三角形的外角 (课件)
合集下载
课件《三角形的外角》优秀PPT课件 _人教版1
解:∵∠ADB=100°,∠C=80°, ∴∠DAC=∠ADB-∠C=100°-80°=20°. ∵∠BAD= ∠DAC,∴∠BAD= ×20°=10°. 在△ABD中,∠ABD=180°-∠ADB-∠BAD=180°100°-10°=70°, ∵BE平分∠ABC, ∴∠ABE= ∠ABC= ×70°=35°. ∴∠BED=∠BAD+∠ABE=10°+35°=45°.
【应用】(3)如图2,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.
∴∠DAE=90°-∠AED=90°-50°=40°. 如图,在△ABC中,∠B=24°,∠ACB=104°,AD⊥BC交BC的延长线于点D,AE平分∠BAC.
(1)求∠DAE的度数;
(2)∵AD⊥BC,∴∠D=90°,∴∠AED=90°-∠DAE, 在△ABE中,∠BAE=∠AED-∠B. 在△ACD中,∠ACB=∠CAD+∠D=∠DAE-∠CAE+90°, ∴∠CAE=∠DAE+90°-∠ACB. ∵AE平分∠BAC,∴∠BAE=∠CAE,∴90°-∠DAE∠B=∠DAE+90°-∠ACB,∴∠ACB=∠B+2∠DAE,即 ∠DAE= (∠ACB-∠B),∴∠DAE= (β-α).
(例3)如图,AB∥CD,DE交AC于点E,F为DC延长线上一点,下列结论:①∠A=∠ACF;
如图,AB∥CD,AD和BC相交于点O,∠A=25°,∠COD=80°,则∠C的度数是( )
(例2)如图,在△ABC中,∠ADB=100°,∠C=80°,∠BAD=∠DAC,BE平分∠ABC, 求∠BED的度数.
∴∠DAE= (β-α).
(1)若∠ABC=50°,∠ACB=80°,则∠A= 度,∠P=
人教版八年级数学上册第11.2.2三角形的外角 教学课件(共28张PPT)
外角
归纳:
1、每一个三角形都有_6___个外角; 2、每一个顶点相对应的外角都有_2__个。 3、这6个外角中有_3____对外角相等。
4、一个三角形的每一个外角对应一个
_相___邻__的___内__角__和两个__不___相__邻___的__内__.角
•
9、要学生做的事,教职员躬亲共做; 要学生 学的知 识,教 职员躬 亲共学 ;要学 生守的 规则, 教职员 躬亲共 守。21.8.1021.8.10T uesday, August 10, 2021
底角为_3_0__或__7_5_°_.
5.如图所示,∠A=50°,∠B=40°,∠C=30°,则 ∠BDC=_1__2_0_外围走一圈,在每一个拐弯 的地方都转了一个角度(∠ 1, ∠ 2,∠ 3), 那么回到原来位置时,一共转了几度?
∠1+∠2 +∠3 = ?
∠1= 90º ∠1= 85º ∠1= 95º
2. 如图所示, ∠A=37°, ∠CBE=155°,
求∠1, ∠2, ∠3的度数.
D
C 3
2
A 37°
155°
1B
E
∠1=25°, ∠2=62°, ∠3=118°
3.图中∠1与 ∠A、 ∠B 、∠C度 数有什么关系?
