分式方程(3)

合集下载

分式方程(含答案)

分式方程(含答案)

1. 解分式方程的基本思想:把分式方程转化为整式方程。

2. 解分式方程的一般步骤:(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。

3. 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。

例1. 解方程:x x x --+=1211分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以()()x x +-11,得x x x x x x xx x 22221112123232--=+---=--∴==()()(),即,经检验:是原方程的根。

例2. 解方程x x x x x x x x +++++=+++++12672356分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现()()()()x x x x ++++6723与、与的值相差1,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。

解:原方程变形为:x x x x x x x x ++-++=++-++67562312方程两边通分,得167123672383692()()()()()()()()x x x x x x x x x x ++=++++=++=-∴=-所以即经检验:原方程的根是x =-92。

例3. 解方程:121043323489242387161945x x x x x x x x --+--=--+--分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。

解:由原方程得:3143428932874145--++-=--++-x x x x即2892862810287x x x x ---=---于是,所以解得:经检验:是原方程的根。

初中数学之分式方程知识点汇总

初中数学之分式方程知识点汇总

初中数学之分式方程知识点汇总
分式方程的概念
分母中含有未知数的方程叫分式方程.
要点诠释:
(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.
(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.
(3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 初中数学分式方程的解法
解分式方程的基本思想:将分式方程转化为整式方程,转化方法是方程两边都乘以最简公分母,去掉分母。

在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根。

因为解分式方程时可能产生增根,所以解分式方程时必须验根。

解分式方程的一般步骤:
(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);
(2)解这个整式方程,求出整式方程的解;
(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.。

分式方程时分式方程及其解法

分式方程时分式方程及其解法

解分式方程去分母时,方程两边要乘同 一个含未知数的式子(最简公分母).
方程① 当v=6时,(30+v)(30-v)≠0,这就是说,去分
母时,方程①两边乘了同一个不为0的式子,因此所 得整式方程的解与①的解相同.
方程② 当x=5时,(x-5)(x+5)=0,这就是说,去分母时,
方程②两边乘了同一个等于0的式子,这时所得整式 方程的解使②出现分母为0的现象,因此这样的解不 是②的解.
练习1 下列方程哪些是分式方程?_____⑤
①x+y=1 ② x 2 2 y z ③ 1
5
3
x2
④ y 3 ⑤x 1 1 ⑥ x 3 2 x
x5
x
π
5
练习2 指出下列方程中各分母的最简分母,并写 出去分母后得到的整式方程.
①1 2
2x x 3
② 2
x 1
4 x2 1
解:①最简公分母2x(x+3),去分母得x+3=4x;
检验:当 x = 9时, x(x-3)≠0,
所以,原分式方程的解为 x =9.
例2
解方程
x 1 x 1
(x
3 1)(x
.2)
解:方程两边乘(x-1)(x+2),得
x( x+2)-(x-1)(x+2)=3 x=1
检验:当x=1时,(x-1)(x+2)=0 因此, x=1不是原分式方程的解.
所以,原分式方程无解.
练习4 解关于x 的方程 b ≠ 1).
a b1 xa

解:方程两边同乘x-a,得
a+b(x-a)= (x-a)
去括号,得 a+bx-ab =x-a

分式方程

分式方程

分式方程概念总汇1、分式方程的定义分母里含有未知数的方程叫分式方程。

说明:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。

(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程。

2、分式方程的解法(1)解分式方程的基本思想把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。

(2)解分式方程的一般方法和步骤第一步:去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。

第二步:解这个整式方程。

第三步:验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根。

说明:(1)分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。

(2)增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。

当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。

3、分式方程的应用分式方程的应用主要就是列方程解应用题,它与学习一元一次方程时列方程解应用题的基本思路和方法是一样的,不同的是,表示关系的代数式是分式而已。

一般地,列分式方程(组)解应用题的一般步骤:第一步:审清题意;第二步:设未知数;第三步:根据题意找等量关系,列出分式方程;第四步:解分式方程,并验根;第五步:检验分式方程的根是否符合题意,并根据检验结果写出答案.方法引导一、解分式方程的方法例1、与异分母相关的分式方程解方程=难度等级:A解:7x=5(x-2),解得x=-5经检验,x=-5是原分式方程的根。

人教版八年级上册第15章 《分式方程应用》专项综合训练(三)

人教版八年级上册第15章 《分式方程应用》专项综合训练(三)

