,所以AE BC ⊥.在直三棱柱111ABC A B C -中,1BB ⊥面ABC ,BC ⊂面ABC ,所以1BB BC ⊥.又AE ,1BB ⊂面11ABB A ,且AE ,1BB 相交,所以BC ⊥面11ABB A ,AB ⊂面11ABB A ,所以BC AB ⊥.11.如图,直三棱柱111的六个顶点都在半径为1的半球面上,,侧面11BCC B 是半球底面圆的内接正方形,则直三棱柱111ABC A B C -的体积为___________.12.如图所示的由4个直角三角形组成的各边长均相等的六边形是某棱锥的侧面展开图,若该六边形的面积为12+,则该棱锥的内切球半径为___.由题意,侧面展开图的面积由,PD AD PD DC ⊥⊥,○热○点○题○型三平面关系、垂直关系、二面角等相关问题1.已知多面体ABCDEF 中,四边形CDEF 是边长为4的正方形,四边形ABCD 是直角梯形,90ADC DAB ∠=∠=︒,36BE AB ==,4=AD .(1)求证:平面ADF ⊥平面BCE ;(2)求直线AF 与平面BCF 所成角的正弦值.【详解】(1)因为四边形CDEF 是边长为4的正方形,所以CE ⊥DF ,ED ⊥DC ,因为四边形ABCD 是直角梯形,90ADC DAB ∠=∠=︒,所以AD ⊥CD ,AB ⊥AD ,故直线AF与平面BCF所成角的正弦值为-PA 2.如图,在四棱锥P ABCD平面PAD⊥平面ABCD.Array(1)证明:平面CDM⊥平面PAB;(2)若AD BC ∥,2AD BC =,2AB =,直线PB 与平面MCD ,求三棱锥P MCD -的体积.【详解】(1)取AD 中点为N ,连接PN ,因为PAD 为等边三角形,所以PN AD ^,且平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PN ⊂面PAD ,所以PN ^平面ABCD ,又AB ⊂平面ABCD ,所以PN AB ⊥,又因为PD AB ⊥,PN PD P = ,,PN PD ⊂平面PAD ,所以AB ⊥平面PAD ,又因为DM ⊂平面PAD ,所以AB DM ⊥,因为M 为AP 中点,所以DM PA ⊥,且PA AB A = ,,PA PB ⊂平面PAD ,所以DM ⊥平面PAB ,且DM ⊂平面CDM ,所以平面CDM ⊥平面PAB .(2)由(1)可知,PN AB ⊥且PD AB ⊥,PN PD P = ,所以AB ⊥平面PAD ,△为边长为6的等边三角形,E为BD的中点,F为AE的三等分点,且2AF FE ABD=.(1)求证://FM 面ABC ;(2)若二面角A BD C --的平面角的大小为23π,求直线EM 与面ABD 所成角的正弦值.【详解】(1)在BE 上取一点N ,使得12BN NE =,连接FN ,NM ,∵6BD =,∴116BN BD ==,2NE =,3ED =,∵12AF FE =,∴12BN AF NE FE ==,则FN AB ∥,又FN ⊄面ABC ,AB ⊂面ABC ,∴FN ∥面ABC ,∵15BN CM ND MD ==,∴NM BC ∥.∵NM ⊄面ABC ,BC ⊂面ABC ,∴NM ∥面ABC ,∵FN NM N = ,,FN NM ⊂面FNM ,∴面FNM ∥面ABC ,又FM ⊂面FNM ,4.已知底面是正方形,平面,,,点E 、F 分别为线段PB 、CQ 的中点.(1)求证://EF平面PADQ ;(2)求平面PCQ 与平面CDQ 夹角的余弦值;(3)线段PC 上是否存在点M ,使得直线AM 与平面PCQ 所成角的正弦值是7,若存在求出PM MC的值,若不存在,说明理由.【详解】(1)证明:法一:分别取AB 、CD 的中点G 、H ,连接EG 、GH 、FH ,由题意可知点E 、F 分别为线段PB 、CQ 的中点.所以//EG PA ,//FH QD ,因为//PA DQ ,所以//EG FH ,所以点E 、G 、H 、F 四点共面,因为G 、H 分别为AB 、CD 的中点,所以//GH AD ,因为AD ⊂平面ADQP ,GH ⊄平面ADQP ,所以//GH 平面ADQP ,又因为//FH QD ,QD ⊂平面ADQP ,FH ⊄平面ADQP ,所以//FH 平面ADQP ,法二:因为ABCD 为正方形,且以点A 为坐标原点,以AB 、空间直角坐标系,则()0,0,3P 、()3,3,0C 、()0,3,1Q 所以()0,3,1EF =- ,易知平面PADQ 所以0a EF ⋅= ,所以E F a ⊥ ,EF ⊄ADQP EF所在平面和圆所在的平面互相垂直,已知2,1AB EF ==.(1)求证:平面DAF ⊥平面CBF ;(2)当AD 的长为何值时,二面角C EF B --的大小为60︒?设()0AD t t =>,则(1,0,C -∴(1,0,0)EF = ,33,22CF ⎛= ⎝6.如图,在三棱柱111中,四边形11是边长为4的菱形,AB BC =,点D 为棱AC 上的动点(不与A 、C 重合),平面1B BD 与棱11AC 交于点E .(1)求证1BB DE //;(2)若平面ABC ⊥平面11AAC C ,160A AC ∠= ,判断是否存在点D 使得平面11A ABB 与平面1B BDE 所成的锐二面角为π3,并说明理由.【详解】(1)11//BB CC ,且1BB ⊂/平面11ACC A ,1CC ⊂平面11ACC A ,∴1//BB 平面11ACC A ,又∵1BB ⊂平面1B BD ,且平面1B BD 平面11ACC A DE =,∴1BB DE //;(2)连接1AC ,取AC 中点O ,连接1AO ,BO ,在菱形11ACC A 中,160A AC ∠=︒,∴1A AC △是等边三角形,又∵O 为AC 中点,∴1A O ⊥∵平面ABC ⊥平面11ACC A ,平面ABC ⋂平面11ACC A AC =∴1A O ⊥平面ABC ,OB ⊂平面。

高三数学 数学立体几何多选题的专项培优易错试卷练习题含答案

高三数学 数学立体几何多选题的专项培优易错试卷练习题含答案

高三数学 数学立体几何多选题的专项培优易错试卷练习题含答案一、立体几何多选题1.在直角梯形ABCD 中,2ABC BCD π∠=∠=,1AB BC ==,2DC =,E 为DC 中点,现将ADE 沿AE 折起,得到一个四棱锥D ABCE -,则下列命题正确的有( ) A .在ADE 沿AE 折起的过程中,四棱锥D ABCE -体积的最大值为13B .在ADE 沿AE 折起的过程中,异面直线AD 与BC 所成的角恒为4π C .在ADE 沿AE 折起的过程中,二面角A EC D --的大小为45︒D .在四棱锥D ABCE -中,当D 在EC 上的射影恰好为EC 的中点F 时,DB 与平面ABCE 所成的角的正切为15 【答案】ABD 【分析】对于A ,四棱锥D ABCE -的底面面积是固定值,要使得体积最大,需要平面DAE ⊥平面ABCE ,此时DE CE ⊥,可求得1133D ABCE ABCE V S DE -=⋅=可判断A ;对于B ,在ADE 沿AE 折起的过程中,//AE BC ,所以异面直线AD 与AE 所成的角即为AD 与BC所成角,由翻折前可知4DAE π∠=可判断B ;对于C ,利用线面垂直的判定定理,结合翻折前可知AE ⊥平面DEC ,又AE ⊂平面ABCE ,所以平面DEC ⊥平面ABCE ,即二面角A EC D --的在大小为2π判断C ;对于D ,利用线面垂直的判定定理可知DF ⊥平面ABCE ,所以DBF ∠为直线DB 与平面ABCE 所成的角,在直角DFB △中,15tan 5DF DBF BF ∠==,可判断D 正确;【详解】对于A ,ADE 沿AE 折起得到四棱锥D ABCE -,由四棱锥底面面积是固定值,要使得体积最大,需要四棱锥的高最大,即平面DAE ⊥平面ABCE ,此时DE CE ⊥,由已知得1DE =,则111111333D ABCE ABCE V S DE -=⋅=⨯⨯⨯=,故A 正确; 对于B ,在ADE 沿AE 折起的过程中,//AE BC ,所以异面直线AD 与AE 所成的角即为AD 与BC 所成角,又1AB BC ==,2DC =,E 为DC 中点,可知4DAE π∠=,即异面直线AD 与BC 所成的角恒为4π,故B 正确; 对于C ,由翻折前知,,AE EC AE ED ⊥⊥,且ECED E =,则AE ⊥平面DEC ,又AE ⊂平面ABCE ,所以平面DEC ⊥平面ABCE ,即二面角A EC D --的大小为2π,故C 错误; 对于D ,如图连接,DF BF ,由C 选项知,AE ⊥平面DEC ,又DF ⊂平面DEC ,则AE DF ⊥,又由已知得EC DF ⊥,且EC AE E ⋂=,则DF ⊥平面ABCE ,所以DBF ∠为直线DB 与平面ABCE 所成的角,在直角DFB △中,tan DFDBF BF∠=====DB 与平面ABCE所成的角的正切为5,故D 正确; 故选:ABD 【点睛】关键点睛:本题考查立体几何综合问题,求体积,求线线角,线面角,面面角,解题的关键要熟悉几种角的定义,通过平移法找到线线角,通过证垂直找到线面角和面面角,再结合三角形求出角,考查了学生的逻辑推理能力,转化能力与运算求解能力,属于难题.2.已知正方体1111ABCD A B C D -的棱长为2,点O 为11A D 的中点,若以O为半径的球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H ,则下列结论正确的是( )A .11//A D 平面EFGHB .1AC ⊥平面EFGHC .11A B 与平面EFGH 所成的角的大小为45°D .平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7 【答案】ACD 【分析】如图,计算可得,,,E F G H 分别为所在棱的中点,利用空间中点线面的位置关系的判断方法可判断A 、B 的正确与否,计算出直线AB 与平面EFGH 所成的角为45︒后可得C 正确,而几何体BHE CGF -为三棱柱,利用公式可求其体积,从而可判断D 正确与否. 【详解】如图,连接OA ,则2115OA AA =+=,故棱1111,,,A A A D D D AD 与球面没有交点.同理,棱111111,,A B B C C D 与球面没有交点. 因为棱11A D 与棱BC 之间的距离为26>BC 与球面没有交点.因为正方体的棱长为2,而26<球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H , 所以棱11,,,AB CD C C B B 与球面各有一个交点, 如图各记为,,,E F G H .因为OAE △为直角三角形,故22651AE OE OA -=-=,故E 为棱AB 的中点. 同理,,F G H 分别为棱11,,CD C C B B 的中点.由正方形ABCD 、,E F 为所在棱的中点可得//EF BC , 同理//GH BC ,故//EF GH ,故,,,E F G H 共面. 由正方体1111ABCD A B C D -可得11//A D BC ,故11//A D EF因为11A D ⊄平面EFGH ,EF ⊂平面EFGH ,故11//A D 平面EFGH ,故A 正确. 因为在直角三角1BA C 中,122A B =2BC = ,190A BC ∠=︒, 1A C 与BC 不垂直,故1A C 与GH 不垂直,故1A C ⊥平面EFGH 不成立,故B 错误.由正方体1111ABCD A B C D -可得BC ⊥平面11AA B B ,而1A B ⊂平面11AA B B , 所以1BC A B ⊥,所以1EF A B ⊥在正方形11AA B B 中,因为,E H 分别为1,AB BB 的中点,故1EH A B ⊥, 因为EFEH E =,故1A B ⊥平面EFGH ,所以BEH ∠为直线AB 与平面EFGH 所成的角,而45BEH ∠=︒, 故直线AB 与平面EFGH 所成的角为45︒,因为11//AB A B ,故11A B 与平面EFGH 所成的角的大小为45°.故C 正确. 因为,,,E F G H 分别为所在棱的中点,故几何体BHE CGF -为三棱柱, 其体积为111212⨯⨯⨯=,而正方体的体积为8, 故平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7,故D 正确. 故选:ACD. 【点睛】本题考查空间中线面位置的判断、空间角的计算和体积的计算,注意根据球的半径确定哪些棱与球面有交点,本题属于中档题.3.(多选题)如图所示,正方体1111ABCD A B C D -中,1AB =,点P 在侧面11BCC B 及其边界上运动,并且总是保持1AP BD ⊥,则以下四个结论正确的是( )A .113P AA D V -=B .点P 必在线段1BC 上 C .1AP BC ⊥D .AP ∥平面11AC D【答案】BD 【分析】 对于A ,1111111113326P AA D AA DV S CD -=⋅=⨯⨯⨯⨯=, 对于B,C,D ,如图以D 为坐标原点可建立空间直角坐标系,利用空间向量判即可. 【详解】对于A ,因为点P 在平面11BCC B ,平面11BCC B ∥平面1AA D , 所以点P 到平面1AA D 即为C 到平面1AA D 的距离,即为正方体棱长, 所以1111111113326P AA D AA DV S CD -=⋅=⨯⨯⨯⨯=,A 错误; 对于B ,以D 为坐标原点可建立如下图所示的空间直角坐标系:则11(1,0,0),(,1,),(1,1,0),(0,0,1),(1,1,1),(0,1,0)A P x z B D B C 所以11(1,1,),(1,1,1),(1,0,1)AP x z BD BC =-=--=--, 因为1AP BD ⊥,所以1110AP BD x z ⋅=--+=,所以x z =,即(,1,)P x x , 所以(,0,)CP x x =,所以1CP xBC =-,即1,,B C P 三点共线, 所以点P 必在线段1B C 上,B 正确;对于C ,因为1(1,1,),(1,0,1)AP x x BC =-=-, 所以111AP BC x x ⋅=-+=, 所以1AP BC ⊥不成立,C 错误;对于D ,因为11(1,0,1),(0,1,1),(0,0,0)A C D , 所以11(1,0,1),(0,1,1)DA DC ==, 设平面11AC D 的法向量为(,,)n x y z =,则1100n DA x z n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩, 令1x =,则1,1z y =-=,所以(1,1,1)n =-, 所以110AP n x x ⋅=-+-=,所以AP n ⊥, 所以AP ∥平面11AC D ,D 正确, 故选:BD 【点睛】此题考查了空间线线垂直的判定,线面平行的判定,三棱锥的体积,考查空间想象能力,考查计算能力,属于较难题.4.(多选题)在四面体P ABC -中,以上说法正确的有( )A .若1233AD AC AB =+,则可知3BC BD = B .若Q 为△ABC 的重心,则111333PQ PA PB PC =++C .若0PA BC =,0PC AB =,则0PB AC =D .若四面体P ABC -各棱长都为2,M N ,分别为,PA BC 的中点,则1MN = 【答案】ABC 【分析】作出四面体P ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】对于A ,1233AD AC AB =+,32AD AC AB ∴=+,22AD AB AC AD ∴-=- , 2BD DC ∴=,3BD BD DC BC ∴=+=即3BD BC ∴=,故A 正确;对于B ,Q 为△ABC 的重心,则0QA QB QC ++=,33PQ QA QB QC PQ ∴+++=()()()3PQ QA PQ QB PQ QC PQ ∴+++++=,3PA PB PC PQ ∴++=即111333PQ PA PB PC ∴=++,故B 正确; 对于C ,若0PA BC =,0PC AB =,则0PA BC PC AB +=,()0PA BC PC AC CB ∴++=,0PA BC PC AC PC CB ∴++=0PA BC PC AC PC BC ∴+-=,()0PA PC BC PC AC ∴-+= 0CA BC PC AC ∴+=,0AC CB PC AC ∴+=()0AC PC CB ∴+=,0AC PB ∴=,故C 正确;对于D,111()()222MN PN PM PB PC PA PBPC PA∴=-=+-=+-1122MN PB PC PA PA PB PC∴=+-=--222222PA PB PC PA PB PC PA PB PA PC PC PB --=++--+22211122222222222222222=++-⨯⨯⨯-⨯⨯⨯+⨯⨯⨯=2MN∴=,故D错误.故选:ABC【点睛】用已知向量表示某一向量的三个关键点(1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键.(2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量.(3)在立体几何中三角形法则、平行四边形法则仍然成立.5.已知直三棱柱111ABC A B C-中,AB BC⊥,1AB BC BB==,D是AC的中点,O 为1A C的中点.点P是1BC上的动点,则下列说法正确的是()A.当点P运动到1BC中点时,直线1A P与平面111A B C5B.无论点P在1BC上怎么运动,都有11A P OB⊥C.当点P运动到1BC中点时,才有1A P与1OB相交于一点,记为Q,且113PQQA=D.无论点P在1BC上怎么运动,直线1A P与AB所成角都不可能是30°【答案】ABD【分析】构造线面角1PA E∠,由已知线段的等量关系求1tanEPPA EAE∠=的值即可判断A的正误;利用线面垂直的性质,可证明11A P OB ⊥即可知B的正误;由中位线的性质有112PQ QA =可知C 的正误;由直线的平行关系构造线线角为11B A P ∠,结合动点P 分析角度范围即可知D 的正误 【详解】直三棱柱111ABC A B C -中,AB BC ⊥,1AB BC BB ==选项A 中,当点P 运动到1BC 中点时,有E 为11B C 的中点,连接1A E 、EP ,如下图示即有EP ⊥面111A B C∴直线1A P 与平面111A B C 所成的角的正切值:1tan EPPA E AE∠= ∵112EP BB =,2211115AE A B B E BB =+= ∴15tan 5PA E ∠=,故A 正确选项B 中,连接1B C ,与1BC 交于E ,并连接1A B ,如下图示由题意知,11B BCC 为正方形,即有11B C BC ⊥而AB BC ⊥且111ABC A B C -为直三棱柱,有11A B ⊥面11B BCC ,1BC ⊂面11B BCC ∴111A B BC ⊥,又1111A B B C B =∴1BC ⊥面11A B C ,1OB ⊂面11A B C ,故11BC OB ⊥同理可证:11A B OB ⊥,又11A B BC B ⋂=∴1OB ⊥面11A BC ,又1A P ⊂面11A BC ,即有11A P OB ⊥,故B 正确选项C 中,点P 运动到1BC 中点时,即在△11A B C 中1A P 、1OB 均为中位线∴Q 为中位线的交点 ∴根据中位线的性质有:112PQ QA =,故C 错误选项D 中,由于11//A B AB ,直线1A P 与AB 所成角即为11A B 与1A P 所成角:11B A P ∠ 结合下图分析知:点P 在1BC 上运动时当P 在B 或1C 上时,11B A P ∠最大为45° 当P 在1BC 中点上时,11B A P ∠最小为23arctan 302>=︒ ∴11B A P ∠不可能是30°,故D 正确 故选:ABD 【点睛】本题考查了利用射影定理构造线面角,并计算其正弦值;利用线面垂直证明线线垂直;中位线的性质:中位线交点分中位线为1:2的数量关系;由动点分析线线角的大小6.如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26角形,底面ABCD 为矩形,23CD =Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 所成角的余弦值为223C .三棱锥B ACQ -的体积为62D .四棱锥Q ABCD -外接球的内接正四面体的表面积为3【答案】BD 【分析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,则由已知可得OP ⊥平面 ABCD ,而底面ABCD 为矩形,所以以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,利用空间向量依次求解即可. 【详解】解:取AD 的中点O ,BC 的中点E ,连接,OE OP , 因为三角形PAD 为等边三角形,所以OP AD ⊥, 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD , 因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴, 建立空间直角坐标系,则(0,0,0),(6,0,0),(6,0,0)O D A ,(0,0,32),6,23,0),(6,23,0)P C B ,因为点Q 是PD 的中点,所以632)2Q , 平面PAD 的一个法向量为(0,1,0)m =,632(23,22QC =-,显然 m 与QC 不共线, 所以CQ 与平面PAD 不垂直,所以A 不正确;3632(6,23,32),(,0,),(26,23,0)22PC AQ AC =-==, 设平面AQC 的法向量为(,,)n x y z =,则360260n AQ x zn AC ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令=1x ,则y z ==, 所以(1,2,n =-, 设PC 与平面AQC 所成角为θ,则21sin 36n PC n PCθ⋅===, 所以cos θ=,所以B 正确; 三棱锥B ACQ -的体积为1132BACQ Q ABC ABCV V SOP --==⋅ 1116322=⨯⨯⨯=, 所以C不正确;设四棱锥Q ABCD -外接球的球心为)M a ,则MQ MD=,所以2222222a a⎛⎫++-=++ ⎪ ⎪⎝⎭⎝⎭,解得0a =,即M 为矩形ABCD 对角线的交点,所以四棱锥Q ABCD -外接球的半径为3,设四棱锥Q ABCD -外接球的内接正四面体的棱长为x , 将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为2x,所以22362x ⎛⎫= ⎪ ⎪⎝⎭,得224x =, 所以正四面体的表面积为244x ⨯=,所以D 正确. 故选:BD【点睛】此题考查线面垂直,线面角,棱锥的体积,棱锥的外接球等知识,综合性强,考查了计算能力,属于较难题.7.如果一个棱锥的底面是正方形,且顶点在底面内的射影是底面的中心,那么这样的棱锥叫正四棱锥.若一正四棱锥的体积为18,则该正四棱锥的侧面积最小时,以下结论正确的是( ).A 2B .侧棱与底面所成的角为4π C 2 D .侧棱与底面所成的角为3π 【答案】AB 【分析】设四棱锥S ABCD -的高为h ,底面边长为a ,由21183V a h ==得254h a=,然后可得侧242108a a+32a =时侧面积取得最小值,此时3h =,然后求出棱锥的高与底面边长的比和SAO ∠即可选出答案. 【详解】设四棱锥S ABCD -的高为h ,底面边长为a 可得21183V a h ==,即254h a= 所以其侧面积为2222244215410842244a a a h a a a⋅⋅+=+=+令()242108f a a a =+,则()23321084f a a a⨯'=- 令()233210840f a a a⨯'=-=得32a = 当(0,32a ∈时()0f a '<,()f a 单调递减当()32,a ∈+∞时()0f a '>,()f a 单调递增所以当32a =时()f a 取得最小值,即四棱锥的侧面积最小 此时3h =所以棱锥的高与底面边长的比为22,故A 正确,C 错误 侧棱与底面所成的角为SAO ∠,由3h =,32a =可得3AO = 所以4SAO π∠=,故B 正确,D 错误故选:AB 【点睛】本题考查的知识点有空间几何体的体积和表面积、线面角及利用导数求最值,属于综合题.8.如图,正三棱柱11ABC A B C -中,11BC AB ⊥、点D 为AC 中点,点E 为四边形11BCC B 内(包含边界)的动点则以下结论正确的是( )A .()1112DA A A B A BC =-+ B .若//DE 平面11ABB A ,则动点E 的轨迹的长度等于22AC C .异面直线AD 与1BC ,所成角的余弦值为66D .若点E 到平面11ACC A 的距离等于32EB ,则动点E 的轨迹为抛物线的一部分 【答案】BCD 【分析】根据空间向量的加减法运算以及通过建立空间直角坐标系求解,逐项判断,进而可得到本题答案. 【详解】解析:对于选项A ,()1112AD A A B A BC =-+,选项A 错误; 对于选项B ,过点D 作1AA 的平行线交11A C 于点1D .以D 为坐标原点,1DA DB DD ,,分别为,,x y z 轴的正方向建立空间直角坐标系Oxyz .设棱柱底面边长为a ,侧棱长为b ,则002aA ⎛⎫ ⎪⎝⎭,,,300B ⎛⎫ ⎪ ⎪⎝⎭,,,130B b ⎛⎫ ⎪ ⎪⎝⎭,,,102a C b ⎛⎫- ⎪⎝⎭,,,所以1322a BC a b ⎛⎫=-- ⎪ ⎪⎝⎭,,,1322a AB a b ⎛⎫=- ⎪ ⎪⎝⎭,,. ∵11BC AB ⊥,∴110BC AB ⋅=,即2223022a a b ⎛⎫⎛⎫--+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得2b =. 因为//DE 平面11ABB A ,则动点E 的轨迹的长度等于122BB =.选项B 正确. 对于选项C ,在选项A 的基础上,002a A ⎛⎫⎪⎝⎭,,,3002B a ⎛⎫ ⎪ ⎪⎝⎭,,,()0,0,0D ,1202a C a ⎛⎫- ⎪ ⎪⎝⎭,,,所以002a DA ⎛⎫= ⎪⎝⎭,,,1322a BC a a ⎛⎫=- ⎪ ⎪⎝⎭,-,, 因为211162cos ,||||622a BC DA BC DA BC DA a a ⎛⎫- ⎪⋅⎝⎭<>===-,所以异面直线1,BC DA 所成角的余弦值为66,选项C 正确. 对于选项D ,设点E 在底面ABC 的射影为1E ,作1E F 垂直于AC ,垂足为F ,若点E 到平面11ACC A 的距离等于3EB ,即有31E F EB =,又因为在1CE F ∆中,3112E F E C =,得1EB E C =,其中1E C 等于点E 到直线1CC 的距离,故点E 满足抛物线的定义,另外点E 为四边形11BCC B 内(包含边界)的动点,所以动点E 的轨迹为抛物线的一部分,故D 正确.故选:BCD 【点睛】本题主要考查立体几何与空间向量的综合应用问题,其中涉及到抛物线定义的应用.。

立体几何专题专练100题(含详解)

立体几何专题专练100题(含详解)