课堂巩固:
1.若一个三角形的一个外角小于与它相邻的内角,则这
•
5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
《三角形的外角》PPT课件
旋转变换
在旋转过程中,三角形的内外角大 小不变,但方向可能发生变化。
翻折变换
在翻折过程中,三角形的内外角大 小不变,但方向可能发生变化。
2024/1/24
21
案例分析:高级几何题目挑战
题目一
题目三
已知三角形ABC中,∠A = 50°,∠B = 60°,求∠C的外角大小。
已知等边三角形ABC中,D、E分别是 AB、AC上的点,且BD = CE,BE与 CD相交于点F,求∠BFC的度数。
2024/1/24
3
定义及位置关系
2024/1/24
三角形外角的定义
三角形的一边与另一边的延长线 组成的角,叫做三角形的外角。
外角的位置关系
每个三角形都有六个外角,每个 顶点处各有两个。
4
外角大小与相邻内角关系
外角大小
三角形的一个外角大于与它不相邻的 任何一个内角。
外角与相邻内角的关系
三角形的一个外角等于和它不相邻的 两个内角的和。
多方面的几何问题。
2024/1/24
10
PART 03
三角形外角在计算中应用
REPORTING
2024/1/24
11
利用外角求三角形内角和
通过外角求三角形 内角和的步骤
利用外角定理,将 外角转化为两个与 它不相邻的内角的 和。
2024/1/24
三角形外角定理: 三角形的一个外角 等于与它不相邻的 两个内角的和。
2024/1/24
19
三角形内外角性质对比
内角和性质
三角形的内角和总是等于180°。
外角和性质
三角形的一个外角等于与它不相邻的两个内角的 和。
内外角关系
三角形的一个外角大于任何一个与它不相邻的内 角。
《三角形的外角》优秀ppt课件
所以 ∠1﹥∠EDC
因为∠1是△CED的外角
所以∠EDC﹥∠B
因为∠EDC是△ABD的外角
例 1
A
B
C
1
2
3
填空:与三角形的每个内角相邻的外角分别有 个,这两个外角是 ,他们的大小 。
∠1+∠2+∠3 就是△ABC的外角和。
A
B
C
1
2
3
4
5
6
两
对顶角
相等
∠1+∠2+∠3= 度
探索与思考
∠3+ ∠BCA =180°,
∠1+∠BAC=180°,
∠2+∠ABC=180°
∠1+∠2+∠3= 度
A
B
C
1
2
3
数学说理:
三角形的外角和为360度。
360
猜一猜
三式相加可得:
∠1+ ∠2 + ∠3+ ∠BAC+∠ABC+ ∠BCA =540°
又因为∠A+ ∠B+ ∠ACB=180°
所以 ∠A+ ∠B=∠ACD
解:
A
B
C
所以∠ACD =180 °-∠ACB
所以∠A+∠B =180 °-∠ACB
(邻补角的定义)
(三角形内角和180 °)
(等量代换)
如何说明∠ACD= ∠B+ ∠ A
思考
1
(CE//BA)
A
E
擅长画平行线的小明用另一种方法解释了这个性质,看动画,你知道他是怎么解释的吗?
A
B
D
E
F
三角形的外角人教版八年级数学上册课件
重难易错
7. (例 4)如图,在△ABC 中,D 是 BC 上一点,
∠1=∠2+5°,∠3=∠4,∠BAC=85°,求
∠2 的度数.
解:设∠2=x°, 则∠1=∠2+5°=(x+5)°, ∠3=∠4=∠1+∠2=x°+(x+5)°=(2x+5)°. ∵在△ABC中,∠BAC=85°, ∴∠2+∠4=180°-∠BAC, 即x+2x+5=180-85.解得x=30,即∠2=30°.
8. 如图所示,在△ABC 中,D 是 BC 边上一点, ∠1=∠2,∠3=∠4,∠BAC=63°, 求∠DAC
的度数.
解:设∠2=∠1=x°,则∠3=∠4=2x°. ∴在△ACD中,∠DAC=180°-4x°. ∵∠BAC=63°, ∴180°-4x°+x°=63°.解得x=39. ∴∠DAC=180°-4x°=24°.
14. 如图,点 D 在 AB 上,点 E 在 AC 上,BE、 CD 相交于点 O. (1)若∠A=50°,∠BOD=70°,∠C=30°, 求∠B 的度数;
解:(1)∵∠A=50°,∠C=30°,∴∠BDO= ∠A+∠C=80°. ∵∠BOD=70°, ∴∠B=180°-∠BDO-∠BOD=30°.
解:∵∠C=30°,AE∥BC, ∴∠EAC=∠C=30°. 又∠E=45°, ∴∠AFD=∠E+∠EAC=45°+30°=75°.
12. 如图,求∠A+∠B+∠C+∠D+∠E 的度数.
解:如图,连接CD, 根据三角形的外角性质得 ∠1=∠B+∠E=∠2+∠3, 在△ACD中有, ∠A+∠2+∠ACE+∠3+∠ADB=180°, ∴∠A+∠B+∠C+∠D+∠E=180°.