《分式方程应用》专项综合训练(三)1.某体育用品商场预测某品牌运动服能够畅销,用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场第一次购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率=×100%.)2.某周日,珂铭和小雪从新天地小区门口同时出发,沿同一条路线去离该小区1800米的少年宫参加活动,为响应节能环保,绿色出行的号召,两人步行,已知珂铭的速度是小雪的速度的1.2倍,结果珂铭比小雪早6分钟到达.(1)求小雪的速度;(2)活动结東后返回,珂铭与小雪的速度均与原来相同,若小雪计划比珂铭至少提前6分钟回到小区,则小雪至少要比珂铭提前多长时间出发?3.深圳市某中学为了更好地改善教学和生活环境,该学校计划在2020年暑假对两栋主教学楼重新进行装修.(1)由于时间紧迫,需要雇佣建筑工程队完成这次装修任务.现在有甲,乙两个工程队,从这两个工程队资质材料可知:如果甲工程队单独施工,则刚好如期完成,如果乙工程队单独施工则要超过期限6天才能完成,若两队合做4天,剩下的由乙队单独施工,则刚好也能如期完工,那么,甲工程队单独完成此工程需要多少天?(2)装修后,需要对教学楼进行清洁打扫,学校准备选购A、B两种清洁剂共100瓶,其中A种清洁剂6元/瓶,B种清洁剂9元/瓶.要使购买总费用不多于780元,则A种清洁剂最少应购买多少瓶?4.某市启动“城市公园”建设,计划对面积为3600m2的区域进行绿化,经投标由甲、乙两个工程队来完成,已知甲工程队完成绿化360m2的面积与乙工程队完成绿化240m2的面积所用时间相同.若甲工程队每天比乙工程队多完成绿化30m2.(1)求甲、乙两工程队每天各能完成多少面积的绿化;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,要使这次绿化的总费用不超过30万元,则至少应安排乙工程队绿化多少天?5.在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)此项工程由两队合作施工,甲队共做了m天,乙队共做了n天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?6.某生鲜超市用5000元购进一批新品种的桔子进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种桔子,但这次的进货数量是试销时的2倍,且单价每千克贵了0.5元.(1)试销时该品种桔子的进货价是每千克多少元?(2)如果超市将该品种桔子按每千克7元的定价出售,当部分桔子售出后,余下的桔子以4元的定价售出,若超市在这两次销售中的利润不低于4100元,那么以4元定价售出的桔子最多多少千克?7.某单位在2018年精准扶贫活动中,给帮扶的贫困户赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)今年3月,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比2018年购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1480元,那么他们最多可购买多少棵乙种树苗?防护口罩每个进货价格比第一批贵2元,购进的数量是第一批的3倍.(1)第一批口罩进货单价多少元?(2)若这两次购进防护口罩过程中所产生其他费用不少于600元,那么该超市这两批防护口罩的平均购进单价至少为多少元?9.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?10.在抗击新冠肺炎疫情期间,市场上防护口罩出现热销.某药店用3000元购进甲,乙两种不同型号的口罩共1100个进行销售,已知购进甲种口罩与乙种口罩的费用相同,购进甲种口罩单价是乙种口罩单价的1.2倍.(1)求购进的甲,乙两种口罩的单价各是多少?(2)若甲,乙两种口罩的进价不变,该药店计划用不超过7000元的资金再次购进甲,乙两种口罩共2600个,求甲种口罩最多能购进多少个?防护口罩的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批口罩进货单价多少元?(2)若这两次购买防护口罩过程中所产生其他费用不少于600元,那么该超市购买这两批防护口罩的平均单价至少为多少元?12.某零售商店去年用1000元购进一批小猪挂件若干个,今年用1800元购进一批小鼠挂件的数量是去年购进的小猪挂件数量的,而小鼠挂件的进货单价比小猪挂件的进货单价多1元.(1)求该商店去年购进的小猪挂件和今年购进的小鼠挂件的数量各是多少个?(2)该商店两种挂件的零售价都是10元/个,去年的小猪挂件有10个因为损坏不能售出,其余都已售出,则今年的小鼠挂件要至少售出多少个,才能使这两年的总利润不低于2050元?13.八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳.已知购买一副羽毛球拍比购买一根跳绳多20元.若用200元购买羽毛球拍和用80元购买跳绳,则购买羽毛球拍的副数是购买跳绳根数的一半.(1)求购买一副羽毛球拍、一根跳绳各需多少元?(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的2倍还多10,且该班购买羽毛球拍和跳绳的总费用不超过350元,那么八(1)班最多可购买多少副羽毛球拍?14.国庆70华诞期间,各超市购物市民络绎不绝,呈现浓浓节日气氛.“百姓超市”用320元购进一批葡萄,上市后很快脱销,该超市又用680元购进第二批葡萄,所购数量是第一批购进数量的2倍,但进价每市斤多了0.2元.(1)该超市第一批购进这种葡萄多少市斤?(2)如果这两次购进的葡萄售价相同,且全部售完后总利润不低于20%,那么每市斤葡萄的售价应该至少定为多少元?15.为全面推进“三供一业”分离移交工作,甲、乙两个工程队承揽了某社区2400米的电路管道铺设工程.已知甲队每天铺设管道的长度是乙队毎天铺设管道长度的1.5倍,若两队各自独立完成1200米的铺设任务,则甲队比乙队少用10天.(1)求甲、乙两工程队每天分别铺设电路管道多少米;(2)若甲队参与该项工程的施工时间不得超过20天,则乙队至少施工多少天才能完成该项工程?参考答案1.解:(1)设该商场第一次购进这种运动服x套,第二次购进2x套,由题意得,﹣=10,解得:x=200,经检验:x=200是原分式方程的解,且符合题意,答:该商场第一次购进200套;(2)设每套售价是y元,两批运动服总数:200+400=600由题意得:600y﹣32000﹣68000≥(32000+68000)×20%,解得:y≥200,答:每套售价至少是200元.2.解:设小雪的速度是x米/分钟,则珂铭速度是1.2x米/分钟,依题意得:,解得:x=50,经检验x=50是原方程的解,答:小雪的速度是50米/分钟.(2)1.2×50=60(米/分钟),1800÷50=36(分钟),1800÷60=30(分钟),设小雪比珂铭提前a分钟出发,根据题意得,a+30﹣36≥6,解得a≥12,答:小雪至少要比珂铭提前出发12分钟.3.解:(1)设甲工程队单独完成此工程需要x天,则乙工程队单独完成此工程需要(x+6)天,依题意有+=1,解得x=12,经检验,x=12是原方程的解.故甲工程队单独完成此工程需要12天;(2)设A种清洁剂应购买a瓶,则B种清洁剂应购买(100﹣a)瓶,依题意有6a+9(100﹣a)≤780,解得a≥40.故A种清洁剂最少应购买40瓶.4.解:设乙工程队每天完成绿化面积xm2,则甲工程队每天完成绿化面积为(x+30)m2,由题意可得:,解得:x=60,检验,x=60是原方程的解,∴x+30=90m2,答:甲工程队每天完成绿化面积为90m2,乙工程队每天完成绿化面积60m2.(2)设甲工程队施工a天,乙工程队施工b天刚好完成绿化任务,由题意得:90a+60b=3600,∴a=﹣b+40,∵1.2×(﹣b+40)+0.5b≤30,∴b≥60,答:至少应安排乙工程队绿化60天.5.解:(1)设甲工程队单独完成这项工程需要2x天,则乙工程队单独完成这项工程需要3x天,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴2x=60,3x=90.答:甲工程队单独完成这项工程需要60天,乙工程队单独完成这项工程需要90天.(2)由题意,得:+=1,∴n=90﹣m.设施工总费用为w万元,则w=15m+8n=15m+8×(90﹣m)=3m+720.∵两队施工的天数之和不超过80天,工程预算的总费用不超过840万元,∴,∴20≤m≤40.∵15>0,∴w值随m值的增大而增大,∴当m=20时,完成此项工程总费用最少,此时n=90﹣m=60,w=780万元.答:甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.6.解(1)设试销时该品种桔子的进货价是每千克x元,则解得:x=5经检验:x=5是原分式方程的解.答:试销时该品种桔子的进货价是每千克5元.(2)设以4元定价出售的桔子为m千克,则4m+7(+2×﹣m)﹣5000﹣11000≥4100,解得:m≤300,答:以4元定价售出的桔子最多300千克.7.解:(1)设甲种树苗价格是x元/棵,则乙种树苗价格是(x+10)元/棵,依题意得:,解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40,答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元.(2)设他们可购买y棵乙种树苗,依题意得:30×(1﹣10%)(50﹣y)+40y≤1480,解得:y≤10,答:他们最多可购买10棵乙种树苗.8.解:(1)设第一批口罩进货单价为x元,则第二批口罩进货单价为(x+2)元,依题意,得:=3×,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批口罩进货单价为8元.(2)第一批购进数量为1600÷8=200(个),第二批购进数量为200×3=600(个).设该超市这两批防护口罩的平均购进单价为y元,依题意,得:(200+600)y≥1600+6000+600,解得:y≥10.25.答:该超市这两批防护口罩的平均购进单价至少为10.25元.9.解:(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,依题意,得:﹣=10,解得:x=300,经检验,x=300是原方程的解,且符合题意,∴2x=600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y天,则甲乙两工程队还需合作=(﹣y)天,依题意,得:7000(y+﹣y)+5000(﹣y)≤79000,解得:y≥1,∴﹣y≤﹣=6.答:两工程队最多可以合作施工6天.10.解:(1)3000÷2=1500(元).设乙种口罩的单价为x元,则甲种口罩的单价为1.2x元,依题意,得:,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴1.2x=3.答:甲种口罩的单价为3元,乙种口罩的单价为2.5元.(2)设该药店购进甲种口罩a只,则购进乙种口罩(2600﹣a)只,依题意,得:3a+2.5(2600﹣a)≤7000,解得:a≤1000.答:甲种口罩最多购进1000只.11.解:(1)设第一批口罩进货单价为x元,则第二批进货单价为(x+2)元,依题意,得:3×=,解得:x=8,经检验,x=8是原分式方程的解,且符合题意.答:第一批口罩进货单价为8元.(2)购进第一批防护口罩的数量1600÷8=200(个),购进第二批防护口罩的数量200×3=600(个).设该超市购买这两批防护口罩的平均单价为m元,依题意,得:(200+600)m≥1600+6000+600,解得:m≥10.25.答:该超市购买这两批防护口罩的平均单价至少为10.25元.12.解:(1)设该商店去年购进x个小猪挂件,则今年购进x个小鼠挂件,依题意,得:﹣=1,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴x=300.答:该商店去年购进200个小猪挂件,今年购进300个小鼠挂件.(2)设今年的小鼠挂件售出了m个,依题意,得:10×(200﹣10)+10m﹣1000﹣1800≥2050,解得:m≥295.答:今年的小鼠挂件要至少售出295个,才能使这两年的总利润不低于2050元.13.解:(1)设购买一副羽毛球拍需要x元,则购买一根跳绳需要(x﹣20)元,依题意,得:=×,解得:x=25,经检验,x=25是原方程的解,且符合题意,∴x﹣20=5.答:购买一副羽毛球拍需要25元,购买一根跳绳需要5元.(2)设八(1)班购买m副羽毛球拍,则购买(2m+10)根跳绳,依题意,得:25m+5(2m+10﹣m)≤350,解得:m≤10.答:八(1)班最多可购买10副羽毛球拍.14.解:(1)设该超市第一批购进这种葡萄x市斤,则第二批购进这种葡萄2x市斤,依题意,得:﹣=0.2,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:该超市第一批购进这种葡萄100市斤.(2)设每市斤葡萄的售价应该定为y元,依题意,得:(100+100×2)y﹣320﹣680≥(320+680)×20%,解得:y≥4.答:每市斤葡萄的售价应该至少定为4元.15.解:(1)设乙队每天铺设电路管道x米,则甲队每天铺设电路管道1.5x米,依题意,得:.解得:x=40,经检验,x=40是原方程的解,且符合题意,∴1.5x=1.5×40=60.答:甲队每天铺设电路管道60米,乙队每天铺设电路管道40米.(2)设乙队施工m天正好完成该项工程,依题意,得:≤20,解得:m≥30.答:若甲队参与该项工程的施工时间不得超过20天,则乙队至少施工30天才能完成该项工程.。

5.4分式方程(3)

5.4分式方程(3)
问题中的等量关系:
1、轮船顺水航行的速度=船在静水中的速度 + 水流速度 2、轮船逆水航行的速度=船在静水中的速度 - 水流速度 3、顺水航行100千米所需的时间=逆水航行60千米所需的时间
方法归纳
列分式方程解应用题的一般步骤
1、审:分析题目中的已知量、未知量,理清它们之间的关
系,并找出题目中的等量关系
第五章 分式与分式方程
5.4 分式方程(3)
授课 毛小富
回顾思考
列方程解应用题的一般步骤分哪几步?
1.审题;分析题目中的已知量、未知量,理清它们之间
的关系,并找出题目中的等量关系。
2.设未知数; 3.列方程; 将等量关系“翻译”成等式。
4.解方程;Βιβλιοθήκη 5.检验;(1)是否是所列方程的解。(2)是否满足实际意义。
6.作答。
合作探究
1、某单位将沿街的一部分房屋 出租.每间房屋的租金第二年比 第一年多500元,所有房屋出租 的租金第一年为9.6万元,第二 年为10.2万元.
3. 1. 2.你能利用方程求出上面提出的问题吗 你能找出这一情境中的等量关系吗 根据这一情境你能提出哪些问题? ? ?
①第一年每间房屋的租金=第二年每间房屋的租金-500元
②第一年出租房屋间数=第二年出租的房屋间数 总租金 ③出租房屋间数= 每间房屋的租金
问题1、求出租的房屋总间数; 问题2、分别求这两年每间房屋的租金。
合作探究
分析:设共有 x 间房屋出租.
房屋(间) 第一年 第二年 租金(元/间) 总租金
互动探究
2、轮船在顺水中航行100千米 所需的时间和逆水航行60千米 所需的时间相同。已知轮船在 静水中的速度为20千米/时, 求水流的速度是多少?