1.(本题满分15分)如图,在三棱锥D -ABC 中,DA =DB =DC ,D 在底面ABC 上的射影为E ,AB ⊥BC ,DF ⊥AB 于F .(Ⅰ)求证:平面ABD ⊥平面DEF ;(Ⅱ)若AD ⊥DC ,AC =4,∠BAC =60°,求直线BE 与平面DAB 所成的角的正弦值.答案及解析:1.(Ⅰ)如图,由题意知⊥DE 平面ABC所以DE AB ⊥,又DFAB ⊥所以⊥AB 平面DEF ,………………3分又⊂AB 平面ABD 所以平面⊥ABD 平面DEF…………………6分(Ⅱ)解法一:由DC DB DA ==知ECEB EA ==所以E 是ABC ∆的外心又BC AB ⊥所以E 为AC 的中点…………………………………9分过E 作DF EH ⊥于H ,则由(Ⅰ)知⊥EH 平面DAB所以EBH ∠即为BE 与平面DAB 所成的角…………………………………12分由4=AC , 60=∠BAC 得2=DE ,3=EF 所以7=DF ,732=EH 所以721sin ==∠BE EH EBH …………………………………15分解法二:如图建系,则)0,2,0(-A ,)2,0,0(D ,)0,1,3(-B 所以)2,2,0(--=DA ,)2,1,3(--=DB ……………………………………9分设平面DAB 的法向量为),,(z y x n =由⎪⎩⎪⎨⎧=⋅=⋅00DB n DA n 得⎩⎨⎧=--=--023022z y x z y ,取)1,1,33(-=n ………………12分设EB 与n 的夹角为θ所以7213722||||cos ==⋅=n EB nEB θ所以BE 与平面DAB 所成的角的正弦值为721………………………………15分2.如图,在直三棱柱ABC ﹣A 1B 1C 1中,AA 1=AC=2AB=2,且BC 1⊥A 1C .(1)求证:平面ABC 1⊥平面A 1ACC 1;(2)设D是线段BB1的中点,求三棱锥D﹣ABC1的体积.答案及解析:2.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【专题】综合题;转化思想;综合法;立体几何.【分析】(1)证明A1C⊥面ABC1,即可证明:平面ABC1⊥平面A1ACC1;(2)证明AC⊥面ABB1A1,利用等体积转换,即可求三棱锥D﹣ABC1的体积.【解答】(1)证明:在直三棱锥ABC﹣A1B1C1中,有A1A⊥面ABC,而AB⊂面ABC,∴A1A⊥AB,∵A1A=AC,∴A1C⊥AC1,又BC1⊥A1C,BC1⊂面ABC1,AC1⊂面ABC1,BC1∩AC1=C1∴A1C⊥面ABC1,而A1C⊂面A1ACC1,则面ABC1⊥面A1ACC1…(2)解:由(1)知A1A⊥AB,A1C⊥面ABC1,A1C⊥AB,故AB⊥面A1ACC1,∴AB⊥AC,则有AC⊥面ABB1A1,∵D是线段BB1的中点,∴.…【点评】本题考查线面垂直、平面与平面垂直的判定,考查三棱锥D﹣ABC1的体积,考查学生分析解决问题的能力,正确运用定理是关键.3.如图所示,在四棱锥P﹣ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点.(1)求证:CD⊥PD;(2)求证:EF∥平面PAD.答案及解析:3.【考点】空间中直线与直线之间的位置关系;直线与平面平行的判定.【分析】本题是高考的重要内容,几乎年年考,次次有:(1)的关键是找出直角三角形,也就是找出图中的线线垂直.(2)的关键是找出平面PAD中可能与EF平行的直线.【解答】解:(1)证明:∵PA⊥平面ABCD,而CD⊂平面ABCD,∴PA⊥CD,又CD⊥AD,AD∩PA=A,∴CD⊥平面PAD,∴CD⊥PD、(2)取CD的中点G,连接EG、FG.∵E、F分别是AB、PC的中点,∴EG∥AD,FG∥PD,∴平面EFG∥平面PAD,又∵EF⊂平面EFG,∴EF∥平面PAD.【点评】线线垂直可由线面垂直的性质推得,直线和平面垂直,这条直线就垂直于平面内所有直线,这是寻找线线垂直的重要依据.判断或证明线面平行的常用方法有:①利用线面平行的定义(无公共点);②利用线面平行的判定定理(a∥α,b⊂α,a∥b⇒a∥α);③利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);④利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).4.如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.答案及解析:4.【考点】直线与平面垂直的性质;直线与平面平行的判定.【专题】综合题;空间位置关系与距离.【分析】(1)利用勾股定理的逆定理可得AC⊥BC.利用线面垂直的性质定理可得CC1⊥AC,再利用线面垂直的判定定理即可证明结论;(2)利用直三棱柱的性质、正方形的性质、三角形的中位线定理即可得出ED∥AC1,再利用线面平行的判定定理即可证明结论【解答】证明:(1)因为三棱柱ABC﹣A1B1C1为直三棱柱,所以C1C⊥平面ABC,所以C1C⊥AC.又因为AC=3,BC=4,AB=5,所以AC2+BC2=AB2,所以AC⊥BC.又C1C∩BC=C,所以AC⊥平面CC1B1B,所以AC⊥BC1.(2)连结C1B交CB1于E,再连结DE,由已知可得E为C1B的中点,又∵D为AB的中点,∴DE为△BAC1的中位线.∴AC1∥DE又∵DE⊂平面CDB1,AC1⊄平面CDB1∴AC1∥平面CDB1.【点评】熟练掌握勾股定理的逆定理、线面垂直的判定和性质定理、直三棱柱的性质、正方形的性质、三角形的中位线定理、线面平行的判定定理是解题的关键.5.已知在三棱锥S﹣ABC中,∠ACB=90°,又SA⊥平面ABC,AD⊥SC于D,求证:AD⊥平面SBC.答案及解析:5.【考点】直线与平面垂直的判定.【专题】证明题.【分析】要证明AD⊥平面SBC,只要证明AD⊥SC(已知),AD⊥BC,而结合已知∠ACB=90°,又SA⊥平面ABC,及线面垂直的判定定理及性质即可证明【解答】证明:∵SA⊥面ABC,∴BC⊥SA;∵∠ACB=90°,即AC⊥BC,且AC、SA是面SAC内的两相交线,∴BC⊥面SAC;又AD⊂面SAC,∴BC⊥AD,又∵SC⊥AD,且BC、SC是面SBC内两相交线,∴AD⊥面SBC.【点评】本题主要考查了直线与平面垂直,平面与平面垂直的相互转化,线面垂直的判定定理的应用,属于基础试题6.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥底面ABCD,AP=AB=,点E 是棱PB的中点.(Ⅰ)证明:AE⊥平面PBC;(Ⅱ)若AD=1,求二面角B﹣EC﹣D的平面角的余弦值.答案及解析:6.【考点】二面角的平面角及求法;直线与平面垂直的判定.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)由PA⊥底面ABCD,得PA⊥AB.又PA=AB,从而AE⊥PB.由三垂线定理得BC⊥PB,从而BC⊥平面PAB,由此能证明AE⊥平面PBC.(Ⅱ)由BC⊥平面PAB,AD⊥AE.取CE的中点F,连结DF,连结BF,则∠BFD为所求的二面角的平面角,由此能求出二面角B﹣EC﹣D的平面角的余弦值.【解答】(Ⅰ)证明:如图1,由PA⊥底面ABCD,得PA⊥AB.又PA=AB,故△PAB为等腰直角三角形,而点E是棱PB的中点,所以AE⊥PB.由题意知BC⊥AB,又AB是PB在面ABCD内的射影,由三垂线定理得BC⊥PB,从而BC⊥平面PAB,故BC⊥AE.因为AE⊥PB,AE⊥BC,所以AE⊥平面PBC.(Ⅱ)解:由(Ⅰ)知BC⊥平面PAB,又AD∥BC,得AD⊥平面PAB,故AD⊥AE.在Rt△PAB中,PA=AB=,AE=PB==1.从而在Rt△DAE中,DE==.在Rt△CBE中,CE==,又CD=,所以△CED为等边三角形,取CE的中点F,连结DF,则DF⊥CE,∵BE=BC=1,且BC⊥BE,则△EBC为等腰直角三角形,连结BF,则BF⊥CE,所以∠BFD为所求的二面角的平面角,连结BD,在△BFD中,DF=CD=,BF=,BD==,所以cos∠BFD==﹣,∴二面角B﹣EC﹣D的平面角的余弦值为﹣.【点评】本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.7.如图所示,四棱锥P ABCD的底面ABCD是平行四边形,BA=BD=,AD=2,PA=PD=,E,F分别是棱AD,PC的中点,二面角PADB为60°.(1)证明:平面PBC⊥平面ABCD;(2)求直线EF与平面PBC所成角的正弦值.答案及解析:7.证明:(1)连接PE,BE,∵PA=PD,BA=BD,而E为AD中点,∴PE⊥AD,BE⊥AD,∴∠PEB为二面角P﹣AD﹣B的平面角.在△PAD中,由PA=PD=,AD=2,解得PE=2.在△ABD中,由BA=BD=,AD=2,解得BE=1.在△PEB中,PE=2,BE=1,∠PEB=60˚,由余弦定理,解得PB==,∴∠PBE=90˚,即BE⊥PB.又BC∥AD,BE⊥AD,∴BE⊥BC,∴BE⊥平面PBC.又BE⊂平面ABCD,∴平面PBC⊥平面ABCD.解:(2)连接BF,由(1)知,BE⊥平面PBC,∴∠EFB为直线EF与平面PBC所成的角.∵PB=,∠ABP为直角,MB=PB=,∴AM=,∴EF=.又BE=1,∴在直角三角形EBF中,sin∠EFB==.∴直线EF与平面PBC所成角的正弦值为.考点:直线与平面所成的角;平面与平面垂直的判定.专题:证明题;转化思想;综合法;空间位置关系与距离;空间角.分析:(1)连接PE,BE,由已知推导出∠PEB为二面角P﹣AD﹣B的平面角,推导出BE⊥PB,BE⊥BC,由此能证明平面PBC⊥平面ABCD.(2)连接BF,由BE⊥平面PBC,得∠EFB为直线EF与平面PBC所成的角,由此能求出直线EF与平面PBC所成角的正弦值.解答:证明:(1)连接PE,BE,∵PA=PD,BA=BD,而E为AD中点,∴PE⊥AD,BE⊥AD,∴∠PEB为二面角P﹣AD﹣B的平面角.在△PAD中,由PA=PD=,AD=2,解得PE=2.在△ABD中,由BA=BD=,AD=2,解得BE=1.在△PEB中,PE=2,BE=1,∠PEB=60˚,由余弦定理,解得PB==,∴∠PBE=90˚,即BE⊥PB.又BC∥AD,BE⊥AD,∴BE⊥BC,∴BE⊥平面PBC.又BE⊂平面ABCD,∴平面PBC⊥平面ABCD.解:(2)连接BF,由(1)知,BE⊥平面PBC,∴∠EFB为直线EF与平面PBC所成的角.∵PB=,∠ABP为直角,MB=PB=,∴AM=,∴EF=.又BE=1,∴在直角三角形EBF中,sin∠EFB==.∴直线EF与平面PBC所成角的正弦值为.点评:本题考查面面垂直的证明,考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养8.(15分)(2010秋•杭州校级期末)如图,已知△BCD中,∠BCD=90°,AB⊥平面BCD,BC=CD=1,分别为AC、AD的中点.(1)求证:平面BEF⊥平面ABC;(2)求直线AD与平面BEF所成角的正弦值.答案及解析:8.【考点】平面与平面垂直的判定;直线与平面所成的角.【专题】计算题;证明题.【分析】(1)通过证明CD⊥平面ABC,CD∥EF,说明EF⊂平面BEF,即可证明平面BEF⊥平面ABC;(2)过A作AH⊥BE于H,连接HF,可得AH⊥平面BEF,推出∠AFH为直线AD与平面BEF所成角.在Rt△AFH中,求直线AD与平面BEF所成角的正弦值.【解答】解:(1)证明:∵AB⊥平面BCD,∴AB⊥CD.又∵CD⊥BC,∴CD⊥平面ABC.∵E、F分别为AC、AD的中点,∴EF∥CD.∴EF⊥平面ABC,∵EF⊂平面BEF,∴平面BEF⊥平面ABC.(2)过A作AH⊥BE于H,连接HF,由(1)可得AH⊥平面BEF,∴∠AFH为直线AD与平面BEF所成角.在Rt△ABC中,为AC中点,∴∠ABE=30°,∴.在Rt△BCD中,BC=CD=1,∴.∴在Rt△ABD中,∴.∴在Rt△AFH中,,∴AD与平面BEF所成角的正弦值为.【点评】证明两个平面垂直,关键在一个面内找到一条直线和另一个平面垂直;利用三垂线定理找出二面角的平面角,解三角形求出此角,是常用方法.9.答案及解析:9.10.(12分)(2015秋•拉萨校级期末)如图,边长为2的正方形ABCD中,(1)点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′.求证:A′D⊥EF(2)当BE=BF=BC时,求三棱锥A′﹣EFD的体积.答案及解析:10.【考点】直线与平面垂直的性质;棱柱、棱锥、棱台的体积.【专题】空间位置关系与距离.【分析】(1)由正方形ABCD知∠DCF=∠DAE=90°,得A'D⊥A'F且A'D⊥A'E,所以A'D⊥平面A'EF.结合EF⊂平面A'EF,得A'D⊥EF;(2)由勾股定理的逆定理,得△A'EF是以EF为斜边的直角三角形,而A'D是三棱锥D﹣A'EF的高线,可以算出三棱锥D﹣A'EF的体积,即为三棱锥A'﹣DEF的体积.【解答】解:(1)由正方形ABCD知,∠DCF=∠DAE=90°,∴A'D⊥A'F,A'D⊥A'E,∵A'E∩A'F=A',A'E、A'F⊆平面A'EF.∴A'D⊥平面A'EF.又∵EF⊂平面A'EF,∴A'D⊥EF.(2)由四边形ABCD为边长为2的正方形故折叠后A′D=2,A′E=A′F=,EF=则cos∠EA′F==则sin∠EA′F==•A′E•A′F•sin∠EA′F=故△EA′F的面积S△EA′F由(1)中A′D⊥平面A′EF可得三棱锥A'﹣EFD的体积V=××2=.【点评】本题以正方形的翻折为载体,证明两直线异面垂直并且求三棱锥的体积,着重考查空间垂直关系的证明和锥体体积公式等知识,属于中档题.11.(12分)(2015秋•沧州月考)如图,在△ABC中,AO⊥BC于O,OB=2OA=2OC=4,点D,E,F分别为OA,OB,OC的中点,BD与AE相交于H,CD与AF相交于G,将△ABO 沿OA折起,使二面角B﹣OA﹣C为直二面角.(Ⅰ)在底面△BOC的边BC上是否存在一点P,使得OP⊥GH,若存在,请计算BP的长度;若不存在,请说明理由;(Ⅱ)求二面角A﹣GH﹣D的余弦值.答案及解析:11.【考点】用空间向量求平面间的夹角;直线与平面垂直的性质;二面角的平面角及求法.【专题】数形结合;向量法;空间位置关系与距离;空间角;空间向量及应用.【分析】(Ⅰ)根据条件便知H,G分别为△AOB,△AOC的重心,从而有GH∥EF∥BC,并可说明∠BOC为直角,过O作OP⊥BC,从而有OP⊥GH,而根据摄影定理便有,这样即可求出BP的长度;(Ⅱ)根据上面知OB,OC,OA三直线两两垂直,分别以这三直线为x,y,z轴,建立空间直角坐标系,从而可以根据条件求出图形上一些点的坐标,从而可以得到向量的坐标,可设平面AGH的法向量为,而根据即可求出,同样的方法可以求出平面DGH的一个法向量,根据cos=即可得出二面角A﹣GH﹣D的余弦值.【解答】解:(Ⅰ)H,G分别为△AOB和△AOC的重心;∴;连接EF,则GH∥EF;由已知,EF∥BC,∴GH∥BC;∵OA⊥OB,OA⊥OC,二面角B﹣OA﹣C为直二面角;∴∠BOC为直角;∴在Rt△BOC中,过O作BC的垂线,垂足为P,OP⊥BC,又BC∥GH;∴OP⊥GH,则由摄影定理得:OB2=BP•BC;∴;(Ⅱ)分别以OB,OC,OA为x,y,z轴,建立如图所示空间直角坐标系,则:O(0,0,0),A(0,0,2),D(0,0,1),B(4,0,0),C(0,2,0),H(),;∴,;设为平面AGH的法向量,则:;取x1=1,则y1=2,z1=1,∴;设为平面DGH的法向量,则:;取x2=1,则;∴;∴由图可知二面角A﹣GH﹣D为锐角,∴该二面角的余弦值为.【点评】考查三角形重心的概念及其性质,平行线分线段成比例,三角形中位线的性质,以及二面角的平面角的定义,直角三角形的摄影定理的内容,建立空间直角坐标系,利用空间向量解决二面角问题的方法,平面的法向量的概念及求法,能求空间点的坐标,根据点的坐标求向量的坐标,向量垂直的充要条件,以及向量夹角的余弦公式,清楚两平面所成二面角的大小和两平面的法向量夹角的关系.12.(12分)(2014•芜湖模拟)如图,E是以AB为直径的半圆上异于A、B的点,矩形ABCD 所在的平面垂直于该半圆所在的平面,且AB=2AD=2.(1)求证:EA⊥EC;(2)设平面ECD与半圆弧的另一个交点为F.①试证:EF∥AB;②若EF=1,求三棱锥E﹣ADF的体积.答案及解析:12.【考点】直线与平面垂直的性质;棱柱、棱锥、棱台的体积;直线与平面平行的性质.【专题】空间位置关系与距离.【分析】(1)利用面面垂直的性质,可得BC⊥平面ABE,再利用线面垂直的判定证明AE⊥面BCE,即可证得结论;(2)①先证明AB∥面CED,再利用线面平行的性质,即可证得结论;②取AB中点O,EF的中点O′,证明AD⊥平面ABE,利用等体积,即可得到结论.【解答】(1)证明:∵平面ABCD⊥平面ABE,平面ABCD∩平面ABE=AB,BC⊥AB,BC⊂平面ABCD∴BC⊥平面ABE∵AE⊂平面ABE,∴BC⊥AE∵E在以AB为直径的半圆上,∴AE⊥BE∵BE∩BC=B,BC,BE⊂面BCE∴AE⊥面BCE∵CE⊂面BCE,∴EA⊥EC;(2)①证明:设面ABE∩面CED=EF∵AB∥CD,AB⊄面CED,CD⊂面CED,∴AB∥面CED,∵AB⊂面ABE,面ABE∩面CED=EF∴AB∥EF;②取AB中点O,EF的中点O′,在Rt△OO′F中,OF=1,O′F=,∴OO′=∵BC⊥面ABE,AD∥BC∴AD⊥平面ABE∴V E﹣ADF =V D﹣AEF===【点评】本题考查面面垂直的性质,线面垂直的判定与性质,考查线面垂直,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.13.(12分)(2014•浙江模拟)如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.答案及解析:13.【考点】直线与平面垂直的性质;直线与平面平行的判定.【专题】综合题;空间位置关系与距离.【分析】(1)利用勾股定理的逆定理可得AC⊥BC.利用线面垂直的性质定理可得CC1⊥AC,再利用线面垂直的判定定理即可证明结论;(2)利用直三棱柱的性质、正方形的性质、三角形的中位线定理即可得出ED∥AC1,再利用线面平行的判定定理即可证明结论【解答】证明:(1)因为三棱柱ABC﹣A1B1C1为直三棱柱,所以C1C⊥平面ABC,所以C1C⊥AC.又因为AC=3,BC=4,AB=5,所以AC2+BC2=AB2,所以AC⊥BC.又C1C∩BC=C,所以AC⊥平面CC1B1B,所以AC⊥BC1.(2)连结C1B交CB1于E,再连结DE,由已知可得E为C1B的中点,又∵D为AB的中点,∴DE为△BAC1的中位线.∴AC1∥DE又∵DE⊂平面CDB1,AC1⊄平面CDB1∴AC1∥平面CDB1.【点评】熟练掌握勾股定理的逆定理、线面垂直的判定和性质定理、直三棱柱的性质、正方形的性质、三角形的中位线定理、线面平行的判定定理是解题的关键.14.如图,在三棱锥S﹣ABC中,SB⊥底面ABC,且SB=AB=2,BC=,D、E 分别是SA、SC的中点.(I)求证:平面ACD⊥平面BCD;(II)求二面角S﹣BD﹣E的平面角的大小.答案及解析:14.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)根据面面垂直的判定定理证明AD⊥平面BCD即可证明平面ACD⊥平面BCD.(Ⅱ)建立空间直角坐标系,利用向量法即可求二面角S﹣BD﹣E的余弦值.【解答】证明:(I)∵∠ABC=,∴BA⊥BC,建立如图所示的坐标系,则C(0,,0),A(2,0,0),D(1,0,1),E(0,,1),S(0,0,2),则=(﹣1,0,1),=(0,,0),=(1,0,1),则•=(﹣1,0,1)•(0,,0)=0,•=(﹣1,0,1)•(1,0,1)=﹣1+1=0,则⊥,⊥,即AD⊥BC,AD⊥BD,∵BC∩BD=B,∴AD⊥平面BCD;∵AD⊂平面BCD;∴平面ACD⊥平面BCD;(II)=(0,,1),则设平面BDE的法向量=(x,y,1),则,即,解得x=﹣1,y=,即=(﹣1,,1),又平面SBD的法向量=(0,,0),∴cos<,>==,则<,>=,即二面角S﹣BD﹣E的平面角的大小为.【点评】本题主要考查空间面面垂直的判定,以及二面角的求解,利用向量法是解决二面角的常用方法.15.如图,在四棱锥P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,(Ⅰ)求证:平面PED⊥平面PAC;(Ⅱ)若直线PE与平面PAC所成的角的正弦值为,求二面角A﹣PC﹣D的平面角的余弦值.答案及解析:15.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定;二面角的平面角及求法.【专题】计算题;空间位置关系与距离;空间角.【分析】(I)由面面垂直的性质定理证出PA⊥平面ABCD,从而得到AB、AD、AP两两垂直,因此以AB、AD、AP为x轴、y轴、z轴,建立坐标系o﹣xyz,得A、D、E、C、P的坐标,进而得到、、的坐标.由数量积的坐标运算公式算出且,从而证出DE⊥AC且DE⊥AP,结合线面垂直判定定理证出ED⊥平面PAC,从而得到平面PED⊥平面PAC;(II)由(Ⅰ)得平面PAC的一个法向量是,算出、夹角的余弦,即可得到直线PE与平面PAC所成的角θ的正弦值,由此建立关于θ的方程并解之即可得到λ=2.利用垂直向量数量积为零的方法,建立方程组算出=(1,﹣1,﹣1)是平面平面PCD的一个法向量,结合平面PAC的法向量,算出、的夹角余弦,再结合图形加以观察即可得到二面角A﹣PC﹣D的平面角的余弦值.【解答】解:(Ⅰ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥PA∴PA⊥平面ABCD结合AB⊥AD,可得分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系o﹣xyz,如图所示…(2分)可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,λ)(λ>0)∴,,得,,∴DE⊥AC且DE⊥AP,∵AC、AP是平面PAC内的相交直线,∴ED⊥平面PAC.(4分)∵ED⊂平面PED∴平面PED⊥平面PAC(6分)(Ⅱ)由(Ⅰ)得平面PAC的一个法向量是,设直线PE与平面PAC所成的角为θ,则,解之得λ=±2∵λ>0,∴λ=2,可得P的坐标为(0,0,2)(8分)设平面PCD的一个法向量为=(x0,y0,z0),,由,,得到,令x0=1,可得y0=z0=﹣1,得=(1,﹣1,﹣1)(10分)∴cos<,(11分)由图形可得二面角A﹣PC﹣D的平面角是锐角,∴二面角A﹣PC﹣D的平面角的余弦值为.(12分)【点评】本题在四棱锥中证明面面垂直,并且在线面所成角的正弦情况下求二面角A﹣PC ﹣D的余弦值.着重考查了线面垂直、面面垂直的判定定理和利用空间向量研究直线与平面所成角和二面角大小的方法,属于中档题.16.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.答案及解析:16.(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz,则A(1,0,0),B(0,,0),C(﹣1,,0),P(0,0,1).=(﹣1,,0),=(0,,﹣1),=(﹣1,0,0),设平面PAB的法向量为=(x,y,z),则即,因此可取=(,1,)设平面PBC的法向量为=(x,y,z),则,即:可取=(0,1,),cos<>==故二面角A﹣PB﹣C的余弦值为:﹣.考点:直线与平面垂直的性质;用空间向量求平面间的夹角.专题:计算题;证明题;综合题;数形结合;转化思想.分析:(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=,利用勾股定理证明BD⊥AD,根据PD⊥底面ABCD,易证BD⊥PD,根据线面垂直的判定定理和性质定理,可证PA⊥BD;(Ⅱ)建立空间直角坐标系,写出点A,B,C,P的坐标,求出向量,和平面PAB的法向量,平面PBC的法向量,求出这两个向量的夹角的余弦值即可.解答:(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz,则A(1,0,0),B(0,,0),C(﹣1,,0),P(0,0,1).=(﹣1,,0),=(0,,﹣1),=(﹣1,0,0),设平面PAB的法向量为=(x,y,z),则即,因此可取=(,1,)设平面PBC的法向量为=(x,y,z),则,即:可取=(0,1,),cos<>==故二面角A﹣PB﹣C的余弦值为:﹣.点评:此题是个中档题.考查线面垂直的性质定理和判定定理,以及应用空间向量求空间角问题,查了同学们观察、推理以及创造性地分析问题、解决问题能力.17.如图,在三棱锥P﹣ABC中,∠ABC=90°,PA⊥平面ABC,E,F分别为PB,PC的中点.(1)求证:EF∥平面ABC;(2)求证:平面AEF⊥平面PAB.答案及解析:17.【考点】平面与平面垂直的判定;直线与平面平行的判定.【专题】空间位置关系与距离.【分析】(1)根据三角形中位线定理可得EF∥BC,进而根据线面平行的判定定理可得EF∥平面ABC;(2)根据PA⊥平面ABC,可得PA⊥BC,结合∠ABC=90°,及线面垂直的判定定理可得BC⊥平面PAB,进而由线面垂直的第二判定定理可得EF平面PAB,最后由面面垂直的判定定理可得平面AEF⊥平面PAB.【解答】证明:(1)∵E,F分别为PB,PC的中点.∴EF∥BC,又∵BC⊂平面ABC,EF⊄平面ABC,∴EF∥平面ABC;(2)∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC,又∵∠ABC=90°,∴AB⊥BC,又∵PA∩AB=A,PA,AB⊂平面PAB,∴BC⊥平面PAB,由(1)中EF∥BC,∴EF⊥平面PAB,又∵EF⊂平面AEF,∴平面AEF⊥平面PAB.【点评】本题考查的知识点是线面平行的判定定理,线面垂直的判定定理,面面垂直的判定定理,是空间线面关系的简单综合应用,难度中档.18.(14分)如图,已知AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.(Ⅰ)求证:AC⊥平面BCE;(Ⅱ)求三棱锥A﹣CDE的体积;(Ⅲ)线段EF上是否存在一点M,使得BM⊥CE?若存在,确定M点的位置;若不存在,请说明理由.答案及解析:18.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【专题】空间位置关系与距离.【分析】(I)如图所示,取AB的中点N,连接CN,可得四边形ADCN是正方形,可得NA=NB=NC,可得AC⊥CB,利用AF⊥平面ABCD,AF∥BE,可得BE⊥平面ABCD,即可证明.=V三棱锥E﹣ACD=即可得出.(II)利用V三棱锥A﹣CDE(III)线段EF上存在一点M为线段EF的中点,使得BM⊥CE.连接MN,BM,EN,则四边形BEMN为正方形,可得BM⊥EN,利用线面面面垂直的判定与性质定理可得:CN⊥平面ABEF,可得CN⊥BM,又BM⊥CE.即可证明BM⊥平面CEN.【解答】(I)证明:如图所示,取AB的中点N,连接CN,则四边形ADCN是正方形,可得NA=NB=NC,∴AC⊥CB,∵AF⊥平面ABCD,AF∥BE,∴BE⊥平面ABCD,∴BE⊥AC,又BE∩BC=B,∴AC⊥平面BCE.=V三棱锥E﹣ACD===.(II)解:V三棱锥A﹣CDE(III)解:线段EF上存在一点M为线段EF的中点,使得BM⊥CE.连接MN,BM,EN,则四边形BEMN为正方形,∴BM⊥EN,∵CN⊥AB,平面ABEF⊥平面ABCD,平面ABEF∩平面ABCD=AB,∴CN⊥平面ABEF,∴CN⊥BM,又CN∩EN=N,∴BM⊥平面CEN,∴BM⊥CE.【点评】本题考查了线面面面垂直的判定与性质定理、正方形的判定与性质定理、三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.19.(13分)如图,在正方体A1B1C1D1﹣ABCD中,(1)在正方体的12条棱中,与棱AA1是异面直线的有几条(只要写出结果)(2)证明:AC∥平面A1BC1;(3)证明:AC⊥平面BDD1B1.答案及解析:19.【考点】直线与平面垂直的判定;直线与平面平行的判定.【专题】证明题;数形结合;数形结合法;空间位置关系与距离.【分析】(1)画出正方体ABCD﹣A1B1C1D1,根据异面直线的概念即可找出与棱AA1异面的棱.(2)连接AC,A1C1,则A1C1∥AC,利用线面平行的判定定理即可证明;(3)由DD1⊥面AC,知DD1⊥AC,由DD1⊥BD,能够证明AC⊥平面BDD1B1.【解答】解:(1)与棱AA1异面的棱为:CD,C1D1,BC,B1C1,共4条.(2)证明:连接AC,A1C1,则A1C1∥AC,∵AC⊄平面A1BC1,A1C1⊂平面A1BC1,∴AC∥平面A1BC1;(3)证明:∵DD1⊥面AC,AC⊂平面AC,∴DD1⊥AC,∵AC⊥BD,DD1∩BD=D,BD⊂平面BDD1B1,DD1⊂平面BDD1B1∴AC⊥平面BDD1B1.【点评】考查异面直线的概念,直线与平面垂直的证明,直线与平面平行的判定,解题时要认真审题,仔细解答,注意合理地进行等价转化,属于中档题.20.如图,在正方体ABCD﹣A1B1C1D1中,(1)证明:BC1⊥面A1B1CD;(2)求直线A1B和平面A1B1CD所成的角.答案及解析:20.【考点】直线与平面所成的角;直线与平面垂直的判定.【分析】(1)要证BC1⊥面A1B1CD;应通过证明A1B1⊥BC1.BC1⊥B1C两个关系来实现,两关系容易证明.(2)因为BC1⊥平面A1B1CD,所以A1O为斜线A1B在平面A1B1CD内的射影,所以∠BA1O 为A1B与平面A1B1CD所成的角.在RT△A1BO中求解即可.【解答】解:(1)连接B1C交BC1于点O,连接A1O.在正方体ABCD﹣A1B1C1D1中因为A1B1⊥平面BCC1B1.所以A1B1⊥BC1.又∵BC1⊥B1C,又BC1∩B1C=O∴BC1⊥平面A1B1CD(2)因为BC1⊥平面A1B1CD,所以A1O为斜线A1B在平面A1B1CD内的射影,所以∠BA1O 为A1B与平面A1B1CD所成的角.设正方体的棱长为a在RT△A1BO中,A1B=a,BO=a,所以BO=A1B,∠BA1O=30°,即直线A1B和平面A1B1CD所成的角为30°.【点评】本题考查空间直线与平面垂直关系的判断,线面角大小求解,考查空间想象能力、推理论证、计算、转化能力.21.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E是PC的中点.(1)证明:PA∥平面EDB;(2)证明:平面PAC⊥平面PDB.答案及解析:21.【考点】平面与平面垂直的判定;直线与平面平行的判定.【专题】证明题;转化思想;综合法;空间位置关系与距离.【分析】(1)欲证PA∥平面EDB,根据直线与平面平行的判定定理可知只需证PA与平面EDB内一直线平行,连接AC,交BD于O,连接EO,根据中位线定理可知EO∥PA,PA⊄平面EDB,EO⊂平面EDB,满足定理所需条件;(2)证明AC⊥平面PBD,即可证明平面PAC⊥平面PDB.【解答】证明:(1)设AC与BD相交于点O,则O为AC的中点.∵E是P的中点,∴EO∥PA又∵EO⊂平面EDB,PA⊄平面EDB,∴PA∥平面EDB;(2)∵PO⊥平面ABCD,∴PD⊥AC又∵四边形ABCD为正方形,∴AC⊥BD从而AC⊥平面PBD,∴平面PAC⊥平面PBD.【点评】本题考查直线与平面平行的判定,以及平面与平面垂直的判定,考查空间想象能力,逻辑思维能力,计算能力,是中档题.22.如图,在直三棱柱ABC=A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上.(1)求证:BC⊥A1B;(2)若AD=,AB=BC=2,P为AC的中点,求二面角P﹣A1B﹣C的平面角的余弦值.答案及解析:22.【考点】用空间向量求平面间的夹角;空间中直线与直线之间的位置关系.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)由已知得A1A⊥平面ABC,A1A⊥BC,AD⊥BC.由此能证明BC⊥A1B.(Ⅱ)由(Ⅰ)知BC⊥平面A1AB,从而BC⊥AB,以B为原点建立空间直角坐标系B﹣xyz,利用向量法能求出二面角P﹣A1B﹣C的平面角的余弦值.【解答】(Ⅰ)证明:∵三棱柱ABC﹣A1B1C1为直三棱柱,∴A1A⊥平面ABC,又BC⊂平面ABC,∴A1A⊥BC,∵AD⊥平面A1BC,且BC⊂平面A1BC,∴AD⊥BC.又AA1⊂平面A1AB,AD⊂平面A1AB,A1A∩AD=A,∴BC⊥平面A1AB,又A1B⊂平面A1BC,∴BC⊥A1B.(Ⅱ)解:由(Ⅰ)知BC⊥平面A1AB,AB⊂平面A1AB,从而BC⊥AB,如图,以B为原点建立空间直角坐标系B﹣xyz∵AD⊥平面A1BC,其垂足D落在直线A1B上,∴AD⊥A1B.在Rt△ABD中,AD=,AB=2,sin∠ABD==,∠ABD=60°,在直三棱柱ABC﹣A1B1C1中,A1A⊥AB.在Rt△ABA1中,AA1=AB•tan60°=2,则B(0,0,0),A(0,2,0),C(2,0,0),P(1,1,0),A 1(0,2,2),,=(0,2,2),,设平面PA1B的一个法向量,则,即,得,设平面CA1B的一个法向量,则,即,得,,∴二面角P﹣A1B﹣C平面角的余弦值是.…【点评】本题考查异面直线垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意空间思维能力的培养.23.(16分)如图,在正方体ABCD﹣A1B1C1D1的棱长为a,E为棱AB上的一动点.(1)若E为棱AB的中点,①求四棱锥B1﹣BCDE的体积②求证:面B1DC⊥面B1DE(2)若BC1∥面B1DE,求证:E为棱AB的中点.答案及解析:23.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定;平面与平面垂直的判定.【专题】数形结合;数形结合法;空间位置关系与距离.【分析】(1)①四棱锥B1﹣BCDE的底面为直角梯形BEDC,棱锥的高为B1B,代入体积公式即可;②面B1DC∩面B1DE=B1D,故只需在平面B1DE找到垂直于交线B1D的直线即可,由DE=B1E=a可易知所找直线为等腰△EB1D底边中线;(2)辅助线同上,由中位线定理可得OF∥DC,且OF=DC,从而得出OF∥EB,由BC1∥面B1DE可得EO∥B1C,故四边形OEBF是平行四边形,得出结论.【解答】证明:(1)①∵正方体ABCD﹣A1B1C1D1∴B1B平面BEDC,•B1B=•(a+)•a•a=.∴V=•S梯形BCDE②取B1D的中点O,设BC1∩B1C=F,连接OF,∵O,F分别是B1D与B1C的中点,∴OF∥DC,且OF=DC,又∵E为AB中点,∴EB∥DC,且EB=DC,∴OF∥EB,OF=EB,即四边形OEBF是平行四边形,∴OE∥BF,∵DC⊥平面BCC1B1,BC1⊂平面BCC1B1,∴BC1⊥DC,∴OE⊥DC.又BC1⊥B1C,∴OE⊥B1C,又∵DC⊂平面B1DC,B1C⊂平面B1DC,DC∩B1C=C,∴OE⊥平面B1DC,。

立体几何:动点与设未知量-高考理科数学压轴题冲刺训练

立体几何:动点与设未知量-高考理科数学压轴题冲刺训练

07 等差数列与等比数列1.已知{a n}是等比数列,a n>0,且+a3a7=8,则log2a1+log2a2+…+log2a9=().A.8B.9C.10D.11解析▶∵ +a3a7=8,a n>0,且{a n}是等比数列,∴2=8,∴a5=2.∴log2a1+log2a2+…+log2a9=log2[(a1a9)(a2a8)·(a3a7)(a4a6)a5]=log2=9log22=9,故选B.答案▶ B2.在等比数列{a n}中,a n>0,,,+1成等差数列,且a1+2a2=2,则数列{a n}的通项公式为.解析▶设等比数列{a n}的公比为q,由a n>0知q>0,由题意得+=,即a1-a2=a1a2, ∴a1q=1-q.又a1+2a2=2,∴a1+2a1q=2.由-解得或--(舍去),∴数列{a n}的通项公式为a n=-.答案▶a n=-3.如图所示的是“杨辉三角”数图,计算第1行的2个数的和,第2行的3个数的和,第3行的4个数的和 … 则第n行的n+1个数的和为.11第1行12 1 第2行1331第3行1464 1 第4行…解析▶1+1=2,1+2+1=4,1+3+3+1=8,1+4+6+4+1=16,则第n行的n+1个数的和为2n.答案▶2n4.已知数列{a n}的各项均为正数,前n项和为S n,且S n=( ),n∈N*.(1)求证:数列{a n}是等差数列.(2)设b n=,T n=b1+b2+…+b n,求T n.解析▶(1)∵S n=( ),n N∈*,∴当n=1时,a1=S1=( )(a1>0),解得a1=1;当n≥ 时,由----a n-1,得2a n=+a n--即(a n+a n-1)(a n-a n-1-1)=0,∵a n+a n-1>0,∴a n-a n-1=1(n≥ ).∴数列{a n}是首项为1,公差为1的等差数列.(2)由(1)可得a n=n,S n=( ),b n===-.( )∴T n=b1+b2+b3+…+b n=1-+-+…+-=1-=.【例1】设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n= .解析▶(法一)设等比数列{a n}的公比为q(q≠0) 则2S2=2(a1+a2)=2(a1+a1q),S3=a1+a2+a3=a1+a1q+a1q2.因为3S1,2S2,S3成等差数列,所以3a1+a1+a1q+a1q2=4(a1+a1q),解得q=3,故a n =3n-1.(法二)设等比数列{a n }的公比为q ,由3S 1,2S 2,S 3成等差数列,易得q ≠ 所以4S 2=3S 1+S 3, 即( - )-=3a 1+( - )-, 解得q=3,故a n =3n-1. 答案▶ 3n-1在等差(比)数列问题中,最基本的量是首项a 1和公差d (公比q ),在解题时往往根据已知条件建立关于这两个量的方程组,从而求出这两个量,那么其他问题也就会迎刃而解,这就是解决等差(比)数列问题的基本量的方法,其中蕴含着方程思想的运用.在应用等比数列前n 项和公式时,务必注意公比q 的取值范围.1.已知等比数列{a n }的前n 项和为S n ,a 1+a 3=30,S 4=120,设b n =1+log 3a n ,则数列{b n }的前15项和为( ).A .152B .135C .80D .16解析▶ 设等比数列{a n }的公比为q ,由a 1+a 3=30,a 2+a 4=S 4-(a 1+a 3)=90,得公比q==3,首项a 1==3,所以a n =3n ,b n =1log+33n=1+n ,则数列{b n }是等差数列,其前15项和为 ( )=135.故选B .答案▶ B2.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( ).A .2B .-2C .D .-解析▶ 由题意知S 1=a 1,S 2=2a 1-1,S 4=4a 1-6. 因为S 1,S 2,S 4成等比数列,所以 =S 1·S 4,即(2a 1-1)2=a 1(4a 1-6),解得a 1=-.故选D .答案▶ D【例2】(1)设等差数列{a n}的前n项和为S n,且满足S15>0,S16<0,则, … 中最大的项为().A.B.C.D.(2)若等比数列{a n}的各项均为正数,且a8a13+a9a12=2e(e为自然对数的底数),则ln a1+ln a2+…+ln a20= .解析▶(1)由S15= ()==15a8>0,S16= ()=8(a8+a9)<0,可得a8>0,a9<0,d<0,所以数列{a n}是递减数列,所以a1>a2>…>a8>0,所以0<S1<S2<…<S8,从而0<<<…<.又因为当 ≤n≤ n∈N*时,a n<0,S n>0,即<0,所以是, … 中的最大项.故选C.(2)因为{a n}是等比数列,所以a8a13=a9a12=e,所以ln a1+lna2+…+ln a20=ln(a1a2…a20)=ln(a1a20)10=10ln(a8a13)=10ln e=10.答案▶(1)C(2)10等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质,整体考虑,减少运算量”的思想.1.已知等比数列{a n}满足a n>0,且a3a2n-3=22n(n≥ ) 则当n≥时,log2a1+log2a2+log2a3+…+log2a2n-1= .解析▶log2a1log+2a2log+2a3+…log+2a2n-1log=2(a1a2a3…a2n-1).设S=a1a2a3…a2n-1,则S=-a2n-2a2n-3 (1)两式相乘,得S2=(a3a2n-3)2n-1=22n(2n-1),所以S=2n(2n-1),故原式=n(2n-1).答案▶n(2n-1)2.已知等比数列{a n}的前n项和为S n,若=3,则= .解析▶显然公比q≠ 则由=( -)-( -)-=--=1+q3=3,得q3=2,所以=--=--=.答案▶【例3】已知数列{a n}的前n项和S n=λ(a n-1),其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)当λ=2时,求a2i.解析▶(1)由题意得a1=S1=λ(a1-1),故λ≠ a1=-,a1≠0.由S n=λ(a n-1),S n+1=λ(a n+1-1),得a n+1=λa n+1-λa n,即a n+1(λ-1)=λa n.由a1≠0 λ≠0 得a n≠0 所以aa =-,因此{a n}是首项为-,公比为-的等比数列,于是a n=-.(2)由(1)可知,当λ=2时,a n=2n,故a2i=a2+a4+…+a2n= ( -)-= ( - ).判断或证明数列是否为等差、等比数列,一般是依据等差、等比数列的定义,或利用等差中项、等比中项进行判断.利用=a n+1·a n-1(n≥ n∈N*)来证明数列{a n}为等比数列时,要注意数列中的各项均不为0.记S n为等比数列{a n}的前n项和,已知a3=-8,S3=-6.(1)求数列{a n}的通项公式;(2)求S n,并证明对任意的n∈N*,S n+2,S n,S n+1成等差数列.解析▶(1)设数列{a n}的公比为q,由题设可得-( )-解得--故数列{a n}的通项公式为a n=(-2)n.(2)由(1)可得S n=( -)-=-+(-1)n·.由于S n+2+S n+1=-+(-1)n·-=2-(- )·=2S n,故S n+2,S n,S n+1成等差数列.【例4】设数列{a n}的前n项和为S n,已知a1=λ,S n+1=λS n+λ(n∈N*),其中常数λ>1.(1)求证:数列{a n}是等比数列.(2)若数列{b n}满足b n=logλ(a1a2…a n)(n∈N*),求数列{b n}的通项公式.解析▶(1)当n=1时,S2=λS1+λ,即a2=λ2,∴=λ.当n≥ 时,S n=λS n-1+λ,∴a n+1=S n+1-S n=λ(S n-S n-1)=λa n,即=λ(n≥ ).又∵=λ,∴数列{a n}是首项为λ,公比为λ的等比数列.(2)由(1)得a n=λn,∴a1a2…a n=λ1+2+…+n=( ),∴b n=logλ( )=.解这种题目的一般方法是用“退位相减法”消去S n(或者a n),得到数列{a n}的递推公式(或者是数列{S n}的递推公式),进而求出a n(或者S n)与n的关系式.设S n是数列{a n}的前n项和,且a1=-1,a n+1=S n·S n+1,则S n= .解析▶由已知得a n+1=S n+1-S n=S n+1·S n,易知S n≠0 等式两边同时除以S n+1·S n,得-=-1,故数列是以-1为首项,-1为公差的等差数列,则=-1-(n-1)=-n,所以S n=-.答案▶-一、选择题1.S n是等差数列{a n}的前n项和,若S7-S2=45,则S9=().A.54B.63C.72D.81解析▶(法一)∵S7-S2=45,∴a3+a4+a5+a6+a7=45,∴5a5=45,a5=9,∴S9= ()=9a5=81.(法二)∵S7-S2=45,∴7a1+21d-(2a1+d)=45,即a1+4d=9,∴S9=9a1+36d=9(a1+4d)=9×9=81,故选D.答案▶ D2.已知数列{a n}满足a1=2,a n+1=(n∈N*),则a2019=().-A.-2B.-1C.2D.解析▶∵数列{a n}满足a1=2,a n+1=-(n N∈*),∴a2=-=-1,a3=-(- )=,a4=-= … 可知此数列具有周期性,周期为3,即a n+3=a n,则a2019=a3=.故选D.答案▶ D3.若S n为数列{a n}的前n项和,且S n=,则等于().A.B.C.D.30解析▶∵当n≥ 时,a n=S n-S n-1=--=( ),∴=5×(5+1)=30.故选D.答案▶ D4.已知等比数列{a n}中,a2=2,a6=8,则a3a4a5=().A.±64B.64C.32D.16解析▶因为a2=2,a6=8,所以由等比数列的性质可知a2a6==16,而a2,a4,a6同号,所以a4=4,所以a3a4a5==64,故选B.答案▶ B5.已知{a n}是公差为4的等差数列,S n是其前n项和.若S5=15,则a10的值是().A.11B.20C.29D.31解析▶因为S5=15,所以5a1+×4=15,所以a1=-5,所以a10=a1+9d=31,故选D.答案▶ D6.观察下列各图,并阅读图形下面的文字.像这样,10条直线相交,最多可形成的交点的个数是().A.40B.45C.50D.55解析▶(法一)n+1(n N∈*)条直线相交,当n= … k …时,最多可形成的交点个数分别是1,1+2,1+2+ … +2+3+…+k ….∴10条直线相交,最多可形成的交点的个数是1+2+…+9=45.(法二)设n(n≥ n∈N*)条直线相交,最多可形成的交点个数为a n,则--…-累加得a10-a2=2+3+…+9,∴a10=1+2+3+…+9=45.故选B.答案▶ B7.《张丘建算经》中“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”意思是“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里路,问每天走的里数为多少?”则该匹马第一天走的里数为().A.B. 00C. 00D.解析▶由题意知这匹马每日所走的路程成等比数列,设该数列为{a n},则公比q=,前7项和S7=700.由等比数列的求和公式得--=700,解得a1= 00,故选B.答案▶ B8.已知等差数列{a n},{b n}的前n项和分别为S n,T n,且=,则0=().A. 0B.C.D.解析▶(法一)设S n=5n2+2n,则T n=n2+3n.当n=1时,a1=7;当n≥ 时,a n=S n-S n-1=10n-3.∵a1=7符合上式,∴a n=10n-3.同理b n=2n+2.∴0= 0 .故选A.(法二)由=--,得0==== 0 .故选A.答案▶ A9.已知数列{a n}的通项公式为a n=,若数列{a n}为递减数列,则实数k的取值范围为().A.(3,+∞)B.(2,+∞)C.(1,+∞)D.(0,+∞)解析▶因为a n+1-a n=-=--,所以由数列{a n}为递减数列知,对任意n N∈*,a n+1-a n=--<0,所以k>3-3n对任意n N∈*恒成立,所以k∈(0 +∞).故选D.答案▶ D二、填空题10.在等比数列{a n}中,若a1=,a4=-4,则|a1|+|a2|+…+|a n|= .解析▶设等比数列{a n}的公比为q,则a4=a1q3,代入数据得q3=-8,所以q=-2.又等比数列{|a n|}的公比为|q|=2,所以|a n|=×2n-1,所以|a1|+|a2|+|a3|+…+|a n|=(1+2+22+…+2n-1)=(2n-1)=2n-1-.答案▶2n-1-11.设等差数列5, 0,, 0 …的前n项和为S n,则当S n最大时,n= .解析▶(法一)设该等差数列为{a n},∵公差d= 0-5=-,a1=5,∴a n=5+(n-1)×-=-+ 0.要使S n最大,则00 即- 00- ( ) 00解得 ≤n≤ .又n∈N*,∴ =7或n=8.(法二)∵公差d= 0-5=-,首项为5, ∴S n=5n+(- )×-=-n2+n=--+.∴当n 取最接近 的整数时,S n 最大,即当n=7或n=8时,S n 最大.答案▶ 7或812.在计算机语言中,有一种函数y=INT(x )叫作取整函数,它表示不超过x 的最大整数,如INT(0.9)=0,INT(3.14)=3.已知 =0. ·8571 ·,令a n =INT 0 ,b 1=a 1,b n =a n -10a n-1(n>1且n ∈N *),则b 2019= .解析▶ 依题意得a 1=2,a 2=28,a 3=285,a 4=2857,a 5=28571,a 6=285714,a 7= … 所以b 1=a 1=2.又b n =a n -10a n-1,所以b 2=8,b 3=5,b 4=7,b 5=1,b 6=4,b 7= … 可知数列{b n }是周期为6的周期数列.而2019=336×6+3,所以b 2019=b 3=5.答案▶ 5三、解答题13.已知数列{a n }的前n 项和为S n ,且S n =a n+1-2,a 1=2.(1)证明{a n }是等比数列,并求其通项公式;(2)若数列{b n }满足 - · - ·…· - = (n ∈N *),证明:{b n }是等差数列. 解析▶ (1)当n ≥ 时,由S n =a n+1-2,得S n-1=a n -2,两式相减,得a n+1=2a n ,即=2. 又S 1=a 2-2,a 1=2,∴a 2=S 1+2=4,满足=2, ∴=2对任意的n ∈N *都成立. ∴{a n }是首项为2,公比为2的等比数列.∴a n =2n .(2)∵ - · - ·…· - =, ∴ … - = · ,∴2[(b 1+b 2+…+b n )-n ]=n ·b n , ①∴2[(b 1+b 2+…+b n+1)-(n+1)]=(n+1)b n+1, ②由②-①得2(b n+1-1)=(n+1)b n+1-nb n ,即(n-1)b n+1-nb n +2=0, ③∴ b n+2-(n+1)b n+1+2=0,④由④-③得nb n+2-2nb n+1+nb n=0, ∴b n+2-2b n+1+b n=0,即b n+2-b n+1=b n+1-b n(n∈N*),∴是等差数列.。

2021年高考数学(理)押题密卷及参考答案详解

2021年高考数学(理)押题密卷及参考答案详解

理科数学试题 第1页(共22页) 理科数学试题 第2页(共22页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________绝密★启用前2021年高考押题密卷(新课标Ⅲ卷)理科数学(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}2{1,3,5},160A B x x ==-<∣,则A B =( )A .{1,3}B .{3,5}C .{1,3,5}D .(0,4)2.若复数z 满足()345z i i +=,则z =( ) A .15B .12C .1D .53.已知样本数据为12345,,,,x x x x x ,该样本平均数为4,方差为2,现加入一个数4,得到新样本的平均数为x ,方差为2s ,则( ) A .24,2x s >> B .24,2x s =< C .24,2x s <<D .24,2x s =>4.某大型建筑工地因施工噪音过大,被周围居民投诉.现环保局要求其整改,降低声强.已知声强I (单位:2/W m ))表示声音在传播途径中每平方米面积上的声能流密度,声强级L (单位:dB )与声强I 的函数关系式为()10lg L aI =,其中a 为正实数.已知13210/I W m =时,10L dB =.若整改后的施工噪音的声强为原声强的210-,则整改后的施工噪音的声强级降低了( ) A .50dBB .40dBC .30dBD .20dB5.设1F 、2F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,若在双曲线右支上存在点P ,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的离心率e 为( )A .45B .54C .35D .536.若非零向量,a b 满足3a b =,()23a b b +⊥,则a 与b 的夹角为( ) A .6π B .3π C .23π D .56π 7.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若角A 、C 、B 成等差数列,角C 的角平分线交AB 于点D ,且3CD =,3a b =,则c 的值为( )A .3B .72C .473D .238.如图,小方格是边长为1的小正方形,粗线画出的是某四棱锥的三视图,则该四棱锥的外接球表面积为( )A .32πB .302πC .41πD .403π9.已知函数()()3sin cos 0f x x x ωωω->满足()()124f x f x -=,且12x x -的最小值为2π,则8f π⎛⎫⎪⎝⎭的值为( ) A 62- B .1 C 3D .210.已知曲线ln y x =在()11,A x y ,()22,B x y ,两点处的切线分别与曲线x y e =相切于()33,C x y ,()44,D x y ,则1234x x y y +的值为( )A .1B .2C .52D .17411.抛物线24y x =的焦点为F ,点(),P x y 为该抛物线上的动点,点A 是抛物线的准线与坐标轴的交点,则PAPF的最大值是( )理科数学试题 第3页(共22页) 理科数学试题 第4页(共22页)……○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○………………A .2B .2C .233D .3212.已知函数2ln 1()x mx f x x+-=有两个零点a b 、,且存在唯一的整数0(,)x a b ∈,则实数m 的取值范围是( )A .0,2e ⎛⎫ ⎪⎝⎭B .ln 2,14e ⎡⎫⎪⎢⎣⎭ C .ln 3,92e e ⎡⎫⎪⎢⎣⎭ D .ln 2e 0,4⎛⎫ ⎪⎝⎭二、填空题:本题共4小题,每小题5分,共20分。