《三角形的内角和外角》课件
激发探索精神
通过进一步研究,激发学 生对数学研究的兴趣和探 索精神。
THANK S感谢观看
在日常生活中的应用
建筑设计
在建筑设计中,三角形是一种非常常用的几何形状,因 为它的稳定性非常好。例如,在建造桥梁时,三角形是 一种非常常用的结构形式。
测量工具
在日常生活中,很多测量工具都是利用三角形的内角和 外角性质来设计的。例如,量角器、水平仪等都是利用 三角形的内角和外角性质来测量角度的。
05
详细描述
通过测量三角形各个边的长度和角度,计 算出外角的度数。此方法简单易行,但受 测量误差影响较大,结果不够精确。
通过几何证明计算外角
总结词
严谨、准确、理论性
详细描述
根据三角形内角和定理以及三角形外角的定 义,通过几何证明的方式得出外角的度数。 此方法结论准确,但过程较为复杂。
通过三角函数计算外角
和解决几何问题时非常有用。
在物理学中的应用
要点一
光的反射定律
在物理学中,光的反射定律可以用三角形的内角和外 角性质来解释。反射角等于入射角,也就是说反射角 等于光线与法线之间的夹角,这个夹角可以通过三角 形的内角和外角性质来计算。
要点二
力的平行四边形法则
在物理学中,力的平行四边形法则可以用三角形的内 角和外角性质来解释。合力等于分力的平行四边形对 角线的长度,这个对角线的长度可以通过三角形的内 角和外角性质来计算。
直角三角形与黄金分割
直角三角形
有一个角为90度的三角形,其中直角相对的一边称为“斜边”。
黄金分割
将一条线段分成两部分,使其中一部分与原线段的比例等于另一部分与这部分的 比例,这种分割称为黄金分割。在直角三角形中,斜边上的中线等于斜边的一半 ,且直角三角形斜边上的中线等于斜边的一半。
三角形的外角PPT授课课件
外角中,最多有1个锐角.
12.如图,在△ABC中,∠B=40°,∠C=70°,AD是 △ABC的角平分线,点E在BD上,点F在CA的延长线上, EF∥AD.求:
(1)∠BAF的度数;
解:∵∠BAF=∠B+∠C,∠B=40°,∠C=70°, ∴∠BAF=110°.
(2)∠F的度数.
解:∵∠BAF=110°,
习题链接
1 熔化;吸收
提示:点击 进入习题
7C
答案呈现
2 等于
8 熔点;吸收
3 不变;吸热;晶体
9 吸热;0
4B
10 熔化;海波
5B
11 晶体;固液共存;增加
6 0;固液共存;吸收 12 熔化;钨
基础巩固练 4.铺设柏油马路时,需要把沥青由固态熔化成液态,下
列图像能正确表示这一过程的是( B )
【点拨】∵CO是△ABC的角平分线,∴∠DCB=∠DCA. ∵BD∥AC,∠A=45°, ∴∠DBA=∠A=45°,∠D=∠ACD=∠DCB. ∵∠AOD=∠D+∠DBA, ∴∠D=∠AOD-∠DBA=80°-45°=35°. ∴∠DCB=35°. ∴∠DBC=110°. 故选B. 【答案】B
9.在三角形的每个顶点处各取一个外角,这些外角的度数 和(称为三角形的外角和)是__3_6_0_°___.
(3)根据(1)(2)的结论,请直接写出∠E与∠A之间的数量关 系. 解:∠E=12∠A.
14.探究:正五角星形的每个角均相等,小明为了计算每个角 的度数,画出了如图①所示的正五角星形,每个角均相等, 并写出了如下不完整的计算过程,请你将过程补充完整. 解:∵∠AFG=∠C+∠E,∠AGF=∠B+∠D, ∴∠AFG+∠AGF=∠C+∠E+∠B+∠D. ∵∠A+∠AFG+∠AGF=__1_8_0____°, ∴∠A+∠B+∠C+∠D+∠E=___1_8_0___°. ∴∠A=∠B=∠C=∠D=∠E=___3_6____°.