2023年苏科版八年级数学下册第十章《分式方程(3)》导学案

2023年苏科版八年级数学下册第十章《分式方程(3)》导学案

新苏科版八年级数学下册第十章《分式方程(3)》导学案教学过程一.知识互动1、解分式方程的一般步骤(1)去分母,(2)去括号,(3)移项,合并同类项,(4)系数化为1,(5)检验2、列分式方程解实际问题的一般步骤:⑴根据题意设未知数⑵分析题意寻找等量关系,列方程⑶解所列方程⑷检验所列方程的解是否符合题意⑸写出完整的答案3、列方程(组)解应用题的关键:分析题意寻找等量关系,列方程。

二.例题解析:【例1】指例4.为迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务。

这样,这两个小组的每个同学就要比原计划多做4面。

如果这3个小组的人数相等,那么每个小组有多少名学生?分析:本题中的等量关系是什么?你会根据等量关系列出分式方程吗?【例2】甲、乙两公司各为“见义勇为基金会”捐款30000元,已知乙公司比甲公司人均多捐款20元,且甲公司的人数比乙公司的人数多20%。

问甲、乙两公司各有多少人?【例3】小明买软面笔记本共用去12元,小丽买硬面笔记本共用去21元,已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同本数的笔记本吗?(知道所列出的分式方程虽然有解,但解却不符合实际情况,这时原问题无解)三.随堂演练:1.填空⑴为改善生态环境,防止水土流失,某村拟在荒坡地上种植960棵树, 由于青年团员的支持,每日比原计划多种20棵,结果提前4天完成任务,原计划每天种植多少棵?设原计划每天种植x棵,根据题意得方程____________.⑵ 甲、乙两人加工某种机器零件,甲在m 天内可以加工a 个零件,乙在n 天内可以加工b 个零件,若两人同时加工p 个零件,则需要的天数是________.2.选择⑴ 某人生产一种零件,计划在30天内完成,若每天多生产6个,则25天完成且还多生产10个,问原计划每天生产多少个零件?设原计划每天生产x 个,列方程式是 ( )A.3010256x x -=+B.3010256x x +=+C.3025106x x =++D.301025106x x +=-+ ⑵ 某工地调来72人挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力使挖出的土能及时运走且不窝土,解决此问题可设派x 人挖土,其它人运土,列方程:①x+3x=72,②72-x=3x ,③7213x x -=, ④372x x=-.上述所列方程正确的有( ) A.1个 B.2个 C.3个 D.4个3.小丽与小明同时为艺术节制作小红花,小明每小时比小丽多做2朵,那么小明做100朵小红花与小丽做90朵小红花所用时间相等吗?四.课后作业:1.某市从今年1月1日起调整居民的用水价格,每立方米水费上涨31。

华师大版数学八年级下册16.3《可化为一元一次方程的分式方程》(第3课时)教学设计

华师大版数学八年级下册16.3《可化为一元一次方程的分式方程》(第3课时)教学设计

华师大版数学八年级下册16.3《可化为一元一次方程的分式方程》(第3课时)教学设计一. 教材分析《可化为一元一次方程的分式方程》是华师大版数学八年级下册第16.3节的内容。

本节课的主要内容是让学生掌握分式方程的解法,通过将分式方程转化为整式方程,让学生理解分式方程的解法实质,提高学生解决实际问题的能力。

二. 学情分析学生在八年级上册已经学习了分式的概念、性质和运算,对分式有了一定的认识。

但是,对于分式方程的解法,学生可能还比较陌生。

因此,在教学过程中,教师需要引导学生将分式方程转化为整式方程,让学生通过已有的知识解决新的问题。

三. 教学目标1.知识与技能目标:让学生掌握分式方程的解法,并能运用到实际问题中。

2.过程与方法目标:通过自主学习、合作交流,培养学生解决问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生学习数学的积极性。

四. 教学重难点1.重点:分式方程的解法。

2.难点:如何将分式方程转化为整式方程,以及如何运用分式方程解决实际问题。

五. 教学方法1.自主学习:让学生在课堂上自主探究分式方程的解法。

2.合作交流:引导学生分组讨论,分享解题心得。

3.实例讲解:通过具体例子,让学生理解分式方程的解法在实际问题中的应用。

六. 教学准备1.课件:制作课件,展示分式方程的解法。

2.练习题:准备一些分式方程的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用实例引入分式方程的概念,让学生回顾分式的性质和运算。