2021年新高考数学立体几何练习(含解析)

2021年新高考数学立体几何练习(含解析)

2021年新高考数学立体几何练习1.如图,在四棱锥P ABCD -中,已知//AB DC ,1AB AD ==,2BD =,2CD =,6PB PC PD ===.(1)证明:平面PCD ⊥平面ABCD ;(2)设平面PAD 与平面PBC 的交线为l ,求直线l 与平面ABCD 所成角的大小.2.如图,四棱台1111ABCD A B C D -中,1A A ⊥平面ABCD ,底面ABCD 是平行四边形,4ABC π∠=,222BC AB ==,1111A B A A ==.(1)证明:1//DD 平面1ACB ; (2)求面角11A B C D --的余弦值.3.如图,直角三角形ABD 所在的平面与半圆弧BD 所在平面相交于BD ,2AB BD ==,E ,EC=.F分别为AD,BD的中点C是BD上异于B,D的点,2(1)证明:平面CEF⊥平面BCD(2)若点C为半圆弧BD上的一个三等分点(靠近点)--的余弦值.D,求二面角A CE B4.如图,在四棱锥中P ABCD⊥,且22AD BC,AD CD-,PA⊥平面ABCD,//==AD CD42BC =,2PA =.(1)求证:AB PC ⊥;(2)在线段PD 上,是否存在一点M ,使得二面角M AC D --的大小为45︒,如果存在,求BM 与平面MAC 所成角的正弦值,如果不存在,请说明理由.5.如图,已知斜三棱柱111ABC A B C -底面是边长2的正三角形,D 为ABC ∆所在平面上一点且四边形ABCD 是菱形,ACBD O =,四边形11ACC A 为正方形,平面11A DC ⊥平面111A B C .(Ⅰ)证明:1B O ⊥平面ABCD ;(Ⅱ)求平面1CDC 与平面11A DC 所成二面角的正弦值.6.如图,在四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,//BC AD ,90BAD ∠=︒,244PA AD AB BC ====,21PC =(1)证明:PA ⊥平面ABCD ;(2)线段AB 上是否存在一点M ,使得MC 与平面PCD 所成角的正弦值为221?若存在,请求出AMAB的值;若不存在,请说明理由.7.如图,三棱柱111ABC A B C -所有棱长都相等,D 为BC 上的点,直线l 为平面1ADC 与平面111A B C 的交线,l ⊥平面11BB C C . (1)证明:AD ⊥平面11BB C C ;(2)已知160B BC ∠=︒,求二面角1D AC C --的余弦值.8.如图,已知直三棱柱222ABC A B C -的底面为正三角形,侧棱长都为4,1A 、1B 、1C 分别在棱2AA 、2BB 、2CC 上,且121A A =,122B B =,123C C =,过AB ,AC 的中点M ,N 且与直线2AA 平行的平面截多面体111222A B C A B C -所得的截面DEFG 为该多面体的一个中截面.(1)证明:中截面DEFG 是梯形;(2)若直线11A C 与平面222A B C 所成的角为45︒,求平面111A B C 与平面222A B C 所成锐二面角的大小.9.在四棱锥P ABCD -中,PA ⊥平面ABCD ,23AB BD DA ===,2BC CD ==. (1)求证:平面PAC ⊥平面PBD ;(2)若直线CD 与平面PBC 所成角的正弦值为3,求平面PCD 与平面PBC 所成锐二面角的余弦值.10.图1是由正方形ABCD ,Rt ABE ∆,Rt CDF ∆组成的一个平面图形,其中1AB AE DF ===,将其沿AB 、CD 折起使得点E 与点F 重合,如图2.(1)证明:图2中的平面ABE 与平面ECD 的交线平行于底面ABCD ; (2)求二面角B EC D --的余弦值.2021年新高考数学立体几何练习参考答案与试题解析一.解答题(共10小题)1.如图,在四棱锥P ABCD -中,已知//AB DC ,1AB AD ==,2BD =,2CD =,6PB PC PD ===.(1)证明:平面PCD ⊥平面ABCD ;(2)设平面PAD 与平面PBC 的交线为l ,求直线l 与平面ABCD 所成角的大小.【解答】(1)证明:因为1AB AD ==,2BD =,所以222AB AD BD +=,即AB AD ⊥.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分)又因为//AB DC ,所以AD CD ⊥.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分)取CD 中点为F 点,连FB ,FP ,因6PC PD ==2CD =.所以5FP .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3分) 因//AB FD ,1AB FD ==,AB AD ⊥, 所以四边形ABFD 是正方形,所以FB CD ⊥.且1AD FB ==,所以222FP FB PB +=,FP FB ∴⊥.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(4分)又因为FP CD F =,FP ⊂平面PCD .CD ⊂平面PCD .所以FB ⊥平面PCD .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分)又因为FB ⊂平面ABCD ,所以平面PCD ⊥平面ABCD .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(6分)(2)解:延长DA 和CB ,使其相交于点E ,则平面PAD 与平面PBC 的交线l 即为PE .⋯⋯⋯⋯(7分) 由(1)知FP FB ⊥,PF FC ⊥,FC FB ⊥,故以点F 为坐标原点,建立如图所示的空间直角坐标系.⋯⋯⋯(8分)则(0,0,5)P ,(1E -,2,0),(1,2,5)PE =--.⋯⋯⋯⋯⋯⋯⋯⋯(9分)又平面ABCD 的法向量为(0,0,1)n =.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(10分)设直线l 与平面ABCD 所成角的大小为θ. 则|5|2sin |cos |10PE n θ-=〈⋅〉==,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(11分) 故所求直线l 与平面ABCD 所成角的大小为4π.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(12分) (注:此题亦可用几何法,上图中PEF ∠即为所求)2.如图,四棱台1111ABCD A B C D -中,1A A ⊥平面ABCD ,底面ABCD 是平行四边形,4ABC π∠=,222BC AB ==,1111A B A A ==.(1)证明:1//DD 平面1ACB ; (2)求面角11A B C D --的余弦值.【解答】(1)证明:连接BD ,交AC 于O ,连接1B O , 四边形ABCD 是平行四边形,12OD BD ∴=,由棱台的性质可得11//B D OD ,由BC ==2AB =,又111A B =, 可得111112A B B D AB BD ==,则11B D OD =, ∴四边形11B ODD 是平行四边形,则11//B O DD ,又1B O ⊂平面1B AC ,1DD ⊂/平面1B AC ,1//DD ∴平面1ACB ;(2)解:1A A ⊥平面ABCD ,且AC ⊂平面ABCD ,AB ⊂平面ABCD ,1A A AC ∴⊥,1A A AB ⊥,又4ABC π∠=,BC =2AB =,2AC ∴=,则222AB AC BC +=,故AB AC ⊥,即AB ,AC ,1AA 两两互相垂直,以A 为坐标原点,分别以AB ,AD ,1AA 所在直线为x ,y ,z 轴建立空间直角坐标系, 则(0A ,0,0),(0C ,2,0),1(1B ,0,1),1(1D -,1,1),∴1(1,2,1)CB =-,(0,2,0)AC =,1(1,1,1)CD =--.设平面1AB C 的一个法向量为(,,)m x y z =,由12020m AC y m CB x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,取1z =,得(1,0,1)m =-;设平面11B CD 的一个法向量为111(,,)n x y z =,由11111111020n CD x y z n CB x y z ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩,取13z =,得(1,2,3)n =. 设二面角11A B C D --为θ,由图可知,θ为锐角,则2||cos |cos,|||||1m n m n m n θ⋅=<>===+. 故二面角11A B C D --.3.如图,直角三角形ABD 所在的平面与半圆弧BD 所在平面相交于BD ,2AB BD ==,E ,F 分别为AD ,BD 的中点C 是BD 上异于B ,D 的点,2EC =. (1)证明:平面CEF ⊥平面BCD(2)若点C 为半圆弧BD 上的一个三等分点(靠近点)D ,求二面角A CE B --的余弦值.【解答】证明:(1)因为C 半圆弧BD 上的一点,所以BC BD ⊥. 在ABD ∆中,E ,F 分别为AD ,BD 的中点,所以112EF AB ==,且//EF AB . 于是在EFC ∆中,222112EF FC EF +=+==,所以EFC ∆为直角三角形,且EF FC ⊥.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分) 因为AB BD ⊥,//EF AB ,所以EF BD ⊥.⋯⋯⋯⋯⋯⋯⋯⋯⋯(3分) 因为EF FC ⊥,EF BD ⊥,BD FC F =,⋯⋯⋯⋯⋯⋯⋯⋯(4分)所以EF ⊥平面BCD .又EF ⊂平面CEF ,所以平面CEF ⊥平面BCD .⋯⋯⋯⋯⋯⋯⋯⋯(5分)解:(2)由已知120BFC ∠=︒,以F 为坐标原点,分别以垂直于平面BCD 向上的方向,向量,FD FE所在方向作为x轴、y轴、z轴的正方向,建立如图所示的空间直角坐标系F xyz-,则31(,,0)2C,(0E,0,1),(0B,1-,0),(0A,1-,2),31(,,1)2CE=--,(0,1,1)BE=,(0,1,1)AE=-.⋯⋯⋯⋯(7分)设平面ACE的一个法向量为1(m x=,1y,1)z,则111113122AE m y zCE m x y z⎧⋅=-=⎪⎨⋅=--+=⎪⎩,取11z=,得3(3m=,1,1).⋯⋯⋯⋯(8分)设平面BCE的法向量2(n x=,2y,2)z,则BE nCE n⎧⋅=⎪⎨⋅=⎪⎩,即22222312y zx y z+=⎧⎪⎨--+=⎪⎩,取21z=,得(3,1,1)n=-.⋯⋯⋯⋯(9分)所以105cos,||||2153m nm nm n⋅<>===⋅⨯,⋯⋯⋯⋯(11分)又二面角A CE B--为锐角,所以二面角A CE B--的余弦值为105.⋯⋯⋯(12分)4.如图,在四棱锥中P ABCD-,PA⊥平面ABCD,//AD BC,AD CD⊥,且22AD CD== 42BC=2PA=.(1)求证:AB PC⊥;(2)在线段PD上,是否存在一点M,使得二面角M AC D--的大小为45︒,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.【解答】解:(1)证明:四边形ABCD 是直角梯形, 22AD CD ==42BC =4AC ∴=,22()884AB BC AD CD =-++,ABC ∴∆是等腰直角三角形,即AB AC ⊥,PA ⊥平面ABCD ,AB ⊂平面ABCD , PA AB ∴⊥,AB ∴⊥平面PAC ,又PC ⊂平面PAC ,AB PC ∴⊥.(2)假设存在符合条件的点M ,过点M 作MN AD ⊥于N ,则//MN PA ,MN ∴⊥平面ABCD ,MN AC ∴⊥.过点M 作MG AC ⊥于G ,连接NG ,则AC ⊥平面MNG ,AC NG ∴⊥,即MGN ∠是二面角M AC D --的平面角.若45MGN ∠=︒,则NG MN =,又22AN NG MN ==,1MN ∴=,即M 是线段PD 的中点.∴存在点M 使得二面角M AC D --的大小为45︒.在三棱锥M ABC -中,11184413323M ABC ABC V S MN -∆==⨯⨯⨯⨯=,设点B 到平面MAC 的距离是h ,则13B MAC MAC V S h -∆=,22MG MN ==11422222MAC S AC MG ∆∴==⨯, ∴182233h ⨯=,解得22h = 在ABN ∆中,4AB =,2AN 135BAN ∠=︒,2162242262BN ∴=++⨯⨯⨯= 2233BM BN MN ∴=+=,BM ∴与平面MAC 所成角的正弦值为26h BM =.5.如图,已知斜三棱柱111ABC A B C -底面是边长2的正三角形,D 为ABC ∆所在平面上一点且四边形ABCD 是菱形,AC BD O =,四边形11ACC A 为正方形,平面11A DC ⊥平面111A B C .(Ⅰ)证明:1B O ⊥平面ABCD ;(Ⅱ)求平面1CDC 与平面11A DC 所成二面角的正弦值.【解答】(Ⅰ)证明:取11A C 中点M ,连接MD 、1MB 、MO , 因为1111A B B C =,所以111B M AC ⊥,因为四边形11ACC A 为正方形,所以11OM A C ⊥, 所以11AC ⊥平面1B MDO ,因为MD ⊂平面1B MDO , 所以11AC DM ⊥,又因为平面11A DC ⊥平面111A B C , 所以DM ⊥平面111A B C ,又因为平面//ABCD 平面111A B C , 所以DM ⊥平面ABCD ,因为1//B M OD 且1B M OD =,所以1//B O DM , 所以1B O ⊥平面ABCD ;(Ⅱ)解:建立如图所示的空间直角坐标系,在RT△1B BO中,2222112(3)1 B O B B BO=-=-=,(1CD=-,3,0),1(0CC=,3,1),设平面1CDC的法向量为(m x=,y,)z,13030CD m x yCC m y z⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令1y=,(3m=,1,3)-,平面11A DC的法向量为(0n=,1,0),所以平面1CDC与平面11A DC所成二面角的余弦值为||11||||717m nm n⋅==⋅⋅,故平面1CDC与平面11A DC所成二面角的正弦值为142177-=.6.如图,在四棱锥P ABCD-中,平面PAB⊥平面ABCD,//BC AD,90BAD∠=︒,244PA AD AB BC====,21PC=.(1)证明:PA⊥平面ABCD;(2)线段AB上是否存在一点M,使得MC与平面PCD所成角的正弦值为221?若存在,请求出AMAB的值;若不存在,请说明理由.【解答】(1)证明:平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,90BAD ∠=︒,AD ∴⊥平面PAB ,PA ⊂平面PAB ,AD PA ∴⊥, 在直角梯形ABCD 中,244AB BC ==, 2222215AC AB BC ∴=+=+=,4PA =,21PC =,222PA AC PC ∴+=,即PA AC ⊥, 又ADAC A =,AD 、AC ⊂平面ABCD ,PA ∴⊥平面ABCD .(2)解:以A 为原点,AB ,AD ,AP 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则(0A ,0,0),(2B ,0,0),(0P ,0,4),(2C ,1,0),(0D ,4,0),∴(2AB =,0,0),(2PC =,1,4)-,(0PD =,4,4)-,设AM AB λ=,[0λ∈,1],则(2M λ,0,0)∴(22MC λ=-,1,0),设平面PCD 的法向量为(n x =,y ,)z ,则00n PC n PD ⎧⋅=⎪⎨⋅=⎪⎩,即240440x y z y z +-=⎧⎨-=⎩,令1y =,则32x =,1z =,∴3(2n =,1,1), MC 与平面PCD 221∴221|cos n =<,23(22)12|||||||||911(22)14n MC MC n MC λλ-+⋅>==⋅++⨯-+,化简得216810λλ-+=,解得14λ=, 故线段AB 上存在点M 满足题意,且14AM AB =. 7.如图,三棱柱111ABC A B C -所有棱长都相等,D 为BC 上的点,直线l 为平面1ADC 与平面111A B C 的交线,l ⊥平面11BB C C . (1)证明:AD ⊥平面11BB C C ;(2)已知160B BC ∠=︒,求二面角1D AC C --的余弦值.【解答】(1)证明:在三棱柱111ABC A B C -中,平面//ABC 平面111A B C , 因为AD ⊂平面ABC , 所以//AD 平面111A B C ,又因为AD ⊂平面1ADC ,平面1ADC ⋂平面111A B C l =, 所以//AD l ,又因为l ⊥平面11BB C C , 所以AD ⊥平面11BB C C ;(2)解:由(1)可知,AD ⊥平面11BB C C , 因为BC ⊂平面11BB C C ,所以AD BC ⊥, 因为AB AC =, 所以D 是BC 的中点,因为AD ⊂平面ABC ,AD ⊥平面11BB C C , 所以ABC ⊥平面11BB C C ,连结1B D ,1B C ,在菱形11B BCC 中,因为160B BC ∠=︒, 所以△1B BC 是等边三角形, 因为D 是BC 的中点,所以1B D BC ⊥,又因为平面ABC ⊥平面11BB C C ,平面ABC ⋂平面11BB C C BC =,1B D ⊂平面11BB C C , 所以1B D ⊥平面ABC ,以D 为坐标原点,建立空间直角坐标系, 不妨设三棱柱111ABC A B C -的所有棱长都是2, 则(0D ,0,0),(1C ,0,0),1(0,3,0),(2,0,3)A C , 则1(2,3,3),(0,3,0),(1,3,0)AC DA AC =-==-, 设平面1DAC 的法向量为(,,)m x y z =, 所以1233030AC m x y z DA m y ⎧⋅=-+=⎪⎨⋅==⎪⎩,令3x =,则0y =,2z =-,故(3,0,2)m =-, 设平面1ACC 的法向量为(,,)n a b c =, 所以1233030n AC a b c n AC a b ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,令3a =,则1b =,1c =-,故(3,1,1)n =-,||35|cos ,|||||75n m n m n m ⋅<>===⨯,因为二面角1D AC C --为锐二面角, 所以二面角1D AC C --的余弦值为35.8.如图,已知直三棱柱222ABC A B C -的底面为正三角形,侧棱长都为4,1A 、1B 、1C 分别在棱2AA 、2BB 、2CC 上,且121A A =,122B B =,123C C =,过AB ,AC 的中点M ,N 且与直线2AA 平行的平面截多面体111222A B C A B C -所得的截面DEFG 为该多面体的一个中截面.(1)证明:中截面DEFG 是梯形;(2)若直线11A C 与平面222A B C 所成的角为45︒,求平面111A B C 与平面222A B C 所成锐二面角的大小.【解答】(1)证明:由题意可知,2//AA 截面DEFG ,2AA ⊂平面22ACC A ,且平面22ACC A ⋂截面DEFG NF =,所以2//AA NF ,同理可证2//AA ME ,所以//ME NF ,即//DE GF , 因为121A A =,122B B =,123C C =,所以四边形1221A A B B 和四边形1221A A C C 均是梯形,又M ,N ,分别为AB ,AC 的中点,所以D ,E ,F ,G 分别为11A B ,22A B ,22A C ,11A C 的中点,故DE ,GF 分别为梯形1221A A B B 和梯形1221A A C C 的中位线,故13(12)22DE =⨯+=,1(13)22GF =⨯+=,所以DE GF ≠,故中截面DEFG 是梯形;(2)解:因为直三棱柱222ABC A B C -的底面为正三角形, 所以222B F A C ⊥,FN ⊥平面222A B C ,以F 为坐标原点建立空间直角坐标系如图所示,设AB a =,则1113(0,,1),(0,,3),(,0,2)22a a A C B -,2223(0,,0),(,0,0),(0,,0)22a aA B C -,11(0,,2)A C a =,平面222A B C 的一个法向量为(0,0,1)m =,因为直线11A C 与平面222A B C 所成的角为45︒, 所以1111211||2|cos ,|2||||4A C m A C m A C m a ⋅<>===+,解得2a =,所以111(0,1,1),(3,0,2),(0,1,3)AB C -,故1111(3,1,1),(0,2,2)A B A C ==,设平面111A B C 的法向量为(,,)n x y z =,则有111130220n A B x y z n AC y z ⎧⋅=++=⎪⎨⋅=+=⎪⎩, 令1y =,则0x =,1z =-,故(0,1,1)n =-,所以||12|cos ,|||||212m n m n m n ⋅<>===⨯, 故平面111A B C 与平面222A B C 所成锐二面角的大小为45︒.9.在四棱锥P ABCD -中,PA ⊥平面ABCD ,23AB BD DA ===,2BC CD ==.(1)求证:平面PAC ⊥平面PBD ;(2)若直线CD 与平面PBC 所成角的正弦值为3,求平面PCD 与平面PBC 所成锐二面角的余弦值.【解答】(1)证明:连接AC ,23AB BD DA===,2BC CD==,ABD∴∆为等边三角形,BCD∆为等腰三角形,AC BD∴⊥,PA⊥平面ABCD,BD⊂平面ABCD,PA BD∴⊥,又AC PA A=,AC、PA⊂平面PAC,BD∴⊥平面PAC,BD⊂平面PBD,∴平面PAC⊥平面PBD.(2)解:以A为原点,AD,AP为y、z轴,在平面ABCD内,作Ax⊥面PAD,建立如图所示的空间直角坐标系,设(0)PA a a=>,则(0P,0,)a,(3B 30),(2C,230),(0D ,230),∴(2CD=-,0,0),(1BC=-30),(2PC=,23)a-,设平面PBC的法向量为(m x=,y,)z,则m BCm PC⎧⋅=⎪⎨⋅=⎪⎩,即302230x yx y az⎧-=⎪⎨+-=⎪⎩,令1y=,则3x43z=,∴(3m=,143),直线CD与平面PBC3,|cos CD∴<,2233||||||||43231()CD mmCD ma⋅->===⋅⨯++,解得2a=或2-(舍负),∴(2PC =,23,2)-,(3m =,1,23), 同理可得,平面PCD 的法向量(0n =,1,3), cos m ∴<,7||||831122m n n m n ⋅>===⋅++⨯, 故平面PCD 与平面PBC 所成锐二面角的余弦值为78. 10.图1是由正方形ABCD ,Rt ABE ∆,Rt CDF ∆组成的一个平面图形,其中1AB AE DF ===,将其沿AB 、CD 折起使得点E 与点F 重合,如图2.(1)证明:图2中的平面ABE 与平面ECD 的交线平行于底面ABCD ;(2)求二面角B EC D --的余弦值.【解答】(1)证明:因为//CD AB ,AB ⊂平面ABE ,CD ⊂/平面ABE ,所以//CD 平面ABE , 因为CD ⊂平面ECD ,设平面ABE ⋂平面ECD l =,所以//l CD , 因为l ⊂/平面ABCD ,CD ⊂平面ABCD ,所以//l 平面ABCD ,即平面ABE 与平面ECD 的交线平行底面ABCD ;(2)解:建立空间直角坐标系如图所示, 则3111),(1,,0),(1,,0),(0,,0)222E B C D -, 所以13(0,1,0),(1,,),(1,0,0)2BC EC DC ==-=, 设平面EBC 的法向量1(n x =,y ,)z ,平面ECD 的法向量为2(n a =,b ,)c ,则有1101302BC n y EC n x y ⎧⋅==⎪⎨⋅=+=⎪⎩,2213020EC n a b DC n a ⎧⋅=+=⎪⎨⎪⋅==⎩, 令1z =,则3x ,令1c =,则3b 所以123(,0,1),(0,3,1)n n ==,所以1212127 cos,||||724n nn nn n⋅<>===⨯,所以二面角B EC D--的余弦值为7-.。

高考数学复习专题过关检测—立体几何(含解析)

高考数学复习专题过关检测—立体几何(含解析)

高考数学复习专题过关检测—立体几何一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·山东济宁二模)“直线m垂直于平面α内的无数条直线”是“m⊥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(2021·重庆八中月考)已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则异面直线CD与PB所成角的余弦值为()A.√55B.2√55C.√510D.√95103.(2021·江西上饶三模)在正方体ABCD-A1B1C1D1中,G是线段BC1上一点,且A1G⊥B1D,则()A.BG=12BC1B.BC1=3GC1C.BG=3GC1D.G为线段BC1上任意一点4.(2021·辽宁葫芦岛一模)某保鲜封闭装置由储物区与充氮区(内层是储物区,用来放置新鲜易变质物品,充氮区是储物区外的全部空间,用来向储物区输送氮气从而实现保鲜功能)构成.如图,该装置外层上部分是半径为2的半球,下面大圆刚好与高度为3的圆锥的底面圆重合,内层是一个高度为4的倒置小圆锥,小圆锥底面平行于外层圆锥的底面,且小圆锥顶点与外层圆锥顶点重合,为了保存更多物品,充氮区的体积最小为()A.4πB.16π3C.28π3D.4π35.(2021·天津三模)在圆柱O1O2内有一个球O,球O分别与圆柱O1O2的上、下底面及母线均有且只有一个公共点.若O1O2=2,则圆柱O1O2的表面积为() A.4π B.5πC.6πD.7π6.(2021·广东深圳模拟)已知球O与棱长为2的正方体ABCD-A1B1C1D1的各个面都相切,M为棱DD1的中点,则平面AMC截球O所得截面的面积为()A.π3B.2π3C.πD.4π37.(2021·福建师大附中模拟)过正方形ABCD的顶点A作PA⊥平面ABCD,若AB=AP,则平面ABP与平面CDP的夹角的余弦值为()A.13B.√22C.√32D.√338.(2021·山东滨州二模)在正方体ABCD-A1B1C1D1中,M是棱DD1的中点,P是底面ABCD内(包括边界)的一个动点,若MP∥平面A1BC1,则异面直线MP与A1C1所成角的取值范围是()A.(0,π3] B.[π6,π3]C.[π3,π2] D.[π3,π)二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2021·广东广州三模)对于空间中的两条不同直线a,b和两个不同平面α,β,下列说法正确的是()A.若a⊥α,b⊥α,则a∥bB.若a⊥b,b⊥β,则a∥βC.若a⊥α,b⊥β,α⊥β,则a⊥bD.若a∥α,α⊥β,则a⊥β10.(2021·湖北荆门月考)如图,在正方体ABCD-A1B1C1D1中,点P在线段BC1上运动,下列结论正确的是()A.三棱锥A-D1PC的体积不变B.直线AP与平面ACD1所成角的大小不变C.直线AP与直线A1D所成角的大小不变D.二面角P-AD1-C的大小不变11.(2021·福建龙岩三模)在意大利,有一座满是“斗笠”的灰白小镇阿尔贝罗贝洛,这些圆锥形屋顶的奇特小屋名叫Trullo,于1996年被收入世界文化遗产名录.现测量一个Trullo的屋顶,得到圆锥SO(其中S为顶点,O为底面圆心),母线SA的长为6 m,C是母线SA上靠近点S的三等分点.从点A到点C绕屋顶侧面一周安装灯光带,灯光带的最小长度为2√13 m.下面说法正确的是()A.圆锥SO 的侧面积为12π m 2B.过点S 的平面截此圆锥所得截面面积最大值为18 m 2C.圆锥SO 的外接球的表面积为72π m 2D.棱长为√3 m 的正四面体在圆锥SO 内可以任意转动12.(2021·新高考Ⅰ,12)在正三棱柱ABC-A 1B 1C 1中,AB=AA 1=1,点P 满足BP ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ +μBB 1⃗⃗⃗⃗⃗⃗⃗ ,其中λ∈[0,1],μ∈[0,1],则( )A.当λ=1时,△AB 1P 的周长为定值B.当μ=1时,三棱锥P-A 1BC 的体积为定值C.当λ=12时,有且仅有一个点P ,使得A 1P ⊥BP D.当μ=12时,有且仅有一个点P ,使得A 1B ⊥平面AB 1P三、填空题:本题共4小题,每小题5分,共20分.13.(2021·辽宁大连期中)已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为 .14.(2021·河北石家庄期末)如图,已知二面角A-EF-D 的大小为45°,四边形ABFE 与四边形CDEF 都是边长为1的正方形,则B ,D 两点间的距离是 .15.(2021·浙江绍兴二模)如图,在棱长为4的正方体ABCD-A 1B 1C 1D 1中,M 是棱A 1A 上的动点,N 是棱BC 的中点.当平面D 1MN 与平面ABCD 的夹角最小时,A 1M= .16.(2021·广东汕头二模)在菱形ABCD 中,AB=2,∠DAB=60°,E 为AB 的中点,将△ADE 沿DE 翻折成△A 1DE ,当三棱锥A 1-DEC 的体积最大时,三棱锥A 1-DEC 的外接球的表面积为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2021·广东韶关期中)如图,在直三棱柱ABC-A 1B 1C 1中,侧面ABB 1A 1,BCC 1B 1,ACC 1A 1的面积依次为16,12,20,E ,F 分别为A 1C 1,BC 的中点.求证:(1)平面ABE⊥平面BB1C1C;(2)C1F∥平面ABE.18.(12分)(2021·河北张家口一模)如图,四边形ABCD是正方形,PA⊥平面ABCD,PA∥EB,且PA=PB=3.(1)求证:CE∥平面PAD;PA,求直线PD与平面PCE所成角的正弦值.(2)若BE=1319.(12分)(2021·北京石景山区模拟)如图,四棱锥P-ABCD的底面为矩形,PD⊥底面ABCD,M为BC的中点,PB⊥AM.(1)求证:平面PAM⊥平面PBD;(2)若PD=DC=1,求四棱锥P-ABCD的体积.20.(12分)(2021·山东淄博三模)如图①,在平面图形ABCD中,△ABD是边长为4的等边三角形,DB是∠ADC的平分线,且BD⊥BC,M为AD的中点,沿BM将△ABM折起,得到四棱锥A1-BCDM,如图②.图①图②(1)设平面A1BC与平面A1DM的交线为l,在四棱锥A1-BCDM的棱A1C上求一点N,使直线BN∥l;(2)若二面角A1-BM-D的大小为60°,求平面A1BD与平面A1CD的夹角的余弦值.21.(12分)(2021·湖南长沙模拟)如图,C是以AB为直径的圆上异于点A,B的点,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F分别是PC,PB的中点,设平面AEF与平面ABC的交线为直线l.(1)求证:直线l⊥平面PAC.(2)直线l上是否存在点Q,使直线PQ分别与平面AEF,直线EF所成的角互余?若存在,求出AQ的值;若不存在,请说明理由.22.(12分)(2021·重庆蜀都中学月考)如图①,在菱形ABCD 中,∠ABC=120°,动点E ,F 分别在边AD ,AB 上(不含端点),且存在实数λ,使EF ⃗⃗⃗⃗⃗ =λBD ⃗⃗⃗⃗⃗⃗ ,沿EF 将△AEF 向上折起得到△PEF ,使得平面PEF ⊥平面BCDEF ,如图②所示.图①图②(1)若BF ⊥PD ,设三棱锥P-BCD 和四棱锥P-BDEF 的体积分别为V 1,V 2,求V1V 2.(2)当点E 的位置变化时,二面角E-PF-B 是否为定值?若是,求出该二面角的余弦值;若不是,说明理由.答案及解析1.B解析由直线m垂直于平面α内的无数条直线不能推出m⊥α,但是由m⊥α一定能推出直线m垂直于平面α内的无数条直线,所以“直线m垂直于平面α内的无数条直线”是“m⊥α”的必要不充分条件.故选B.2.C解析连接AE,BE(图略),设AB=1,则PA=2,AE=√12+12-2×1×1×cos120°=√3,PE=√4+3=√7,BE=√3+1=2,PB=√4+1=√5.易知CD∥BE,所以∠PBE是直线CD与PB所成的角(或其补角).又cos∠PBE=2×2×√5=√510,所以直线CD与PB所成角的余弦值为√510.故选C.3.D解析如图,∵AD⊥平面ABB1A1,∴AD⊥A1B.又AB1⊥A1B,AB1∩AD=A,∴A1B⊥平面AB1D,∴A1B⊥B1D.同理BC1⊥B1D.又A1B∩BC1=B,∴B1D⊥平面A1BC1.又A1G⊂平面A1BC1,∴A1G⊥B1D.故G为线段BC1上任意一点.故选D.4.B解析由题意可知内层小圆锥底面半径最大为√22-12=√3,所以充氮区的体积最小为12×43π×23+13π×22×3-13π×(√3)2×4=16π3.故选B.5.C解析依题意,圆柱O1O2的底面半径r=1,高h=2,所以圆柱O1O2的表面积S=2πr·h+2πr2=4π+2π=6π.故选C.6.A解析设球心O到截面的距离为d,截面圆的半径为r,由V O-ACM=V M-AOC,得1 3·S△ACM·d=√23S△AOC.因为S△ACM=12×2√2×√3=√6,S△AOC=12×2√2×1=√2,所以d=√63.又d2+r2=1,所以r=√33,所以平面AMC截球O所得截面的面积为πr2=π3.故选A.7.B 解析 设AP=AB=1,以A 为原点,AB ,AD ,AP 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系如图所示,则P (0,0,1),D (0,1,0),C (1,1,0),所以PC ⃗⃗⃗⃗⃗ =(1,1,-1),PD ⃗⃗⃗⃗⃗ =(0,1,-1). 设平面CDP 的法向量m =(x ,y ,z ),则{m ·PC⃗⃗⃗⃗⃗ =x +y -z =0,m ·PD ⃗⃗⃗⃗⃗ =y -z =0,取y=1,则x=0,z=1,所以m =(0,1,1)为平面CDP 的一个法向量.易知n =(0,1,0)为平面ABP 的一个法向量.设平面ABP 与平面CDP 的夹角为θ,则cos θ=|m ·n ||m ||n |=√2×1=√22.故选B .8.C 解析 如图,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,设AB=2,则B (2,2,0),A 1(2,0,2),C 1(0,2,2),M (0,0,1),取AD 的中点E ,DC 的中点F ,连接ME ,EF ,MF ,则E (1,0,0),F (0,1,0).因为ME ⃗⃗⃗⃗⃗⃗ =(1,0,-1),C 1B ⃗⃗⃗⃗⃗⃗⃗ =(2,0,-2)=2ME ⃗⃗⃗⃗⃗⃗ ,所以C 1B ∥ME.同理EF ∥A 1C 1.又ME ⊄平面A 1BC 1,C 1B ⊂平面A 1BC 1,所以ME ∥平面A 1BC 1.同理MF ∥平面A 1BC 1.又MF ∩ME=M ,所以平面MEF ∥平面A 1BC 1.因为P 是底面ABCD 内(包括边界)的一个动点,MP ∥平面A 1BC 1,所以点P 在线段EF 上.因为EF ∥A 1C 1,所以异面直线MP 与A 1C 1所成的角即是直线MP 与EF 所成的角.当MP ⊥EF 时,异面直线MP 与A 1C 1所成的角最大为π2,当点P 与点E 或点F 重合时,异面直线MP 与A 1C 1所成的角最小为π3.故所求角的取值范围为[π3,π2].9.AC 解析 对于A,由线面垂直的性质定理知A 正确;对于B,若a ⊥b ,b ⊥β,则a ∥β或a ⊂β,所以B 错误;对于C,由a ⊥α,α⊥β,可知a ∥β或a ⊂β,又b ⊥β,所以a ⊥b ,所以C 正确;对于D,若a ∥α,α⊥β,则a ∥β或a ⊂β或a 与β相交,所以D 错误.故选AC .10.ACD 解析 对于A,因为BC 1∥平面AD 1C ,所以BC 1上任意一点到平面AD 1C 的距离都相等,所以三棱锥A-D 1PC 的体积不变,故A 正确;对于B,因为BC 1∥平面AD 1C ,所以点P 到平面ACD 1的距离不变,但AP 的长度随着点P 的移动而变化,所以直线AP 与平面ACD 1所成角的大小会改变,故B 错误;对于C,因为直线A 1D ⊥平面ABC 1D 1,AP ⊂平面ABC 1D 1,所以A 1D ⊥AP ,所以直线AP 与直线A 1D 所成角的大小不变;故C 正确;对于D,二面角P-AD 1-C 也就是二面角B-AD 1-C ,其大小不变,故D 正确.故选ACD .11.AD 解析 如图,设圆锥底面半径为r m,将圆锥侧面展开得到扇形ASA',在△A'SC 中,A'S=6 m,SC=2 m,A'C=2√13 m,则cos ∠A'SC=36+4-522×6×2=-12,所以∠A'SC=2π3,所以2πr=2π3×6=4π,r=2,所以圆锥的侧面积为π×2×6=12π(m 2),故A 正确.在△ASB 中,cos ∠ASB=SA 2+SB 2-AB 22SA ·SB=79,sin ∠ASB=√1-4981=4√29,易知过点S 的平面截此圆锥所得截面面积最大为S △SAB =12SA·SB·sin ∠ASB=12×6×6×4√29=8√2(m 2),故B 错误.设圆锥SO 的外接球的半径为R m,则R 2=(SO-R )2+r 2,又SO=√SA 2-r 2=√36-4=4√2,所以R 2=(4√2-R )2+4,解得R=9√24,所以圆锥SO 的外接球的表面积为4πR 2=81π2(m 2),故C 错误.设圆锥SO 的内切球的半径为t m,则4√2-t=13,解得t=√2,设棱长为√3 m 的正四面体的外接球的半径为r 1 m,将该正四面体放在棱长为√62的正方体中,可知该正四面体的外接球也是该正方体的外接球,易知r 1=12√3×(√62)2=3√24,因为r 1<t ,所以棱长为√3 m 的正四面体在圆锥SO 内可以任意转动,故D 正确.故选AD . 12.BD 解析图①A 项中,当λ=1时,BP ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +u BB 1⃗⃗⃗⃗⃗⃗⃗ ⇒BP ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ =CP ⃗⃗⃗⃗⃗ =u BB 1⃗⃗⃗⃗⃗⃗⃗ ,则CP ⃗⃗⃗⃗⃗ 与BB 1⃗⃗⃗⃗⃗⃗⃗ 共线,故点P 在线段CC 1(包括端点)上,如图①所示.在△AB 1P 中,|AB 1|=√2,|AP|=√1+u 2,|B 1P|=√1+(1-u )2, 故△AB 1P 的周长L=|AB 1|+|AP|+|B 1P|不为定值,故A 错误;图②B 项中,当u=1时,BP ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ ⇒BP ⃗⃗⃗⃗⃗ −BB 1⃗⃗⃗⃗⃗⃗⃗ =B 1P ⃗⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,则B 1P ⃗⃗⃗⃗⃗⃗⃗ 与BC⃗⃗⃗⃗⃗ 共线,故点P 在线段B 1C 1(包括端点)上,如图②所示.由图②可知B 1C 1∥平面A 1BC ,即B 1C 1上的每一点到平面A 1BC 的距离都相等,因此三棱锥P-A 1BC 的体积为定值,故B 正确;图③C 项中,当λ=12时,分别取线段BC ,B 1C 1的中点D ,D 1,连接DD 1,可知点P 在线段DD 1(包括端点)上,如图③所示.取AC 的中点O ,建立如图所示的空间直角坐标系Oxyz ,则B √32,0,0,C 0,12,0,A 10,-12,1,P (√34,14,u),从而A 1P ⃗⃗⃗⃗⃗⃗⃗ =(√34,34,u -1),BP ⃗⃗⃗⃗⃗ =(-√34,14,u), 由A 1P ⃗⃗⃗⃗⃗⃗⃗ ·BP⃗⃗⃗⃗⃗ =u (u-1)=0,得u=0或u=1. 当点P 与点D 或D 1重合时,满足A 1P ⊥BP ,故C 错误;D 项中,当u=12时,分别取线段BB 1,CC 1的中点M ,N ,连接MN ,可知点P 在线段MN (包括端点)上,如图④所示.图④建系同选项C,则A 0,-12,0,A 10,-12,1,B √32,0,0,P √32−√32λ,λ2,12,从而A 1B ⃗⃗⃗⃗⃗⃗⃗ =√32,12,-1,AP ⃗⃗⃗⃗⃗ =√32−√32λ,λ2+12,12,四边形ABB 1A 1为正方形,显然A 1B ⊥AB 1. 要使A 1B ⊥平面AB 1P ,只需A 1B ⊥AP ,即A 1B ⃗⃗⃗⃗⃗⃗⃗ ·AP⃗⃗⃗⃗⃗ =12−λ2=0,解得λ=1. 当且仅当点P 与点N 重合时,A 1B ⊥平面AB 1P ,故D 正确. 综上所述,选BD .13.39π 解析 ∵体积V=13π×62·h=30π,∴高h=52,∴母线长l=√ℎ2+r 2=√(52)2+62=132,∴S 侧=πrl=π×6×132=39π. 14.√3-√2 解析 ∵BD ⃗⃗⃗⃗⃗⃗ =BF ⃗⃗⃗⃗⃗ +FE ⃗⃗⃗⃗⃗ +ED ⃗⃗⃗⃗⃗ ,∴|BD ⃗⃗⃗⃗⃗⃗ |2=|BF ⃗⃗⃗⃗⃗ |2+|FE ⃗⃗⃗⃗⃗ |2+|ED ⃗⃗⃗⃗⃗ |2+2BF ⃗⃗⃗⃗⃗ ·FE ⃗⃗⃗⃗⃗ +2FE ⃗⃗⃗⃗⃗ ·ED ⃗⃗⃗⃗⃗ +2BF ⃗⃗⃗⃗⃗ ·ED ⃗⃗⃗⃗⃗ .由题意可知|BF ⃗⃗⃗⃗⃗ |=|FE ⃗⃗⃗⃗⃗ |=|ED ⃗⃗⃗⃗⃗ |=1,BF ⃗⃗⃗⃗⃗ ·FE ⃗⃗⃗⃗⃗ =0,FE ⃗⃗⃗⃗⃗ ·ED ⃗⃗⃗⃗⃗ =0,BF ⃗⃗⃗⃗⃗ ·ED ⃗⃗⃗⃗⃗ =1×1×cos 135°=-√22,∴|BD⃗⃗⃗⃗⃗⃗ |=√3-√2.故B ,D 两点间的距离是√3-√2. 15.85 解析 如图,建立空间直角坐标系,则N (2,4,0),D 1(0,0,4),设M (4,0,a )(0≤a ≤4),所以MN ⃗⃗⃗⃗⃗⃗⃗ =(-2,4,-a ),D 1N ⃗⃗⃗⃗⃗⃗⃗⃗ =(2,4,-4).设平面D 1MN 的法向量为n =(x ,y ,z ),则{n·MN⃗⃗⃗⃗⃗⃗⃗ =0,n·D1N⃗⃗⃗⃗⃗⃗⃗⃗ =0,即{-2x+4y-az=0,2x+4y-4z=0,解得{x=(4-a)z4,y=(a+4)z8,令z=8,则x=8-2a,y=a+4,所以n=(8-2a,a+4,8)为平面D1MN的一个法向量.易知m=(0,0,1)为平面ABCD的一个法向量.设平面D1MN与平面ABCD的夹角为θ,则cos θ=|m·n||m||n|=√(8-2a)+(a+4)+64=√5a2-24a+144,当a=125时,cos θ取最大值,则θ取最小值,所以A1M=4-125=85.16.8π解析如图,由余弦定理,得DE=√AD2+AE2-2AD·AEcos60°=√3,CE=√BE2+BC2-2BE·BCcos(180°-60°)=√7,所以AE2+DE2=AD2,DC2+DE2=CE2,即AE⊥DE,DC⊥DE.分别取CE,A1C的中点F,M,连接FM,则F为Rt△DEC的外心,因为△DEC的面积为定值,所以当平面A1DE⊥平面DEC时,点A1到平面DEC的距离最大,此时三棱锥A1-DEC的体积最大,又A1E⊥DE,所以A1E⊥平面DEC.由F,M分别为CE,A1C的中点,得FM∥A1E,所以FM⊥平面DEC,易知M是三棱锥A1-DEC的外接球的球心.因为A1C2=A1E2+CE2=1+7=8,所以所求外接球的表面积S=4π(A1C2)2=8π.17.证明(1)在直三棱柱ABC-A1B1C1中,BB1⊥平面ABC,AB⊂平面ABC,∴BB1⊥AB.∵侧面ABB1A1,BCC1B1,ACC1A1的面积依次为16,12,20,∴AB∶BC∶AC=4∶3∶5,∴AB2+BC2=AC2,即AB⊥BC.又BB1∩BC=B,∴AB⊥平面BB1C1C,又AB⊂平面ABE,∴平面ABE⊥平面BB1C1C.(2)如图,取AB的中点G,连接EG,GF.∵G,F分别为AB,BC的中点,∴GF∥AC,GF=12AC.∵E为A1C1的中点,∴EC1=12A1C1=12AC.又A 1C 1∥AC ,∴EC 1∥GF ,EC 1=GF ,∴四边形EGFC 1为平行四边形,∴C 1F ∥EG.又C 1F ⊄平面ABE ,EG ⊂平面ABE ,∴C 1F ∥平面ABE. 18.(1)证明 因为四边形ABCD 是正方形,所以BC ∥AD.又AD ⊂平面PAD ,BC ⊄平面PAD ,所以BC ∥平面PAD. 同理EB ∥平面PAD.又BC ∩EB=B ,所以平面EBC ∥平面PAD. 又CE ⊂平面EBC ,所以CE ∥平面PAD.(2)解 以A 为原点,AD ,AB ,AP 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系如图所示.因为PA=AB=3,所以BE=13PA=1,所以P (0,0,3),D (3,0,0),C (3,3,0),E (0,3,1), 所以PD ⃗⃗⃗⃗⃗ =(3,0,-3),PC ⃗⃗⃗⃗⃗ =(3,3,-3),PE⃗⃗⃗⃗⃗ =(0,3,-2). 设平面PCE 的法向量为m =(x ,y ,z ),则{m ·PC ⃗⃗⃗⃗⃗ =3x +3y -3z =0,m ·PE ⃗⃗⃗⃗⃗ =3y -2z =0,得{x =z3,y =2z 3,令z=3,则x=1,y=2,所以m =(1,2,3)为平面PCE 的一个法向量. 设直线PD 与平面PCE 所成的角为θ, 则sin θ=|cos <PD ⃗⃗⃗⃗⃗ ,m >|=|PD⃗⃗⃗⃗⃗⃗⃗ ·m ||PD ⃗⃗⃗⃗⃗⃗⃗||m |=3√2×√14=√77,所以直线PD 与平面PCE 所成角的正弦值为√77. 19.(1)证明 因为PD ⊥底面ABCD ,AM ⊂平面ABCD ,所以PD ⊥AM.又PB ⊥AM ,PB ∩PD=P ,所以AM ⊥平面PBD. 又AM ⊂平面PAM ,所以平面PAM ⊥平面PBD. (2)解 由(1)可知AM ⊥平面PBD ,所以AM ⊥BD ,所以△DAB ∽△ABM.设BM=x ,则AD=2x ,由BMAB =ABAD ,即x1=12x ,得2x 2=1,解得x=√22,所以AD=√2.因为PD ⊥底面ABCD ,所以四棱锥P-ABCD 的体积为13×1×√2×1=√23.20.解 (1)如图,延长CB ,DM 相交于点E ,连接A 1E.因为点A 1,E 既在平面A 1BC 内,又在平面A 1DM 内,所以直线A 1E 即为平面A 1BC 与平面A 1DM 的交线l.因为DB 是∠ADC 的平分线,且BD ⊥BC ,所以B 为EC 的中点. 取A 1C 的中点N ,连接BN ,则BN ∥A 1E ,即BN ∥l. 故当N 为棱A 1C 的中点时,BN ∥l.(2)由题意可知BM ⊥A 1M ,BM ⊥MD ,则∠A 1MD 为二面角A 1-BM-D 的平面角,所以∠AMD=60°.又A 1M=MD ,所以△A 1MD 为等边三角形. 取MD 的中点O ,连接A 1O ,则A 1O ⊥MD.由BM ⊥A 1M ,BM ⊥MD ,A 1M ∩MD=M ,可知BM ⊥平面A 1MD ,所以BM ⊥A 1O. 又BM ∩MD=M ,所以A 1O ⊥平面BCDM. 如图,建立空间直角坐标系.则D (-1,0,0),A 1(0,0,√3),C (-5,4√3,0),B (1,2√3,0),所以DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,√3),DC ⃗⃗⃗⃗⃗ =(-4,4√3,0),DB⃗⃗⃗⃗⃗⃗ =(2,2√3,0). 设平面A 1CD 的法向量m =(x ,y ,z ),则{m ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =0,m ·DC ⃗⃗⃗⃗⃗ =0,即{x +√3z =0,-4x +4√3y =0, 令z=-√3,则x=3,y=√3,所以m =(3,√3,-√3)为平面A 1CD 的一个法向量. 设平面A 1BD 的法向量为n =(a ,b ,c ),则{n ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =0,n ·DB ⃗⃗⃗⃗⃗⃗ =0,即{x +√3c =0,2a +2√3b =0, 令c=-√3,则a=3,b=-√3,所以n =(3,-√3,-√3)为平面A 1BD 的一个法向量. 设平面A 1BD 与平面A 1CD 的夹角为θ, 则cos θ=|cos <m ,n >| =√3×√3)√3)√3)|√3+(√3)+(-√3)×√3+(-√3)+(-√3)=35,所以平面A 1BD 与平面A 1CD 的夹角的余弦值为35.21.(1)证明 ∵E ,F 分别是PC ,PB 的中点,∴BC ∥EF.又EF ⊂平面AEF ,BC ⊄平面AEF ,∴BC ∥平面AEF. 又BC ⊂平面ABC ,平面AEF ∩平面ABC=l ,∴BC ∥l.∵BC ⊥AC ,平面PAC ∩平面ABC=AC ,平面PAC ⊥平面ABC ,BC ⊂平面ABC ,∴BC ⊥平面PAC.∴l ⊥平面PAC.(2)解 如图,建立空间直角坐标系,则A (2,0,0),B (0,4,0),P (1,0,√3),E 12,0,√32,F 12,2,√32.所以AE ⃗⃗⃗⃗⃗ =(-32,0,√32),EF⃗⃗⃗⃗⃗ =(0,2,0). 由题意可设Q (2,y ,0),平面AEF 的法向量为m =(x ,y ,z ), 则{AE⃗⃗⃗⃗⃗ ·m =-32x +√32z =0,EF ⃗⃗⃗⃗⃗ ·m =2y =0,取z=√3,则x=1,y=0,所以m =(1,0,√3)为平面AEF 的一个法向量. 又PQ ⃗⃗⃗⃗⃗ =(1,y ,-√3),所以|cos <PQ ⃗⃗⃗⃗⃗ ,EF⃗⃗⃗⃗⃗ >|=2√4+y =√4+y ,|cos <PQ ⃗⃗⃗⃗⃗ ,m >|=2√4+y =√4+y ,依题意,|cos <PQ ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ >|=|cos <PQ ⃗⃗⃗⃗⃗ ,m >|,解得y=±1.故直线l 上存在点Q ,使直线PQ 分别与平面AEF ,直线EF 所成的角互余,此时AQ=1.22.解 (1)取EF 的中点G ,连接PG.因为EF⃗⃗⃗⃗⃗ =λBD ⃗⃗⃗⃗⃗⃗ ,所以EF ∥BD ,所以PE=PF , 所以PG ⊥EF.又平面PEF ⊥平面BCDEF ,平面PEF ∩平面BCDEF=EF ,PG ⊂平面PEF ,所以PG ⊥平面BCDEF.连接GC ,由题意可知GC ⊥EF.以G 为坐标原点,GF ,GC ,GP 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系如图所示.设菱形的边长为2,则F (λ,0,0),B (1,√3(1-λ),0),P (0,0,√3λ),D (-1,√3(1-λ),0),所以FB ⃗⃗⃗⃗⃗ =(1-λ,√3(1-λ),0),DP ⃗⃗⃗⃗⃗ =(1,-√3(1-λ),√3λ).因为BF ⊥PD ,所以FB ⃗⃗⃗⃗⃗ ·DP ⃗⃗⃗⃗⃗ =1-λ-3(1-λ)2=0,解得λ=23或λ=1(舍去).设△BCD 的面积为S ,则S △AEF =49S ,所以S 四边形BDEF =59S.所以V 1V 2=S △BCD S 四边形BDEF=S 59S =95.(2)二面角E-PF-B 是定值.证明如下:由(1)知n 1=(0,1,0)为平面PEF 的一个法向量. 设平面PFB 的法向量为n 2=(x ,y ,z ),因为FB ⃗⃗⃗⃗⃗ =(1-λ,√3(1-λ),0),FP⃗⃗⃗⃗⃗ =(-λ,0,√3λ), 所以{n 2·FB ⃗⃗⃗⃗⃗ =0,n 2·FP⃗⃗⃗⃗⃗ =0,即{(1-λ)x +√3(1-λ)y =0,-λx +√3λz =0,取y=1,则x=-√3,z=-1,所以n 2=(-√3,1,-1)为平面PFB 的一个法向量. 设二面角E-PF-B 的平面角为θ,所以|cos θ|=|cos <n 1,n 2>|=1×√5=√55.由图可知θ为钝角,所以二面角E-PF-B 为定值,其余弦值来为-√55.。