人教版数学《三角形的外角》_精美课件
【获奖课件ppt】人教版数学《三角形 的外角 》_精 美课件1 -课件 分析下 载
练习巩固
1.三角形的外角和是指三角形所有外角和 2.三角形的外角和等于它内角和的2倍。 3.三角形的一个外角等于两个内角的和。 4、三角形的一个外角等于与它不相邻的两个内
角的和。 5.三角形的一个外角大于任何一个内角。 6.三角形的一个外角大于任何一个不相邻的内角
B
3
12
°
D
C
【获奖课件ppt】人教版数学《三角形 的外角 》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版数学《三角形 的外角 》_精 美课件1 -课件 分析下 载
2、求下列各图中∠1的度数。
90 °
30°
1
60°
1
95
°
45°
120°
35°
8°51
50°
【获奖课件ppt】人教版数学《三角形 的外角 》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版数学《三角形 的外角 》_精 美课件1 -课件 分析下 载
A4 1
B 2
D
3 解:过A作AD平行于BC
C
∠3= ∠4
两直线平行, 同位角相等
∠2= ∠BAD
∠2+ ∠ 3= ∠ 4+∠BAD
所以, ∠1+ ∠2+ ∠3= ∠1+ ∠4+ ∠BAD=360°
【获奖课件ppt】人教版数学《三角形 的外角 》_精 美课件1 -课件 分析下 载
外角+相邻的内角=180 ˚(互补)
C
A
思 不相邻的内角
三角形的外角与它不相邻的内
考 角之间有什么关系呢?
探究二 将∠A、∠C剪下拼在∠CBD的位置, 动
人教版八年级数学(上)课件:三角形的外角(23张)-公开课
数学语言表示:∠CAD=∠2+∠3.
CF
3
12
DA B E
新知探究
知识点3 三角形的外角和定理
如图:在△ABC中,∠CAD,∠CBE,∠BCF分别是点A,点B,点
CF
3
C处的一个外角,请问∠CAD,∠CBE,∠BCF之间的大小关系?
12
解:∵∠CAD,∠CBE,∠BCF是△ABC的外角,
DA B E
CF
3
C处的一个外角,请问∠CAD,∠CBE,∠BCF之间的大小关系?
12
解:∵∠CAD,∠CBE,∠BCF是△ABC的外角,
DA B E
∴∠CAD+∠1=180°,则∠CAD=180°-∠1,
∠CBE+∠2=180°,则∠CBE=180°-∠2,
∠BCF+∠3=180°,则∠BCF=180°-∠3.
拓展提升
2
如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E, 求证∠BAC=∠B+2∠E.
A
分析:利用角平分线的性质可以得出2倍的数量关系的角.
B
利用三角形外角性质,将外角转化为两个不相邻内角的和.
将2倍数量关系的角和外角进行等量转化,即可得出题目所
要证明的结果.
E
C
D
【名师示范课】人教版八年级数学上 册课件 :11.2. 2 三角形的外角(共23张PPT)-公开课课 件(推 荐)
B (1) C
2A
30〫 140〫
B
C
(2)
A
1
2 40〫 ┌
B
C
(3)
解:(1)∠1=180°-80°-60°=40°,∠2=80°+60°=140°. (2)∠1=180°-30°-40°=110°,∠2=30°+40°=70°. (3)∠1=90°-40°=50°,∠2=50°+90°=140°.