2.呈现(10分钟)展示分式方程的解法,引导学生将分式方程转化为整式方程。

3.操练(10分钟)让学生独立解决一些简单的分式方程,巩固所学知识。

4.巩固(10分钟)讲解一些典型的分式方程案例,让学生进一步理解分式方程的解法。

5.拓展(10分钟)引导学生运用分式方程解决实际问题,提高学生的应用能力。

6.小结(5分钟)总结本节课所学内容,让学生明确分式方程的解法及其在实际问题中的应用。

第6讲分式方程(讲义)解析版

第6讲分式方程(讲义)解析版

第6讲分式方程模块一:分式方程及其解法知识精讲1、分式方程的概念分母中含有未知数的方程叫做分式方程.2、解分式方程的方法通过去分母把分式方程转化为整式方程,再求解.3、增根的概念分式方程在化整式方程求解过程中,整式方程的解如果使得分式方程中的分母为0,那么这个解就是方程的增根.4、解分式方程的一般步骤(1)方程两边都乘以最简公分母,去分母,化成整式方程;(2)解这个整式方程,求出整式方程的根;(3)检验.有两种方法:①将求得的整式方程的根代入最简公分母,如果最简公分母等于0,则这个根为增根,方程无解;如果最简公分母不等于0,则这个根为原方程的根,从而解出原方程的解;②直接代入原方程中,看其是否成立.如果成立,则这个根为原方程的根,从而解出原方程的解;如果不成立,则这个根为增根,方程无解.5、分式方程组的概念由两个或两个以上的分式方程构成的方程组叫做分式方程组.6、解分式方程组的方法找出分式方程组中相同的分式进行换元,将分式方程组转化为整式方程组,解方程组,然后进行检验.例题解析例1.(1)下列方程中,是分式方程的为( )A .12x -=B 1=C 10-=D 1=【答案】C【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.【详解】A. 是整式方程,故选项错误;B. 是整式方程,故选项错误;分母中含有未知数x ,所以是分式方程,故选项正确;D. 是整式方程,故选项错误.故选C.【点睛】此题考查分式方程的判定,掌握分式方程的定义是解题的关键.(2)在3253x +=;11(1)(1)432x x ++-=;21x -=;2371x x x ++=-;1(37)x x-中,分式方程有().A .1个B .2个C .3个D .4个【难度】★【答案】B【解析】根据分式方程的定义,分母中含有未知数的方程是分式方程,(1)(2)两个方程分 母中不含未知数,(5)不是方程,(3)(4)满足定义,故选B .【总结】考查分式方程的定义,注意前提是方程,且方程分母中必含有字母.例2.(1)用换元法解分式方程251x x +21x x+-+1=0,如果设21x x +=y ,那么原方程可以化为( )A .2+y y -5=0B .2y -5y+1=0C .25y y 10++=D .25y 10y +-=【答案】D【分析】直接把21xx +换成y ,整理即可.【详解】解:设21xy x =+,则原方程化为1510y y -+=,去分母得,25y 10y +-=,故选:D .【点睛】本题考查的是换元法解分式方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.(2).用换元法解方程221165380x x x x æöæö+++-=ç÷ç÷èøèø,设1y x x =+,则方程变为()A .265380y y +-=B .265400y y +-=C .265260y y +-=D .265500y y +-=【难度】★【答案】D【解析】1y x x =+,则有22221122x x y x x æö+=+-=-ç÷èø,原方程即为()2625380y y -+-=,展开整理即为265500y y +-=,故选D .【总结】考查分式方程中换元法的应用,注意含有未知数部分的恒等变形转化.例3.分式方程2227381x x x x x +=+--的最简公分母是____________.【难度】★【答案】3x x -.【解析】分式方程中三个分母位置上分别为2x x +,2x x -,21x -,分解因式的结果分别为()1x x +,()1x x -,()()11x x +-,由此可得方程的最简公分母为()()311x x x x x +-=-.【总结】考查分式方程的最简公分母,将每个分母因式分解,取相同因式的最高次数乘积即为分式方程的最简公分母.例4.直接写出下列分式方程的根:(1)11211x x x -=---:_________________;(2)11111x x x -=---:_________________;(3)2121x x -=-:_________________;(4)2111x x -=-:_________________.【难度】★【答案】(1)2x =;(2)无解;(3)无解;(4)0x =.【解析】(1)根据等式性质,两边同时加上分式部分,即得2x =, 检验得2x =是原分式方程的根;(2)根据等式性质,两边同时加上分式部分,即得1x =,检验得1x =为方程的增根, 即方程无解;(3)约分得12x +=,解得1x =,检验得1x =为方程的增根,即方程无解;(4)约分得11x +=,解得0x =,检验得0x =是原分式方程的根.【总结】考查根据等式的性质求解简单的分式方程,注意求解结果是否是增根.例5.解方程:(1)3363142x x -=-+;(2)43252x xx x =++;(3)23312222x x x x x ++=--+-.【难度】★★【答案】(1)123x =,29x =-;(2)10x =,267x =-;(3)无解.【解析】(1)方程两边同乘()()43123x x -+,得()()()()42312831x x x x +--+=-,整理得2325180x x +-=,解得123x =,29x =-,经检验,123x =,29x =-都是原方程的根;(2)方程两边同乘()()3252x x ++,得()()52432x x x x +=+,整理得2760x x +=,解得:10x =,267x =-,经检验,10x =,267x =-都是原方程的根;(3)方程两边同乘()()212x x +-,得()()()63221x x x ++-=+,整理得220x x --=,解得:11x =-,22x =,经检验,11x =-,22x =都是原方程的增根,即原方程无解.例6.解方程:(1)2213211x x x x -=+--; (2)24221422x x x x =++--+;(3)23211214124x x x x++=+--.【难度】★★【答案】(1)13x =-;(2)6x =;(3)54x =.【解析】(1)方程两边同乘21x -,得()221213x x x x +=-+-,整理得23210x x --=, 解得:113x =-,21x =,经检验,21x =是原方程的增根,即原方程的根为13x =-;(2)方程两边同乘24x -,得()()2442222x x x x =--++-,整理得24120x x --=,解得:16x =,22x =-,经检验,22x =-是原方程的增根,即原方程的根为6x =;(3)两边同乘()2241x -,得()()()2621421241x x x x -+-+=-,整理得281450x x -+=,解得:112x =,254x =,经检验,112x =是原方程的增根,即原方程的根为54x =.【总结】考查分式方程的解法,注意检验所求是否为增根.例7.已知关于x 的方程22312x m x x x +-=-+-有增根,求m 的值.【难度】★★【答案】12m =或3m =.【解析】分式方程两边同乘22x x +-,得()223x m +=-,分式方程有增根,由220x x +-=,解得:11x =,22x =-,即为原分式方程的增根,代入相应整式方程得39m -=或30m -=,解得12m =或3m =.【总结】考查分式方程的增根,代入相应的整式方程可使得方程成立且使得分式分母为0的未知数的值.例8.已知关于x 的方程7155x m xx x--=---无解,求m 的值.【难度】★★【答案】3m =.【解析】分式方程两边同乘5x -,得()75x x m x -=---,整理解得:2x m =+,因为原分式方程无解,则相应解应为分式方程的增根,即得25x m =+=,解得3m =.【总结】考查分式方程的无解,即由相应整式方程求得的解是分式方程的增根.例9.已知关于x 的方程301a xx +-=+的根是负数,求a 的取值范围.【难度】★★【答案】3a <且1a ≠.【解析】分式方程两边同乘1x +,得()310a x x +-+=,整理解得:32a x -=,方程的根是 负数,则有302a x -=<,得3a <,同时分式方程的根不能为相应增根,即312a x -=≠-, 得1a ≠,由此即得3a <且1a ≠.【总结】考查分式方程的解满足条件的求解,注意方程的解不能为相应的增根.例10.解方程:(1)2220383x x x x+-=+;(2)2191502x x x x æöæö+-++=ç÷ç÷èøèø.【难度】★★【答案】(1)15x =-,22x =,31x =-,42x =-;(2)11x =,22x =,312x =.【解析】(1)令23x x a +=,原方程即为208a a-=,两边同乘a 整理得28200a a --=,解得:110a =,22a =-;由2310x x +=,解得:15x =-,22x =;由232x x +=-,解得:11x =-,22x =-;经检验,15x =-,22x =,31x =-,42x =-都是原方程的根;(2)令1x a x +=,原方程即为29502a a -+=,解得12a =,252a =;由12x x+=,整理得2210x x -+=,解得:121x x ==;由152x x +=,整理得22520x x -+=,解得12x =,212x =;经检验,11x =,22x =,312x =都是原方程的根.【总结】考查用换元法求解具有特殊形式的分式方程,注意对方法的总结.例11.解方程:(1)225(16(1)1711x x x x +++=++);(2)2216104()933x x x x+=-.【难度】★★【答案】(1)1x =2x =(2)13x =,23x =,32x =-,46x =.【解析】(1)令211x a x +=+,原方程即为6517a a +=,两边同乘a 整理得251760a a -+=,解得:125a =,23a =;由21215x x +=+,整理得25230x x -+=,方程无解;由2131x x +=+,整理得2320x x --=,解得:1x 2x =经检验,1x =2x = (2)令43x a x -=,则有2222164889333x x a x x æö+=-+=+ç÷èø,原方程即为281033a a +=,整理得231080a a -+=,解得:12a =,243a =;由423x x-=,整理得26120x x --=,解得:13x =,23x =;由4433x x -=,整理得24120x x --=,解得:12x =-,26x =;经检验,13x =+23x =-,32x =-,46x =都是原方程的根.【总结】考查用换元法求解有特殊形式的分式方程.例12.解方程组:(1)413538x y x y x y x y ì+=ï+-ïíï-=ï+-î;(2)132013251x y x y ì+=ï-ïíï-=-ï-î.【难度】★★【答案】(1)01x y =ìí=î;(2)565x y =ìïí=ïî.【解析】(1)令1a x y =+,1b x y =-,原方程组即为43538a b a b +=ìí-=î,解得:11a b =ìí=-î,由此可得11x y =+,11x y =--,由此得11x y x y +=ìí-=-î,解得:01x y =ìí=î,经检验,01x y =ìí=î是原分式方程的根;(2)令11a y =-,原方程组即为320235x a x a +=ìí-=-î,解得:55x a =ìí=î,由此可得:151y =-, 解得:65y =, ∴565x y =ìïí=ïî, 经检验,565x y =ìïí=ïî是原分式方程的根.【总结】考查利用换元法求分式方程组的解,注意解完之后要检验.例13.解方程组:(1)253489156x x x x +=+++++;(2)11212736x x x x x x ++-=-++++.【难度】★★【答案】(1)16x =,2334x =-;(2)92x =-.【解析】(1)对分式方程移项通分得()()()()()()()()21538495681569x x x x x x x x +-++-+=++++,展开即得2266231201554x x x x x x -+-+=++++,由此即得60x -+=或22231201554x x x x ++=++,解得:16x =,2334x =-, 经检验,16x =,2334x =-都是原分式方程的根; (2)对分式方程变形得1111112736x x x x --=--++++,由此得11112736x x x x +=+++++,两边分别通分即得222929914918x x x x x x ++=++++, 两边分母不同,则必有290x +=,解得92x =-,经检验,92x =-是原分式方程的根.【总结】考查特殊形式分式方程的解法,注意相应分母的关系,分组两边分别通分计算.例14.解方程:226205x x +-=+.【难度】★★【答案】11x =,21x =-.【解析】令25x a +=,则有25x a =-,原方程即为6520a a+--=,两边同乘a 整理,得2760a a -+=,解得:11a =,26a =;由251x +=,方程无解; 由256x +=,解得:11x =,21x =-;经检验,11x =,21x =-都是原方程的根.【总结】考查用换元法解分式方程,注意取值范围和增根.例15.a 为何值时,关于x 的方程211a a x +=+无解?【难度】★★【答案】12a =-或0a =.【解析】分式方程两边同乘1x +,得:()211a a x +=+,展开移项得1ax a =+,当0a =时,方程无解; 当0a ≠时,1a x a +=,方程无解,即得11a x a+==-,解得12a =-;综上,12a =-或0a =.【总结】考查分式方程的无解,即由相应整式方程求得的解是分式方程的增根,注意考虑未知项系数为0的情况.例16.已知关于x 的方程222022x x x k x x x x-+++=--只有一个解,求k 的值及这个解.【难度】★★★【答案】72k =-时,1212x x ==或4k =-时,1x =或8k =-时,1x =-.【解析】方程两边同乘22x x -,得()22220x x x k +-++=,展开整理得:22240x x k -++=,分式方程可能产生增根,即当相应整式方程有两解时,分式方程仅有一解,由此需进行 分类讨论:①当整式方程有两相等实数根时,()()224240k ∆=--⨯+=,解得:72k =-,此时方程为212202x x -+=,解得:1212x x ==,此时分式方程只有一个解,符合题意;②当整式方程有一根为分式方程增根0x =时,此时有40k +=,解得:4k =-,此时方程为2220x x -=,解得:10x =,21x =,此时分式方程只有一个解1x =,符合题意;③当整式方程有一根为分式方程增根2x =时,此时有2222240k ⨯-⨯++=,解得:8k =-,此时方程为22240x x --=,解得:12x =,21x =-,此时分式方程只有一个解1x =-,符合题意; 综上,72k =-或4k =-或8k =-.【总结】考查分式方程只有一个解的情况,方程为二次方程时,注意包含方程有一个根为分式方程的增根的情形.例17.解关于x 的方程:22112(3()1x x x x+-+= 【难度】★★★【答案】12x =,212x =.