2021年高考数学立体几何多选题与热点解答题组合练及答案

2021年高考数学立体几何多选题与热点解答题组合练及答案

2021年高考数学立体几何多选题与热点解答题组合练及答案一、立体几何多选题1.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长都等于1,且它们彼此的夹角都是60,下列说法中正确的是( )A .()()2212AA AB ADAC ++=B .1A 在底面ABCD 上的射影是线段BD 的中点C .1AA 与平面ABCD 所成角大于45 D .1BD 与AC 6 【答案】AC 【分析】对A ,分别计算()21++AA AB AD 和2AC ,进行判断;对B ,设BD 中点为O ,连接1A O ,假设1A 在底面ABCD 上的射影是线段BD 的中点,应得10⋅=O AB A ,计算10⋅≠O AB A ,即可判断1A 在底面ABCD 上的射影不是线段BD 的中点;对C ,计算11,,A A AC AC ,根据勾股定理逆定理判断得11⊥A A AC ,1AA 与平面ABCD 所成角为1A AC ∠,再计算1tan ∠A AC ;对D ,计算1,AC BD 以及1BD AC ⋅,再利用向量的夹角公式代入计算夹角的余弦值. 【详解】对A ,由题意,11111cos602⋅=⋅=⋅=⨯⨯=AA AB AA AD AD AB ,所以()2222111112*********++=+++⋅+⋅+⋅=+++⨯⨯=AA AB ADAA AB AD AA AB AB AD AA AD ,AC AB AD =+,所以()222221113=+=+⋅+=++=AC AB ADAB AB AD AD ,所以()()22126++==AA AB AD AC ,故A 正确;对B ,设BD 中点为O ,连接1A O ,1111111222=+=+=++AO A A AO A A AC A A AD AB ,若1A 在底面ABCD 上的射影是线段BD 的中点,则1A O ⊥平面ABCD ,则应10⋅=O AB A ,又因为21111111111110222222224⎛⎫⋅=++⋅=-⋅+⋅+=-+⨯+=≠⎪⎝⎭O AB A A AD AB AB AA AB AD AB AB A ,故B 错误;对D ,11,BD AD AA AB AC AB AD=+-=+, 所以()()2211=2,=3=+-=+AD A B A AB AC AB AD D ,()()2211111⋅=+-⋅+=⋅++⋅+⋅--⋅=AC AD AA AB AB AD AD AB AD AA AB AA AD ABAB AD BD ,1116cos ,23⋅<>===⋅B AC D BD BD AC AC,故D 不正确;对C ,112==AC BD ,在1A AC 中,111,2,3===A A AC AC ,所以22211+=A A AC AC ,所以11⊥A A AC ,所以1AA 与平面ABCD 所成角为1A AC ∠,又1tan 21∠=>A AC ,即145∠>A AC ,故C 正确;故选:AC【点睛】方法点睛:用向量方法解决立体几何问题,需要树立“基底”意识,利用基向量进行线性运算,要理解空间向量概念、性质、运算,注意和平面向量类比;同时对于立体几何中角的计算问题,往往可以利用空间向量法,利用向量的夹角公式求解.2.已知四面体ABCD 的所有棱长均为2,则下列结论正确的是( ) A .异面直线AC 与BD 所成角为60︒ B .点A 到平面BCD 26 C .四面体ABCD 6πD .动点P 在平面BCD 上,且AP 与AC 所成角为60︒,则点P 的轨迹是椭圆 【答案】BC 【分析】在正四面体中通过线面垂直可证得AC ⊥BD ,通过计算可验证BC,通过轨迹法可求得P的轨迹为双曲线方程即可得D 错误. 【详解】取BD 中点E ,连接,AE CE ,可得BD ⊥面ACE ,则AC ⊥BD ,故A 错误;在四面体ABCD 中,过点A 作AF ⊥面BCD 于点F ,则F 为为底面正三角形BCD 的重心,因为所有棱长均为2,22263AF AB BF =-=,即点A 到平面BCD 的距离为263,故B 正确;设O 为正四面体的中心则OF 为内切球的半径,OA 我外接球的半径, 因为11433A BCD BCD BCD V S AF S OF -=⋅=⨯⋅△△,所以4AF OF =,即62=66OF AO =,, 所以四面体ABCD 的外接球体积3344633V R OA πππ===,故C 正确; 建系如图:26230,0,,0,,0A C ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,设(,,0)P x y ,则262326,,0,,333AP x y AC →→⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为cos 60AP AC AP AC →→→→⋅=,所以22232481224193972y x y +=++⨯+⨯, 即222388=33y x y +++,平方化简可得:2232340039y x y ----,可知点P 的轨迹为双曲线,故D 错误. 故选:BC .【点睛】方法点睛:立体几何中动点轨迹的求解问题,解决此类问题可采用空间向量法,利用空间向量法表示出已知的角度或距离的等量关系,从而得到轨迹方程.3.如图,正方体1111ABCD A B C D -的棱长为3,线段11B D 上有两个动点,E F ,且1EF =,以下结论正确的有( )A .AC BE ⊥B .异面直线,AE BF 所成的角为定值C .点A 到平面BEF 的距离为定值D .三棱锥A BEF -的体积是定值 【答案】ACD 【详解】由AC BD ⊥,1AC DD ⊥可证AC ⊥平面11D DBB ,从而AC BE ⊥,故A 正确; 取特例,当E 与1D 重合时,F 是F ',AE 即1AD ,1AD 平行1BC ,异面直线,AE BF '所成的角是1C BF '∠,当F 与1B 重合时,E 是E ',BF 即1BB ,异面直线,AE BF '所成的角是1A AE '∠,可知1C BF '∠与1A AE '∠不相等,故异面直线,AE BF 所成的角不是定值,故B 错误;连结BD 交AC 于O ,又AC ⊥平面11D DBB ,点A 到平面11BDD B 的距离是2=2AO ,也即点A 到平面BEF 的距离是22,故C 正确; 2=2AO 为三棱锥A BEF -的高,又1111224BEFS =⨯⨯=△,故三棱锥A BEF -的体积为112234⨯=D 正确. 故选:ACD【点睛】求空间中点到平面的距离常见方法为: (1)定义法:直接作平面的垂线,求垂线;(2)等体积法:不作垂线,通过等体积法间接求点到面的距离; (3)向量法:计算斜线在平面的法向量上的投影即可.4.(多选题)如图所示,正方体1111ABCD A B C D -中,1AB =,点P 在侧面11BCC B 及其边界上运动,并且总是保持1AP BD ⊥,则以下四个结论正确的是( )A .113P AA D V -=B .点P 必在线段1BC 上 C .1AP BC ⊥D .AP ∥平面11AC D【答案】BD 【分析】 对于A ,1111111113326P AA D AA DV S CD -=⋅=⨯⨯⨯⨯=, 对于B,C,D ,如图以D 为坐标原点可建立空间直角坐标系,利用空间向量判即可. 【详解】对于A ,因为点P 在平面11BCC B ,平面11BCC B ∥平面1AA D , 所以点P 到平面1AA D 即为C 到平面1AA D 的距离,即为正方体棱长, 所以1111111113326P AA D AA DV S CD -=⋅=⨯⨯⨯⨯=,A 错误; 对于B ,以D 为坐标原点可建立如下图所示的空间直角坐标系:则11(1,0,0),(,1,),(1,1,0),(0,0,1),(1,1,1),(0,1,0)A P x z B D B C所以11(1,1,),(1,1,1),(1,0,1)AP x z BD BC =-=--=--, 因为1AP BD ⊥,所以1110AP BD x z ⋅=--+=,所以x z =,即(,1,)P x x , 所以(,0,)CP x x =,所以1CP xBC =-,即1,,B C P 三点共线, 所以点P 必在线段1B C 上,B 正确;对于C ,因为1(1,1,),(1,0,1)AP x x BC =-=-, 所以111AP BC x x ⋅=-+=, 所以1AP BC ⊥不成立,C 错误;对于D ,因为11(1,0,1),(0,1,1),(0,0,0)A C D , 所以11(1,0,1),(0,1,1)DA DC ==, 设平面11AC D 的法向量为(,,)n x y z =,则110n DA x z n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩, 令1x =,则1,1z y =-=,所以(1,1,1)n =-, 所以110AP n x x ⋅=-+-=,所以AP n ⊥, 所以AP ∥平面11AC D ,D 正确, 故选:BD 【点睛】此题考查了空间线线垂直的判定,线面平行的判定,三棱锥的体积,考查空间想象能力,考查计算能力,属于较难题.5.在长方体1111ABCD A B C D -中,AB =12AD AA ==,,,P Q R 分别是11,,AB BB AC 上的动点,下列结论正确的是( ) A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥ B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥ C .当1AR A C ⊥时,1AR D R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABD 【分析】如图所示建立空间直角坐标系,计算142D P CQ b ⋅=-,()12222D R CQ b λλ⋅=--,134AR D R ⋅=-,10D R n ⋅=,得到答案.【详解】如图所示,建立空间直角坐标系,设()2,,0P a ,0,23a ⎡⎤∈⎣⎦,()2,23,Q b ,[]0,2b∈,设11A R AC λ=,得到()22,23,22R λλλ--,[]0,1λ∈. ()12,,2P a D -=,()2,0,CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;()122,23,2D R λλλ=--,()12222D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确; 1AR A C ⊥,则()()12,23,222,23,2212440AR AC λλλλλλ⋅=--⋅--=-+-+=, 14λ=,此时11333313,,,,02222224AR D R ⎛⎫⎛⎫⋅=-⋅-=-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,C 错误; 113AC A R =,则4234,,33R ⎛⎫ ⎪ ⎪⎝⎭,14232,,33D R ⎛⎫=- ⎪ ⎪⎝⎭,设平面1BDC 的法向量为(),,n x y z =,则100n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得()3,1,3n =-,故10D R n ⋅=,故1//D R 平面1BDC ,D 正确. 故选:ABD .【点睛】本题考查了空间中的线线垂直,线面平行,意在考查学生的计算能力和空间想象能力,推6.已知棱长为1的正方体1111ABCD A B C D -,过对角线1BD 作平面α交棱1AA 于点E ,交棱1CC 于点F ,以下结论正确的是( ) A .四边形1BFD E 不一定是平行四边形 B .平面α分正方体所得两部分的体积相等 C .平面α与平面1DBB 不可能垂直 D .四边形1BFD E 面积的最大值为2 【答案】BD 【分析】由平行平面的性质可判断A 错误;利用正方体的对称性可判断B 正确;当E 、F 为棱中点时,通过线面垂直可得面面垂直,可判断C 错误;当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积最大,且最大值为2,可判断D 正确. 【详解】 如图所示,对于选项A,因为平面1111//ABB A CC D D ,平面1BFD E 平面11ABB A BE =,平面1BFD E平面111CC D D D F =,所以1//BE D F ,同理可证1//D E BF ,所以四边形1BFD E 是平行四边形,故A 错误; 对于选项B,由正方体的对称性可知,平面α分正方体所得两部分的体积相等,故B 正确; 对于选项C,在正方体1111ABCD A B C D -中,有1,AC BD AC BB ⊥⊥, 又1BD BB B ⋂=,所以AC ⊥平面1BB D , 当E 、F 分别为棱11,AA CC 的中点时, 有//AC EF ,则EF ⊥平面1BB D , 又因为EF ⊂平面1BFD E ,所以平面1BFD E ⊥平面1BB D ,故C 错误;对于选项D,四边形1BFD E 在平面ABCD 内的投影是正方形ABCD , 当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积有最大值, 此时1212S D E BE =⋅=,故D 正确; 故选:BD.本题考查了正方体的几何性质与应用问题,也考查了点线面的位置关系应用问题,属于中档题.7.如图,点O 是正四面体P ABC -底面ABC 的中心,过点O 的直线交AC ,BC 于点M ,N ,S 是棱PC 上的点,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,则( )A .若//MN 平面PAB ,则//AB RQ B .存在点S 与直线MN ,使PC ⊥平面SRQC .存在点S 与直线MN ,使()0PS PQ PR ⋅+= D .111PQPRPS++是常数【答案】ABD 【分析】对于选项A ,根据线面平行的性质定理,进行推理判断即可;对于选项B ,当直线MN 平行于直线AB , 13SC PC =时,通过线面垂直的判定定理,证明此时PC ⊥平面SRQ ,即可证明,存在点S 与直线MN ,使PC ⊥平面SRQ ;对于选项C ,假设存在点S 与直线MN ,使()0PS PQ PR ⋅+=,利用线面垂直的判定定理可证得PC ⊥平面PAB ,此时通过反证法说明矛盾性,即可判断; 对于选项D ,利用S PQR O PSR O PSQ O PQR V V V V ----=++,即可求得111PQPRPS++是常数.【详解】 对于选项A , 若//MN 平面PAB ,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,∴平面SMN 平面PAB =RQ ,又MN ⊂平面SMN ,//MN 平面PAB ,∴//MN RQ ,点O 在面ABC 上,过点O 的直线交AC ,BC 于点M ,N ,∴MN ⊂平面ABC ,又//MN 平面PAB ,平面ABC平面PAB AB =,∴//MN AB , ∴//AB RQ ,故A 正确; 对于选项B ,当直线MN 平行于直线AB ,S 为线段PC 上靠近C 的三等分点,即13SC PC =, 此时PC ⊥平面SRQ ,以下给出证明: 在正四面体P ABC -中,设各棱长为a ,∴ABC ,PBC ,PAC △,PAB △均为正三角形,点O 为ABC 的中心,//MN AB ,∴由正三角形中的性质,易得23CN CM a ==, 在CNS 中,23CN a =,13SC a =,3SCN π∠=,∴由余弦定理得,3SN a ==, ∴222249SC SN a CN +==,则SN PC ⊥, 同理,SM PC ⊥,又SM SN S =,SM ⊂平面SRQ ,SN ⊂平面SRQ ,∴PC ⊥平面SRQ ,∴存在点S 与直线MN ,使PC ⊥平面SRQ ,故B 正确; 对于选项C ,假设存在点S 与直线MN ,使()0PS PQ PR ⋅+=, 设QR 中点为K ,则2PQ PR PK +=,∴PS PK ⊥,即PC PK ⊥,()cos cos 0PC AB PC PB PA PC PB CPB PC PA CPA ⋅=⋅-=⋅∠-⋅∠=,∴PC AB ⊥,又易知AB 与PK 为相交直线,AB 与PK 均在平面PQR 上,∴PC ⊥平面PQR ,即PC ⊥平面PAB ,与正四面体P ABC -相矛盾,所以假设不成立, 故C 错误; 对于选项D ,易知点O 到面PBC ,面PAC ,面PAB 的距离相等,记为d ,记PC 与平面PAB 所处角的平面角为α,α为常数,则sin α也为常数,则点S 到PQR 的距离为sin PS α, 又13sin 234PQR S PQ PR PQ PR π=⋅=⋅ ∴()()1133sin sin sin 33412S PQR PQR V PS S PS PQ PR PQ PR PS ααα-=⋅=⋅⋅=⋅⋅,又13sin 234PSR S PS PR PS PR π=⋅=⋅, 13sin 234PSQ SPS PQ PS PQ π=⋅=⋅, 13sin 234PQR S PQ PR PQ PR π=⋅=⋅, ()3S PQR O PSR O PSQ O PQR V V V V d PS PR PS PQ PQ PR ----=++=⋅+⋅+⋅, ∴()33sin 1212PQ PR PS d PS PR PS PQ PQ PR α⋅⋅=⋅+⋅+⋅, ∴111sin d PQ PR PS α++=为常数,故D 正确.故选:ABD.【点睛】本题考查了线面平行的性质定理、线面垂直的判定定理,考查了三棱锥体积的计算,考查了向量的运算,考查了转化能力与探究能力,属于较难题.8.如图,已知矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1A C 的中点,则ADE ∆在翻折过程中,下列说法正确的是( )A .线段BM 的长是定值B .存在某个位置,使1DE AC ⊥C .点M 的运动轨迹是一个圆D .存在某个位置,使MB ⊥平面1A DE【答案】AC【分析】取CD 中点F ,连接BF ,MF ,根据面面平行的判定定理可得平面//BMF 平面1A DE ,由面面平行的性质定理可知//BM 平面1A DE ,可判断D ;在BFM ∆中,利用余弦定理可求得BM a =为定值,可判断A 和C ;假设1DE A C ⊥,由线面垂直的判定定理可得DE ⊥平面1A CE ,由线面垂直的性质定理可知1DE A E ⊥,与11DA A E ⊥矛盾,可判断B .【详解】解:取CD 的中点F ,连接BF ,MF ,∵M ,F 分别为1A C 、CD 中点,∴1MF A D ∥,∵1A D ⊂平面1A DE ,MF ⊄平面1A DE ,∴MF 平面1A DE ,∵DF BE ∥且DF BE =,∴四边形BEDF 为平行四边形,∴BF DE ,∵DE ⊂平面1A DE ,BF ⊄平面1A DE ,∴BF ∥平面1A DE ,又BF MF F =,BF 、MF ⊂平面BMF ,∴平面//BMF 平面1A DE ,∵BM ⊂平面BMF ,∴BM ∥平面1A DE ,即D 错误,设22AB AD a ==, 则112MF A D a ==,2BF DE a ==,145A DE MFB ︒∠=∠=, ∴222cos45BM MF BF MF BF a ︒=+-⋅⋅=,即BM 为定值,所以A 正确,∴点M 的轨迹是以B 为圆心,a 为半径的圆,即C 正确, ∵2DE CE a ==,2CD AB a ==,∴222DE CE CD +=,∴DE CE ⊥,设1DE A C ⊥,∵1A C 、CE ⊂平面1A CE ,1AC CE C =, ∴DE ⊥平面1A CE ,∵1A E ⊂平面1A CE ,∴1DE A E ⊥,与11DA A E ⊥矛盾,所以假设不成立,即B 错误.故选:AC .【点睛】本题考查立体几何中的翻折问题,涉及到线段长度的求解、直线与平面位置关系的判定、点的轨迹的求解、反证法的应用等知识点,考查学生的空间立体感和推理论证能力.9.如果一个棱锥的底面是正方形,且顶点在底面内的射影是底面的中心,那么这样的棱锥叫正四棱锥.若一正四棱锥的体积为18,则该正四棱锥的侧面积最小时,以下结论正确的是( ).A .棱的高与底边长的比为2B .侧棱与底面所成的角为4πCD .侧棱与底面所成的角为3π 【答案】AB【分析】 设四棱锥S ABCD -的高为h ,底面边长为a ,由21183V a h ==得254h a =,然后可得侧a =时侧面积取得最小值,此时3h =,然后求出棱锥的高与底面边长的比和SAO ∠即可选出答案.【详解】设四棱锥S ABCD -的高为h ,底面边长为a 可得21183V a h ==,即254h a= 所以其侧面积为2222244215410842244a a a h a a a⋅⋅+=+=+令()242108f a a a =+,则()23321084f a a a ⨯'=- 令()233210840f a a a ⨯'=-=得32a = 当(0,32a ∈时()0f a '<,()f a 单调递减 当()32,a ∈+∞时()0f a '>,()f a 单调递增 所以当32a =时()f a 取得最小值,即四棱锥的侧面积最小此时3h = 所以棱锥的高与底面边长的比为22,故A 正确,C 错误 侧棱与底面所成的角为SAO ∠,由3h =,32a =可得3AO = 所以4SAO π∠=,故B 正确,D 错误 故选:AB【点睛】本题考查的知识点有空间几何体的体积和表面积、线面角及利用导数求最值,属于综合题.10.如图,1111ABCD A B C D -为正方体,下列结论中正确的是( )A .11A C ⊥平面11BB D DB .1BD ⊥平面1ACBC .1BD 与底面11BCC B 2D .过点1A 与异面直线AD 与1CB 成60角的直线有2条【答案】ABD【分析】由直线与平面垂直的判定判断A 与B ;求解1BD 与底面11BCC B 所成角的正切值判断C ;利用空间向量法可判断D .【详解】对于A 选项,如图,在正方体1111ABCD A B C D -中,1BB ⊥平面1111D C B A ,11A C ⊂平面1111D C B A ,则111BB A C ⊥,由于四边形1111D C B A 为正方形,则1111AC B D ⊥, 1111BB B D B =,因此,11A C ⊥平面11BB D D ,故A 正确;对于B 选项,在正方体1111ABCD A B C D -中,1DD ⊥平面ABCD ,AC ⊂平面ABCD ,1AC DD ∴⊥,因为四边形ABCD 为正方形,所以,AC BD ⊥,1D DD BD =,AC ∴⊥平面11BB D D ,1BD ⊂平面11BB D D ,1AC BD ∴⊥,同理可得11BD B C ⊥, 1ACB C C =,1BD ∴⊥平面1ACB ,故B 正确; 对于C 选项,由11C D ⊥平面11BCC B ,得11C BD ∠为1BD 与平面11BCC B 所成角, 且111112tan 2C D C BD BC ∠==,故C 错误; 对于D 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设正方体的棱长为1,则()1,0,0A 、()0,0,0D 、()0,1,0C 、()11,1,1B ,()1,0,0DA =,()11,0,1CB =,设过点1A 且与直线DA 、1CB 所成角的直线的方向向量为()1,,m y z =, 则221cos ,21DA mDA m DA m y z ⋅<>===⋅++, 1122111cos ,221CB m z CB m CB m y z ⋅+<>===⋅⋅++, 整理可得2222341y z y z z ⎧+=⎨=++⎩,消去y 并整理得2210z z +-=,解得12z =-12z =-由已知可得3z ≤,所以,12z =-+22y =±因此,过点1A 与异面直线AD 与1CB 成60角的直线有2条,D 选项正确.故选:ABD.【点睛】方法点睛:证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.。

2021高考数学押题专练立体几何 (解析版)

2021高考数学押题专练立体几何 (解析版)