三角形的外角PPT课件
通过三角形的内角和来证明
利用三角形的内角和为180度,将三角形的三个内角相加, 再减去一个内角,即可得到外角等于两不相邻内角之和。
9
典型例题解析
例题1
已知三角形ABC中,角A=50度, 角B=60度,求角C的外角度数。
2024/1 得角C=180度-50度-60度=70度 。再根据外角定理,角C的外角 =180度-70度=110度。
三角形的外角PPT课 件
2024/1/28
1
目录
CONTENTS
• 三角形外角基本概念 • 三角形外角定理及其证明 • 三角形外角在几何问题中应用 • 三角形外角在现实生活中的应用 • 拓展:三角形内外角综合问题探
讨
2024/1/28
2
01
三角形外角基本概
念
2024/1/28
3
定义与性质
2024/1/28
2024/1/28
6
02
三角形外角定理及
其证明
2024/1/28
7
外角定理内容
2024/1/28
01
三角形的一个外角等于与它不相 邻的两个内角的和。
02
三角形的一个外角大于任何一个 与它不相邻的内角。
8
证明方法
2024/1/28
通过平行线的性质来证明
过三角形的一个顶点作一条与三角形的一边平行的直线,利 用平行线的性质来证明外角等于两不相邻内角之和。
在一些几何证明题中,可以通过利用平行线与三角形外角 关系来证明线段相等或平行。
2024/1/28
13
多边形外角和计算
多边形的外角和为360°
多边形可以被划分成若干个三角形,每个三角形的外角和为180°,因此多边形的外角 和为360°。
利用三角形的内角和为180度,将三角形的三个内角相加, 再减去一个内角,即可得到外角等于两不相邻内角之和。
9
典型例题解析
例题1
已知三角形ABC中,角A=50度, 角B=60度,求角C的外角度数。
2024/1 得角C=180度-50度-60度=70度 。再根据外角定理,角C的外角 =180度-70度=110度。
三角形的外角PPT课 件
2024/1/28
1
目录
CONTENTS
• 三角形外角基本概念 • 三角形外角定理及其证明 • 三角形外角在几何问题中应用 • 三角形外角在现实生活中的应用 • 拓展:三角形内外角综合问题探
讨
2024/1/28
2
01
三角形外角基本概
念
2024/1/28
3
定义与性质
2024/1/28
2024/1/28
6
02
三角形外角定理及
其证明
2024/1/28
7
外角定理内容
2024/1/28
01
三角形的一个外角等于与它不相 邻的两个内角的和。
02
三角形的一个外角大于任何一个 与它不相邻的内角。
8
证明方法
2024/1/28
通过平行线的性质来证明
过三角形的一个顶点作一条与三角形的一边平行的直线,利 用平行线的性质来证明外角等于两不相邻内角之和。
在一些几何证明题中,可以通过利用平行线与三角形外角 关系来证明线段相等或平行。
2024/1/28
13
多边形外角和计算
多边形的外角和为360°
多边形可以被划分成若干个三角形,每个三角形的外角和为180°,因此多边形的外角 和为360°。
人教版八年级上册数学第十一章11.2.2三角形的外角课件 (共24张PPT)
第十一章
11.2 与三角形有关的角
11.2.2 三角形的外角
1.掌握三角形外角的定义和三角形
外角定理; 2.运用三角形外角定理解决问题。
三角形的外角:三角形的一边与另一边的反 向延长线组成的角,叫做三角形的外角。 A
B
C
D
三角形的一个顶点位置有两个外角,这两个 外角是对顶角。
C
5 3 6 1 2 9 4
= ∠EFG+∠EGF+∠E =180°.
B
F
E
C
D
问题探究
已知:如图,∠BAE、∠CBF、∠ACD是△ABC
的三个外角.求证:∠BAE+∠CBF+∠ACD=360°. 证明:∵∠BAE=∠2+∠3, E A
1
∠CBF=∠1+∠3,
∠ACD=∠2+∠1, ∴∠BAE+∠CBF+∠ACD =2(∠1+∠2+∠3) , F B
E
A
> ∠ACB. > ∠BAC;∠FBC____ (3)∠FBC____
讨论归纳
三角形外角的性质:
三角形的一个外角大于与它不相
邻的任何一个内角。
1.已知,∠BAC=55°,∠B=60 °.
试求∠ACB、 ∠ACD、 ∠CAE. A
55°
E
解:在△ABC中,
∠BAC+∠B+∠ACB=180 °, ∴∠ACB=180 °-∠B-∠BAC ∵∠BAC=55°,∠B=60 °. ∴∠ACB=65°.
数. 解:根据三角形外角的性质可得: ∠ 1=∠A+ ∠B , ∠2=∠C+ ∠D , ∠3= ∠E+ ∠F, 1 C 3 F B A
11.2 与三角形有关的角
11.2.2 三角形的外角
1.掌握三角形外角的定义和三角形
外角定理; 2.运用三角形外角定理解决问题。
三角形的外角:三角形的一边与另一边的反 向延长线组成的角,叫做三角形的外角。 A
B
C
D
三角形的一个顶点位置有两个外角,这两个 外角是对顶角。
C
5 3 6 1 2 9 4
= ∠EFG+∠EGF+∠E =180°.