【解析】令1x a x +=,则有22221122x x a x x æö+=+-=-ç÷èø,原方程即为()22231a a --=,展开整理得22350a a --=,解得:11a =-,252a =;由11x x+=-,整理得210x x ++=,方程无解;由152x x +=,整理得22520x x -+=,解得:12x =,212x =; 经检验,12x =,212x =都是原方程的根.【总结】考查用换元法求解有特殊形式的分式方程,注意解完之后进行检验.例18.解关于x 的方程()()450b x a xa b b x a x+-=-+≠+-.【难度】★★★【答案】12a b x -=,245a bx -=.【解析】令a x kb x -=+,原方程即为45k k=-,两边同乘k 整理,得2540k k -+=,解得:11k =,24k =; 由1a x b x -=+,又0a b +≠,可解得:2a bx -=;由4a x b x -=+,又0a b +≠,可解得:45a bx -=;经检验,12a b x -=,245a bx -=都是原方程的根.【总结】考查用换元法求解有特殊形式的分式方程.例19.已知方程22222(1)21()x ax a a x a +-++=+有实数根,求实数a 的取值范围.【难度】★★★【答案】1122a -≤≤且0a ≠.【解析】展开得()()22222222121x ax a ax a a x a +--+++=+,根据等式性质移项得()()222220x ax a ax x a +-+=+,即为()20x a x a x a ⎡⎤+-=⎢⎥+⎣⎦,由此得()0xa x a x a+-=+, 移项得()2a x a x +=,展开整理得()223210ax a x a +-+=,当0a =时,方程有实数根0x =是分式方程的增根,应舍去;当0a ≠时,方程为一元二次方程,此时根据韦达定理可得2122112a x x a a a-+=-=-,可知1x 、2x 不可能同时为a -,分式方程有实数根,则相应的整式方程应满足()2232214410a a a a ∆=--⋅=-+≥,得1122a -≤≤;综上,实数a 的取值范围为:1122a -≤≤且0a ≠.【总结】考查分式方程有实数根的情形,对分式方程整理变形满足相应的条件即可.模块二分式方程应用题知识精讲1、列方程(组)解应用题时,如何找“相等关系”(1)利用题目中的关键语句寻找相等关系;(2)利用公式、定理寻找相等关系;(3)从生活、生产实际经验中寻找相等关系.例题解析例1.要在规定日期内完成一项工程,如甲队单独做,刚好按期完成;如乙队单独做,则要超过规定时间3天才能完成;甲、乙两队合作2天,剩下的工程由乙队单独做,则刚好按期完成.那么求规定日期为x天的方程是().A.2213xx x-+=+B.233x x=+C.2213xx x++=+D.213xx x+=+【难度】★【答案】D【解析】设工作总量为“1”,则甲工作量+乙工作量=1,根据工作总量=工作效率×工作天数,乙工作天数为x天,由此可知选D.【总结】考查工程问题中的单位“1”,注意分清对应的工作效率和工作时间.例2.某车间加工300个零件,在加工80个以后,改进了操作方法,每天能多加工15个,一共用6天完成了任务.如果设改进操作后每天加工x个零件,那么下列根据题意列出的方程中,错误的是()A.8030080615x x-+=-B.30080615x-=-C.80(6)8030015xx-+=-D.8015300806xx-=--【难度】★【答案】B 【解析】略【总结】考查根据题意列方程的应用,根据工作量和工作效率、工作时间之间的相互关系进行列方程的应用.例3.甲、乙两个工程队合做一项工程,6天可以完成.如果单独工作,甲队比乙队少用5天完成.两队单独工作各需多少天完成?【难度】★★【答案】甲单独需10天完成,乙单独需15天完成.【解析】设甲单独需用x天完成,则乙单独需用()5x+天完成,依题意可得11615x xæö+=ç÷+èø,整理得27300x x--=,解得:13x=-,210x=,经检验,13x=-,210x=都是原方程的根,但13x=-不合题意应舍去,即得10x=,即甲单独需10天完成,乙单独需10515+=天完成.【总结】考查工程问题中的列方程解应用题,把工作总量当作单位“1”解题.例4.登山比赛时,小明上山时的速度为a米/分,下山的速度是b米/分,已知上山和下山的路径是一样的,求小明在全程中的平均速度?【难度】★★【答案】2aba b+.【解析】设小明上山的路程为sm,则整个过程中小明总行程为2sm,根据平均速度=总行程÷总时间,即得平均速度22s abvs s a ba b==++.【总结】考查平均速度的求取,平均速度==总行程÷总时间,与行程远近无关,注意平均速度的求法.例5.甲、乙两人分别从相距9千米的A、B两地同时出发,相向而行,1小时后相遇.相遇后,各自继续以原有的速度前进,已知甲到B地比乙到A地早27分钟,求两人的速度各是多少?【难度】★★★【答案】甲速度为5/km h,乙速度为4/km h.【解析】设甲速度为/xkm h,则乙速度为()9/x km h-,927min20h=,依题意可得999920x x-=-,整理得2311800x x+-=,解得:136x=-,25x=,经检验,136x=-,25x=都是原方程的根,但136x=-不合题意应舍去,即得5x=,即甲速度为5/km h,乙速度为954/km h-=.【总结】考查行程问题中的列方程解应用题,根据相遇问题的基本关系一个条件作设一个条件列式进行求解.例6.甲、乙两辆车同时从A地出发开往距A地240千米的B地,结果甲车比乙车早到了60分钟;第二次,乙车提速30千米/时,结果比甲车早到了20分钟,求第一次甲、乙两车的速度各是多少?【难度】★★★【答案】甲速度为80/km h,乙速度为60/km h.【解析】设甲车xh到达B地,60min1h=,120min3h=,依题意可得24024030113xx-=+-,整理得232330x x+-=,解得1113x=-,23x=,经检验,111 3x=-,23x=都是原方程的根,但111 3x=-不合题意应舍去,即得3x=,可得甲速度为24080/3km h=,乙速度为24060/31km h=+.【总结】考查行程问题中的列方程解应用题,根据行程问题的基本等量关系一个条件作设一个条件列式进行求解,注意本题中用时间作设速度列式解题更方便.例7.某服装厂接到一宗生产13万套衣服的业务,在生产了4万套后,接到了买方急需货物的通知,为满足买方的要求,该厂改进了操作方法,每月能多生产1万套,一共5个月完成了这宗业务.求改进操作方案后每月能生产多少万套衣服?【难度】★★★【答案】3万套.【解析】设改进操作方案后每月能生产x 万套衣服,则改进之前每月生产()1x -万套,依题意可得413451x x -+=-,整理得251890x x -+=,解得:135x =,23x =,经检验,135x =,23x =都是原方程的根,但135x =不合题意应舍去,即得:3x =,即改进操作方案后每月能生产3万套衣服.【总结】考查工作总量问题,一个条件作设一个条件列式进行求解.随堂检测1.已知方程:(1)2412x x -=-;(2)221x x =-;(3)11x x x æö-=ç÷èø;(43x -=,其中是分式方程的有_____________.【难度】★【答案】(1)、(2)、(3).【解析】根据分式方程的定义,分母中含有未知数的方程是分式方程,(1)、(2)、(3)满足 条件,(4)方程中不含有分式,故答案为(1)、(2)、(3).【总结】考查分式方程的定义,注意前提是方程,且方程分母中必含有字母.2.当x 取何值时,分式方程1112x x x +=--的最简公分母的值等于0?【难度】★【答案】1x =或2x =.【解析】分式方程的最简公分母为()()12x x --,最简公分母值为0,即()()120x x --=,解得:1x =或2x =.【总结】考查分式方程的最简公分母,将每个分母因式分解,取相同因式的最高次数乘积即为分式方程的最简公分母.3.分式方程22228(2)331112x x x x x x +-+=-+,如果设2221x xy x +=-,那么原方程可以化为关于y 的整式方程为 .【难度】★【答案】281130y y -+=.【解析】2221x x y x +=-,则有22112x x x y-=+,原方程即为3811y y +=,整理化作关于y 的整式方 程即为281130y y -+=.【总结】考查利用换元法对复杂形式的分式方程进行转化,注意最终要化成整式方程的形式.4.解方程:(1)26531111x x x x =++--+;(2)22161242x x x x +-=--+; (3)243455121760x x x x x x --+=---+.【难度】★★【答案】(1)9x =;(2)5x =-;(3)12x =,29x =.【解析】(1)方程两边同乘21x -,得()()2615131x x x x =--++-,整理得2890x x --=,解得:11x =-,29x =,经检验,11x =-是原方程的增根,即原方程的根为9x =;(2)方程两边同乘24x -,得()22162x x +-=-,整理得23100x x +-=,解得:12x =,25x =-,经检验,12x =是原方程的增根,即原方程的根为5x =-;(3)两边同乘21760x x -+,得()()()4123545x x x x ----=-,整理得211180x x -+=,解得“”12x =,29x =,经检验,12x =,29x =都是原方程的根.【总结】考查分式方程的解法,注意检验所求是否为增根.5.解方程:221313x x x x ++=+.【难度】★★【答案】11x =,21x =+.【解析】令1x a x =+,原方程即为2133a a +=,整理即为231060a a -+=,解得:1a =2a =由1x x =+,解得:1x =;由1x x =+,解得:1x =+经检验11x =,21x =【总结】考查利用换元法解分式方程.6.解方程组311332412463324x y x y x y y x ì+=ï+-ïíï-=ï+-î【难度】★★【答案】1011711x y ì=ïïíï=ïî.【解析】令132a x y =+,14b x y =-,原方程组即为13312463a b a b ì+=ïíï+=î,解得:1413a b ì=ïïíï=ïî,由此可得113241143x y x y ì=ï+ïíï=ï-î, 去分母得32443x y x y +=ìí-=î,解得:1011711x y ì=ïïíï=ïî,经检验,1011711x y ì=ïïíï=ïî是原分式方程的根.【总结】考查用换元法解有特殊形式的分式方程组,注意验根.7.若分式方程22111x m x x x x x++-=++产生增根,求m 的值.【难度】★★【答案】2m =-或1m =.【解析】方程两边同乘2x x +,得()()22211x m x -+=+,展开整理得2220x x m ---=,分式方程产生增根,即当相应整式方程有两解时,分式方程仅有一解,由此需进行分类 讨论:①整式方程有一根为分式方程增根0x =时,此时有20m --=,解得:2m =-;②整式方程有一根为分式方程增根1x =-时,此时有()()212120m --⨯---=,解得:1m =;综上,2m =-或1m =.【总结】考查分式方程有增根的情况,即对应的整式方程有一个根为分式方程的增根.8.甲、乙两地间铁路长400千米,现将火车的行驶速度每小时比原来提高了45千米,因此,火车由甲地到乙地的行驶时间缩短了2小时.求火车原来的速度.【难度】★★【答案】75/km h .【解析】设火车原来的速度为/xkm h ,依题意可得400400245x x -=+,整理得24590000x x +-=,解得:1120x =-,275x =,经检验,1120x =-,275x =都是原方程的根,但1120x =-不合题意应舍去,即得75x =,即可得火车原来速度为75/km h .【总结】考查行程问题中的列方程解应用题,根据行程问题的基本等量关系一个条件作设一个条件列式进行求解.9.某市为了美化环境,计划在一定的时间内完成绿化面积200万亩的任务,后来市政府调整了原定计划,不但绿化面积要在原计划的基础上增加20%,而且要提前1年完成任务.经测算,要完成新的计划,平均每年的绿化面积必须比原计划多20万亩,求原计划平均每年的绿化面积.【难度】★★★【答案】原计划平均每年绿化面积40万亩.【解析】设原计划平均每年的绿化面积为x 万亩,则新计划每年()20x +万亩,依题意可得()200120%200120x x ⨯+-=+,整理得26040000x x +-=,解得:1100x =-,240x =,经检验,1100x =-,240x =都是原方程的根,但1100x =-不合题意应舍去,即得40x =,即原计划平均每年的绿化面积为40万亩.【总结】考查工作量的问题,根据相应的等量关系式列方程求解.10.解方程:221114(4)12()12433x x x -=-++.【难度】★★★【答案】11x =+,21x =,33x =+,43x =【解析】方程两边同乘12展开得22364881616x x x x-+=--+,根据等式的性质移项变形得2668120x x x x æöæö---+=ç÷ç÷èøèø,因式分解得:66260x x x x æöæö----=ç÷ç÷èøèø,由此可得620x x --=或660x x --=;由620x x--=,整理得2260x x --=,解得:11x =+21x =-;由660x x --=,整理得2660x x --=,解得:13x =+23x =经检验,11x =21x =-33x =43x =-都是原方程的根.【总结】考查用整体思想先对分式方程变形,然后求解分式方程的根,注意对方法的总结.11.解方程:596841922119968x x x x x x x x ----+=+----.【难度】★★★【答案】12314x =.【解析】对分式方程变形得1155514219968x x x x -++=++-----,根据等式的性质可变形得115519986x x x x -=-----,两边分别通分即得221010281711448x x x x =-+-+,由此可得22281711448x x x x -+=-+, 解得:12314x =,经检验,12314x =是原分式方程的根.【总结】考查特殊形式分式方程的解法,注意相应分母的关系,分组两边分别通分计算.12.已知关于x 的方程21221232a a x x x x ++=---+有增根,求a .【难度】★★★【答案】32a =-或2a =-.【解析】方程两边同乘232x x -+,得()2122x a x a -+-=+,展开整理得()134a x a +=+,当10a +≠,即1a ≠-时,得341a x a +=+,分式方程可能产生增根,由此进行分类讨论:①整式方程根为分式方程增根1x =时,此时有3411a a +=+,解得32a =-;②整式方程有一根为分式方程增根2x =时,此时有3421a a +=+,解得2a =-;综上,32a =-或2a =-.【总结】考查分式方程有增根的情况,即对应的整式方程根为分式方程的增根.13.已知:关于x 的方程227()72120a a x x a x x+--++=只有一个实数根,求a .【难度】★★★【答案】94a =或4a =.【解析】整理原方程得27120a a x x x x æöæö+-++=ç÷ç÷èøèø,因式分解得340a a x x x x æöæö+-+-=ç÷ç÷èøèø,由此可得30a x x +-=或40a x x +-=,分别整理得:230x x a -+=和240x x a -+=,两方程根的判别式分别为194a ∆=-,2164a ∆=-.因为方程仅有一实数根,所以940a -=或1640a -=,解得:94a =或4a =.【总结】考查分式方程的根与对应整式方程的根相结合的问题,根据实际题目进行问题的分析转化,解决问题.。