押题12 立体几何【押题方向】高考立体几何承载着考查空间想象能力、逻辑推理能力及运算能力的考查,是高中数学的传统及核心重点内容,也是高考命题创新的探索者.在每年的试题中,它在继承中求稳定,在创新中求发展. 为了准确地把握2021年高考立体几何小题命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,我们现一起分析研究2020-2017这4年的考题,以便发现规律,把握住高考命题的脉搏.【模拟专练】1.(2021·山东高三二模)如图,在棱长为1的正方体1111ABCD A BC D -中,P ,M ,N 分别为棱1CC ,CB ,CD 上的动点(点P 不与点C ,1C 重合),若CP CM CN ==,则下列说法正确的是( )A .存在点P ,使得点1A 到平面PMN 的距离为43B .用过P ,M ,1D 三点的平面去截正方体,得到的截面一定是梯形C .1//BD 平面PMND .用平行于平面PMN 的平面α去截正方体,得到的截面为六边形时,该六边形周长一定为32【答案】ABD 【详解】A .连接1111111,,,,,,AC BC AB BDCD A D B C ,如图所示:因为CP CM CN ==,所以易知11//,//,//MN BD NP C D MP BC ,且平面//MNP 平面1BC D , 又已知三棱锥11A BC D -各条棱长均为211A BC D -为正四面体, 所以1A 到平面1BC D ()2222232323⎛⎫-⨯⨯= ⎪ ⎪⎝⎭,因为11A B ⊥平面11BCC B ,所以111A B BC ⊥,又11BC B C ⊥,且1111A B B C B =,所以1BC ⊥平面11A B C ,又1AC ⊂平面11A B C ,所以11BC AC , 同理可得11C D AC ⊥,且111BC C D C ⋂=,所以1AC ⊥平面1BC D , 又因为13AC ,所以1A 到平面PMN 的距离233∈⎝23433<< B .如图所示,连接1D P 并延长交DC 的延长线于Q 点,连接QM 并将其延长与AD 相交于A ', 因为CP CM =,且1//,//CP DD CM AD ,则1CP CM CQDD DA DQ==',所以1DA DD '=,所以A '即为A ,连接1AD ,所以过P ,M ,1D 的截面为四边形1AD PM ,由条件可知111//,//MP BC BC AD ,且1MP AD ≠,所以四边形1AD PM 为梯形,故正确;C .连接1BD ,由A 可知平面//MNP 平面1BC D ,又因为B ∈平面1BC D ,1D ∉平面1BC D ,所以1BD 不平行于平面1BC D , 所以1//BD 平面PMN 不成立,故错误;D .在1BB 上取点1P ,过点1P 作12//PP MP 交11B C 于2P ,过2P 作21//P N MN 交11C D 于1N ,以此类推,依次可得点212,,N M M ,此时截面为六边形, 根据题意可知:平面121212//PP N N M M 平面MNP ,不妨设1BP x =,所以1221212PM P N N M x===,所以)12121221PP N N M M x ===-,所以六边形的周长为:)322132x x ⎡⎤-=⎣⎦2.(2021·山东临沂市·高三其他模拟)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将ABE 沿AE 翻折,使得二面角B AE D --为直二面角,得到图2所示的四棱锥B AECD -,点F 为线段BD 上的动点(不含端点),则在四棱锥B AECD -中,下列说法正确的有( )A .,,,B EC F 四点不共面 B .存在点F ,使得平面//CF 平面BAE C .三棱锥B ADC -的体积为定值D .存在点E 使得直线BE 与直线CD 垂直【答案】AB 【详解】对于A 中,假设直线BE 与直线CF 在同一平面上,所以E 在平面BCF 上, 又因为E 在线段BC 上,BC平面BCF C =,所以E 与C 重合,与E 异于C 矛盾,所以直线BE 与直线CF 必不在同一平面上,即B E C F 、、、四点不共面,故A 正确; 对于B 中,当点F 为线段BD 中点时, 可得EC AD =,再取AB 的中点G ,则//EC FG 且EC FG =,四边形ECFQ 为平行四边形, 所以//FC EG ,则直线CF 与平面BAE 平行,故B 正确;对于C 中,由题B ADC V -,但E 的移动会导致点B 到平面ACD 的距离在变化, 所以B ADC -的体积不是定值,故C 不正确;对于D中,D.过B作BO AE⊥于O,因为平面BAE⊥平面AECD,平面BAE平面AECD AE=,所以BO⊥平面AECD.过D作DH AE⊥于H,因为平面BAE⊥平面AECD,平面BAE平面AECD AE=,所以DH⊥平面BAE,所以DH BE⊥,若存在点E使得直线BE与直线CD垂直,由平面DHC⊥平面AECD,且DC∈平面AECD,DH DC D⋂=,所以BE⊥平面AECD,所以E与O重合,与三角形ABE是以B为直角的三角形矛盾,所以不存在点E使得直线BE与直线CD垂直,所以D不正确. 故选:AB.3.(2021·山东高三二模)半正多面体(semiregularsolid)亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为2,则()A.BF⊥平面EABB.该二十四等边体的体积为20 3C.该二十四等边体外接球的表面积为8πD .PN 与平面EBFN 所成角的正弦值为22【答案】BCD 【详解】解:对于A ,假设A 对,即BF ⊥平面EAB ,于是BF AB ⊥,90ABF ∠=︒,但六边形ABFPQH 为正六边形,120ABF ∠=︒,矛盾,所以A 错;对于B ,补齐八个角构成棱长为2的正方体, 则该二十四等边体的体积为3112028111323-⋅⋅⋅⋅⋅=,所以B 对;对于C ,取正方形ACPM 对角线交点O , 即为该二十四等边体外接球的球心,其半径为2R =,其表面积为248R ππ=,所以C 对; 对于D ,因为PN 在平面EBFN 内射影为NS , 所以PN 与平面EBFN 所成角即为PNS ∠, 其正弦值为22PS PN ==,所以D 对. 故选:BCD .4.(2021·聊城市·山东聊城一中高三一模)如图,正四棱锥S -BCDE 底面边长与侧棱长均为a ,正三棱锥A-SBE 底面边长与侧棱长均为a ,则下列说法正确的是( )A .AS ⊥CDB .正四棱锥S -BCDE 的外接球半径为22a C .正四棱锥S -BCDE 的内切球半径为212a ⎛⎫-⎪ ⎪⎝⎭D .由正四棱锥S -BCDE 与正三棱锥A -SBE 拼成的多面体是一个三棱柱 【答案】ABD 【详解】 如图所示:A 选项:取BE 中点H 连接,AH SH ,正三棱锥A SBE -中,,AH BE SH BE ⊥⊥ 又AHSH H =,所以BE ⊥平面SAH ,则BE AS ⊥,又//BE CD 所以AS CD ⊥ ,故A 正确;B 选项:设底面中心为1O ,球心为O 半径为R ,因为正四棱锥S -BCDE 外接球球心在1O S 上,所以OS OB R ==,因为,正四棱锥S -BCDE 底面边长与侧棱长均为a所以112O B O S a ==,由()22211OB O B O S OS =+-得222R a R ⎫⎫=+-⎪⎪⎪⎪⎝⎭⎝⎭解得2R a =,故B 正确; C 选项:设内切球半径为r,易求得侧面面积为221sin 23S a π=⋅=,由等体积法得2221114333a a r r =⋅+⋅⋅解得4a r = ,故C 错;D 选项:取SE 中点F ,连结AF ,DF ,BF ,则BFD ∠和BFA ∠分别是D SE B --和A SE B --的二面角的平面角,由)22222221cos 232BF DF BD BFD BF DF ⎫⎫+-⎪⎪+-⎝⎭⎝⎭∠===-⋅⎫⎪⎝⎭22222221cos 232a AF BF BA AFD AF BF ⎫⎫+-⎪⎪+-⎝⎭⎝⎭∠===⋅⎫⎪⎝⎭,故BFD ∠与BFA ∠互补,所以ASDE 共面,又因为AS AE ED SD ===,则ASDE 为平行四边形,故////AS ED BC 故正四棱锥S -BCDE 与正三棱锥A -SBE 拼成的多面体是一个三棱柱,所以D 正确5.(2021·山东济宁市·高三一模)如图,AC 为圆锥SO 底面圆O 的直径,点B 是圆O 上异于A ,C 的动点,2SO OC ==,则下列结论正确的是( )A .圆锥SO 的侧面积为82πB .三棱锥S ABC -体积的最大值为83C .SAB ∠的取值范围是ππ,43⎛⎫⎪⎝⎭D .若AB BC =,E 为线段AB 上的动点,则SE CE +的最小值为)231+【答案】BD 【详解】在Rt SOC △中,2222SC SO OC += 则圆锥的母线长22l =,半径2r OC ==,对于选项A :圆锥SO 的侧面积为:42rl ππ=,故选项A 错误; 对于选项B :当OB AC ⊥时,ABC 的面积最大, 此时14242ABCS=⨯⨯=, 则三棱锥S ABC -体积的最大值为:11842333ABCSSO ⨯⨯=⨯⨯=; 故选项B 正确;对于选项C :当点B 与点A 重合时,0ASB ∠=为最小角,当点B 与点C 重合时,2ASB π∠=,达到最大值,又因为B 与,A C 不重合, 则0,2ASB π⎛⎫∠∈ ⎪⎝⎭,又2SAB ASB π∠+∠=, 可得,42SAB ππ⎛⎫∠∈⎪⎝⎭, 故选项C 不正确;对于选项D :由,90,4AB BC ABC AC =∠=︒=, 得22AB BC ==, 又22SA SB ==, 则SAB 为等边三角形, 则60SBA ∠=︒,将SAB 以AB 为轴旋转到与ABC 共面,得到1S AB , 则1S AB 为等边三角形,160S BA ∠=︒, 如图:则()1min SE CE S C +=,因为11122,150S B BC S BC S BA ABC ==∠=∠+∠=︒,()22221112cos1508883232S C S B BC S B BC =+-⨯⨯⨯︒=++=,则())1min 231SE CE S C +==,故选项D 正确; 故选:BD.【押题专练】1.如图,在棱长为1的正方体1111ABCD A BC D -中,P ,M ,N 分别为棱1CC ,CB ,CD 上的动点(点P 不与点C ,1C 重合),若CP CM CN ==,则下列说法正确的是( )A .存在点P ,使得点1A 到平面PMN 的距离为43B .用过P ,M ,1D 三点的平面去截正方体,得到的截面一定是梯形C .1//BD 平面PMND .用平行于平面PMN 的平面α去截正方体,得到的截面为六边形时,该六边形周长一定为32【答案】ABD【详解】A .连接1111111,,,,,,AC BC AB BDCD A D B C ,如图所示:因为CP CM CN ==,所以易知11//,//,//MN BD NP C D MP BC ,且平面//MNP 平面1BC D , 又已知三棱锥11A BC D -各条棱长均为211A BC D -为正四面体,所以1A 到平面1BC D ()22222323233⎛⎫-⨯⨯= ⎪ ⎪⎝⎭, 因为11A B ⊥平面11BCC B ,所以111A B BC ⊥,又11BC B C ⊥,且1111A B B C B =,所以1BC ⊥平面11A B C ,又1AC ⊂平面11A B C ,所以11BC AC ,同理可得11C D AC ⊥,且111BC C D C ⋂=,所以1AC ⊥平面1BC D , 又因为13AC =,所以1A 到平面PMN的距离23,33⎛⎫∈ ⎪ ⎪⎝,且234333<<,故正确; B .如图所示,连接1D P 并延长交DC 的延长线于Q 点,连接QM 并将其延长与AD 相交于A ', 因为CP CM =,且1//,//CP DD CM AD ,则1CP CM CQ DD DA DQ==',所以1DA DD '=,所以A '即为A ,连接1AD ,所以过P ,M ,1D 的截面为四边形1AD PM ,由条件可知111//,//MP BC BC AD ,且1MP AD ≠,所以四边形1AD PM 为梯形,故正确;C .连接1BD ,由A 可知平面//MNP 平面1BC D ,又因为B ∈平面1BC D ,1D ∉平面1BC D ,所以1BD 不平行于平面1BC D ,所以1//BD 平面PMN 不成立,故错误;D .在1BB 上取点1P ,过点1P 作12//PP MP 交11B C 于2P ,过2P 作21//P N MN 交11C D 于1N ,以此类推,依次可得点212,,N M M ,此时截面为六边形,根据题意可知:平面121212//PP N N M M 平面MNP ,不妨设1BP x =,所以1221212PM P N N M x ===,所以()12121221PP N N M M x ===-,所以六边形的周长为:()322132x x ⎡⎤+-=⎣⎦,故正确;2.如图所示,几何体是由两个全等的直四棱柱组合而成的,且前后、左右、上下均对称,两个四棱柱的侧棱互相垂直,四棱柱的底面是边长为2的正方形,该几何体外接球的体积为86π,设两个直四棱柱交叉部分为几何体r ,则( )A .几何体r 为四棱锥B .几何体r 的各侧面为全等的正三角形C .直四棱柱的高为4D .几何体r 内切球的体积为4π3【答案】CD【详解】该几何体的直观图如图所示,几何体r 为两个全等的四棱锥S ABCD -和P ABCD -组成,故A 错误;由题意,这两个直四棱柱的中心既是外接球的球心,也是内切球的球心,设外接球的半径为R ,直四棱柱的高为h ,则6R ==2221222h ++,所以4h =,故C 正确; 在等腰三角形ABS 中,22SB =,SB 边上的高为2,则6SA =.由该几何体前后、左右、上下均对称,知四边形ABCD 为边长为6的菱形.侧面均为全等的等腰三角形,腰长为6,底边为22,故B 错误;设AC 的中点为H ,连接BH ,SH ,易证SH 即为四棱锥S ABCD -的高,在Rt ABH △中,22622BH AB AH =-=-=.又22AC SB ==,所以12222422ABCD S =⨯⨯⨯=. 又BH SH =,所以1182242333S ABCD ABCD V SH S -=⋅=⨯⨯=. 设内切球的半径为r ,因为八个侧面的面积均为22182228233r ⋅=⨯,得1r =,故几何体r 内切球的体积为4π3,故D 正确. 3.已知正方体ABCD ﹣A 1B 1C 1D 1,棱长为2,E 为线段B 1C 上的动点,O 为AC 的中点,P 为棱CC 1上的动点,Q 为棱AA 1的中点,则以下选项中正确的有( )A .AE ⊥B 1CB .直线B 1D ⊥平面A 1BC 1C .异面直线AD 1与OC 1所成角为3πD .若直线m 为平面BDP 与平面B 1D 1P 的交线,则m //平面B 1D 1Q【答案】BD【详解】解:在正方体ABCD ﹣A 1B 1C 1D 1中,B 1C ⊥BC 1,B 1C ⊥AB ,BC 1∩AB =B ,∴B 1C ⊥平面ABC 1D 1,∵只有当E 运动到线段B 1C 的中点时,AE ⊥B 1C 才成立,故A 错误.连接B 1D 1,∵在正方体ABCD ﹣A 1B 1C 1D 1中,DD 1⊥平面A 1B 1C 1D 1,∴DD 1⊥A 1C 1,∵BD 1⊥A 1C 1,BD 1∩DD 1=D 1,∴A 1C 1⊥平面BDD 1B 1,∴A 1C 1⊥B 1D ,同理可得BC 1⊥B 1D ,又A 1C 1∩BC 1=C 1,∴直线B 1D ⊥平面A 1BC 1,故选项B 正确.连接BD ,BC 1,则AD 1//BC 1,∴∠OC 1B (或其补角)即为异面直线AD 1与OC 1所成的角.因为正方体的棱长为2,则BC 1=22,OB =2,在Rt △C 1OB 中,OC 1=6,∴cos ∠OC 1B =622=3,∴∠OC 1B 6π=,故选项C 错误. 由题意知如图2,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为棱CC 1上的动点,Q 为棱AA 1的中点,直线m 为平面BDP 与平面B 1D 1P 的交线,且BD //B 1D 1,∴m //B 1D 1.∵m ⊄平面B 1D 1Q ,∴m //平面B 1D 1Q ,故选项D 正确.故选:BD .4.如图,已知四棱锥P ABCD -中,PD ⊥平面ABCD ,90DAB CBD ∠=∠=︒,60ADB BDC ∠=∠=︒,E 为PC 中点,F 在CD 上,30FBC ∠=︒,22PD AD ==,则下列结论正确的是( )A .//BE 平面PADB .PB 与平面ABCD 所成角为30C .四面体D BEF -的体积为3 D .平面PAB ⊥平面PAD【答案】ACD【详解】依题意,连接EF ,DF ,如图,90DAB CBD ∠=∠=︒,60ADB BDC ∠=∠=︒,则30ABD BCD ∠=∠=︒,又30FBC ∠=︒,则303060DFB ∠=︒+︒=︒,故60DBF ∠=︒,DBF 是等边三角形,故DF FC BF BD ===,306090ABF ∠=︒+︒=︒,即F 是DC 的中点,BF AB ⊥,又E 为PC 中点,DA AB ⊥,故//PD EF ,//AD BF ,则//EF 平面PAD ,//BF 平面PAD ,,EF BF 相交于平面EBF 内,故平面//EBF 平面PAD ,而BE ⊂平面EBF ,所以//BE 平面PAD ,选项A 正确;因为22,30PD AD ABD ==∠=︒,所以2DB PD ==,45PBD ∴∠=︒,又PD ⊥平面ABCD ,所以PB 与平面ABCD 所成角为45PBD ∠=︒,故B 错误;四面体D BEF -的体积D BEF E BDF V V --=,因为//PD EF ,PD ⊥平面ABCD ,所以EF ⊥平面ABCD ,112EF PD ==,等边三角形DBF 的面积为23234⨯=,故133133D BEF E BDF V V --==⨯⨯=,故C 正确;PD ⊥平面ABCD ,则PD AB ⊥,而DA AB ⊥,,PD DA 相交于平面PAD 内,故AB ⊥平面PAD ,而AB 平面PAB ,故平面PAB ⊥平面PAD ,D 正确.5.(多选题)如图,在棱长为1的正方体1111ABCD A BC D -中,P 为棱CC 1上的动点(点P 不与点C ,C 1重合),过点P 作平面α分别与棱BC ,CD 交于M ,N 两点,若CP =CM =CN ,则下列说法正确的是( )A .A 1C ⊥平面αB .存在点P ,使得AC 1∥平面αC .存在点P ,使得点A 1到平面α的距离为53D .用过点P ,M ,D 1的平面去截正方体,得到的截面一定是梯形【答案】ACD【详解】连接1111,,,,BC BD DC AD D P因为,CM CN CB CD ==,所以CM CB =CN CD ,所以//MN BD 又MN ⊄平面1C BD ,BD ⊂平面1C BD ,所以//MN 平面1C BD同理可证1//MP BC ,//MP 平面1C BD又MP MN M ⋂=,MN 、MP ⊂平面α,所以平面1C BD //平面α易证1AC ⊥平面1C BD ,所以1AC ⊥平面α,A 正确 又1AC ⋂平面1C BD 1C =,所以1AC 与平面α相交,不存在点P ,使得1AC ∥平面α,B 不正确.因为11113AC =++=,点C 到平面1C BD 的距离为3 所以点A 1到平面α的距离的取值范围为23(,3) 又23533<<,所以存在点P ,使得点A 1到平面α的距离为53,C 正确. 因为11//AD BC ,所以1//AD MP ,所以用过点P ,M ,D 1的平面去截正方体得到的截面是四边形1AD PM 又1//AD MP ,且1AD MP ≠,所以截面为梯形,D 正确故选:ACD6.如图,点M 是棱长为1的正方体1111ABCD A BC D -中的侧面11ADD A 上的一个动点(包含边界),则下列结论正确的是( )A .存在无数个点M 满足1CM AD ⊥B .当点M 在棱1DD 上运动时,1||MA MB +31C .在线段1AD 上存在点M ,使异面直线1B M 与CD 所成的角是30D .满足1||2MD MD =的点M 的轨迹是一段圆弧【答案】AD【详解】对A ,若M 在1A D 上,此时必有1CM AD⊥,证明如下:CD ⊥平面11ADD A , 所以1CD AD ⊥,又11A D AD ⊥,所以1AD ⊥平面1A DC ,所以1AD CM ⊥,所以A 正确;对B ,如图,旋转面11ADD A 使之与面11BB D D 共面,连接1A B '交1DD 于M ,此时1||MA MB +最短为1A B ',大小为422+,故B 错误,对C ,当M 在1A D 和1AD 交点处时,此时直线1B M 与CD 所成的角即直线1B M 与11A B 所成角,此时此异面直线所成最小,其正切值为22, 即最小角大于30,故不存在,即C 错误,对D ,在面11ADD A 上建立直角坐标系,设111(,0),(,0)22D D -,设(,)M x y , 由1||2MD MD =整理可得:2251034x y x +-+=, 根据解析式可得M 的轨迹是圆的一部分,故D 正确,故选:AD.7.截角四面体是一种半正八面体,可由四面体经过适当的截角,即截去四面体的四个顶点所产生的多面体.如图所示,将棱长为3a 的正四面体沿棱的三等分点作平行于底面的截面得到所有棱长均为a 的截角四面体,则下列说法正确的是( )A .该截角四面体的表面积为273aB .该截角四面体的体积为323212a C .该截角四面体的外接球表面积为2112a π D .该截角四面体中,二面角A BC D --的余弦值为13 【答案】ABC【详解】如图所示:由正四面体S NPQ -中,题中截角四面体由4个边长为a 的正三角形,4个边长为a 的正六边形构成,故222334467344S a a a =⨯+⨯⨯=,A 正确; ∵棱长为a 的正四面体的高6h a =,∴223136136232(3)(3)43312V a a a a a =⋅⋅⋅-⋅⋅⋅=,B 正确;设外接球的球心为O ,ABC 的中心为'O ,NPQ △的中心为O '',∵截角四面体上下底面距离为626633a a a -=,∴2222263R O C R O H a '''-+-=,∴22222633a R R a a -+-=,∴2222263a R a R a -=--,∴2222222846333a R a R a a R a -=+--⋅-,∴22118R a =,∴221142S R a ππ==,C 正确; 易知二面角S BC A --为锐角,所以二面角A BC D --的余弦值为负值,D 错误,故选:ABC.8.如图,正方体1111ABCD A BC D -的棱长为1,点P 是11BCD 内部(不包括边界)的动点,若BD AP ⊥,则线段AP 长度的可能取值为( )A 23B .65C 6D 5 【答案】ABC【详解】在正方体AC 1中,连接AC ,A 1C 1,1111AC B D O =,如图,BD ⊥AC ,BD ⊥AA 1,则BD ⊥平面ACC 1A 1,因AP ⊥BD ,所以AP ⊂平面ACC 1A 1,又点P 是△B 1CD 1内部(不包括边界)的动点,连接CO ,平面B 1CD 1平面ACC 1A 1=CO ,所以点P 在线段CO 上(不含点C ,O ),连接AO ,在等腰△OAC 中,62,2AC AO CO ===,而底边AC 上的高为1, 腰OC 上的高1233AC h OC ⋅==,从而有2323AP ≤<, 66,5都符合,5不符合. 9.(多选题)如图,正方体1111ABCD A BC D -的棱长为1,线段11B D 上有两个动点E 、F ,且12EF =,则下列结论中错误的是( )A .AC AF ⊥B .//EF 平面ABCDC .三棱锥A BEF -的体积为定值D .AEF 的面积与BEF 的面积相等【答案】AD【详解】对于A 选项,取F 与1B 点重合,连接1AB 、1BC ,则112AC AB B C ==所以,1AB C 为等边三角形,则160B AC ∠=,此时,AF 与AC 不垂直,A 选项错误;对于B 选项,因为平面1111//A B C D 平面ABCD ,EF ⊂平面1111D C B A ,所以,//EF 平面ABCD ,B 选项正确;对于C 选项,1BB ⊥平面1111D C B A ,EF ⊂平面1111D C B A ,则1BB EF ⊥, 所以,11124BEF S EF BB =⋅=△(定值),且点A 到平面BEF 的距离为定值, 因此,三棱锥A BEF -的体积为定值,C 选项正确;对于D 选项,连接1AD 、1AB ,取11B D 的中点O ,连接AO ,则11112AB AD B D ===O 为11B D 的中点,11AO B D ∴⊥,且16sin 602AO AB ==, 所以,1116622228AEF BEF S EF AO S =⋅=⨯⨯=≠△△,D 选项错误. 10.如图,在长方体1111ABCD A BC D -中,14,2AB BC BB ===,E 、F 分别为棱AB 、11A D 的中点,则下列说法中正确的有( )A .1DB CE ⊥B .三棱锥D CEF -的体积为83C .若P 是棱11CD 上一点,且11D P =,则E 、C 、P 、F 四点共面D .平面CEF 截该长方体所得的截面为五边形【答案】BCD【详解】连接DE , 1D E ,如图所示,因为E 为AB 的中点,所以EB=BC =2,所以2222CE BE BC +=22DE CE ==DC =4,所以222DE EC DC +=,即DE EC ⊥,又因为1DD ⊥底面ABCD ,CE ⊂底面ABCD ,所以1DD CE ⊥,所以CE ⊥平面1DD E ,即1CE D E ⊥,又111D E D B D ⋂=,即1D E 与1D B 不平行,所以CE 不垂直1D B ,故A 错误;由等体积法可得:三棱锥D CEF -的体积118422323D CEF F CED V V --==⨯⨯⨯⨯=,故B 正确;作出P ,使11D P =,取11C D 中点G ,则P 为1D G 中点,连接FP ,CP ,1AG ,因为F ,P 分别为11A D ,1D G 中点,所以1FP AG ,又11A D G CBE ≌,且11A D BC ,1D G EB所以1AG EC ,所以FP EC ,所以E 、C 、P 、F 四点共面,故C 正确;由选项C 可得E 、C 、P 、F 四点共面,平面CEF 即为平面CEFP ,作EH CP ,交1AA 于H ,如图所示:所以E 、H 、P 、C 在同一平面内,即H 点在平面ECP 内,所以E 、C 、P 、F 、H 在同一平面内,所以平面CEF 截该长方体所得的截面为五边形,故D 正确.11.如图,在棱长为1的正方体1111ABCD A BC D -中,点P 在线段1BC 上运动,则下列判断中正确的是()A .三棱锥1A D PC -的体积为112B .//DP 面11AB DC .平面1PBD 与平面1ACD 所成二面角为90︒D .异面直线1A P 与1AD所成角的范围是,32ππ⎡⎤⎢⎥⎣⎦ 【答案】BCD【详解】A :11A D PC C AD P V V --=,因为C 到面1AD P 的距离不变,且△1AD P 的面积不变,所以三棱锥1C AD P -的体积不变,当P 与B 重合时得11111111326C AD B D ABC V V --==⨯⨯⨯⨯=,错误;B :连接DB ,1DC ,1AB ,11D B ,易证面11//AB D 面1BDC ,又DP ⊂面1BDC ,所以//DP 面11AB D ,正确;C :根据正方体的结构特征,有1DB ⊥面1ACD ,又1DB ⊂面1PB D ,则面1PB D ⊥面1ACD ,正确; D :由11//AD BC 知:当P 与线段1BC 的两端点重合时,1A P 与1AD 所成角取最小值3π,当P 与线段1BC 的中点重合时,1A P 与1AD 所成角取最大值2π,故1A P 与1AD 所成角的范围,32ππ⎡⎤⎢⎥⎣⎦,正确.故选:BCD .12.《九章算术》成书于公元一世纪左右,经历代各家的不断增补和修订,而逐渐成为现今定本,现今流传的大多是在三国时期魏元帝景元四年(263年)刘徽为《九章》所作注本.书中阐述:将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;将底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”;将四个面均为直角三角形的四面体称为“鳖臑”,在“堑堵”111ABC A B C -中,2ACB π∠=,E ,F 分别为1A B ,1AC 上的点,下列结论正确的是( )A .四棱锥111AB BCC -为“阳马”B .若1AE A B ⊥,1AF AC ⊥,则四面体1AAEF 为“鳖臑”C .当E ,F 分别为1A B ,1AC 的中点时,四面体1A AEF 为“鳖臑”D .若CA CB =,则当13A B =时,四面体1AABC 为“鳖臑”【答案】ABD【详解】对于选项A,在四棱锥111A B BCC -中,底面11B BCC 为矩形,且11AC ⊥平面11B BCC ,则四棱锥111A B BCC -为“阳马”, 所以选项A 正确;对于选项B ,在四面体1A AEF 中,因为BC ⊥平面1A AC ,所以平面1A BC ⊥平面1A AC ,又1AF AC ⊥,AF ⊥平面1A BC ,又1AE A B ⊥,所以1A B ⊥平面AEF ,所以四面体1A AEF 中的四个面都是直角三角形,所以四面体1A AEF 为“鳖臑”,故选项B 正确;对于选项C ,当E ,F 分别为1A B ,1AC 的中点时,EF BC ∥,因为1AA 与AC 的长度不确定,所以1A FA ∠不一定为2π,所以四面体1A AEF 不一定为“鳖臑”, 选项C 不正确; 对于选项D ,当13A B =时,不妨设CA CB x ==,1AAy =, 由题意可知,2229x y +=,则2229x y =-,()0,3y ∈,四面体1A ABC 的体积()()1223111199321212A ABC V x y y y y y -=⨯=-=-+,()0,3y ∈.设函数()39f t t t =-+,()0,3t ∈,则()()(2233393t t f t t t --=-==+'-+,当(t ∈时,()0f t '>,()f t 在(上单调递增,当)t ∈时,()0f t '<,()f t 在)上单调递减,所以当t =()maxf t f ==所以四面体1A ABC D 正确. 13.矩形ABCD 中,4AB =,3BC =,将ABD △沿BD 折起,使A 到A '的位置,A '在平面BCD 的射影E 恰落在CD 上,则( )A .三棱锥A BCD '-的外接球直径为5B .平面A BD '⊥平面A BC ' C .平面A BD '⊥平面ACD ' D .A D '与BC 所成角为60【答案】AB【详解】由题意,A E '⊥平面BCD BC A E '⇒⊥,又BC CD ⊥,A E CD E '=,∴BC ⊥平面A CD BC A D ''⇒⊥.故D 错误;又A B A D ''⊥,A BBC B '=,可得A D '⊥平面A BC ',又A D '⊂平面A BD '⇒平面A BD '⊥平面A BC '.故B 正确;对C ,若平面A BD '⊥平面ACD ',则由A B A D A B '''⊥⇒⊥平面90A CD BA C ''⇒∠=︒与90A CB '∠=︒矛盾,故C 错误;取BD 中点为O .则OA OB OC OD '===,故O 为三棱锥A BCD '-的外接球球心, 所以直径22345d BD ==+=,故A 正确.故选:AB14.在直角梯形ABCD 中,2AD CD ==,//AB CD ,30ABC ∠=︒,点M 为直线AB 上一点,且2AM =,将该直角梯形沿AC 折叠成三棱锥D ABC -,则下列说法正确的是( )A .存在位置D ,使得BD AC ⊥B .在折叠的过程中,始终有DM AC ⊥C .三棱锥D ABC -体积最大值为2263D .当三棱锥D ABC -体积最大时,21643BD =+【答案】BCD【详解】如图所示,D 从D 翻折过程中,点D 在平面ABC 内射影H 始终落在直线D M '上,假设存在位置D ,使得BD AC ⊥,又DH ⊥平面ABC .所以DH AC ⊥,所以AC ⊥平面BDH ,因此AC BH ⊥,与题意不符,选项A 错误;因为四边形AD CM '为菱形,所以AC D M '⊥,又DH AC ⊥,所以AC ⊥平面DHM ,所以DM AC ⊥,故B 选项正确;当平面ACD ⊥平面ABC 时,三棱锥D ABC -体积最大,此时的体积为()()2261122232323V +=⨯⨯⨯+⨯=,故C 选项正确;当三棱锥D ABC -体积最大时,D 在ABC 上的投影为O ,则22222BD BO OD BO =+=+,在BCO 中,4BC =,2CO =,105BCO ∠=︒,由余弦定理得21443BO =+,所以21643BD =+.故选:BCD15.如图,正方体1111ABCD A BC D -中,E 、F 是线段A 1C 1上的两个动点,且EF 的长为定值,下列结论中正确的是( )A .BD CE ⊥B .BD ⊥面CEFC .三角形BEF 和三角形CEF 的面积相等D .三棱锥B -CEF 的体积为定值【答案】ABD【详解】 因为BD ⊥面11ACC A ,11CE ACC A ⊂,面CEF 与面11ACC A 重合,所以A ,B 均正确; B 到EF 的距离为11BAC △的高,C 到EF 的距离即为1CC ,所以BEF 的面积大于CEF △的面积,C 错误;B 点到面CEF 的距离为定值,为2BD 长,CEF △的面积也为定值,故三棱锥B -CEF 的体积为定值D 正确;。

人教版高三数学第二学期立体几何多选题单元 易错题提优专项训练试卷

人教版高三数学第二学期立体几何多选题单元 易错题提优专项训练试卷

人教版高三数学第二学期立体几何多选题单元 易错题提优专项训练试卷一、立体几何多选题1.如图,正方体1111ABCD A B C D -中的正四面体11A BDC -的棱长为2,则下列说法正确的是( )A .异面直线1AB 与1AD 所成的角是3πB .1BD ⊥平面11AC DC .平面1ACB 截正四面体11A BDC -所得截面面积为3D .正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23【答案】ABD 【分析】选项A ,利用正方体的结构特征找到异面直线所成的角;选项B ,根据正方体和正四面体的结构特征以及线面垂直的判定定理容易得证;选项C ,由图得平面1ACB 截正四面体11A BDC -所得截面面积为1ACB 面积的四分之一;选项D ,分别求出正方体的体对角线长和正四面体11A BDC -的高,然后判断数量关系即可得解. 【详解】A :正方体1111ABCD ABCD -中,易知11//AD BC ,异面直线1A B 与1AD 所成的角即直线1A B 与1BC 所成的角,即11A BC ∠,11A BC 为等边三角形,113A BC π∠=,正确;B :连接11B D ,1B B ⊥平面1111DC B A ,11A C ⊂平面1111D C B A ,即111AC B B ⊥,又1111AC B D ⊥,1111B B B D B ⋂=,有11A C ⊥平面11BDD B ,1BD ⊂平面11BDD B ,所以111BD AC ⊥,同理可证:11BD A D ⊥,1111AC A D A ⋂=,所以1BD ⊥平面11AC D ,正确;C :易知平面1ACB 截正四面体11A BDC -所得截面面积为134ACB S=,错误;D :易得正方体1111ABCD A B C D -()()()2222226++=2的正四面体11A BDC -的高为22222262213⎛⎫--⨯= ⎪⎝⎭,故正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23,正确. 故选:ABD. 【点睛】关键点点睛:利用正方体的性质,找异面直线所成角的平面角求其大小,根据线面垂直的判定证明1BD ⊥平面11AC D ,由正四面体的性质,结合几何图形确定截面的面积,并求高,即可判断C 、D 的正误.2.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,090B F ∠=∠=,060,45,A D BC DE ∠=∠==,现将两块三角形板拼接在一起,得三棱锥F CAB -,取BC 中点O 与AC 中点M ,则下列判断中正确的是( )A .BC FM ⊥B .AC 与平面MOF 所成的角的余弦值为32C .平面MOF 与平面AFB 所成的二面角的平面角为45°D .设平面ABF 平面MOF l =,则有//l AB【答案】AD 【分析】证明BC ⊥面FOM 可判断A ;根据AC 与平面MOF 所成的角为060CMO ∠=判断B ;利用特殊位置判断C ;先证明//AB 面MOF ,由线面平行的性质定理可判断D ; 【详解】由三角形中位线定理以及等腰三角形的性质可得,,BC OF BC OM OM OF O ⊥⊥=,所以BC ⊥面FOM BC FM ⇒⊥,故A 正确;因为BC ⊥面FOM ,所以AC 与平面MOF 所成的角为060CMO ∠=,所以余弦值为12,故B 错误; 对于C 选项可以考虑特殊位置法,由BC ⊥面FOM 得面ABC ⊥面FOM ,所以点F 在平面ABC 内的射影在直线OM 上,不妨设点F 平面ABC 内的射影为M ,过点M 作//BC MN ,连结NF .易证AB ⊥面MNF ,则l ⊥面MNF ,所以MFN ∠为平面MOF与平面AFB 所成的二面角的平面角,不妨设2AB =,因为060A,所以23BC =,则13,12OF BC OM ===,显然MFN ∠不等于45°,故C 错误. 设面MOF 与平面ABF 的交线为l ,又因为//,AB OM AB ⊄面MOF ,OM ⊂面MOF ,所以//AB 面MOF ,由线面平行的性质定理可得://l AB ,故D 正确; 故选:AD.【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.3.正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 在侧面11CDD C 上运动,且满足1//B F 平面1A BE .以下命题正确的有( )A .侧面11CDD C 上存在点F ,使得11B F CD ⊥ B .直线1B F 与直线BC 所成角可能为30︒C .平面1A BE 与平面11CDD C 所成锐二面角的正切值为2D .设正方体棱长为1,则过点E ,F ,A 5 【答案】AC 【分析】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,易证得平面1//B MN 平面1A BE ,可得点F 的运动轨迹为线段MN .取MN 的中点F ,根据等腰三角形的性质得1B F MN ⊥,即有11B F CD ⊥,A 正确;当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,可判断B 错误;根据平面1//B MN 平面1A BE ,11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,计算可知C 正确;【详解】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,则易证得11//B N A E ,1//MN A B ,从而平面1//B MN 平面1A BE ,所以点F 的运动轨迹为线段MN .取MN 的中点F ,因为1B MN △是等腰三角形,所以1B F MN ⊥,又因为1//MN CD ,所以11B F CD ⊥,故A 正确;设正方体的棱长为a ,当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,此时11tan C B F ∠=1tan 3023︒<=,所以B 错误; 平面1//B MN 平面1A BE ,取F 为MN 的中点,则1MN C F ⊥,1MN B F ⊥,∴11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,11111tan B C B FC C F∠==22,所以C 正确;因为当F 为1C E 与MN 的交点时,截面为菱形1AGC E (G 为1BB 的交点),面积为62,故D 错误. 故选:AC.【点睛】本题主要考查线面角,二面角,截面面积的求解,空间几何中的轨迹问题,意在考查学生的直观想象能力和数学运算能力,综合性较强,属于较难题.4.已知直三棱柱111ABC A B C -中,AB BC ⊥,1AB BC BB ==,D 是AC 的中点,O 为1A C 的中点.点P 是1BC 上的动点,则下列说法正确的是( )A .当点P 运动到1BC 中点时,直线1A P 与平面111ABC 所成的角的正切值为5 B .无论点P 在1BC 上怎么运动,都有11A P OB ⊥C .当点P 运动到1BC 中点时,才有1A P 与1OB 相交于一点,记为Q ,且113PQ QA = D .无论点P 在1BC 上怎么运动,直线1A P 与AB 所成角都不可能是30° 【答案】ABD 【分析】构造线面角1PA E ∠,由已知线段的等量关系求1tan EPPA E AE∠=的值即可判断A 的正误;利用线面垂直的性质,可证明11A P OB ⊥即可知B 的正误;由中位线的性质有112PQ QA =可知C 的正误;由直线的平行关系构造线线角为11B A P ∠,结合动点P 分析角度范围即可知D 的正误 【详解】直三棱柱111ABC A B C -中,AB BC ⊥,1AB BC BB ==选项A 中,当点P 运动到1BC 中点时,有E 为11B C 的中点,连接1A E 、EP ,如下图示即有EP ⊥面111A B C∴直线1A P 与平面111A B C 所成的角的正切值:1tan EPPA E AE∠= ∵112EP BB =,22111152AE A B B E BB =+=∴15tan 5PA E ∠=,故A 正确选项B 中,连接1B C ,与1BC 交于E ,并连接1A B ,如下图示由题意知,11B BCC 为正方形,即有11B C BC ⊥而AB BC ⊥且111ABC A B C -为直三棱柱,有11A B ⊥面11B BCC ,1BC ⊂面11B BCC ∴111A B BC ⊥,又1111A B B C B =∴1BC ⊥面11A B C ,1OB ⊂面11A B C ,故11BC OB ⊥ 同理可证:11A B OB ⊥,又11A B BC B ⋂=∴1OB ⊥面11A BC ,又1A P ⊂面11A BC ,即有11A POB ⊥,故B 正确选项C 中,点P 运动到1BC 中点时,即在△11A B C 中1A P 、1OB 均为中位线∴Q 为中位线的交点 ∴根据中位线的性质有:112PQ QA =,故C 错误选项D 中,由于11//A B AB ,直线1A P 与AB 所成角即为11A B 与1A P 所成角:11B A P ∠ 结合下图分析知:点P 在1BC 上运动时当P 在B 或1C 上时,11B A P ∠最大为45° 当P 在1BC 中点上时,11B A P ∠最小为23arctan arctan 3023>=︒ ∴11B A P ∠不可能是30°,故D 正确 故选:ABD 【点睛】本题考查了利用射影定理构造线面角,并计算其正弦值;利用线面垂直证明线线垂直;中位线的性质:中位线交点分中位线为1:2的数量关系;由动点分析线线角的大小5.如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26的正三角形,底面ABCD 为矩形,23CD =,点Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 所成角的余弦值为223C .三棱锥B ACQ -的体积为62D .四棱锥Q ABCD -外接球的内接正四面体的表面积为3【答案】BD 【分析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,则由已知可得OP ⊥平面 ABCD ,而底面ABCD 为矩形,所以以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,利用空间向量依次求解即可. 【详解】解:取AD 的中点O ,BC 的中点E ,连接,OE OP , 因为三角形PAD 为等边三角形,所以OP AD ⊥, 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD , 因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,则(0,0,0),(O D A ,(P C B ,因为点Q 是PD的中点,所以Q , 平面PAD 的一个法向量为(0,1,0)m =,6(22QC =-,显然 m 与QC 不共线, 所以CQ 与平面PAD 不垂直,所以A 不正确;3632(6,23,32),(,0,),(26,2PC AQ AC =-==, 设平面AQC 的法向量为(,,)n x y z =,则3602260n AQ x zn AC⎧⋅=+=⎪⎨⎪⋅=+=⎩,令=1x ,则y z ==, 所以(1,2,n =-, 设PC 与平面AQC 所成角为θ,则21sin 36n PC n PCθ⋅===, 所以cos 3θ=,所以B 正确;三棱锥B ACQ -的体积为1132B ACQ Q ABC ABCV V SOP --==⋅1116322=⨯⨯⨯=, 所以C 不正确;设四棱锥Q ABCD -外接球的球心为)M a ,则MQ MD =,所以()()()222222632363a a ⎛⎫⎛⎫++-=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得0a =,即(0,3,0)M 为矩形ABCD 对角线的交点, 所以四棱锥Q ABCD -外接球的半径为3,设四棱锥Q ABCD -外接球的内接正四面体的棱长为x , 将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为2x ,所以222362x ⎛⎫= ⎪ ⎪⎝⎭,得224x =, 所以正四面体的表面积为234243x ⨯=,所以D 正确. 故选:BD【点睛】此题考查线面垂直,线面角,棱锥的体积,棱锥的外接球等知识,综合性强,考查了计算能力,属于较难题.6.在边长为2的等边三角形ABC 中,点,D E 分别是边,AC AB 上的点,满足//DE BC 且AD ACλ=,(()01λ∈,),将ADE 沿直线DE 折到A DE '△的位置.在翻折过程中,下列结论不成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面A CD 'B .存在102λ∈⎛⎫⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDEC .若12λ=,当二面角A DE B '--为直二面角时,||10A B '= D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()fλ,()f λ23【答案】ABC 【分析】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,即可判断出结论.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,即可判断出结论. 对于C ,12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,可得AM ⊥平面BCDE .可得22A B AM BM '=+,结合余弦定理即可得出.对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,利用导数研究函数的单调性即可得出.【详解】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,如图所示,则可得FN 平行且等于BG ,即四边形BGNF 为平行四边形, ∴//NG BE ,而GN 始终与平面ACD 相交,因此在边A E '上不存在点F ,使得在翻折过程中,满足//BF 平面A CD ',A 不正确.对于B ,102λ∈⎛⎫ ⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,因此不满足平面A BC '⊥平面BCDE ,因此B 不正确. 对于C.12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,如图所示:可得AM ⊥平面BCDE , 则22223111010()1()21cos12022224A B AM BM '=+=++-⨯⨯⨯︒=≠,因此C 不正确;对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,()213f λλ'=-,可得3λ=时,函数()f λ取得最大值()312313f λ⎛⎫=-=⎪⎝⎭,因此D 正确. 综上所述,不成立的为ABC. 故选:ABC. 【点睛】本题考查了利用运动的观点理解空间线面面面位置关系、四棱锥的体积计算公式、余弦定理、利用导数研究函数的单调性极值与最值,考查了推理能力空间想象能力与计算能力,属于难题.7.如图所示,在长方体1111ABCD A B C D -中,11,2,AB BC AA P ===是1A B 上的一动点,则下列选项正确的是( )A .DP 35B .DP 5C .1AP PC +6D .1AP PC +的最小值为1705【答案】AD 【分析】DP 的最小值,即求1DA B △底边1A B 上的高即可;旋转11A BC 所在平面到平面11ABB A ,1AP PC +的最小值转化为求AC '即可.【详解】求DP 的最小值,即求1DA B △底边1A B 上的高,易知11A B A D BD ===,所以1A B 边上的高为h =111,AC BC ,得11A BC ,以1A B 所在直线为轴,将11A BC 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则AC '即为所求的最小值,易知1112,10AA AC AAC ''==∠=-,所以5AC '==. 故选:AD. 【点睛】本题考查利用旋转求解线段最小值问题.求解翻折、旋转问题的关键是弄清原有的性质变化与否, (1)点的变化,点与点的重合及点的位置变化;(2)线的变化,翻折、旋转前后应注意其位置关系的变化;(3)长度、角度等几何度量的变化.8.已知正四棱柱1111ABCD A B C D -的底面边长为2,侧棱11AA =,P 为上底面1111D C B A 上的动点,给出下列四个结论中正确结论为( )A .若3PD =,则满足条件的P 点有且只有一个B .若PD =,则点P 的轨迹是一段圆弧C .若PD ∥平面1ACB ,则DP 长的最小值为2D .若PD ∥平面1ACB ,且PD =,则平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形的面积为94π 【答案】ABD 【分析】若3PD =,由于P 与1B 重合时3PD =,此时P 点唯一;()13PD =,,则1PD =P 的轨迹是一段圆弧;当P 为11A C 中点时,DP 有最小值为=断C ;平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为32=,可得D . 【详解】 如图:∵正四棱柱1111ABCD A B C D -的底面边长为2, ∴1122B D =,又侧棱11AA =, ∴()2212213DB =+=,则P 与1B 重合时3PD =,此时P 点唯一,故A 正确;∵()313PD =∈,,11DD =,则12PD =,即点P 的轨迹是一段圆弧,故B 正确; 连接1DA ,1DC ,可得平面11//A DC 平面1ACB ,则当P 为11A C 中点时,DP 有最小值为()22213+=,故C 错误;由C 知,平面BDP 即为平面11BDD B ,平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为2221322122++=,面积为94π,故D 正确. 故选:ABD . 【点睛】本题考查了立体几何综合,考查了学生空间想象,逻辑推理,转化划归,数学运算的能力,属于较难题.9.如图,已知P 为棱长为1的正方体对角线1BD 上的一点,且()()10,1BP BD λλ=,下面结论中正确结论的有( )A .11A D C P ⊥;B .当1A P PD +取最小值时,23λ=;C .若()0,1λ∈,则7,312APC ππ⎛⎫∠∈⎪⎝⎭; D .若P 为1BD 的中点,四棱锥11P AA D D -的外接球表面积为94π. 【答案】ABD 【分析】以D 为坐标原点建立如图空间直角坐标系,利用向量关系可判断ABC ;根据几何体外接球关系建立方程求出球半径即可判断D. 【详解】以D 为坐标原点建立如图空间直角坐标系, 则()1,1,0B ,()10,0,1D ,设(),,P x y z ,()()10,1BP BD λλ=,1BP BD λ∴=,即()()1,1,1,1,1x y z λ--=--,则可解得()1,1,P λλλ--, 对A ,()()()111,0,1,0,0,0,0,1,1A D C ,()11,0,1A D ∴=--,()11,,1C P λλλ=---,则()()()()11110110A D C P λλλ⋅=-⨯-+⨯-+-⨯-=,则11A D C P ⊥,故A 正确;对B ,()()()()()2222221111111A P PD λλλλλλ+=--+-+--+-+222223422333λλλ⎛⎫=-+=-+ ⎪⎝⎭则当23λ=时,1A P PD +取最小值,故B 正确; 对C ,()()1,0,0,0,1,0A C ,(),1,PA λλλ∴=--,()1,,PC λλλ=--,则222321cos 1321321PA PCAPC PA PC λλλλλλ⋅-∠===--+-+⋅,01λ<<,则2232123λλ≤-+<,则2111123212λλ-≤-<-+, 即11cos 22APC -≤∠<,则2,33APC ππ⎛⎤∠∈ ⎥⎝⎦,故C 错误;对于D ,当P 为1BD 中点时,四棱锥11P AA D D -为正四棱锥,设平面11AA D D 的中心为O ,四棱锥11P AA D D -的外接球半径为R ,所以2221222R R ⎛⎫⎛⎫-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得34R =, 故四棱锥11P AA D D -的外接球表面积为94π,所以D 正确. 故选:ABD. 【点睛】关键点睛:本题考查空间相关量的计算,解题的关键是建立空间直角坐标系,利用向量建立关系进行计算.10.半正多面体(semiregularsolid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为2,则( )A .BF ⊥平面EABB .该二十四等边体的体积为203C .该二十四等边体外接球的表面积为8πD .PN 与平面EBFN 所成角的正弦值为22【答案】BCD 【分析】A 用反证法判断;B 先补齐八个角成正方体,再计算体积判断;C 先找到球心与半径,再计算表面积判断;D 先找到直线与平面所成角,再求正弦值判断. 【详解】解:对于A ,假设A 对,即BF ⊥平面EAB ,于是BF AB ⊥,90ABF ∠=︒,但六边形ABFPQH 为正六边形,120ABF ∠=︒,矛盾, 所以A 错;对于B ,补齐八个角构成棱长为2的正方体,则该二十四等边体的体积为3112028111323-⋅⋅⋅⋅⋅=,所以B 对;对于C ,取正方形ACPM 对角线交点O , 即为该二十四等边体外接球的球心, 其半径为2R =,其表面积为248R ππ=,所以C 对;对于D ,因为PN 在平面EBFN 内射影为NS , 所以PN 与平面EBFN 所成角即为PNS ∠, 其正弦值为22PS PN ==,所以D 对. 故选:BCD .【点睛】本题考查了正方体的性质,考查了直线与平面所成角问题,考查了球的体积与表面积计算问题.。

人教版高三数学第二学期立体几何多选题单元 易错题难题提优专项训练试卷

人教版高三数学第二学期立体几何多选题单元 易错题难题提优专项训练试卷

人教版高三数学第二学期立体几何多选题单元 易错题难题提优专项训练试卷一、立体几何多选题1.如图,在直三棱柱111ABC A B C -中,12AC BC AA ===,90ACB ∠=︒,D ,E ,F分别为AC ,1AA ,AB 的中点.则下列结论正确的是( )A .1AC 与EF 相交B .11//BC 平面DEF C .EF 与1AC 所成的角为90︒D .点1B 到平面DEF 的距离为322【答案】BCD 【分析】利用异面直线的位置关系,线面平行的判定方法,利用空间直角坐标系异面直线所成角和点到面的距离,对各个选项逐一判断. 【详解】对选项A ,由图知1AC ⊂平面11ACC A ,EF 平面11ACC A E =,且1.E AC ∉由异面直线的定义可知1AC 与EF 异面,故A 错误;对于选项B ,在直三棱柱111ABC A B C -中,11B C //BC .D ,F 分别是AC ,AB 的中点, //∴FD BC ,11B C ∴ //FD .又11B C ⊄平面DEF ,DF ⊂平面DEF ,11B C ∴ //平面.DEF 故B 正确;对于选项C ,由题意,建立如图所示的空间直角坐标系,则(0C ,0,0),(2A ,0,0),(0B ,2,0),1(2A ,0,2),1(0B ,2,2),1(0C ,0,2),(1D ,0,0),(2E ,0,1),(1F ,1,0).(1EF ∴=-,1,1)-,1(2AC =-,0,2). 1·2020EF AC =+-=,1EF AC ∴⊥,1EF AC ∴⊥. EF 与1AC 所成的角为90︒,故C 正确;对于选项D ,设向量(n x =,y ,)z 是平面DEF 的一个法向量. (1DE =,0,1),(0DF =,1,0), ∴由n DE n DF ⎧⊥⎨⊥⎩,,,即·0·0n DE n DF ⎧=⎨=⎩,,,得00.x z y +=⎧⎨=⎩,取1x =,则1z =-,(1n ∴=,0,1)-, 设点1B 到平面DEF 的距离为d . 又1(1DB =-,2,2),1·102DB n d n-+∴===, ∴点1B 到平面DEF 的距离为2,故D 正确.故选:BCD 【点睛】本题主要考查异面直线的位置关系,线面平行的判定,异面直线所成角以及点到面的距离,还考查思维能力及综合分析能力,属难题.2.在长方体1111ABCD A B C D -中,4AB BC ==,18AA =,点P 在线段11A C 上,M 为AB 的中点,则( ) A .BD ⊥平面PACB .当P 为11AC 的中点时,四棱锥P ABCD -外接球半径为72C .三棱锥A PCD -体积为定值D .过点M 作长方体1111ABCD A B C D -的外接球截面,所得截面圆的面积的最小值为4π【答案】ACD 【分析】利用线面垂直的判定定理可判断A 选项的正误;判断出四棱锥P ABCD -为正四棱锥,求出该四棱锥的外接球半径,可判断B 选项的正误;利用等体积法可判断C 选项的正误;计算出截面圆半径的最小值,求出截面圆面积的最小值,可判断D 选项的正误. 【详解】对于A 选项,因为AB BC =,所以,矩形ABCD 为正方形,所以,BD AC ⊥, 在长方体1111ABCD A B C D -中,1AA ⊥底面ABCD ,BD ⊂平面ABCD ,1BD AA ∴⊥,1AC AA A ⋂=,AC 、1AA ⊂平面PAC ,所以,BD ⊥平面PAC ,A 选项正确;对于B 选项,当点P 为11A C 的中点时,PA ===同理可得PB PC PD ===因为四边形ABCD 为正方形,所以,四棱锥P ABCD -为正四棱锥, 取AC 的中点N ,则PN 平面ABCD ,且四棱锥P ABCD -的外接球球心在直线PN上,设该四棱锥的外接球半径为R ,由几何关系可得222PN R AN R -+=, 即2288R R -+=,解得92R =,B 选项错误; 对于C 选项,2114822ACDSAD CD =⋅=⨯=, 三棱锥P ACD -的高为18AA =,因此,116433A PCD P ACD ACD V V S AA --==⋅=△,C 选项正确;对于D 选项,设长方体1111ABCD A B C D -的外接球球心为E ,则E 为1BD 的中点, 连接EN 、MN ,则1142EN DD ==,122MN AD ==, E 、N 分别为1BD 、BD 的中点,则1//EN DD , 1DD ⊥平面ABCD ,EN ∴⊥平面ABCD ,MN ⊂平面ABCD ,EN MN ∴⊥,EM ∴==过点M 作长方体1111ABCD A B C D -的外接球截面为平面α,点E 到平面α的距离为d ,直线EM 与平面α所成的角为θ,则sin d EM θθ==≤ 当且仅当2πθ=时,等号成立,长方体1111ABCD A B C D -的外接球半径为222126AB AD AA R ++'==,所以,截面圆的半径()()222226252r R d '=-≥-=,因此,截面圆面积的最小值为4π,D 选项正确.故选:ACD. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.3.如图,已知四棱锥P ABCD -所有棱长均为4,点M 是侧棱PC 上的一个动点(不与点,P C 重合),若过点M 且垂直于PC 的截面将该四棱锥分成两部分,则下列结论正确的是( )A .截面的形状可能为三角形、四边形、五边形B .截面和底面ABCD 所成的锐二面角为4π C .当1PM =时,截面的面积为52D .当2PM =时,记被截面分成的两个几何体的体积分别为()1212,>V V V V ,则123=V V 【答案】BCD 【分析】点M 是侧棱PC 上的一个动点,根据其不同位置,对选项逐一进行判断即可. 【详解】A 选项中,如图,连接BD ,当M 是PC 中点时,2MC =,由题意知三角形PDC 与三角形PBC 都是边长为4的正三角形,所以DM PC ⊥,BM BC ⊥,又DM ,BM 在面MBD 内,且相交,所以PC ⊥平面PBD ,三角形MBD 即为过点M 且垂直于PC 的截面,此时是三角形,点M 向下移动时,2MC <,如图,仍是三角形;若点M 由中点位置向上移动,2MC >,在平面PDC 内作EM PC ⊥,交PD 于E ,在平面PBC 内作FM PC ⊥交PB 于F ,平面MEF 交平面PAD 于EG ,交PAB 于FH ,即交平面ABCD 于GH ,则五边形MEGHF 即为过点M 且垂直于PC 的截面,此时是五边形; 故截面的形状可能为三角形、五边形,A 错误;B 选项中,因为截面总与PC 垂直,所以不同位置的截面均平行,截面与平面ABCD 所成的锐角为定值,不妨取M 是中点,连接AC ,BD ,MB ,MD ,设AC ,BD 交点是N ,连接PN ,由题意知,四边形ABCD 是边长为4的菱形,BD AC ⊥,因为MB =MD ,所以MN BD ⊥,故MNC ∠是截面与平面ABCD 所成的锐角,过点M 作MQ AC ⊥,垂足Q.在三角形PAC中,MN =2,2,故在直角三角形MNQ 中,2cos 2NQ MNC MN ∠==,故4MNC π∠=,故B 正确;C 选项中,当PM =1时,M 是PC 中点,如图,五边形MEGHF 即为过点M 且垂直于PC 的截面,依题意,直角三角形PME 中,2cos PMPE EPM==∠,故E 为PD 的中点,同理,F是PB 的中点,则EF 是三角形PBD 的中位线,1222EF BD ==G ,H 分别在,AD AB 的中点上,证明如下,当G ,H ,也是中点时,1//,2GH BD GH BD =,有//,22GH EF GH EF ==EFHG 是平行四边形.依题意,三角形PAC 中4,42PA PC AC ===,故PA PC ⊥,故PC GE ⊥,易见,正四棱锥中BD ⊥平面PAC ,故BD PC ⊥,GH PC ∴⊥,因为 ,GE GH 均在平面EFHG 内,且相交,所以PC ⊥平面EFHG ,故此时平面EFHG 和平面MEF 即同一平面.又BD ⊥平面PAC ,有GH ⊥面平面PAC ,GH GM ⊥,根据对称性有GH GE ⊥,四边形EFHG 是矩形. 即五边形MEGHF 即为过点M 且垂直于PC 的截面,平面图如下:依题意,22GH EF ==2EG FG ==,三角形高为()()22321h =-=,面积是122122⨯=,四边形面积是22242=,故截面面积是52 故C 正确;D 选项中,若PM =2,看B 选项中的图可知,21124M BCD P BCD P ABCD V V V V ---===,故剩余部分134P ABCD V V -=,所以123=V V ,故D 正确. 故选:BCD. 【点睛】本题考查了棱锥的截面问题,考查了二面角、体积等计算问题,属于难题.4.在长方体1111ABCD A B C D -中,23AB =12AD AA ==,P 、Q 、R 分别是AB 、1BB 、1A C 上的动点,下列结论正确的是( )A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥C .当1AR A C ⊥时,1ARD R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABCD 【分析】本题先建立空间直角坐标系,再运用空间向量在立体几何中的应用逐一判断即可. 【详解】如图所示,建立空间直角坐标系,设(2,,0)P a ,023a ⎡⎤∈⎣⎦,,(2,23,)Q b ,[]0,2b ∈,设11A R AC λ=,得到(22,23,22)R λλλ--,[]0,1λ∈. 1(2,,2)D P a =-,(2,0,)CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;1(22,23,2)D R λλλ=--,12(22)2D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确;1AR A C ⊥,则1(2,23,22)(2,23,2)412440AR AC λλλλλλ⋅=--⋅--=+-+=,解得:15λ=,此时122328232(,,)(,,)0555555AR D R ---⋅=⋅=,1AR D R ⊥,C 正确;113AC A R =,则4234(,,)333R ,14232(,,)333D R =-,设平面1BDC 的法向量为(,,)n x y z =,则100n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得(3,1,3)n =-,故10n D R ⋅=,故1//D R 平面1BDC ,D 正确.故选:ABCD.【点睛】本题考查了空间向量在立体几何中的应用,是偏难题.5.如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26角形,底面ABCD 为矩形,23CD =Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 所成角的余弦值为223C .三棱锥B ACQ -的体积为62D .四棱锥Q ABCD -外接球的内接正四面体的表面积为3【答案】BD 【分析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,则由已知可得OP ⊥平面 ABCD ,而底面ABCD 为矩形,所以以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,利用空间向量依次求解即可. 【详解】解:取AD 的中点O ,BC 的中点E ,连接,OE OP , 因为三角形PAD 为等边三角形,所以OP AD ⊥, 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD , 因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴, 建立空间直角坐标系,则(0,0,0),(6,0,0),(6,0,0)O D A ,(0,0,32),6,23,0),(6,23,0)P C B ,因为点Q 是PD 的中点,所以632)2Q , 平面PAD 的一个法向量为(0,1,0)m =,632(23,22QC =-,显然 m 与QC 不共线, 所以CQ 与平面PAD 不垂直,所以A 不正确;3632(6,23,32),(,0,),(26,23,0)22PC AQ AC =-==, 设平面AQC 的法向量为(,,)n x y z =,则360260n AQ x zn AC ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令=1x ,则y z ==, 所以(1,2,n =-, 设PC 与平面AQC 所成角为θ,则21sin 36n PC n PCθ⋅===, 所以cos θ=,所以B 正确; 三棱锥B ACQ -的体积为1132BACQ Q ABC ABCV V SOP --==⋅ 1116322=⨯⨯⨯=, 所以C不正确;设四棱锥Q ABCD -外接球的球心为)M a ,则MQ MD=,所以2222222a a⎛⎫++-=++ ⎪ ⎪⎝⎭⎝⎭,解得0a =,即M 为矩形ABCD 对角线的交点,所以四棱锥Q ABCD -外接球的半径为3,设四棱锥Q ABCD -外接球的内接正四面体的棱长为x , 将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为2x,所以22362x ⎛⎫= ⎪ ⎪⎝⎭,得224x =, 所以正四面体的表面积为244x ⨯=,所以D 正确. 故选:BD【点睛】此题考查线面垂直,线面角,棱锥的体积,棱锥的外接球等知识,综合性强,考查了计算能力,属于较难题.6.已知棱长为1的正方体1111ABCD A B C D -,过对角线1BD 作平面α交棱1AA 于点E ,交棱1CC 于点F ,以下结论正确的是( ) A .四边形1BFD E 不一定是平行四边形 B .平面α分正方体所得两部分的体积相等 C .平面α与平面1DBB 不可能垂直 D .四边形1BFD E 面积的最大值为2 【答案】BD 【分析】由平行平面的性质可判断A 错误;利用正方体的对称性可判断B 正确;当E 、F 为棱中点时,通过线面垂直可得面面垂直,可判断C 错误;当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积最大,且最大值为2,可判断D 正确. 【详解】 如图所示,对于选项A,因为平面1111//ABB A CC D D ,平面1BFD E 平面11ABB A BE =,平面1BFD E平面111CC D D D F =,所以1//BE D F ,同理可证1//D E BF ,所以四边形1BFD E 是平行四边形,故A 错误; 对于选项B,由正方体的对称性可知,平面α分正方体所得两部分的体积相等,故B 正确;对于选项C,在正方体1111ABCD A B C D -中,有1,AC BD AC BB ⊥⊥, 又1BD BB B ⋂=,所以AC ⊥平面1BB D , 当E 、F 分别为棱11,AA CC 的中点时, 有//AC EF ,则EF ⊥平面1BB D , 又因为EF ⊂平面1BFD E ,所以平面1BFD E ⊥平面1BB D ,故C 错误;对于选项D,四边形1BFD E 在平面ABCD 内的投影是正方形ABCD , 当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积有最大值, 此时1212S D E BE =⋅=⋅=,故D 正确; 故选:BD. 【点睛】本题考查了正方体的几何性质与应用问题,也考查了点线面的位置关系应用问题,属于中档题.7.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得CN AB ⊥ B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π 【答案】BD 【分析】对于选项A ,取AD 中点E ,取1AB 中点K ,连结KN ,BK ,通过假设CN AB ⊥,推出AB ⊥平面BCNK ,得到AB BK ⊥,则22AK AB BK AB =+>,即可判断;对于选项B ,在判断A 的图基础上,连结EC 交MD 于点F ,连结NF ,易得1NEC MAB ∠=∠,由余弦定理,求得CN 为定值即可;对于选项C ,取AM 中点O ,1B O ,DO ,由线面平行的性质定理导出矛盾,即可判断; 对于选项D ,易知当平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大,说明此时AD 中点E 为外接球球心即可. 【详解】如图1,取AD 中点E ,取1AB 中点K ,连结EC 交MD 于点F ,连结NF ,KN ,BK ,则易知1//NE AB ,1//NF B M ,//EF AM ,//KN AD ,112NE AB =,EC AM = 由翻折可知,1MAB MAB ∠=∠,1AB AB =,对于选项A ,易得//KN BC ,则K 、N 、C 、B 四点共面,由题可知AB BC ⊥,若CN AB ⊥,可得AB ⊥平面BCNK ,故AB BK ⊥,则22AK AB BK AB =+>,不可能,故A 错误;对于选项B ,易得1NEC MAB ∠=∠,在NEC 中,由余弦定理得222cos CN CE NE NE CE NEC =+-⋅⋅∠,整理得222212422AB AB AB CN AM AM BC AB AM =+-⋅⋅=+, 故CN 为定值,故B 正确;如图2,取AD 中点E ,取AM 中点O ,连结1B E ,OE ,1B O ,DO ,,对于选项C ,由AB BM =得1B O AM ⊥,若1AM B D ⊥,易得AM ⊥平面1B OD ,故有AM OD ⊥,从而AD MD =,显然不可能,故C 错误;对于选项D ,由题易知当平面1AB M 与平面AMD 垂直时,三棱锥B 1﹣AMD 的体积最大,此时1B O ⊥平面AMD ,则1B O OE ⊥,由1AB BM ==,易求得122BO =,2DM =,故22221122122B E OB OE ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因此1EB EA ED EM ===,E 为三棱锥1B AMD -的外接球球心,此外接球半径为1,表面积为4π,故D 正确. 故选:BD. 【点睛】本题主要考查了立体几何中的翻折问题以及空间图形的位置关系,考查了空间想象能力,属于较难题.8.如图,正三棱柱11ABC A B C -中,11BC AB ⊥、点D 为AC 中点,点E 为四边形11BCC B 内(包含边界)的动点则以下结论正确的是( )A .()1112DA A A B A BC =-+ B .若//DE 平面11ABB A ,则动点E 的轨迹的长度等于22AC C .异面直线AD 与1BC ,所成角的余弦值为66D .若点E 到平面11ACC A 的距离等于32EB ,则动点E 的轨迹为抛物线的一部分 【答案】BCD 【分析】根据空间向量的加减法运算以及通过建立空间直角坐标系求解,逐项判断,进而可得到本题答案. 【详解】解析:对于选项A ,()1112AD A A B A BC =-+,选项A 错误;对于选项B ,过点D 作1AA 的平行线交11A C 于点1D .以D 为坐标原点,1DA DB DD ,,分别为,,x y z 轴的正方向建立空间直角坐标系Oxyz .设棱柱底面边长为a ,侧棱长为b ,则002aA ⎛⎫ ⎪⎝⎭,,,00B ⎛⎫ ⎪ ⎪⎝⎭,,10B b ⎛⎫ ⎪ ⎪⎝⎭,,102a C b ⎛⎫- ⎪⎝⎭,,,所以122a BC a b ⎛⎫=-- ⎪ ⎪⎝⎭,,,122a AB a b ⎛⎫=- ⎪ ⎪⎝⎭,,. ∵11BC AB ⊥,∴110BC AB ⋅=,即222022a a b ⎛⎫⎛⎫--+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得b =. 因为//DE 平面11ABB A ,则动点E的轨迹的长度等于1BB =.选项B 正确. 对于选项C ,在选项A 的基础上,002a A ⎛⎫⎪⎝⎭,,,002B a ⎛⎫ ⎪ ⎪⎝⎭,,,()0,0,0D ,1022a C a ⎛⎫- ⎪ ⎪⎝⎭,,,所以002a DA ⎛⎫= ⎪⎝⎭,,,1222a BC a ⎛⎫=- ⎪ ⎪⎝⎭,-,,因为2111cos ,6||||a BC DA BC DA BC DA a ⎛⎫- ⎪⋅<>===-,所以异面直线1,BC DA 所成角C 正确. 对于选项D,设点E 在底面ABC 的射影为1E ,作1E F 垂直于AC ,垂足为F ,若点E 到平面11ACC A EB ,即有1E F EB =,又因为在1CE F ∆中,11E F C =,得1EB E C =,其中1E C 等于点E 到直线1CC 的距离,故点E 满足抛物线的定义,另外点E 为四边形11BCC B 内(包含边界)的动点,所以动点E 的轨迹为抛物线的一部分,故D 正确.故选:BCD【点睛】本题主要考查立体几何与空间向量的综合应用问题,其中涉及到抛物线定义的应用.9.如图,在正方体ABCD﹣A1B1C1D1中,点P在线段B1C上运动,则()A.直线BD1⊥平面A1C1DB.三棱锥P﹣A1C1D的体积为定值C.异面直线AP与A1D所成角的取值范用是[45°,90°]D.直线C1P与平面A1C1D6【答案】ABD【分析】在A中,推导出A1C1⊥BD1,DC1⊥BD1,从而直线BD1⊥平面A1C1D;在B中,由B1C∥平面A1C1D,得到P到平面A1C1D的距离为定值,再由△A1C1D的面积是定值,从而三棱锥P ﹣A1C1D的体积为定值;在C中,异面直线AP与A1D所成角的取值范用是[60°,90°];在D 中,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出直线C1P与平面A1C1D 6.【详解】解:在A中,∵A1C1⊥B1D1,A1C1⊥BB1,B1D1∩BB1=B1,∴A1C1⊥平面BB1D1,∴A1C1⊥BD1,同理,DC1⊥BD1,∵A1C1∩DC1=C1,∴直线BD1⊥平面A1C1D,故A正确;在B 中,∵A 1D ∥B 1C ,A 1D ⊂平面A 1C 1D ,B 1C ⊄平面A 1C 1D , ∴B 1C ∥平面 A 1C 1D ,∵点P 在线段B 1C 上运动,∴P 到平面A 1C 1D 的距离为定值,又△A 1C 1D 的面积是定值,∴三棱锥P ﹣A 1C 1D 的体积为定值,故B 正确; 在C 中,异面直线AP 与A 1D 所成角的取值范用是[60°,90°],故C 错误;在D 中,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 设正方体ABCD ﹣A 1B 1C 1D 1中棱长为1,P (a ,1,a ),则D (0,0,0),A 1(1,0,1),C 1(0,1,1),1DA =(1,0,1),1DC =(0,1,1),1C P =(a ,0,a ﹣1), 设平面A 1C 1D 的法向量(),,n x y z =, 则1100n DA x z n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x =1,得1,1,1n,∴直线C 1P 与平面A 1C 1D 所成角的正弦值为:11||||||C P n C P n ⋅⋅=22(1)3a a +-⋅=21132()22a ⋅-+, ∴当a =12时,直线C 1P 与平面A 1C 1D 所成角的正弦值的最大值为6,故D 正确. 故选:ABD .【点睛】求直线与平面所成的角的一般步骤:(1)、①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解; (2)、用空间向量坐标公式求解.10.如图,已知P 为棱长为1的正方体对角线1BD 上的一点,且()()10,1BP BD λλ=,下面结论中正确结论的有( )A .11A D C P ⊥;B .当1A P PD +取最小值时,23λ=; C .若()0,1λ∈,则7,312APC ππ⎛⎫∠∈ ⎪⎝⎭;D .若P 为1BD 的中点,四棱锥11P AA D D -的外接球表面积为94π. 【答案】ABD 【分析】以D 为坐标原点建立如图空间直角坐标系,利用向量关系可判断ABC ;根据几何体外接球关系建立方程求出球半径即可判断D. 【详解】以D 为坐标原点建立如图空间直角坐标系, 则()1,1,0B ,()10,0,1D ,设(),,P x y z ,()()10,1BP BD λλ=,1BP BD λ∴=,即()()1,1,1,1,1x y z λ--=--,则可解得()1,1,P λλλ--, 对A ,()()()111,0,1,0,0,0,0,1,1A D C ,()11,0,1A D ∴=--,()11,,1C P λλλ=---,则()()()()11110110A D C P λλλ⋅=-⨯-+⨯-+-⨯-=,则11A D C P ⊥,故A 正确;对B ,1A P PD +===则当23λ=时,1A P PD +取最小值,故B 正确; 对C ,()()1,0,0,0,1,0A C ,(),1,PA λλλ∴=--,()1,,PC λλλ=--,则222321cos 1321321PA PCAPC PA PC λλλλλλ⋅-∠===--+-+⋅, 01λ<<,则2232123λλ≤-+<,则2111123212λλ-≤-<-+, 即11cos 22APC -≤∠<,则2,33APC ππ⎛⎤∠∈ ⎥⎝⎦,故C 错误; 对于D ,当P 为1BD 中点时,四棱锥11P AA D D -为正四棱锥,设平面11AA D D 的中心为O ,四棱锥11P AA D D -的外接球半径为R ,所以222122R R ⎛⎛⎫-+= ⎪ ⎝⎭⎝⎭,解得34R =, 故四棱锥11P AA D D -的外接球表面积为94π,所以D 正确. 故选:ABD. 【点睛】关键点睛:本题考查空间相关量的计算,解题的关键是建立空间直角坐标系,利用向量建立关系进行计算.。

专题07 立体几何-2021年高考数学(理)考前压轴冲刺(解析版)

专题07  立体几何-2021年高考数学(理)考前压轴冲刺(解析版)

2021年高考数学(理)考前压轴冲刺专题07 立体几何一、填空题(共10题)1.下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线【答案】D【解析】A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.答案:D2.在正方体ABCD ­ A1B1C1D1中,点Q是棱DD1上的动点,则过A,Q,B1三点的截面图形不可能的是( ) A.等边三角形 B.矩形C.等腰梯形 D.正方形【答案】D【解析】当点Q与点D1重合时,截面图形为等边三角形AB1D1,如图(1);当点Q与点D重合时,截面图形为矩形AB1C1D,如图(2);当点Q不与点D、D1重合时,令Q,R分别为DD1、C1D1的中点,则截面图形为等腰梯形AQRB1,如图(3).D 是不可能的.答案:D3.若圆柱的轴截面是一个正方形,其面积为4S ,则它的一个底面面积是( )A .4SB .4πSC .πSD .2πS 【答案】C【解析】由题意知圆柱的母线长为底面圆的直径2R ,则2R ·2R =4S ,得R 2=S.所以底面面积为πR 2=πS. 答案:C4.如果一个正四面体(各个面都是正三角形)的体积为9 cm 3,则其表面积为( )A .18 3 cm 2B .18 cm 2C .12 3 cm 2D .12 cm 2【答案】A【解析】设正四面体的棱长为 a cm ,则底面积为34a 2 cm 2,易求得高为63a cm ,则体积为13×34a 2×63a =212a 3=9,解得a =32,所以其表面积为4×34a 2=183(cm 2). 答案:A5.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为1, 6,3,其四面体的四个顶点在一个球面上,则这个球的表面积为( )A .16πB .32πC .36πD .64π 【答案】A【解析】将四面体可补形为长方体,此长方体的对角线即为球的直径,而长方体的对角线长为12+(6)2+32=4,即球的半径为2,故这个球的表面积为4πr 2=16π. 答案:A6.如图,在棱长为4的正方体ABCD ­ A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=4A 1B 1,则多面体P ­ BCC 1B 1的体积为( )A.83B.163 C .4 D .5 【答案】B【解析】V 多面体P ­ BCC 1B 1=13S 正方形BCC 1B 1·PB 1=13×42×1=163.答案: B7.已知正四棱柱ABCD ­A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23B.33C.23D.13【答案】A【解析】解:设AB =1,则AA 1=2,分别以D 1A 1→、D 1C 1→、D 1D →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如右图所示:则D 1(0,0,0),C 1(0,1,0),B(1,1,2),C(0,1,2),D(0,0,2),DB →=(1,1,0),DC 1→=(0,1,-2),DC →=(0,1,0). 设n =(x ,y ,z)为平面BDC 1的一个法向量, 则⎩⎪⎨⎪⎧n ·DB →=0,n ·DC 1→=0,即⎩⎪⎨⎪⎧x +y =0,y -2z =0,取n =(-2,2,1).设CD 与平面BDC 1所成角为θ, 则sin θ=|n ·DC →|n ||DC →||=23.故选A.8.如图所示,已知点P 为菱形ABCD 所在平面外一点,且PA ⊥平面ABCD ,PA =AD =AC ,点F 为PC 中点,则平面CBF 与平面DBF 夹角的正切值为( )A.36B.34C.33D.233【答案】D【解析】解:设AC ∩BD =O ,连接OF ,以O 为原点,OB ,OC ,OF 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系,设PA =AD =AC =1,则BD =3,∴B ⎝⎛⎭⎪⎫32,0,0,F ⎝ ⎛⎭⎪⎫0,0,12,C ⎝ ⎛⎭⎪⎫0,12,0,D ⎝ ⎛⎭⎪⎫-32,0,0.∴OC →=⎝ ⎛⎭⎪⎫0,12,0,且OC →为平面BDF 的一个法向量.由BC →=⎝ ⎛⎭⎪⎫-32,12,0,FB →=⎝ ⎛⎭⎪⎫32,0,-12,可得平面BCF 的一个法向量为n =(1,3,3). ∴cos 〈n ,OC →〉=217,sin 〈n ,OC →〉=277.∴tan 〈n ,OC →〉=233.故选D9.若正方体ABCD ­A 1B 1C 1D 1的棱长为1,则直线A 1C 1到平面ACD 1的距离为( )A .1 B.33C.63D. 3【答案】B【解析】解:易知A 1C 1∥平面ACD 1,则点A 1到平面ACD 1的距离即为直线A 1C 1到平面ACD 1的距离.建立如图所示的空间直角坐标系,易知AA 1→=(0,0,1),平面ACD 1的一个法向量为n =(1,1,1),故所求的距离为|AA 1→·n |n ||=33.故选B 10.如图,在棱长为2的正方体ABCD ­A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为( )A.25 5 B.55 C.510D.3105 【答案】A【解析】解:以C 为原点,CD 、CB 、CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,则E(0,1,0),D 1(2,0,2),ED 1→=(2,-1,2),CC 1→=(0,0,2),设u =(x ,y ,z),u ⊥CC 1→,u ⊥ED 1→,则u ·CC 1→=(x ,y ,z)·(0,0,2)=0,∴z =0,u ·ED 1→=(x ,y ,z)·(2,-1,2)=2x -y +2z =0,空∴y =2x ,令x =1,则y =2,∴u =(1,2,0),∴异面直线D 1E 与CC 1的距离为d =|u ·CE →||u |=255,∵P 在D 1E 上运动,∴P 到直线CC 1的距离的最小值为d=255.故选A. 二、填空题(共3题)11.已知正四棱锥的侧棱长为23,侧棱与底面所成的角为60°,则该四棱锥的高为________.【答案】3【解析】如图,过点S 作SO ⊥平面ABCD ,连接OC ,则∠SCO =60°,∴SO =sin 60°·SC =32×23=3. 答案:312.已知P 是棱长为1的正方体ABCD ­A 1B 1C 1D 1内(含正方体表面)任意一点,则AP →·AC →的最大值为--------. 【答案】2【解析】解:由题意画出图形,如图所示,因为AP →·AC →=|AP →||AC →|cos 〈AP →,AC →〉,|AP →|cos 〈AP →,AC →〉是向量AP →在AC →上的投影,所以当P 在棱C 1C 上时,投影最大,AP →·AC →的最大值为AC →2=(12+12)2=2.13.如图,已知六棱锥P ­ ABCDEF 的底面是正六边形,PA ⊥平面ABC ,PA =2AB ,则下列结论中:①PB ⊥AE ;②平面ABC ⊥平面PBC ;③直线BC ∥平面PAE ;④∠PDA =45°. 其中正确的有________(把所有正确的序号都填上)【答案】①④【解析】对于①,因为PA ⊥平面ABC ,所以PA ⊥AE ,又EA ⊥AB ,PA ∩AB =A ,所以EA ⊥平面PAB ,从而可得EA ⊥PB ,故①正确.对于②,由于PA ⊥平面ABC ,所以平面ABC 与平面PBC 不可能垂直,故②不正确.对于③,由于在正六边形中BC ∥AD ,所以BC 与EA 必有公共点,从而BC 与平面PAE 有公共点,所以直线BC 与平面PAE 不平行,故③不正确.对于④,由条件得△PAD 为直角三角形,且PA ⊥AD ,又PA =2AB =AD ,所以∠PDA =45°.故④正确. 综上①④正确.故答案:①④ 三、解答题(共7题)14.如图,正方体ABCD ­ A ′B ′C ′D ′的棱长为a ,连接A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′ ­ BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′ ­ BC ′D 的体积.【解析】(1)∵ABCD ­ A ′B ′C ′D ′是正方体,∴A ′B =A ′C ′=A ′D =BC ′=BD =C ′D =2a ,∴三棱锥A ′ ­ BC ′D 的表面积为4×12×2a ×32×2a =23a 2.而正方体的表面积为6a 2,故三棱锥A ′ ­ BC ′D 的表面积与正方体表面积的比值为23a 26a 2=33. (2)三棱锥A ′ ­ ABD ,C ′ ­ BCD ,D ­ A ′D ′C ′,B ­ A ′B ′C ′是完全一样的. 故V 三棱锥A ′ ­ BC ′D =V 正方体-4V 三棱锥A ′ ­ ABD =a 3-4×13×12a 2×a =a33.15.如图平行四边形ABCD 中,BD =23,AB =2,AD =4,将△BCD 沿BD 折起到△EBD 的位置,使平面EBD ⊥平面ABD.(1)求证:AB ⊥DE.(2)求三棱锥E ­ ABD 的侧面积.【解析】(1)证明:∵AB =2,BD =23,AD =4,∴AB 2+BD 2=AD 2.∴AB ⊥BD.∵平面EBD ⊥平面ABD ,且平面EBD ∩平面ABD =BD , ∴AB ⊥平面EBD.∵DE ⊂平面EBD ,∴AB ⊥DE.(1)求△ABC 的面积. (2)求△ABC 中AB 边上的高.【解析】解:(1)由已知,得AB →=(1,-3,2),AC →=(2,0,-8),∴|AB →|=1+9+4=14,|AC →|=4+0+64=217,AB →·AC →=1×2+(-3)×0+2×(-8)=-14, ∴cos 〈AB →,AC →〉=AB →·AC →|AB →|·|AC →|=-1414×217=-14217,∴sin 〈AB →,AC →〉=1-1468=2734. ∴S △ABC =12|AB →|·|AC →|·sin 〈AB →,AC →〉=12×217×14×2734=321. (2)设AB 边上的高为CD.则|CD →|=2S △ABC |AB →|=36,即△ABC 中AB 边上的高为3 6.17.如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD .ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =.(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值. 【解析】解:(1)设DO a =,由题设可得63,,PO a AO a AB a ===, 22PA PB PC a ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥. 所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得312(0,1,0),(0,1,0),(,0),2E A C P -.所以312 (,,0),(0,1,)22EC EP=--=-.设(,,)x y z=m是平面PCE的法向量,则EPEC⎧⋅=⎪⎨⋅=⎪⎩mm,即223122y zx y⎧-+=⎪⎪⎨⎪--=⎪⎩,可取3(,1,2)=-m.由(1)知2(0,1,)2AP=是平面PCB的一个法向量,记AP=n,则25cos,|||⋅==n mn mn m|.所以二面角B PC E--的余弦值为255.18.如图,在三棱柱111ABC A B C-中,1CC⊥平面,,2ABC AC BC AC BC⊥==,13CC=,点,D E分别在棱1AA和棱1CC上,且2,1,AD CE M==为棱11A B的中点.(Ⅰ)求证:11C M B D⊥;(Ⅱ)求二面角1B B E D--的正弦值;(Ⅲ)求直线AB与平面1DB E所成角的正弦值.【解析】解:依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n . 因此有|||6cos ,|A CA C CA ⋅〈〉==n n n ,于是30sin ,6CA 〈〉=n . 所以,二面角1B B E D --30. (Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是3cos ,3||||AB AB AB ⋅==-n n n . 所以,直线AB 与平面1DB E 3. 19.如图,四棱锥P-ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD=AD=1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.【解析】解:(1)因为PD ⊥底面ABCD ,所以PD AD ⊥.又底面ABCD 为正方形,所以AD DC ⊥,因此AD ⊥底面PDC .因为AD BC ∥,AD ⊄平面PBC ,所以AD ∥平面PBC . 由已知得l AD ∥.因此l ⊥平面PDC . (2)以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz -.则(0,0,0),(0,1,0),(1,1,0),(0,0,1)D C B P ,(0,1,0)DC =,(1,1,1)PB =-.由(1)可设(,0,1)Q a ,则(,0,1)DQ a =.设(,,)x y z =n 是平面QCD 的法向量,则0,0,DQ DC ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0.ax z y +=⎧⎨=⎩可取(1,0,)a =-n . 所以2cos ,||||31PB PB PB a⋅〈〉==⋅+n n n . 设PB 与平面QCD 所成角为θ,则22332sin 1311a a a θ==+++ 2326131a a ++1a =时等号成立,所以PB 与平面QCD 所成角的正弦值的最大值620.如图,四棱柱ABCD­A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD;(2)若∠CBA=60°,求二面角C1­OB1­D的余弦值.【解析】解:(1)证明:∵四棱柱ABCD­A1B1C1D1的所有棱长都相等,∴四边形ABCD和四边形A1B1C1D1均为菱形.∵AC∩BD=O,A1C1∩B1D1=O1,∴O,O1分别为BD,B1D1中点.∵四边形ACC1A1和四边形BDD1B1为矩形,∴OO1∥CC1∥BB1且CC1⊥AC,BB1⊥BD,∴OO1⊥BD,OO1⊥AC,又∵AC∩BD=O且AC,BD底面ABCD,∴OO1⊥底面ABCD.(2)解法1:如图,过O1作B1O的垂线交B1O于点E,连接EO1,EC1.不妨设四棱柱ABCD-A1B1C1D1的边长为2a.∵OO1⊥底面ABCD且底面ABCD∥平面A1B1C1D1,∴OO 1⊥平面A 1B 1C 1D 1,又∵O 1C 1平面A 1B 1C 1D 1,∴O 1C 1⊥OO 1,∵四边形A 1B 1C 1D 1为菱形,∴O 1C 1⊥O 1B 1,又∵O 1C 1⊥OO 1且OO 1∩O 1C 1=O 1,O 1O ,O 1B 1平面OB 1D 1, ∴O 1C 1⊥平面OB 1D 1,又∵B 1O 平面OB 1D 1,∴B 1O ⊥O 1C 1,又∵B 1O ⊥O 1E 且O 1C 1∩O 1E =O 1,O 1C 1,O 1E平面O 1EC 1, ∴B 1O ⊥平面O 1EC 1,∴∠O 1EC 1为二面角C 1­OB 1­D 的平面角,cos ∠O 1EC 1=O 1E EC 1, ∵∠CBA =60°且四边形ABCD 为菱形,∴O 1C 1=a ,B 1O 1=3a ,OO 1=2a ,B 1O =B 1O 21+OO 21=7a ,则O 1E =B 1O 1·sin ∠O 1B 1O =B 1O 1·O 1O B 1O =3a ·2a 7a =2217a , 再由△O 1EC 1的勾股定理可得EC 1=O 1E 2+O 1C 21=127a 2+a 2=197a , 则cos ∠O 1EC 1=O 1E EC 1=2217a 197a =25719, 所以二面角C 1­OB 1­D 的余弦值为25719. 解法2:∵四棱柱ABCD ­A 1B 1C 1D 1的所有棱长都相等,∴四边形ABCD 是菱形,∴AC ⊥BD ,又O 1O ⊥平面ABCD ,从而OB 、OC 、OO 1两两垂直,以O 为坐标原点,OB 、OC 、OO 1所在直线分别为x 轴、y 轴、z 轴建立如图所示空间直角坐标系,不妨设AB =2,∵∠ABC =60°,∴OB =3,OC =1,于是各相关点的坐标O(0,0,0),B 1(3,0,2),C 1(0,1,2).易知n 1=(0,1,0)为平面BDD 1B 1的一个法向量,设n 2=(x ,y ,z)是平面OB 1C 1的一个法向量, 则⎩⎪⎨⎪⎧n 2·OB 1→=0,n 2·OC 1→=0,即⎩⎨⎧ 3x +2z =0,y +2z =0, 取z =-3,则x =2,y =23,∴n 2=(2,23,-3).设二面角C 1­OB 1­D 的大小为θ,易知θ为锐角,∴cos θ=|n 1·n 2||n 1||n 2|=25719,∴二面角C 1­OB 1­D 的余弦值为25719.。