八年级数学教案:分式方程(全3课时)

八年级数学教案:分式方程(全3课时)
教学过程
一.自学检测 1、什么叫做分式方程?解分式方程的步骤有哪几步?
个案补充
2、判断下面解方程的过程是否正确,若不正确,请加以改正。
解方程:x-2 1 =3-xx+ -11
解:两边同乘以(x-1),得
2=3-x+1, ①
x=3+1-2, ②
所以 x=2。

二.探究交流 探索点一:可以采用不同方式,探寻各个实际问题中的相等关系 1、甲、乙两人加工同一种服装,乙每天比甲多加工 1 件,已知乙加工 24 件服装所用时间与甲加工 20 件服装所用时间相同。甲每天加工多少件服 装?
课外作业:
布置作业
板书设计
教后札记
-6-
课时 NO: 教学课题
教学目标
主备人: 审核人
用案时间:
§10.5 分式方程(3)
年 月 日 星期
1.能将实际问题中的等量关系用分式方程表示,列出分式方程解决简单的实际问题,并能
根据实际问题的意义检验所得的结果是否合理. 2.发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.

4、因为解分式方程可能产生增根,所.以.

-4-
你能用比较简洁的方法,检验解分式方程产生的增根吗? 5、想一想解分式方程一般需要经过哪几个步骤?
探索点二:分式方程的解法会检验根的合理性
例 解下列方程:(1)30 = 20 ; x x+1
x-2 x+2 16 (2)x+2 -x-2 =x2-4 .
课时 NO: 教学课题
主备人: 审核人
用案时间:
年 月 日 星期
§10.5 分式方程(1)
1、经历“实际问题-分式方程方程模型”的过程,经历分式方程的概念,能将实际问题中

分式方程的实际应用(3)-行程问题(学生版)

分式方程的实际应用(3)-行程问题(学生版)