2021年高考新题型——数学立体几何多选题专项练习附答案

2021年高考新题型——数学立体几何多选题专项练习附答案

2021年高考新题型——数学立体几何多选题专项练习附答案一、立体几何多选题1.如图,在直三棱柱111ABC A B C -中,12AC BC AA ===,90ACB ∠=︒,D ,E ,F分别为AC ,1AA ,AB 的中点.则下列结论正确的是( )A .1AC 与EF 相交B .11//BC 平面DEF C .EF 与1AC 所成的角为90︒D .点1B 到平面DEF 的距离为322【答案】BCD 【分析】利用异面直线的位置关系,线面平行的判定方法,利用空间直角坐标系异面直线所成角和点到面的距离,对各个选项逐一判断. 【详解】对选项A ,由图知1AC ⊂平面11ACC A ,EF 平面11ACC A E =,且1.E AC ∉由异面直线的定义可知1AC 与EF 异面,故A 错误;对于选项B ,在直三棱柱111ABC A B C -中,11B C //BC .D ,F 分别是AC ,AB 的中点, //∴FD BC ,11B C ∴ //FD .又11B C ⊄平面DEF ,DF ⊂平面DEF ,11B C ∴ //平面.DEF 故B 正确;对于选项C ,由题意,建立如图所示的空间直角坐标系,则(0C ,0,0),(2A ,0,0),(0B ,2,0),1(2A ,0,2),1(0B ,2,2),1(0C ,0,2),(1D ,0,0),(2E ,0,1),(1F ,1,0).(1EF ∴=-,1,1)-,1(2AC =-,0,2). 1·2020EF AC =+-=,1EF AC ∴⊥,1EF AC ∴⊥. EF 与1AC 所成的角为90︒,故C 正确;对于选项D ,设向量(n x =,y ,)z 是平面DEF 的一个法向量. (1DE =,0,1),(0DF =,1,0), ∴由n DE n DF ⎧⊥⎨⊥⎩,,,即·0·0n DE n DF ⎧=⎨=⎩,,,得00.x z y +=⎧⎨=⎩,取1x =,则1z =-,(1n ∴=,0,1)-, 设点1B 到平面DEF 的距离为d . 又1(1DB =-,2,2),1·102DB n d n-+∴===, ∴点1B 到平面DEF 的距离为2,故D 正确.故选:BCD 【点睛】本题主要考查异面直线的位置关系,线面平行的判定,异面直线所成角以及点到面的距离,还考查思维能力及综合分析能力,属难题.2.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长都等于1,且它们彼此的夹角都是60,下列说法中正确的是( )A .()()2212AA AB ADAC ++=B .1A 在底面ABCD 上的射影是线段BD 的中点C .1AA 与平面ABCD 所成角大于45 D .1BD 与AC 6 【答案】AC 【分析】对A ,分别计算()21++AA AB AD 和2AC ,进行判断;对B ,设BD 中点为O ,连接1A O ,假设1A 在底面ABCD 上的射影是线段BD 的中点,应得10⋅=O AB A ,计算10⋅≠O AB A ,即可判断1A 在底面ABCD 上的射影不是线段BD 的中点;对C ,计算11,,A A AC AC ,根据勾股定理逆定理判断得11⊥A A AC ,1AA 与平面ABCD 所成角为1A AC ∠,再计算1tan ∠A AC ;对D ,计算1,AC BD 以及1BD AC ⋅,再利用向量的夹角公式代入计算夹角的余弦值. 【详解】对A ,由题意,11111cos602⋅=⋅=⋅=⨯⨯=AA AB AA AD AD AB ,所以()2222111112*********++=+++⋅+⋅+⋅=+++⨯⨯=AA AB ADAA AB AD AA AB AB AD AA AD ,AC AB AD =+,所以()222221113=+=+⋅+=++=AC AB ADAB AB AD AD ,所以()()22126++==AA AB AD AC ,故A 正确;对B ,设BD 中点为O ,连接1A O ,1111111222=+=+=++AO A A AO A A AC A A AD AB ,若1A 在底面ABCD 上的射影是线段BD 的中点,则1A O ⊥平面ABCD ,则应10⋅=O AB A ,又因为21111111111110222222224⎛⎫⋅=++⋅=-⋅+⋅+=-+⨯+=≠ ⎪⎝⎭O AB A A AD AB AB AA AB AD AB AB A ,故B 错误;对D ,11,BD AD AA AB AC AB AD =+-=+,所以()()2211=2,=3=+-=+AD A B A AB AC AB AD D()()2211111⋅=+-⋅+=⋅++⋅+⋅--⋅=AC AD AA AB AB AD AD AB AD AA AB AA AD AB AB AD BD ,1116cos ,23⋅<>===⋅B AC D BD BD AC AC,故D 不正确;对C,112==AC BD ,在1A AC 中,111,2,3===A A AC AC ,所以22211+=A A AC AC ,所以11⊥A A AC ,所以1AA 与平面ABCD 所成角为1A AC ∠,又1tan 21∠=>A AC ,即145∠>A AC ,故C 正确;故选:AC【点睛】方法点睛:用向量方法解决立体几何问题,需要树立“基底”意识,利用基向量进行线性运算,要理解空间向量概念、性质、运算,注意和平面向量类比;同时对于立体几何中角的计算问题,往往可以利用空间向量法,利用向量的夹角公式求解.3.如图,在棱长为2的正方体1111ABCD A B C D -,中,E 为棱1CC 上的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F ,B ,E ,G ,H 为过三点B ,E ,F 的平面BMN 与正方体1111ABCD A B C D -的棱的交点,则下列说法正确的是( )A .//HF BEB .三棱锥的体积14B BMN V -=C .直线MN 与平面11A B BA 所成的角为45︒D .11:1:3D G GC = 【答案】ABD 【分析】面面平行性质定理可得出A 正确;等体积法求得B 正确;直线MN 与平面11A B BA 所成的角为1B MN ∠,求其正切值不等于1即可得出C 错误;利用面面平行性质定理和中位线求出11,D G GC 长度即可得出D 正确. 【详解】解:对于A.在正方体1111ABCD A B C D -中平面11//ADA D 平面11BCB C , 又平面11ADA D 平面BMN HF =,平面11BCB C ⋂平面BMN BE =,有平面与平面平行的性质定理可得//HF BE ,故正确; 对于B.因为1:1:2A F FA =,所以111332B M A B ==, 又E 为棱1CC 上的中点,所以14B N =, 所以1111234432B BMN N B BM V V --⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭,故正确; 对于C.由题意及图形可判定直线MN 与平面11A B BA 所成的角为1B MN ∠, 结合B 选项可得1114tan 13B N B MN B M ∠==≠,故错误; 对于D.同A 选项证明方法一样可证的11//GC B M ,因为E 为棱1CC 上的中点,1C 为棱1B N 上的中点,所以1113=22GC B M = 所以11G=2D ,所以11:1:3D G GC =,故正确. 故选:ABD 【点睛】求体积的常用方法:(1)直接法:对于规则的几何体,利用相关公式直接计算;(2)等体积法:选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换;(3)割补法:首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算.4.在直角梯形ABCD 中,2ABC BCD π∠=∠=,1AB BC ==,2DC =,E 为DC 中点,现将ADE 沿AE 折起,得到一个四棱锥D ABCE -,则下列命题正确的有( ) A .在ADE 沿AE 折起的过程中,四棱锥D ABCE -体积的最大值为13B .在ADE 沿AE 折起的过程中,异面直线AD 与BC 所成的角恒为4π C .在ADE 沿AE 折起的过程中,二面角A EC D --的大小为45︒D .在四棱锥D ABCE -中,当D 在EC 上的射影恰好为EC 的中点F 时,DB 与平面ABCE所成的角的正切为15 【答案】ABD 【分析】对于A ,四棱锥D ABCE -的底面面积是固定值,要使得体积最大,需要平面DAE ⊥平面ABCE ,此时DE CE ⊥,可求得1133D ABCE ABCE V S DE -=⋅=可判断A ;对于B ,在ADE 沿AE 折起的过程中,//AE BC ,所以异面直线AD 与AE 所成的角即为AD 与BC所成角,由翻折前可知4DAE π∠=可判断B ;对于C ,利用线面垂直的判定定理,结合翻折前可知AE ⊥平面DEC ,又AE ⊂平面ABCE ,所以平面DEC ⊥平面ABCE ,即二面角A EC D --的在大小为2π判断C ;对于D ,利用线面垂直的判定定理可知DF ⊥平面ABCE ,所以DBF ∠为直线DB 与平面ABCE 所成的角,在直角DFB △中,15tan 5DF DBF BF ∠==,可判断D 正确;【详解】对于A ,ADE 沿AE 折起得到四棱锥D ABCE -,由四棱锥底面面积是固定值,要使得体积最大,需要四棱锥的高最大,即平面DAE ⊥平面ABCE ,此时DE CE ⊥,由已知得1DE =,则111111333D ABCE ABCE V S DE -=⋅=⨯⨯⨯=,故A 正确; 对于B ,在ADE 沿AE 折起的过程中,//AE BC ,所以异面直线AD 与AE 所成的角即为AD 与BC 所成角,又1AB BC ==,2DC =,E 为DC 中点,可知4DAE π∠=,即异面直线AD 与BC 所成的角恒为4π,故B 正确;对于C ,由翻折前知,,AE EC AE ED ⊥⊥,且EC ED E =,则AE ⊥平面DEC ,又AE ⊂平面ABCE ,所以平面DEC ⊥平面ABCE ,即二面角A EC D --的大小为2π,故C 错误; 对于D,如图连接,DF BF ,由C 选项知,AE ⊥平面DEC ,又DF ⊂平面DEC ,则AE DF ⊥,又由已知得EC DF ⊥,且EC AE E ⋂=,则DF ⊥平面ABCE ,所以DBF ∠为直线DB 与平面ABCE 所成的角,在直角DFB △中,222222113122152tan 5511122DE CE DFDBF BFBC CE ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∠=====⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,所以DB 与平面ABCE 所成的角的正切为15,故D 正确; 故选:ABD 【点睛】关键点睛:本题考查立体几何综合问题,求体积,求线线角,线面角,面面角,解题的关键要熟悉几种角的定义,通过平移法找到线线角,通过证垂直找到线面角和面面角,再结合三角形求出角,考查了学生的逻辑推理能力,转化能力与运算求解能力,属于难题.5.如图,矩形ABCD 中, 22AB AD ==,E 为边AB 的中点.将ADE 沿直线DE 翻折成1A DE △(点1A 不落在底面BCDE 内),若M 在线段1A C 上(点M 与1A ,C 不重合),则在ADE 翻转过程中,以下命题正确的是( )A .存在某个位置,使1DE A C ⊥B .存在点M ,使得BM ⊥平面1A DC 成立 C .存在点M ,使得//MB 平面1A DE 成立D .四棱锥1A BCDE -体积最大值为24【答案】CD 【分析】利用反证法可得A 、B 错误,取M 为1A C 的中点,取1A D 的中点为I ,连接,MI IE ,可证明//MB 平面1A DE ,当平面1A DE ⊥平面BCDE 时,四棱锥1A BCDE -体积最大值,利用公式可求得此时体积为2. 【详解】如图(1),取DE 的中点为F ,连接1,A F CF , 则45CDF ∠=︒,22DF =,故212254222222CF =+-⨯⨯=, 故222DC DF CF ≠+即2CFD π∠≠.若1CA DE ⊥,因为11,A D A E DF FE ==,故1A F DE ⊥,而111A F A C A ⋂=, 故DE ⊥平面1A FC ,因为CF ⊂平面1A FC ,故DE CF ⊥,矛盾,故A 错. 若BM ⊥平面1A DC ,因为DC ⊂平面1A DC ,故BM DC ⊥, 因为DC CB ⊥,BM CB B ⋂=,故CD ⊥平面1A CB ,因为1AC ⊂平面1A CB ,故1CD A C ⊥,但1A D CD <,矛盾,故B 错. 当平面1A DE ⊥平面BCDE 时,四棱锥1A BCDE -体积最大值, 由前述证明可知1A F DE ⊥,而平面1A DE平面BCDE DE =,1A F ⊂平面1A DE ,故1A F ⊥平面BCDE ,因为1A DE △为等腰直角三角形,111A D A E ==,故122A F =,又四边形BCDE 的面积为13211122⨯-⨯⨯=, 故此时体积为13223224⨯⨯=,故D 正确. 对于C ,如图(2),取M 为1A C 的中点,取1A D 的中点为I ,连接,MI IE ,则1//,2IM CD IM CD =,而1//,2BE CD BE CD =, 故//,IM BE IM BE =即四边形IEBM 为平行四边形,故//IE BM ,因为IE ⊂平面1A DE ,BM ⊄平面1A DE ,故//MB 平面1A DE , 故C 正确. 故选:CD.【点睛】本题考查立体几何中的折叠问题,注意对于折叠后点线面的位置的判断,若命题的不成立,往往需要利用反证法来处理,本题属于难题.6.如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26的正三角形,底面ABCD 为矩形,23CD =,点Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 22C .三棱锥B ACQ -的体积为D .四棱锥Q ABCD -外接球的内接正四面体的表面积为【答案】BD 【分析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,则由已知可得OP ⊥平面 ABCD ,而底面ABCD 为矩形,所以以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,利用空间向量依次求解即可. 【详解】解:取AD 的中点O ,BC 的中点E ,连接,OE OP , 因为三角形PAD 为等边三角形,所以OP AD ⊥, 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD , 因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,则(0,0,0),(O D A ,(P C B ,因为点Q 是PD的中点,所以Q , 平面PAD 的一个法向量为(0,1,0)m =,6(22QC =-,显然 m 与QC 不共线, 所以CQ 与平面PAD 不垂直,所以A 不正确;3632(6,23,32),(,0,),(26,22PC AQ AC =-==, 设平面AQC 的法向量为(,,)n x y z =,则360260n AQ x z nAC ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令=1x ,则y z ==, 所以(1,2,n =-, 设PC 与平面AQC 所成角为θ,则21sin 36n PC n PCθ⋅===, 所以cos θ=,所以B 正确;三棱锥B ACQ -的体积为 1132B ACQ Q ABC ABC V V S OP --==⋅ 1112326326322=⨯⨯⨯⨯⨯=, 所以C 不正确;设四棱锥Q ABCD -外接球的球心为(0,3,)M a ,则MQ MD =,所以()()()22222263236322a a ⎛⎫⎛⎫++-=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得0a =,即(0,3,0)M 为矩形ABCD 对角线的交点,所以四棱锥Q ABCD -外接球的半径为3,设四棱锥Q ABCD -外接球的内接正四面体的棱长为x ,将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为22x ,所以222362x ⎛⎫= ⎪ ⎪⎝⎭,得224x =, 所以正四面体的表面积为2342434x ⨯=,所以D 正确. 故选:BD【点睛】此题考查线面垂直,线面角,棱锥的体积,棱锥的外接球等知识,综合性强,考查了计算能力,属于较难题.7.如图,已知矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1A C 的中点,则ADE ∆在翻折过程中,下列说法正确的是( )A .线段BM 的长是定值B .存在某个位置,使1DE AC ⊥C .点M 的运动轨迹是一个圆D .存在某个位置,使MB ⊥平面1A DE【答案】AC【分析】取CD 中点F ,连接BF ,MF ,根据面面平行的判定定理可得平面//BMF 平面1A DE ,由面面平行的性质定理可知//BM 平面1A DE ,可判断D ;在BFM ∆中,利用余弦定理可求得BM a =为定值,可判断A 和C ;假设1DE A C ⊥,由线面垂直的判定定理可得DE ⊥平面1A CE ,由线面垂直的性质定理可知1DE A E ⊥,与11DA A E ⊥矛盾,可判断B .【详解】解:取CD 的中点F ,连接BF ,MF ,∵M ,F 分别为1A C 、CD 中点,∴1MF A D ∥,∵1A D ⊂平面1A DE ,MF ⊄平面1A DE ,∴MF 平面1A DE ,∵DF BE ∥且DF BE =,∴四边形BEDF 为平行四边形,∴BF DE ,∵DE ⊂平面1A DE ,BF ⊄平面1A DE ,∴BF ∥平面1A DE ,又BF MF F =,BF 、MF ⊂平面BMF ,∴平面//BMF 平面1A DE ,∵BM ⊂平面BMF ,∴BM ∥平面1A DE ,即D 错误,设22AB AD a ==, 则112MF A D a ==,2BF DE a ==,145A DE MFB ︒∠=∠=, ∴222cos45BM MF BF MF BF a ︒=+-⋅⋅=,即BM 为定值,所以A 正确,∴点M 的轨迹是以B 为圆心,a 为半径的圆,即C 正确,∵2DE CE a ==,2CD AB a ==, ∴222DE CE CD +=, ∴DE CE ⊥,设1DE A C ⊥,∵1A C 、CE ⊂平面1A CE ,1AC CE C =, ∴DE ⊥平面1A CE ,∵1A E ⊂平面1A CE ,∴1DE A E ⊥,与11DA A E ⊥矛盾,所以假设不成立,即B 错误.故选:AC .【点睛】本题考查立体几何中的翻折问题,涉及到线段长度的求解、直线与平面位置关系的判定、点的轨迹的求解、反证法的应用等知识点,考查学生的空间立体感和推理论证能力.8.在正方体1111ABCD A B C D -中,如图,,M N 分别是正方形ABCD ,11BCC B 的中心.则下列结论正确的是( )A .平面1D MN 与11BC 的交点是11B C 的中点B .平面1D MN 与BC 的交点是BC 的三点分点C .平面1D MN 与AD 的交点是AD 的三等分点D .平面1D MN 将正方体分成两部分的体积比为1∶1【答案】BC【分析】取BC 的中点E ,延长DE ,1D N ,并交于点F ,连FM 并延长分别交,BC AD 于,P Q ,连1,D Q PN 并延长交11B C 与H ,平面四边形1D HPQ 为所求的截面,进而求出,,P Q H 在各边的位置,利用割补法求出多面体11QPHD C CD 的体积,即可求出结论.【详解】如图,取BC 的中点E ,延长DE ,1D N ,并交于点F ,连接FM 并延长,设FM BC P ⋂=,FM AD Q ⋂=,连接PN 并延长交11B C 于点H .连接1D Q ,1D H ,则平面四边形1D HPQ 就是平面1D MN 与正方体的截面,如图所示.111111////,22NE CC DD NE CC DD ==, NE ∴为1DD F ∆的中位线,E ∴为DF 中点,连BF ,,,90DCE FBE BF DC AB FBE DCE ∴∆≅∆==∠=∠=︒,,,A B F ∴三点共线,取AB 中点S ,连MS , 则12//,,23BP FB MS BP MS BC MS FS =∴==, 22111,33236BP MS BC BC PE BC ∴==⨯=∴=, E 为DF 中点,11//,233PE DQ DQ PE BC AD ∴=== N 分别是正方形11BCC B 的中心,11113C H BP C B ∴==所以点P 是线段BC 靠近点B 的三等分点,点Q 是线段AD 靠近点D 的三等分点,点H 是线段11B C 靠近点1C 的三等分点.做出线段BC 的另一个三等分点P ',做出线段11A D 靠近1D 的三等分点G ,连接QP ',HP ',QG ,GH ,1H QPP Q GHD V V '--=, 所以111113QPHD C CD QPHQ DCC D V V V -==多面体长方体正方体从而平面1D MN 将正方体分成两部分体积比为2∶1.故选:BC.【点睛】本题考查直线与平面的交点及多面体的体积,确定出平面与正方体的交线是解题的关键,考查直观想象、逻辑推理能力,属于较难题.9.如图,1111ABCD A B C D -为正方体,下列结论中正确的是( )A .11A C ⊥平面11BB D DB .1BD ⊥平面1ACBC .1BD 与底面11BCC B 2D .过点1A 与异面直线AD 与1CB 成60角的直线有2条【答案】ABD【分析】由直线与平面垂直的判定判断A 与B ;求解1BD 与底面11BCC B 所成角的正切值判断C ;利用空间向量法可判断D .【详解】对于A 选项,如图,在正方体1111ABCD A B C D -中,1BB ⊥平面1111D C B A ,11A C ⊂平面1111D C B A ,则111BB A C ⊥,由于四边形1111D C B A 为正方形,则1111AC B D ⊥, 1111BB B D B =,因此,11A C ⊥平面11BB D D ,故A 正确;对于B 选项,在正方体1111ABCD A B C D -中,1DD ⊥平面ABCD ,AC ⊂平面ABCD ,1AC DD ∴⊥,因为四边形ABCD 为正方形,所以,AC BD ⊥,1D DD BD =,AC ∴⊥平面11BB D D ,1BD ⊂平面11BB D D ,1AC BD ∴⊥,同理可得11BD B C ⊥,1AC B C C =,1BD ∴⊥平面1ACB ,故B 正确;对于C 选项,由11C D ⊥平面11BCC B ,得11C BD ∠为1BD 与平面11BCC B 所成角, 且111112tan 2C D C BD BC ∠==,故C 错误; 对于D 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设正方体的棱长为1,则()1,0,0A 、()0,0,0D 、()0,1,0C 、()11,1,1B ,()1,0,0DA =,()11,0,1CB =,设过点1A 且与直线DA 、1CB 所成角的直线的方向向量为()1,,m y z =, 则221cos ,21DA mDA m DA m y z ⋅<>===⋅++, 1122111cos ,221CB m z CB m CB m y z ⋅+<>===⋅⋅++, 整理可得2222341y z y z z ⎧+=⎨=++⎩,消去y 并整理得2210z z +-=,解得12z =-12z =-由已知可得3z ≤,所以,12z =-+22y =±因此,过点1A 与异面直线AD 与1CB 成60角的直线有2条,D 选项正确.故选:ABD.【点睛】方法点睛:证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.10.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )A .0MN EF ⋅=B .ME NE =C .四边形MENF 的面积最小值与最大值之比为2:3D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3【答案】ABD【分析】证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积12S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可.【详解】对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EF BB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,因此0MN EF ⋅=,故A 正确.对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.对于C 选项,由B 易得四边形MENF 的面积12S MN EF =⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小, 此时2MN EF ==,即面积S 的最小值为1; 当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最大,此时3MN =,即面积S 的最大值为62, 所以四边形MENF 的面积最小值与最大值之比为2:6,故C 不正确.对于D 选项,四棱锥A MENF -的体积1112123346M AEF N AEF AEF V V V DB S --=+=⋅=⨯⨯=△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,则它们的体积也是相同的,因此多面体ABCD EMFN -的体积21122ABCD A B C D V V ''''-==正方体, 所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .【点睛】本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体ABCD EMFN -的体积转化为正方体的体积的一半求解.。

高三数学精选立体几何多选题 易错题难题提优专项训练试题

高三数学精选立体几何多选题 易错题难题提优专项训练试题

高三数学精选立体几何多选题 易错题难题提优专项训练试题一、立体几何多选题1.如图①,矩形ABCD 的边2BC =,设AB x =,0x >,三角形BCM 为等边三角形,沿BC 将三角形BCM 折起,构成四棱锥M ABCD -如图②,则下列说法正确的有( )A .若T 为BC 中点,则在线段MC 上存在点P ,使得//PD 平面MATB .当)3,2x ∈时,则在翻折过程中,不存在某个位置满足平面MAD ⊥平面ABCDC .若使点M 在平面ABCD 内的射影落在线段AD 上,则此时该四棱锥的体积最大值为1 D .若1x =,且当点M 在平面ABCD 内的射影点H 落在线段AD 上时,三棱锥M HAB -6322++【答案】BCD 【分析】对于A ,延长AT 与DC 的延长线交于点N ,此时,DP 与MN 必有交点; 对于B ,取AD 的中点H ,表示出2223MH MT HT x --,验证当)3,2x ∈时,无解即可; 对于C ,利用体积公式21233V x x =⨯⨯-,借助基本不等式求最值即可; 对于D ,要求外接球半径与内切球半径,找外接圆的圆心,又内接圆半径为2323r =++【详解】对于A ,如图,延长AT 与DC 的延长线交于点N ,则面ATM ⋂面()MDC N MN =.此时,DP 与MN 必有交点,则DP 与面ATM 相交,故A 错误; 对于B ,取AD 的中点H ,连接MH ,则MH AD ⊥.若面MAD ⊥面ABCD ,则有2223MH MT HT x =-=- 当)3,2x ∈时,无解,所以在翻折过程中,不存在某个位置满足平面MAD ⊥平面ABCD故B 正确;对于C ,由题可知,此时面MAD ⊥面ABCD ,由B 可知,(3x ∈,所以()22222221223232331333232x x V x x x x ⎛⎫+-⎛⎫=⨯⨯-=-≤== ⎪ ⎪⎝⎭⎝⎭当且仅当223x x =-,即6x =时等号成立.故C 正确; 对于D ,由题可知,此时面MAD ⊥面ABCD ,且2MH =因为AHB,MHB都是直角三角形,所以M ABH-底面外接圆的圆心是中点,所以1R=,由等体积法,可求得内接圆半径为2323r=++,故61322Rr++=,故D正确.故选:BCD.【点睛】本题从多个角度深度考查了立体几何的相关内容,注意辅助线的作法,以及求内接圆半径的公式、基本不等式、构造函数等核心思想.2.如图所示,正三角形ABC中,D,E分别为边AB,AC的中点,其中AB=8,把△ADE 沿着DE翻折至A'DE位置,使得二面角A'-DE-B为60°,则下列选项中正确的是()A.点A'到平面BCED的距离为3B.直线A'D与直线CE所成的角的余弦值为5 8C.A'D⊥BDD.四棱锥A'-BCED237【答案】ABD【分析】作AM⊥DE,交DE于M,延长AM交BC于N,连接A'M,A'N.利用线面垂直的判定定理判定CD⊥平面A'MN,利用面面垂直的判定定理与性质定理得到'A到平面面BCED的高A'H,并根据二面角的平面角,在直角三角形中计算求得A'H的值,从而判定A;根据异面直线所成角的定义找到∠A'DN就是直线A'D与CE所成的角,利用余弦定理计算即可判定B;利用勾股定理检验可以否定C;先证明底面的外接圆的圆心为N ,在利用外接球的球心的性质进行得到四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC ,经过计算求解可得半径从而判定D. 【详解】如图所示,作AM ⊥DE ,交DE 于M ,延长AM 交BC 于N ,连接A'M ,A'N . 则A'M ⊥DE ,MN ⊥DE , ,∵'A M ∩MN =M ,∴CD ⊥平面A'MN , 又∵CD ⊂平面ABDC ,∴平面A'MN ⊥平面ABDC , 在平面A'MN 中作A'H ⊥MN ,则A'H ⊥平面BCED , ∵二面角A'-DE -B 为60°,∴∠A'EF =60°,∵正三角形ABC 中,AB =8,∴AN =∴A'M ,∴A'H =A'M sin60°=3,故A 正确; 连接DN ,易得DN ‖EC ,DN =EC =4, ∠A'DN 就是直线A'D 与CE 所成的角,DN =DA'=4,A'N =A'M ,cos ∠A'DN =22441252448+-=⨯⨯,故B 正确;A'D =DB =4,==,∴222A D DB A B '≠'+,∴A'D 与BD 不垂直,故C 错误’ 易得NB =NC =ND =NG =4,∴N 为底面梯形BCED 的外接圆的圆心, 设四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC , 若O 在平面BCED 上方,入图①所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P ,则HP =x ,易得()2222243x x R +=-+=,解得23x =-,舍去;故O 在平面BCED 下方,如图②所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P ,则HP =x ,易得()2222243x x R +=++=, 解得23x =,∴244371699R ⨯=+=,R ∴=故D 正确. 故选:ABD .【点睛】本题考查立体几何中的折叠问题,涉及二面角问题,异面直线所成的角,用到线面、面面垂直的判定与性质及外接球的球心的性质和有关计算,余弦定理等,属综合性较强的题目,关键是利用线面垂直,面面垂直的判定和性质进行空间关系和结构的判定,注意球心在四棱锥的底面上方和下方的讨论与验证.3.如图,一个结晶体的形状为平行六面体1111ABCD A B C D ,其中,以顶点A 为端点的三条棱长都等于1,且它们彼此的夹角都是60,下列说法中正确的是( )A .()()2212AA AB ADAC ++=B .1A 在底面ABCD 上的射影是线段BD 的中点C .1AA 与平面ABCD 所成角大于45 D .1BD 与AC所成角的余弦值为3【答案】AC 【分析】对A ,分别计算()21++AA AB AD 和2AC ,进行判断;对B ,设BD 中点为O ,连接1A O ,假设1A 在底面ABCD 上的射影是线段BD 的中点,应得10⋅=O AB A ,计算10⋅≠O AB A ,即可判断1A 在底面ABCD 上的射影不是线段BD 的中点;对C ,计算11,,A A AC AC ,根据勾股定理逆定理判断得11⊥A A AC ,1AA 与平面ABCD 所成角为1A AC ∠,再计算1tan ∠A AC ;对D ,计算1,AC BD 以及1BD AC ⋅,再利用向量的夹角公式代入计算夹角的余弦值. 【详解】对A ,由题意,11111cos602⋅=⋅=⋅=⨯⨯=AA AB AA AD AD AB ,所以()2222111112*********++=+++⋅+⋅+⋅=+++⨯⨯=AA AB ADAA AB AD AA AB AB AD AA AD ,AC AB AD =+,所以()222221113=+=+⋅+=++=AC AB ADAB AB AD AD ,所以()()22126++==AA AB AD AC ,故A 正确;对B ,设BD 中点为O ,连接1A O ,1111111222=+=+=++AO A A AO A A AC A A AD AB ,若1A 在底面ABCD 上的射影是线段BD 的中点,则1A O ⊥平面ABCD ,则应10⋅=O AB A ,又因为21111111111110222222224⎛⎫⋅=++⋅=-⋅+⋅+=-+⨯+=≠ ⎪⎝⎭O AB A A AD AB AB AA AB AD AB AB A ,故B 错误;对D ,11,BD AD AA AB AC AB AD =+-=+,所以()()2211=2,=3=+-=+AD A B A AB AC AB AD D ()()2211111⋅=+-⋅+=⋅++⋅+⋅--⋅=AC AD AA AB AB AD AD AB AD AA AB AA AD ABAB AD BD,111cos ,2⋅<>===B AC D BD BD AC ACD 不正确;对C ,112==AC BD ,在1A AC 中,111,===A A AC AC 22211+=A A AC AC ,所以11⊥A A AC ,所以1AA 与平面ABCD 所成角为1A AC ∠,又1tan 1∠=>A AC ,即145∠>A AC ,故C 正确;故选:AC【点睛】方法点睛:用向量方法解决立体几何问题,需要树立“基底”意识,利用基向量进行线性运算,要理解空间向量概念、性质、运算,注意和平面向量类比;同时对于立体几何中角的计算问题,往往可以利用空间向量法,利用向量的夹角公式求解.4.在正方体1111ABCD A B C D -中,M 、N 分别是棱AB 、1CC 的中点,1MB P 的顶点P 在棱1CC 与棱11C D 上运动,有以下四个命题正确命题的序号是( )A .平面1MB P 1ND ⊥ B .平面1MB P ⊥平面11ND AC .1MB P 在底面ABCD 上的射影图形的面积为定值 D .1MB P 在侧面11D C CD 上射影图形是三角形 【答案】BC 【分析】取N 与P 重合,结合勾股定理可判断A 选项的正误;利用面面垂直的判定定理可判断B 选项的正误;分点P 在棱1CC 、11C D 上运动两种情况讨论,利用三角形的面积公式可判断C 选项的正误;取点P 与点1C 重合,判断1MB P 在侧面11D C CD 上射影图形形状,可判断D 选项的正误. 【详解】对于A 选项,设正方体1111ABCD A B C D -的棱长为2,如下图所示:当点P 与点N 重合时, 若1ND ⊥平面1MB P ,1B N ⊂平面1MB P ,则11ND B N ⊥,由勾股定理可得2211115D N C N C D =+=,同理可得15B N =,1122B D =,2221111B N D N B D ∴+≠,则1ND 与1B N 不垂直,假设不成立,A 选项错误;对于B 选项,取1BB 的中点E ,连接1A E 、EN ,在正方体1111ABCD A B C D -中,11//BB CC ,且E 、N 分别为1BB 、1CC 的中点, 则11//B E C N 且11B E C N =,所以,四边形11B ENC 为平行四边形,则11//EN B C 且11EN B C =,1111//A D B C 且1111A D B C =,所以,11//A D EN 且11A D EN =,所以,四边形11A END 为平行四边形,所以,11//A E D N ,111A B BB =,1B E BM =,11190A B E B BM ∠=∠=,所以,111Rt A B E Rt B BM ≅△△,所以,111B A E BB M ∠=∠,所以,111111190A EB BB M A EB B A E ∠+∠=∠+∠=,190B FE ∴∠=,所以,11B M A E ⊥,11A D ⊥平面11AA B B ,1B M ⊂平面11AA B B ,111B M A D ∴⊥, 1111A D A E A =,11A D 、1A E ⊂平面11ND A ,1MB ∴⊥平面11ND A ,1MB ⊂平面1MB P ,所以,平面1MB P ⊥平面11ND A ,B 选项正确;对于C 选项,设正方体1111ABCD A B C D -的棱长为a .若点P 在棱1CC 上运动时,1MB P 在底面ABCD 上的射影为MBC △, 此时,射影图形的面积为21224MBCa a S a =⋅=△; 若点P 在棱11C D 上运动时,设点P 在底面ABCD 上的射影点为G ,则G CD ∈, 且点G 到AB 的距离为a ,1MB 在底面ABCD 内的射影为MB ,则1MB P 在底面ABCD 内的射影为MBG △,且21224MBGa a S a =⋅⋅=△.综上所述,1MB P 在底面ABCD 内的射影图形的面积为定值,C 选项正确; 对于D 选项,当点P 与1C 重合时,P 、1B 两点在平面11D C CD 上的射影重合, 此时,1MB P 在侧面11D C CD 上的射影不构成三角形,D 选项错误. 故选:BC. 【点睛】方法点睛:证明面面垂直常用的方法: (1)面面垂直的定义; (2)面面垂直的判定定理.在证明面面垂直时,一般假设面面垂直成立,然后利用面面垂直转化为线面垂直,即为所证的线面垂直,组织论据证明即可.5.如图,点E 为正方形ABCD 边CD 上异于点C ,D 的动点,将ADE 沿AE 翻折成SAE △,在翻折过程中,下列说法正确的是( )A .存在点E 和某一翻折位置,使得SB SE ⊥ B .存在点E 和某一翻折位置,使得//AE 平面SBCC .存在点E 和某一翻折位置,使得直线SB 与平面ABC 所成的角为45°D .存在点E 和某一翻折位置,使得二面角S AB C --的大小为60° 【答案】ACD 【分析】依次判断每个选项:当SE CE ⊥时,⊥SE SB ,A 正确,//AE 平面SBC ,则//AE CB ,这与已知矛盾,故B 错误,取二面角D AE B --的平面角为α,取4=AD ,计算得到2cos 3α=,C 正确,取二面角D AE B --的平面角为60︒,计算得到5tan θ=,故D 正确,得到答案. 【详解】当SE CE ⊥时,SE AB ⊥,SE SA ⊥,故SE ⊥平面SAB ,故⊥SE SB ,A 正确;若//AE 平面SBC ,因AE ⊂平面ABC ,平面ABC 平面SBC BC =,则//AE CB ,这与已知矛盾,故B 错误;如图所示:DF AE ⊥交BC 于F ,交AE 于G ,S 在平面ABCE 的投影O 在GF 上, 连接BO ,故SBO ∠为直线SB 与平面ABC 所成的角,取二面角D AE B --的平面角为α,取4=AD ,3DE =,故5AE DF ==,1CE BF ==,125DG =,12cos 5OG α=,故只需满足12sin 5SO OB α==, 在OFB △中,根据余弦定理:2221213121312sin 1cos 2cos cos 55555OFB ααα⎛⎫⎛⎫⎛⎫=+---∠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得2cos 3α=,故C 正确; 过O 作OMAB ⊥交AB 于M ,则SMO ∠为二面角S AB C --的平面角,取二面角D AE B --的平面角为60︒,故只需满足22DG GO OM ==,设OAG OAM θ∠=∠=,84ππθ<<,则22DAG πθ∠=-,tan tan22DG OGAG πθθ==⎛⎫- ⎪⎝⎭,化简得到2tan tan 21θθ=,解得5tan θ=,验证满足,故D 正确; 故选:ACD .【点睛】本题考查了线线垂直,线面平行,线面夹角,二面角,意在考查学生的计算能力,推断能力和空间想象能力.6.在长方体1111ABCD A B C D -中,23AB =12AD AA ==,P 、Q 、R 分别是AB 、1BB 、1A C 上的动点,下列结论正确的是( )A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥C .当1AR A C ⊥时,1ARD R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABCD 【分析】本题先建立空间直角坐标系,再运用空间向量在立体几何中的应用逐一判断即可. 【详解】如图所示,建立空间直角坐标系,设(2,,0)P a ,023a ⎡⎤∈⎣⎦,,(2,23,)Q b ,[]0,2b ∈,设11A R AC λ=,得到(22,3,22)R λλλ--,[]0,1λ∈. 1(2,,2)D P a =-,(2,0,)CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;1(22,23,2)D R λλλ=--,12(22)2D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确;1AR A C ⊥,则1(2,23,22)(2,23,2)412440AR AC λλλλλλ⋅=--⋅--=+-+=,解得:15λ=,此时122328232(,,)(,,)0555555AR D R ---⋅=⋅=,1AR D R ⊥,C 正确;113AC A R =,则4234(,,)333R ,14232(,,)333D R =-,设平面1BDC 的法向量为(,,)n x y z =,则100n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得(3,1,3)n =-,故10n D R ⋅=,故1//D R 平面1BDC ,D 正确.故选:ABCD.【点睛】本题考查了空间向量在立体几何中的应用,是偏难题.7.在边长为2的等边三角形ABC 中,点,D E 分别是边,AC AB 上的点,满足//DE BC 且AD ACλ=,(()01λ∈,),将ADE 沿直线DE 折到A DE '△的位置.在翻折过程中,下列结论不成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面A CD 'B .存在102λ∈⎛⎫⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDEC .若12λ=,当二面角A DE B '--为直二面角时,||104A B '= D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ23【答案】ABC 【分析】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,即可判断出结论.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,即可判断出结论. 对于C ,12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,可得AM ⊥平面BCDE .可得22A B AM BM '=+,结合余弦定理即可得出.对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,利用导数研究函数的单调性即可得出.【详解】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,如图所示,则可得FN 平行且等于BG ,即四边形BGNF 为平行四边形, ∴//NG BE ,而GN 始终与平面ACD 相交,因此在边A E '上不存在点F ,使得在翻折过程中,满足//BF 平面A CD ',A 不正确.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,因此不满足平面A BC '⊥平面BCDE ,因此B 不正确. 对于C.12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,如图所示:可得AM ⊥平面BCDE , 则22223111010()1()21cos120222A B AM BM '=+=++-⨯⨯⨯︒=≠,因此C 不正确;对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,()213f λλ'=-,可得3λ=时,函数()f λ取得最大值()31231339f λ⎛⎫=-=⎪⎝⎭,因此D 正确. 综上所述,不成立的为ABC. 故选:ABC. 【点睛】本题考查了利用运动的观点理解空间线面面面位置关系、四棱锥的体积计算公式、余弦定理、利用导数研究函数的单调性极值与最值,考查了推理能力空间想象能力与计算能力,属于难题.8.如图所示,在长方体1111ABCD A B C D -中,11,2,AB BC AA P ===是1A B 上的一动点,则下列选项正确的是( )A .DP 的最小值为355B .DP 5C .1AP PC +6D .1AP PC +170【答案】AD 【分析】DP 的最小值,即求1DA B △底边1A B 上的高即可;旋转11A BC 所在平面到平面11ABB A ,1AP PC +的最小值转化为求AC '即可.【详解】求DP 的最小值,即求1DA B △底边1A B 上的高,易知115,2A B A D BD ===,所以1A B 边上的高为355h =111,AC BC ,得11A BC ,以1A B 所在直线为轴,将11A BC 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则AC '即为所求的最小值,易知11122,2,cos 10AA AC AAC ''==∠=-, 所以217042222()105AC '=+-⨯⨯⨯-=.故选:AD.【点睛】本题考查利用旋转求解线段最小值问题.求解翻折、旋转问题的关键是弄清原有的性质变化与否, (1)点的变化,点与点的重合及点的位置变化;(2)线的变化,翻折、旋转前后应注意其位置关系的变化;(3)长度、角度等几何度量的变化.。

2021届高考数学复习压轴题训练立体几何2含解析

2021届高考数学复习压轴题训练立体几何2含解析

立体几何一、单项选择题1.三棱锥P ABC -的所有棱长为1.M 是底面ABC ∆内部一个动点〔包括边界〕,且M 到三个侧面PAB ,PBC ,PAC 的距离1h ,2h ,3h 成单调递增的等差数列,记PM 与AB ,BC ,AC 所成的角分别为α,β,γ,如此如下正确的答案是()A .αβ=B .βγ=C .αβ<D .βγ<解:依题意知正四面体P ABC -的顶点P 在底面ABC 的射影是正三角形ABC 的中心O ,由余弦定理可知,cos cos cos PMO MO α=∠<,AB >,其中MO <,AB >表示直线MO 与AB 的夹角,同理可以将β,γ转化,cos cos cos PMO MO β=∠<,BC >,其中MO <,BC >表示直线MO 与BC 的夹角, cos cos cos PMO MO γ=∠<,AC >,其中MO <,AC >表示直线MO 与AC 的夹角,由于PMO ∠是公共的,因此题意即比拟OM 与AB ,BC ,AC 夹角的大小, 设M 到AB ,BC ,AC 的距离为1d ,2d ,3d 如此11sin h d θ=,其中θ是正四面体相邻两个面所成角,22sin θ=所以1d ,2d ,3d 成单调递增的等差数列,然后在ABC ∆中解决问题 由于123d d d <<,可知M 在如图阴影区域〔不包括边界〕从图中可以看出,OM 与BC 所成角小于OM 与AC 所成角,所以βγ<, 应当选:D .2.一正方体的棱长为a ,作一平面α与正方体一条体对角线垂直,且α与正方体每个面都有公共点,记这样得到的截面多边形的周长为l ,如此() A .[4,32]l a a ∈B .4l a =C .32l a =D .以上都不正确 解:连结1A B ,1A D ,BD ,如此1AC ⊥平面1A BD ,11AC A B ∴⊥ 设平面α与平面11ABB A 的交线为EF ,如此1AC EF ⊥,1//EF A B ∴, 同理可得平面α与其他各面的交线都与此平面的对角线平行, 设1EF A B λ=,如此1111B E B E A B a λ==,得1B E a λ=,∴11111(1)1A E NEa B D A B aλλ-===-, 22(1)2EF NE a a a λλ∴+=+-=,同理可得六边形其他相邻两边的和为2a , ∴六边形的周长l 为定值32a .应当选:C .3.平面α与β互相垂直,α与β交于l ,m 和n 分别是平面α,β上的直线.假如m ,n 均与l 既不平行.也不垂直,如此m 与n 的位置关系是() A .可能垂直,但不可能平行B .可能平行,但不可能垂直 C .可能垂直,也可能平行D .既不可能垂直,也不可能平行 解:①假设m n ⊥,因为n 与l 既不垂直,也不平行,所以n l O =,过O 在β内作直线c l ⊥,如下列图,因为αβ⊥,所以c α⊥,又因为m α⊂,所以c m ⊥,又因为m n ⊥,c n O =,所以m β⊥,l β⊂,所以m l ⊥,这与m 与l 既不垂直,也不平行矛盾,故假设不成立, 所以m 与n 不垂直,同理n 与m 也不垂直; ②假设//m n ,如此//m β,m α⊂,l αβ=,所以//m l ,这与m 和n 与l 既不垂直,也不平行矛盾,故假设不成立,所以m 与n 不平行. 综上所述,m 与n 的位置关系是既不可能垂直,也不可能平行. 应当选:D .4.如图,正方体1111ABCD A B C D -中,P 为线段1A B 上的动点,如此如下结论错误的答案是()A .1DC PC ⊥B .异面直线AD 与PC 不可能垂直C .1D PC ∠不可能是直角或者钝角D .1APD ∠的取值X 围是(,)62ππ解:正方体1111ABCD A B C D -中,P 为线段1A B 上的动点, 对于A ,PC 在平面11CDD C 的投影为1D C 的一局部, 11DC D C ⊥,1DC PC ∴⊥,故A 正确;对于B ,假如AD PC ⊥,又1AD A B ⊥,PC ,1A B 是平面11A D CB 内的两条相交线,AD ∴⊥平面11A D CB ,如此11AD A D ⊥,与11//AD A D 矛盾,∴异面直线AD 与PC 不可能垂直,故B 正确;对于C ,1A B 与1D C 两条平行线间的距离为1,如此以1D C 为直径的圆与1A B 相离,如此1D PC ∠在圆外,1D PC ∴∠不可能是直角或者钝角,故C 正确; 对于D ,当P 为线段1A B 中点时,221231()22PD =+=, 11222AP A B ==,12AD =,∴22211PD AP AD +=, 1AP PD ∴⊥,12APD π∴∠=,故D 错误.应当选:D .5.如图,在三棱柱111ABC A B C -中,1CC ⊥底面ABC ,AC CB ⊥,点D 是AB 上的动点.如下结论错误的答案是()A .1AC BC ⊥B .存在点D ,使得1//AC 平面1CDBC .不存在点D ,使得平面1CDB ⊥平面11AA B B D .三棱锥11A CDB -的体积是定值 解:对于A ,在三棱柱111ABC A B C -中,1CC ⊥底面ABC , 1AC CC ∴⊥,又AC CB ⊥,1CC CB C =,1CC ⊂平面11BCC B ,CB ⊂平面11BCC B ,AC ∴⊥平面11BCC B ,又1BC ⊂平面11BCC B ,1AC BC ∴⊥,故A 正确;对于B ,设11BC B C O =,如此O 是1BC 中点,连结OD ,如此D 是AB 中点时,1//OD AC ,1AC ⊂/平面1CDB ,OD ⊂平面1CDB ,∴存在AB 中点D ,使得1//AC 平面1CDB ,故B 正确;对于C ,在三棱柱111ABC A B C -中,1CC ⊥底面ABC ,1AA CD ∴⊥,∴当CD AB ⊥时,由1AA ,AB 是平面11AA B B 中的相交线,得到CD ⊥平面11AA B B ,CD ⊂平面1CDB ,∴存在点D ,使得平面1CDB ⊥平面11AA B B ,故C 错误;对于D ,1ABC ∆的面积是定值,11//AB A B ,AB ⊂/平面1ABC ,11A B ⊂平面1ABC ,//AB ∴平面1ABC ,D ∴到平面1ABC 的距离是定值,∴三棱锥11A CDB -的体积是定值,故D 正确.应当选:C .6.在棱长为1的正方体1111ABCD A B C D -中,点E ,F 分别是棱11C D ,11B C 的中点,P 是上底面1111A B C D 内一点,假如//AP 平面BDEF ,如此线段AP 长度的取值X 围是() A .5[2,2]B .32[4,5]2C .32[8,6]2D .6[2,2]解:如如下图所示:分别取棱11A B 、11A D 的中点M 、N ,连接MN ,连接11B D ,M 、N 、E 、F 为所在棱的中点,11//MN B D ∴,11//EF B D ,//MN EF ∴,又MN ⊂/平面BDEF ,EF ⊂平面BDEF ,//MN ∴平面BDEF ;连接NF ,由11//NF A B ,11NF A B =,11//A B AB ,11A B AB =, 可得//NF AB ,NF AB =,如此四边形ANFB 为平行四边形,如此//AN FB ,而AN ⊂/平面BDEF ,FB ⊂平面BDEF ,如此//AN 平面BDEF . 又ANNM N =,∴平面//AMN 平面BDEF .又P 是上底面1111A B C D 内一点,且//AP 平面BDEF ,P ∴点在线段MN 上. 在Rt △1AA M 中,221115142AM AA A M =+=+=, 同理,在Rt △1AA N 中,求得52AN =,如此AMN ∆为等腰三角形. 当P 在MN 的中点时,AP 最小为222321()44+=, 当P 与M 或N 重合时,AP 最大为22151()22+=.∴线段AP 长度的取值X 围是32[4,5]2. 应当选:B .7.三棱锥A BCD -的所有棱长都为2,且球O 为三棱锥A BCD -的外接球,点M 是线段BD 上靠近D 的四等分点,过点M 作平面α截球O 得到的截面面积为Ω,如此Ω的取值X 围为()A .[4π,3]2πB .3[4π,3]2πC .[2π,3]2πD .[4π,]2π解:三棱锥A BCD -为正四面体,棱长为2,将三棱锥A BCD -放置于正方体中, 可得正方体的外接球就是三棱锥A BCD -的外接球, 因为三棱锥A BCD -的棱长为22 可得外接球的直径22226R =++6R =, 故截面面积的最大值为2263(2R πππ==, 因为M 是BD 上的点,当球心O 到截面的距离最大时,截面面积最小,此时球心O 到截面的距离为OM ,OBD ∆为等腰三角形, 过点O 作BD 的垂线,垂足为H , 如此222662,()1222OD OH OD HD ==-=-=, 所以222113244OM OH HM =+=+=, 如此所得截面半径的最小值为22633444R OM -=-=, 所以截面面积的最小值为233()44ππ=,故Ω的取值X 围为3[4π,3]2π. 应当选:B .8.如图,边长为4正方形ABCD 中,E 、F 分别为AB 、BC 中点,将AED ∆,DCF ∆沿DE 、DF 折起,使A 、C 两点重合于点P ,点M 在平面EFD 内,且2PM =,如此直线PM 与BF 夹角余弦值的最大值为()A .13B .33C .23D .53解:取EF 的中点G ,连接PG ,DG ,且G 点的延长线过B 点,DP PF ⊥,DP PE ⊥,PF PE P =,故DP ⊥平面PEF ,根据对称性可知P 在底面EFD 平面内的射影点必在GD 上,记为O 点, 以O 为坐标原点,OB 方向为x 轴,过O 点垂直于OB 方向为y 轴,OP 方向为z 轴,建立空间直角坐标系,如图示:,2PE PF==,222222EF=+=,故2228EF PE PF=+=,故PEF∆为等腰直角三角形,故122PG EF==,4PD=,32DG=,PD DG⊥,故43PD PGPODG⋅==,故2223GO PG PO=-=,2BG=,122GF EF==,42(3B∴,0,0),2(3F,2,0),(0P,0,4)3,设(M m,n,0),2PM=,221649m n∴++=,故22209m n+=,(2BF=-,2,0),(PM m=,n,4)3-,故|cos BF<,22||2()2()|||||4||||1629BF PM n m n mPMBF PMm n⋅-->===⋅++,不妨设25cos3mθ=,25sin3nθ=|cos BF<,252(sin cos)553||||sin()|4343PMθθπθ⋅->==-,当|sin()|14πθ-=时取“=〞,故直线PM与BF5,应当选:D.二、多项选择题9.a,b是两条互相垂直的异面直线,如下说法中正确的答案是()A.存在平面α,使得aα⊂且bα⊥B.存在平面β,使得bβ⊂且//aβC.假如点A,B分别在直线a,b上,且满足AB b⊥,如此一定有AB a⊥D.过空间某点不一定存在与直线a,b都平行的平面解:对于A ,设a ,b 的公垂线为AB ,其中A a ∈,B b ∈. 过B 作a 的平行线a ',设直线a 与a '确定的平面为平面α, 如此AB α⊂,a α⊂,a α'⊂,b AB ⊥,b a ⊥,b α∴⊥.故A 正确;对于B ,过b 上一点C 作//a a ',设b 与a '所确定的平面为β,如此//a β,故B 正确. 对于C ,设a ,b 的公垂线为CB ,且C a ∈,B b ∈.在a 上取异于C 的点A ,如此b ⊥平面ABC ,AB b ∴⊥,但显然AB 与a 不垂直,故C 错误;对于D ,当空间一点在直线a 或直线b 上时,显然不存在与直线a ,b 都平行的平面,故D 正确.应当选:ABD .AD ,1DD ,1BB 的中点,如此如下结论正确的答案是()A .AC BP ⊥B .1B D ⊥平面EFPQ解:如图,对于A ,BP 在底面上的射影为BD ,AC BD ⊥,AC BP ∴⊥,故A 正确;对于B ,假设1B D ⊥平面EFPQ ,如此1B D PQ ⊥,而11//PQ B D ,如此111B D B D ⊥,而111DD B D ⊥,假设错误,故B 错误;对于C ,11////BC AD FP ,FP ⊂平面EFPQ ,1BC ⊂/平面EFPQ ,如此1//BC 平面EFPQ ,故C 正确;对于D ,直线1A D 与AC 所成角为11DA C ∠,连接11AC ,1DC ,求解三角形可得114242cos 4222DA C +-∠==⨯⨯,故D 正确. 应当选:ACD .11.如图,矩形ABCD 中,M 为BC 的中点,将ABM ∆沿直线AM 翻折成△1AB M ,连结1B D ,N 为1B D 的中点,如此在翻折过程中,如下说法中所有正确的答案是()A .存在某个位置,使得1CN AB ⊥B .翻折过程中,CN 的长是定值C .假如AB BM =,如此1AM BD ⊥D .假如1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的外表积是4π解:对于A :如图1,取AD 中点E ,连接EC 交MD 与F , 如此1//NE AB ,1//NF MB ,如果1CN AB ⊥,可得到EN NF ⊥, 又EN CN ⊥,且三线NE ,NF ,NC 共面共点,不可能,故A 错误. 对于B :如图1,可得由1NEC MAB ∠=∠〔定值〕,112NE AB =〔定值〕,AM EC =〔定值〕, 由余弦定理可得2222cos MC NE EC NE EC NEC =+-∠,NC ∴是定值,故B 正确.对于C :如图2,取AM 中点O ,连接1B O ,DO ,由题意得AM ⊥面1ODB ,即可得OD AM ⊥,从而AD MD =,由题意不成立,可得C 错误.对于D :当平面1B AM ⊥平面AMD 时,三棱锥1B AMD -的体积最大, 由题意得AD 中点H 就是三棱锥1B AMD -的外接球的球心,球半径为1,外表积是4π,故D 正确.应当选:BD .12.如图,四边形ABCD 是边长为1的正方形,M D ⊥平面ABCD ,NB ⊥平面ABCD ,且1MD NB ==,E 为MC 的中点,如此如下结论正确的答案是()A .平面BCE ⊥平面ABNB .MC AN ⊥C .平面CMN ⊥平面AMND .平面//BDE 平面AMN解:在A 中,四边形ABCD 是边长为1的正方形,BC AB ∴⊥,NB ⊥平面ABCD ,BC ⊂平面ABCD ,BC NB ∴⊥,AB NB B =,BC ∴⊥平面ABN ,BC ⊂平面BCE ,∴平面BCE ⊥平面ABN ,故A 正确;在B 中,以B 为原点,BA 为x 轴,BC 为y 轴,BN 为z 轴,建立空间直角坐标系, (1M ,1,1),(0C ,1,0),(1A ,0,0),(0N ,0,1),(1MC =-,0,1)-,(1AN =-,0,1),0MC AN ⋅=,MC AN ∴⊥,故B 正确; 在C 中,(1NM =,1,0),(1NA =,0,1)-,(0NC =,1,1)-, 设平面AMN 的法向量(m x =,y ,)z ,如此00m NM x y m NA x z ⎧⋅=+=⎪⎨⋅=-=⎪⎩,取1x =,得(1m =,1-,1),设平面CMN 的法向量(n x =,y ,)z ,如此00n NM x y n NC y z ⎧⋅=+=⎪⎨⋅=-=⎪⎩,取1x =,得(1n =,1-,1)-,11110m n ⋅=+-=≠,∴平面CMN 与平面AMN 不垂直,故C 错误;在D 中,(1BD =,1,0),11(,1,)22BE =,设平面BDE 的法向量(p a =,b ,)c , 如此011022p BD x y p BE x y z ⎧⋅=+=⎪⎨⋅=++=⎪⎩,取1x =,得(1p =,1-,1), 平面AMN 的法向量(1m =,1-,1),∴平面//BDE 平面AMN ,故D 正确. 应当选:ABD .三、填空题13.如图,正四面体ABCD 中,//CD 平面α,点E 在AC 上,且2AE EC =,假如四面体绕CD 旋转,如此直线BE 在平面α内的投影与CD 所成角的余弦值的取值X 围是.解:如图建系,设棱长为1, 易知6(0,0,)3A ,3(0,,0)3B -,13(,,0)26C ,(1,0,0)DC =, 又2AE EC =,∴2AE EC =如此136(,,)399E ,∴1436(,,)399BE =, BE 绕着CD 旋转可看做是绕着x 轴旋转,设旋转后的向量(,,)B E x y z ''=,||||B E BE ''=,易知2222134366()()993x y z ⎧=⎪⎪⎨⎪+=+=⎪⎩,如此可令6sin 36cos 3y z θθ⎧=⎪⎪⎨⎪=⎪⎩, 如此166(,sin ,cos )(02)333B E θθθπ''=<<, B E ''在平面α的投影即为其在xOy 平面上的投影16(,sin ,0)(02)33B E θθπ''''=<<, ∴2173cos ,[,1]712sin 93B E DC θ''''〈〉=∈+. 故答案为:7[,1]714.在三棱锥A BCD -中,4AB CD ==,5AD BC ==,6AC BD ==,E ,F 分别为棱AC 和棱AD 上的动点,如此BEF ∆的周长X 围.解:如图根据三角形的边长,将三棱锥侧面沿侧棱AB 展开,如图BAD ADC ∆≅∆≅△1AB C ,BAD ADC ∴∠=∠,1ACD B AC ∠=∠,B ∴,A ,1B 共线,此时两点间的连接线1BB ,即是BEF ∆的周长的最小值8,但此时E ,F 重合于A ,不能构成三角形,所以取不到8.由图观察,当E ,F 分别在棱AC 和棱AD 上由A 向下移动时,BE ,1B F 的长度先变小,移动至分别与AD ,AC 垂直时,BE ,1B F 的长度最小,再向下移动逐渐变大,所以BEF ∆的周长最大为115BD DC CB ++=,故答案为:(8,15]15.如图,在四面体ABCD 中,3AB CD ==,3AD BD ==,4AC BC ==,用平行于AB ,CD 的平面截此四面体,得到截面四边形EFGH ,如此该四边形EFGH 面积的最大值为解:直线AB 平行于平面EFGH ,且平面ABC 交平面EFGH 于HG ,//HG AB ∴, 同理://EF AB ,//FG CD ,//EH CD ,所以://FG EH ,//EF HG . 故:四边形EFGH 为平行四边形.又AD BD =,AC BC =的对称性,可知AB CD ⊥.∴四边形EFGH 为矩形.设:::BF BD BG BC FG CD x ===,(01)x3FG x =,3(1)HG x =-9(1)EFGH S FG HG x x =⨯=-2211199()9()4424x x x =--+-=--+, 根据二次函数的性质可知:EFGH S 面积的最大值为94.故答案为:94. 16.正四棱锥P ABCD -的底面边长为46,高为62,其内切球与面PAB 切于点M ,球面上与P 距离最近的点记为N ,假如平面α过点M ,N 且与AB 平行,如此平面α截该正四棱锥所得截面的面积为.解:取AB ,CD 中点Q ,R ,连结PQ ,PR ,QR ,取QR 中点S ,连结PS , 如此RQ AB ⊥,S 为正方形ABCD 的中心,四棱锥P ABCD -是正四棱锥, PS ∴⊥平面ABCD ,62PS ∴=在Rt PSQ ∆中,22()7224462AD PQ PS =++ 同理,46PR =PQR ∴∆是正三角形,∴正四棱锥P ABCD -内切球的球心为正PQR ∆的内心O ,内切球的半径是正PQR ∆的内切圆半径为22内切球与平面PAB 的切点M 为正PQR ∆内切圆与直线PQ 的切点,M ∴为PQ 中点,球面上与P 距离最近的点为连结OP 与球面的交点, 即在OP 之间,且22ON =N ∴为OP 中点,连结MN 并延长交PR 于I ,平面α过M ,N ,I 与直线AB 平行, 设平面α分别与平面PAB ,平面PCD 交于EF ,GH ,AB ⊂平面PAB ,//EF AB ∴,又//AB CD ,CD α∴⊂/,//CD α∴,同理可证//GH CD ,//EF GH ∴,连结GF ,HE ,如此梯形EFGH 为所求的截面,RQ AB ⊥,PS AB ⊥,PS RQ S =,AB ∴⊥平面PQR ,IM ⊂平面PQR ,AB IM ∴⊥,//AB EF ,EF IM ∴⊥,连结OQ ,如此OQ 为POS ∠的角平分线,30PQO ∴∠=︒,M ,N 是PQ ,PO 的中点,//MN OQ ∴,30PMI PQO ∴∠=∠=︒,而60MPI ∠=︒,90PIM ∴∠=︒,cos3032MI PM ∴=︒=,sin3064PRPI PM =︒==,又//HG CD ,64CDHG ∴==,∴截面梯形EFGH的面积为11()32369322S MI EF GH =+=⨯⨯=.故答案为:93.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第13讲 立体几何选择填空压轴题专练A 组一、选择题1.(2018全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 ABCD【答案】A【解析】记该正方体为''''-ABCD A B C D ,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱'A A ,''A B ,''A D 与平面α所成的角都相等,如图,连接'AB ,'AD ,''B D ,因为三棱锥'''-A AB D 是正三棱锥,所以'A A ,''A B ,''A D 与平面''AB D 所成的角都相等,分别取''C D ,''B C ,'BB ,AB ,AD ,'DD 的中点E ,F ,G ,H ,I ,J ,连接EF ,FG .GH ,IH ,IJ ,IE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面''AB D 平行,且截正方体所得截面的面积最大,又2======EF FG GH IH IJ JE ,所以该正六边形的面积为26434⨯⨯=,所以α截此正方体所得截面面积的最大值为4,故选A . 2.如图,矩形ABCD 中, 2AB AD =, E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆(1A ∉平面ABCD ).若M 、O 分别为线段1A C 、DE 的中点,则在ADE ∆翻转过程中,下列说法错误的是( )A. 与平面1A DE 垂直的直线必与直线BM 垂直B. 异面直线BM 与1A E 所成角是定值C. 一定存在某个位置,使DE MO ⊥D. 三棱锥1A ADE -外接球半径与棱AD 的长之比为定值【答案】C【解析】取CD 的中点F ,连BF,MF,如下图:可知面MBF// 1A DE ,所以A 对。

取1A D 中点G,可知//EG BM ,如下图,可知B 对。

点A 关于直线D E 的对为F,则DE ⊥面1A AF ,即过O 与DE 垂直的直线在平面1A AF 上。

故C 错。

三棱锥1A ADE -外接球的球心即为O 点,所以外接球半径为2AD 。

故D 对。

选C 3.如图,矩形ABCD 中,AB=2AD,E 为边AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE .若M 为线段A 1C 的中点,则在△ADE 翻折过程中,下面四个命题中不正确的是A .|BM |是定值B .点M 在某个球面上运动C .存在某个位置,使DE ⊥A 1 CD .存在某个位置,使MB//平面A 1DE 【答案】C【解析】取CD 中点F ,连接MF ,BF ,则MF//A 1D 且MF=21A 1D,FB//ED 且FB=ED 所以DE A MFB 1∠=∠,由余弦定理可得MB 2=MF 2+FB 2-2MF •FB •cos ∠MFB 是定值,所以 M 是在以B 为圆心,MB 为半径的球上,可得①②正确.由MF//A 1D 与 FB//ED 可得平面MBF ∥平面A 1DE ,可得④正确;A 1C 在平面ABCD 中的射影为AC ,AC 与DE 不垂直,可得③不正确.故答案为:①②④.4.如图,正四面体D ABC -的顶点A 、B 、C 分别在两两垂直的三条射线Ox , Oy , Oz 上,则在下列命题中,错误的是( )A. O ABC -是正三棱锥B. 直线OB 与平面ACD 相交C. 直线CD 与平面ABC 所成的角的正弦值为2D. 异面直线AB 和CD 所成角是90︒ 【答案】C【解析】①如图ABCD 为正四面体,∴△ABC 为等边三角形,又∵OA 、OB 、OC 两两垂直,∴OA ⊥面OBC ,∴OA ⊥BC ,过O 作底面ABC 的垂线,垂足为N , 连接AN 交BC 于M ,由三垂线定理可知BC ⊥AM ,∴M 为BC 中点,同理可证,连接CN 交AB 于P ,则P 为AB 中点,∴N 为底面△ABC 中心, ∴O ﹣ABC 是正三棱锥,故A 正确.②将正四面体ABCD 放入正方体中,如图所示,显然OB 与平面ACD 不平行.则B 正确,③由上图知:直线CD 与平面ABC ,则C 错误 ④异面直线AB 和CD 所成角是90︒,故D 正确. 二、填空题 5.如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O 。

D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形。

沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D 、E 、F 重合,得到三棱锥。

当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______。

【答案】【解析】如下图,设正三角形的边长为x ,则13OG x ==.∴5FG SG ==,SO h ====∴三棱锥的体积1133ABC V S h ∆=⋅= =令()455b x x =-,则()34'20n x x =-,令()'0n x =,4340x = ,x =,max 48V =6.已知求的直径4,,SC A B =是该球球面上的点, 02,45AB ASC BSC =∠=∠=,则棱锥S ABC - 的体积为__________.【答案】3【解析】设球心为O ,因为0ASC BSC 45∠∠==,所以OAB SC ⊥面, 1V 433S OAB C OAB V V --=+==.7.在三棱锥S ABC -中, ABC ∆是边长为3的等边三角形, SA SB ==S AB C --的大小为120°,则此三棱锥的外接球的表面积为__________.【答案】21π【解析】由题可得:球心O 在过底面ABC ∆的中心G 的垂直底面的直线上,又二面角S AB C --的大小为120°,取AB 的中点为M ,SB 的中点为N ,故120NMG ︒∠=,又3120,2222NMG NM CM MG NG ︒∠===⇒==,过M 做MH=GO ,且MH 垂直底面,所以32MH =, 32GO =,故球的半径为22232124R ⎛⎫=+= ⎪⎝⎭,所以球的表面积为21π8.已知两平行平面αβ、间的距离为点A B α∈、,点C D β∈、,且4,3AB CD ==,若异面直线AB 与CD 所成角为60°,则四面体ABCD 的体积为__________.【答案】6【解析】设平面ABC 与平面β交线为CE ,取CE AB = ,则0//,4,60AB CE CE ECD =∠=01143sin60 6.32A BCD A CDE V V --==⨯⨯⨯⨯=9.在空间直角坐标系O xyz -中,四面体A BCD -在,,xOy yOz zOx 坐标平面上的一组正投影图形如图所示(坐标轴用细虚线表示).该四面体的体积是____.【答案】43【解析】由图可知,该三棱锥的底面是底为4,高为1的三角形,高为2,故其体积为114412323V =⨯⨯⨯⨯=,故答案为43. 10.如图,在棱长为2的正四面体A BCD -中, E F 、分别为直线AB CD 、上的动点,且EF =若记EF 中点P 的轨迹为L ,则L 等于____________.(注: L 表示L 的测度,在本题, L 为曲线、平面图形、空间几何体时, L 分别对应长度、面积、体积.)【答案】π,建立如图所示的空间直角坐标系,设())()11220,,,,,,E y y Fy y P x y z ,EF==()(2212121y yy y -++= ,又1212{22x y y y yy z =+=+=,即1212{22x y y yy y z =+=+=,代入上式得((22221z y+-= ,即221224y z ⎛⎛-+-= ⎝⎭⎝⎭,即P 的轨迹为半径为12的圆,周长为2L r ππ== .B 组一、选择题1.正方体ABCD -A 1B 1C 1D 1的棱长为6,点O 在BC 上,且BO =OC ,过点O 的直线l 与直线AA 1,C 1D 1分别交于M ,N 两点,则MN 与面ADD 1A 1所成角的正弦值为( ) A. B. C.D.【答案】A【解析】将平面11C D O 延展与1AA 交于M 连结MO ,并延长与11D C 延长线交于N ,平面交AD 于ED , 1MN C E可知11C ED ∠ 等于MN 与11ADD A 成角,,由正方体的性质可知19C E = , 116293sin C ED ∠== ,故选A . 2.四棱锥P ABCD -的三视图如图所示,则该四棱锥的外接球的表面积为( )A.815π B. 8120πC. 1015πD. 10120π【答案】C【解析】根据三视图还原几何体为一个四棱锥P ABCD -,平面PAD ⊥ 平面ABCD ,由于PAD ∆为等腰三角形3,4PA PD AD ===,四边形ABCD 为矩形, 2CD = ,过PAD ∆的外心F 作平面PAD 的垂线,过矩形ABCD的中心H 作平面ABCD 的垂线两条垂线交于一点O 为四棱锥外接球的球心,在三角形PAD 中, 2223341cos 2339APD +-∠==⨯⨯ ,则sin APD ∠=,2sin 5AD PF APD ===∠ ,10PF =, PE == , 1010OH EF === , BH ==10OB === , 50510141005S ππ=⨯=.选C. 3.如图是正方体的平面展开图。

关于这个正方体,有以下判断:①ED 与NF 所成的角为60︒②CN ∥平面AFB③//BM DE ④平面BDE ∥平面NCF 其中正确判断的序号是( ))A. ① ③B. ② ③C. ① ② ④D. ② ③ ④ 【答案】C【解析】把正方体的平面展开图还原成正方体ABCD EFMN - ,得:①ED 与NF 所成的角为60︒正确; ②,CN BE CN 不包含于平面,AFB BE ⊂ 平面,AFB CN∴ 平面AFB ,故②正确; ③BM 与ED 是异面直线,故③不正确; ④,,,,BD FN BE CN BD BE B BD BE ⋂=⊂ 平面BDE ,所以平面BDE 平面NCF ,故 ④ 正确 ,正确判断的序号是① ② ④,故选C.4.若三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形, 2AB SA SB SC ====,则该三棱锥的外接球的表面积为( )A.163πB. 83πC.D. 43π【答案】A【解析】如图,底面是等腰直角三角形, D 是AB 中点,所以外接球圆心O 在SD 上,设外接球半径为R ,所以有)2221R R =+,解得R =,所以该三棱锥的外接球表面积为163π. 故本题正确答案为A.5.三棱锥S ABC -中,侧棱SA ⊥底面ABC , 5AB =, 8BC =, 60B ∠=︒,25SA =,则该三棱锥的外接球的表面积为( )A.643π B. 2563π C. 4363π D. 【答案】B【解析】由题,侧棱SA ⊥底面ABC , 5AB =, 8BC =, 60B ∠=︒,则根据余弦定理可得7BC == , ABC 的外接圆圆心2sin BC r r B === 三棱锥的外接球的球心到面ABC 的距离12d SA == 则外接球的半径R ==,则该三棱锥的外接球的表面积为225643S R ππ==6.正方体1111ABCD A B C D -中,点P 在1A C 上运动(包括端点),则BP 与1AD 所成角的取值范围是( ) A. ,43ππ⎡⎤⎢⎥⎣⎦ B. ,42ππ⎡⎤⎢⎥⎣⎦ C. ,62ππ⎡⎤⎢⎥⎣⎦ D. ,63ππ⎡⎤⎢⎥⎣⎦【答案】D【解析】以点D 为原点,DA 、DC 、1DD 分别为x y z 、、 建立空间直角坐标系,设正方体棱长为1,设点P 坐标为(),1,x x x - ,则()()11,,,1,0,1BP x x x BC =--=- 设1BP BC 、 的夹角为α,所以(11·cos BP BC BP BC α===,所以当13x =时, cos α 6πα= 。

相关文档
最新文档