分式方程的实际问题(3)-行程问题1.小华早上从家出发到离家5千米的国际会展中心参观,实际每小时比原计划多走1千米,结果比原计划早到了15分钟,设小华原计划每小时行x千米,可列方程()A.55114x x-=+B.551+14x x-=C.5515+1x x-=D.55151x x-=+2.小明步行速度为5千米/时,骑车速度为15千米/时.如果小明先骑车2小时,然后步行3小时,那么他的平均速度是()A.5千米/时B.9千米/时C.10千米/时D.15千米/时3.《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天:如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x天,则可列方程为()A.900900213x x=⨯+-B.900900213x x⨯=+-C.900900213x x=⨯-+D.900900213x x⨯=-+4.在学校组织的秋季登山活动中,某班分成甲、乙两个小组同时开始攀登一座450m高的山.乙组的攀登速度是甲组的1.2倍,乙组到达顶峰所用时间比甲组少15min.如果设甲组的攀登速度为m/minx,那么下面所列方程中正确的是()A.4504501.215x x=++B.450450151.2x x=-C.4504501.215x x=⨯+D.450450151.2x x=+5.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时6.甲、乙两人分别从距目的地6km和10km的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前13h到达目的地,设甲的速度为3xkm/h,下列方程正确的是()A.1016433x x+=B.1016433x x-=C.1016334x x+=D.1016334x x-=7.某班学生周末乘汽车到外地参加活动,目的地距学校120km,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达目的地,已知快车速度是慢车速度的2倍,如果设慢车的速度为/xkm h,那么可列方程为()A.1201212x x-=B.12012012x x-=+C.12012012x x-=D.12012012x x-=+8.我市防汛办为解决台风季排涝问题,准备在一定时间内铺设一条长4000米的排水管道,实际施工时,.求原计划每天铺设管道多少米?题目中部分条件被墨汁污染,小明查看了参考答案为:“设原计划每天铺设管道x米,则可得方程4000400010x x--=20,…”根据答案,题中被墨汁污染条件应补为()A.每天比原计划多铺设10米,结果延期20天完成B.每天比原计划少铺设10米,结果延期20天完成C.每天比原计划多铺设10米,结果提前20天完成D.每天比原计划少铺设10米,结果提前20天完成9.已知A、B两个港口之间的距离为100千米,水流的速度为b千米/时,一艘轮船在静水中的速度为a千米/时,则轮船往返两个港口之间一次需要的时间是()A.100a+100bB.200a b+C.100a b++100a b-D.100a b+﹣100a b-10.小王从甲地到相距50千米的乙地办事,乘出租车去,乘公共汽车回来.已知出租车的平均速度比公共汽车的平均速度快15千米/小时,去时路上所用的时间比返回时少了13.设公共汽车的平均速度为x千米/小时,则下面列出的方程中,正确的是()A.50250153x x=⨯+B.50250315x x=⨯+C.50150153x x+=+D.50501153x x=-+11.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为_________.12.甲、乙两组学生去距学校4.5千米的敬老院打扫卫生,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,两组学生同时到达敬老院,如果步行速度是骑自行车速度的13,求步行与骑自行车的速度各是________.13.一船在一条江里顺流航行100km,逆流航行64km,共用9h.如果逆流航行80km,所需时间仍为9h,则轮船在静水中的速度为________.14.一辆汽车先以一定速度行驶120千米,后因临时有任务,每小时加5千米,又行驶135千米,结果行驶这两段路程所用时间相等,则汽车先后行驶的速度分别是________.15.小王步行的速度比跑步的速度慢50%,跑步的速度比骑车的速度慢50%.如果他骑车从A城到B城,再步行返回A城共需要两小时,那么小王跑步从A城到B城需要__________分钟.16.智能时代引领铁路的高速发展,已知某铁路现阶段列车的平均速度是200千米/时,未来还将提速,在相同的时间内,列车现阶段行驶300千米,提速后列车比现阶段多行驶450千米,问列车平均提速多少千米/小时?17.轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/小时,求船在静水中的速度18.从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至该市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?19.某校教师前往距离学校10千米的党史学习教育基地参观学习,一部分教师骑自行车先走,过了20分钟后,其余教师乘汽车出发,结果他们同时到达,已知汽车的速度是骑车教师速度的3倍,求骑车教师的速度.20.某校组织学生参加远足活动,前往校外15km处的某地,高年级与低年级同时出发,已知高年级的速度是低年级的1.2倍,高年级比低年级提前0.5h抵达目的地.设低年级的速度是x(km/h).(1)完成下表(用含x的代数式表示);(2)求x的值.21.阅读:甲、乙两地相距600km,提速前动车的速度为v km/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,(1)由以上阅读材料,则可列方程为()A.60016003 1.2-=v vB.60060011.23v v=-C.600600201.2v v-=D.600600201.2v v=-(2)若设提速前行车时间为x h ,请列出关于x 的方程,并求解.22.列方程解应用题:某校同学在“十一”黄金周到距学校15千米的平谷大溶洞游玩,一部分同学骑自行车先走,30分钟后,其余同学乘汽车出发,结果他们同时到达,已知汽车的速度是骑车同学速度的2倍.求骑车同学的速度?23.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50km/h ,水流速度是a km/h .(1)2h 后两船相距多远?(2)2h 后甲船比乙船多航行多少千米?(3)一艘小快艇送游客在甲、乙两个码头间往返,其中去程的时间是回程的时间3倍,则小快艇在静水中的速度v 与水流速度a 的关系是 .24.某次列车平均提速/vkm h .用相同的时间,列车提速前行驶km s ,提速后比提速前多行驶50km ,提速前列车的平均速度为多少?25.小李从A 地出发去相距4.5千米的B 地上班,他每天出发的时间都相同.第一天步行去上班结果迟到了5分钟.第二天骑自行车去上班结果早到10分钟.已知骑自行车的速度是步行速度的1.5倍.(1)求小李步行的速度和骑自行车的速度;(2)有一天小李骑自行车出发,出发1.5千米后自行车发生故障.小李立即跑步去上班(耽误时间忽略不计)为了至少提前5分钟到达.则跑步的速度至少为多少千米每小时?26.甲、乙两车从相距60千米的A ,B 两站同时出发相向而行.相遇后,甲车再过4小时到达B 站,乙车再过9小时到达A 站.求甲、乙两车的速度.27.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:大巴与小车的平均速度各是多少?28.一轮船往返于A 、B 两地之间,顺水比逆水快1小时到达.已知A 、B 两地相距80千米,水流速度是2千米/小时,求轮船在静水中的速度.29.某中学全体同学到距学校15千米的科技馆参观,一部分同学骑自行车走40分钟后,其余同学乘汽车出发,结果他们同时到达科技馆,已知汽车的速度是自行车速度的3倍,求汽车的速度.30.列方程解应用题:初二(1)班组织同学乘大巴车前往爱国教育基地开展活动,基地离学校有60公里,队伍12:00从学校出发,张老师因有事情,12:15从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地,问:(1)从学校到基地,张老师自驾车的时间比同学们乘坐大巴车的时间一共少________分钟;(2)大巴与小车的平均速度各是多少?(3)张老师追上大巴的地点到基地的路程有多远?。

分式方程的应用(三)--销售问题-八年级数学上册教学课件(人教版)

分式方程的应用(三)--销售问题-八年级数学上册教学课件(人教版)
(1)求第一次水果的进价是每千克多少元?
解析:根据第二次购买水果数多20千克,可得出方程,解出即可得出答案;
解:(1)设第一次购买的单价为x元,则第二次的单价为1.1x元,
根据题意得 1452 20 1200,
1.1x
x
解得 x=6.
经检验,x=6是原方程的解.
答:第一次水果的进价为每千克6元.
某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球 和排球.回校后,王老师和李老师编写了一道题:
同学们,请求出篮球和排球的单价各是多少元?
解:设排球的单价为x元,则篮球的单价为(x+60)元,根据题意,列 方程得
解得 x=100. 经检验,x=100是原方程的根,当x=100时,x+60=160. 答:排球的单价为100元,篮球的单价为160元.
1.运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕
共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪
糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可
列方程为( B )
A.
B.
C.
D.
2.今年6月1日起,国家实施了中央财政补贴条例支持高效节能电器的推广使
经检验得出:x=2200是原方程的解,
答:则条例实施前此款空调的售价为2200元,
3.某校为了丰富学生的校园生活,准备购进一批篮球和足球,其中篮球的单
价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数
相同,篮球与足球的单价各是多少元? 解:设篮球的单价为x元,依题意得,
1500 900 x x 40
(2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多 少元?

第五章 5.4 分式方程(3)

第五章 5.4 分式方程(3)

A.40 km/h
B.45 km/h
C.50 km/h
D.60 km/h
6.某市需要铺设一条长 660 米的管道,为了尽量减少施工对城 市交通造成的影响,实际施工时,每天铺设管道的长度比原 计划增加 10%,结果提前 6 天完成. 求实际每天铺设管道的 长度与实际施工天数. 小宇同学根据题意列出方程66x0-
x(1+66100%)=6. 则方程中未知数 x 所表示的量是( D )
A.实际每天铺设管道的长度 B.实际施工的天数 C.原计划施工的天数 D.原计划每天铺设管道的长度
7.某市开发区在一项工程招标时,接到甲、乙两个工程队的投 标书,工程领导小组根据甲、乙两队的投标书测算,共有三
种施工方案:①甲队单独完成这项工程,刚好如期完工;②
则根据题意列得方程为( C )
A.1 0x80=x1-08105+6
B.1 0x80=x1-08105-6
C.x1+08105=1 0x80-6
D.x1+08105=1 0x80+6
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/8/302021/8/30Monday, August 30, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/8/302021/8/302021/8/308/30/2021 12:06:34 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/8/302021/8/302021/8/30Aug-2130-Aug-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/8/302021/8/302021/8/30Monday, August 30, 2021

分式方程及答案

分式方程及答案

分式方程及答案分式方程是指方程中含有分数的方程。

分式方程的求解是数学中重要的内容之一,它在解决实际问题中有着广泛的应用。

本文将介绍分式方程的基本概念及求解方法。

一、分式方程的基本概念分式方程是由含有分数的代数式(称为分式)所构成的等式。

它的一般形式为:$\dfrac{A(x)}{B(x)}=C(x)$,其中$A(x)$、$B(x)$和$C(x)$均是关于$x$的多项式。

二、分式方程的求解方法1. 清除分母:首先要将分式方程中的分母清除掉,从而将分式转化为线性方程。

我们可以通过两边乘以分母的最小公倍数来实现,从而消去分母。

2. 求解线性方程:清除分母后,我们得到一个线性方程。

通过求解线性方程,我们可以得到解的集合。

三、实例分析让我们通过一个实例来更好地理解分式方程的求解过程。

假设我们要解下面的分式方程:$\dfrac{x-1}{2}+\dfrac{x+3}{4}=x+1$。

首先,我们可以通过乘以最小公倍数4来清除分母。

得到等式$2(x-1)+(x+3)=4(x+1)$。

接下来,我们进行求解线性方程的步骤。

首先展开方程,得到$2x-2+x+3=4x+4$。

继续化简,我们得到$3x+1=4x+4$。

继续移项和整理,得到$x=-3$。

所以,原方程的解为$x=-3$。

四、小结分式方程是数学中重要的内容之一。

通过清除分母并求解线性方程,我们可以得到分式方程的解。

在解决实际问题时,我们常常会遇到含有分数的方程,因此熟练掌握分式方程的求解方法对于数学学习和问题解决都具有重要意义。

以上就是对分式方程及其求解方法的简要介绍。

希望通过本文的阐述,读者能够对分式方程有更深入的了解,并能够灵活运用所学知识解决实际问题。

北师大版八年级下册数学《分式方程》分式与分式方程PPT(第3课时)

北师大版八年级下册数学《分式方程》分式与分式方程PPT(第3课时)
分析:此题的主要等量关系是:
小丽家今年7月的用水量-小丽家去年12月的用水量 =5m3.
解:设该市去年居民用水的价格为x元/m3,则
今年的水价为
1
1 3
x
元/m3,根据题意,得
30 15 5.
1
1 3
x
x
解得
x 3. 2
经检验, x 3 是原方程的根.
2
3 2
1
1 3
2(元/m3
).
答:该市今年居民用水的价格为2元/m3.
解得x=10. 经检验,x=10是原方程的解,
答:原计划平均每月的绿化面积为10 km2.
随堂练习
6.一轮船往返于A、B两地之间,顺水比逆水快1小时到达.已知 A、B两地相距80千米,水流速度是2千米/小时,求轮船在静水 中的速度. 解:设船在静水中的速度为x千米/小时,根据题意得
80 80 1. x2 x2
方程两边同乘(x-2)(x+2)得 80x+160 -80x+160=x2 -4. 解得 x=±18.
x=-18(不合题意,舍去),
经检验,x=18是原方程的根. 答:船在静水中的速度为18千米/小时.
课堂小结
分式方程的 应用
常见类型
行程问题、工程问题、数字问题、 顺逆问题、利润问题等
一般解题步骤
课程讲授
1 分式方程的应用
解:设该市去年居民用水的价格为x元/m3,则今年的
水价为
1
1 3
x元/m3,根据题意,得
30 15 5.
1
1 3
x
x
解得 x 3 .
2
经检验,x 3 是原方程的根.
2
3 2

鲁教版数学八年级上册2.4《分式方程》说课稿3

鲁教版数学八年级上册2.4《分式方程》说课稿3

鲁教版数学八年级上册2.4《分式方程》说课稿3一. 教材分析鲁教版数学八年级上册2.4《分式方程》是分式方程单元的重要内容。

本节课主要让学生掌握分式方程的定义、解法以及应用。

通过本节课的学习,学生能够理解分式方程的概念,掌握解分式方程的基本方法,并能够运用分式方程解决实际问题。

二. 学情分析学生在学习本节课之前,已经学习了分式的相关知识,对分式的概念、性质和运算有一定的了解。

但是,学生对分式方程的理解和解法可能还存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和帮助。

三. 说教学目标1.知识与技能目标:学生能够理解分式方程的概念,掌握解分式方程的基本方法,并能够运用分式方程解决实际问题。

2.过程与方法目标:学生通过自主学习、合作交流的方式,培养解决问题的能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,增强对数学学科的兴趣和自信心。

四. 说教学重难点1.教学重点:分式方程的定义、解法及应用。

2.教学难点:理解分式方程的概念,掌握解分式方程的基本方法。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等。

2.教学手段:多媒体课件、黑板、粉笔等。

六. 说教学过程1.导入新课:通过一个实际问题引入分式方程的概念,激发学生的学习兴趣。

2.自主学习:学生自主探究分式方程的定义,理解分式方程的特点。

3.案例分析:教师展示一些典型的分式方程案例,引导学生掌握解分式方程的基本方法。

4.合作交流:学生分组讨论,分享解题心得,互相学习,培养合作精神。

5.巩固练习:学生独立完成一些练习题,巩固所学知识。

6.课堂小结:教师引导学生总结本节课的主要内容和收获。

7.课后作业:布置一些相关的课后作业,巩固所学知识。

七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。

主要包括以下几个部分:1.分式方程的定义2.解分式方程的基本方法3.分式方程的应用八. 说教学评价教学评价主要包括以下几个方面:1.学生对分式方程的概念的理解程度。

初中数学知识归纳分式方程的解法

初中数学知识归纳分式方程的解法

初中数学知识归纳分式方程的解法初中数学知识归纳:分式方程的解法在初中数学学习中,分式方程是一个重要的知识点。

解决分式方程的问题,需要了解并掌握一些基本的解法和技巧。

本文将对初中数学中分式方程的解法进行归纳和总结,帮助同学们更好地理解和掌握这一知识点。

一、分式方程的定义分式方程是指方程中存在有分数形式的未知数。

一般形式为:分子是未知数的有理式,分母不含未知数或者含有未知数的有理式。

例如:2/x + 3/x^2 = 1/x二、分式方程的基本解法1. 消去分母法有些分式方程的难点在于方程中含有未知数的分母,导致方程难以求解。

在这种情况下,我们可以利用消去分母的方法化简方程。

具体步骤如下:(1)找到分母的最小公倍数。

(2)将方程两边同乘以最小公倍数,以消去分母。

举例说明:对于方程 2/x + 3/(x+1) = 5/x(x+1),我们可以采用以下步骤来解方程:(1)最小公倍数为 x(x+1)。

(2)两边同乘以 x(x+1),得到 2x(x+1) + 3x = 5。

(3)化简方程 2x^2 + 2x + 3x = 5。

(4)整理方程得到 2x^2 + 5x - 5 = 0。

(5)利用因式分解或配方法求解上述方程,得到 x 的值。

2. 分离变量法对于分式方程中含有多个分式的情况,我们可以借助分离变量的方法将方程转化为更简单的形式。

具体步骤如下:(1)将方程中的分式分离,分别移至方程两边。

(2)通过移项的方式将方程变为等式。

(3)对方程两边进行合并和化简。

(4)解出未知数。

举例说明:对于方程 1/(x-3) + 1/(x+3) = 2/(x-1),我们可以采用以下步骤来解方程:(1)方程中存在三个分式,我们将分式分离得到:1/(x-3) + 1/(x+3) - 2/(x-1) = 0。

(2)通过移项得到 (x+3)(x-1)+ (x-3)(x-1) - 2(x-3)(x+3) = 0。

(3)整理方程得到 (x^2+2x-3) + (x^2-4) - 2(x^2-9) = 0。

分式方程的解法知识点总结

分式方程的解法知识点总结

分式方程的解法知识点总结分式方程是数学中常见的一类方程,它由分式或有理函数构成。

解分式方程的过程需要掌握一些常用的解法方法和技巧。

本文将会对分式方程的解法进行总结。

一、分式方程的定义分式方程是指方程中含有分式(或有理函数)的方程,通常具有以下形式:$$\frac{A(x)}{B(x)}=0$$其中,A(x)和B(x)分别是整式,且B(x)≠0。

二、分式方程解的定义分式方程的解是使得方程等式成立的x的值。

对于分式方程而言,解可分为实数解和非实数解。

三、主要解法1. 清除分母法当分式方程两边的分式的分母相同且不为0时,可通过两边同乘该分母将方程化简为一个多项式方程。

具体步骤如下:(1) 将分式方程两边的分式分母相同化为$$\frac{A(x)}{B(x)}=\frac{C(x)}{B(x)}$$(2) 化简为多项式方程$$A(x)=C(x)$$(3) 求解多项式方程,得到分式方程的解。

2. 消元法当分式方程中含有多个未知数时,可通过消元法将方程转化为只含一个未知数的分式方程,然后再通过清除分母法求解。

具体步骤如下:(1) 利用方程中的已知条件或其他方程将其中一个未知数表示出来。

(2) 将该未知数的表达式代入原方程中,得到只含一个未知数的分式方程。

(3) 利用清除分母法求解该分式方程,得到原分式方程的解。

3. 分离变量法当分式方程具有形如$$\frac{dy}{dx}=f(x)g(y)$$的形式时,可以利用分离变量法将其转化为两边各自关于自变量和因变量的单变量方程。

(1) 将分式方程进行分离变量得到$$\frac{dy}{g(y)}=f(x)dx$$(2) 对两边分别进行积分得到$$\int \frac{dy}{g(y)}=\int f(x)dx$$(3) 求解上述方程组,得到原分式方程的解。

四、注意事项1. 必要的化简:在解分式方程之前,通常需要对方程进行合并同类项、约分和因式分解等化简步骤,以方便后续的求解过程。

分式方程知识点总结♂

分式方程知识点总结♂

分式方程知识点总结♂一般来说,分式方程可以写成形如$\frac{M(x)}{N(x)} = P(x)$的形式,其中$M(x)$、$N(x)$和$P(x)$分别是$x$的多项式。

分式方程的解是满足方程的$x$的值,即找出使等式成立的$x$的值。

下面我们就来总结一下关于分式方程的一些知识点。

一、分式的定义和性质1. 分式是指形如$\frac{m}{n}$的数,其中$m$和$n$是整数,$n$不等于0。

分式可以表示数的比值,包括有理数和实数。

2. 分式的性质:分式有一些基本的性质,比如分式的加减乘除法原则,以及分式的化简和通分规则等。

这些性质是处理分式方程时必须掌握的基础知识。

二、分式方程的基本概念1. 分式方程的定义:分式方程是指方程中含有分式的方程,通常以$\frac{M(x)}{N(x)} = P(x)$的形式出现,其中$M(x)$、$N(x)$和$P(x)$分别是$x$的多项式。

2. 分式方程的解:分式方程的解是指满足方程的$x$的值,即找出使等式成立的$x$的值。

对于分式方程,解的求解方法通常需要进行化简、通分、消元等操作。

三、分式方程的解法1. 分式方程的解法一般分为以下几种方法:(1)通分法:将分式方程中的分母进行通分,使得方程中的分母相同,从而化简方程。

(2)消元法:通过消去分式方程中的分母,将分式方程化简为一般的代数方程,然后求解。

(3)换元法:通过引入新的未知数或代换,将分式方程化简为一般的代数方程,然后求解。

2. 在实际问题中,分式方程的解法可能会涉及到不同的数学方法和技巧,需要根据具体的问题进行分析和处理。

四、分式方程的应用1. 分式方程在代数学、数学分析、几何学等领域具有广泛的应用。

它常常用于描述各种物理、经济、工程等实际问题中的关系和规律。

2. 在解决实际问题时,我们可以将实际问题转化为分式方程,利用代数运算和方程的解法来求解问题,从而得到问题的答案。

五、分式方程的教学与学习1. 在教学中,分式方程应该与分数、代数方程等知识紧密结合,引导学生深入理解分式方程的概念和性质,掌握分式方程的基本解法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档