B
F
E
C
D
问题探究
已知:如图,∠BAE、∠CBF、∠ACD是△ABC
的三个外角.求证:∠BAE+∠CBF+∠ACD=360°. 证明:∵∠BAE=∠2+∠3, E A
1
∠CBF=∠1+∠3,
∠ACD=∠2+∠1, ∴∠BAE+∠CBF+∠ACD =2(∠1+∠2+∠3) , F B
E
A
> ∠ACB. > ∠BAC;∠FBC____ (3)∠FBC____
讨论归纳
三角形外角的性质:
三角形的一个外角大于与它不相
邻的任何一个内角。
1.已知,∠BAC=55°,∠B=60 °.
试求∠ACB、 ∠ACD、 ∠CAE. A
55°
E
解:在△ABC中,
∠BAC+∠B+∠ACB=180 °, ∴∠ACB=180 °-∠B-∠BAC ∵∠BAC=55°,∠B=60 °. ∴∠ACB=65°.
数. 解:根据三角形外角的性质可得: ∠ 1=∠A+ ∠B , ∠2=∠C+ ∠D , ∠3= ∠E+ ∠F, 1 C 3 F B A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 B2
A 14
3 6C
△ABC的6个外角有什么关系?(从位置关系和数量关系)
∠1和∠4, 是对顶角,相等; ∠2和∠5, 是对顶角,相等; ∠3和∠6, 是对顶角,相等.
二 三角形的外角的性质
探究交流
填一填:
(1)如图,在△ABC中, ∠A=70°, ∠B=60°,则 ∠ACD= 130 °.
(2)任意一个三角形的外角与它不相邻的两个内角是否都
答:它的各个内角分别为 50°,50°,80或°80°,80°,20°.
C A 100°
B
C
3.(1)如图,∠BDC是__△__A_D_C__的外角,
A
也是 △ADE 的外角.
D
E
(2)请指出∠BDC, ∠DEA, ∠ECA三者 B
C
的大小关系.
∠BDC> ∠DEA> ∠ECA (3)若∠B=45 °, ∠BAE=36 °,
B2
∠BAE+ ∠CBF+ ∠ACD
F
3
C
D
+(∠1+ ∠2+ ∠3)=540 °,
所以∠BAE+ ∠CBF+ ∠ACD=540 °-180°=360°.
知识要点
三角形的外角和等于360°.
∠BAE+ ∠CBF+ ∠ACD
E
=2(∠1+ ∠2+ ∠3)=360 °.
A
1
B2 F
3
C
D
典例精析
例 (一题多解)如图,计算∠BDC.
B
A
1 N3
C
P
F
2M
D
E
课堂小结
定义
角一边必须是三角形的一边,另一边 必须是三角形另一边的延长线
三角形 的外角
性质
三角形的一个外角等于与它不相邻的 两个内角的和
三角形的 外角和
三角形的外角和等于360 °
课后作业
1.同步练习册有关部分 2.预习习题。
CD
练一练:说出下列图形中∠1和∠2的度数:
A 80 °
60 °
12
B
CD
(1)
∠1=40 °, ∠2=140 °
50 ° A
B
1
2 32
°
C
(2)
∠1=18 °, ∠2=130 °
三 三角形的外角和
如图, ∠BAE, ∠CBF, ∠ACD是△ABC的三个外角,它
们的和是多少? 解:由三角形的一个外角等于与它不 相邻的两个内角的和,得 ∠BAE= ∠2+ ∠3, ∠CBF= ∠1+ ∠3, ∠ACD= ∠1+ ∠2.
解:因为∠ADC是△ABD的外角.
A
所以∠ADC=∠B+∠BAD=80°.
70°
又因为∠B=∠BAD,
所以B 80 1 40, 在△ABC中: 2
40°
80°
B
D
C
∠B+∠BAC+∠C=180°,
∠C=180º-40º-70º=70°.
能力提升: 如图,试求出∠A+∠B+∠C+∠D+∠E+∠F=__36_0°_.
八年级数学上教学课件
第十一章 三角形
11.2.2 三角形的外角
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.理解并掌握三角形的外角的概念.
情境引入
2.能够在能够复杂图形中找出外角.(难点)
3.掌握三角形的一个外角等于与它不相邻的两个内角的和.(重点)
导入新课
复习引入
1.在△ABC中,∠A=80°, ∠B=52°,则∠C= 48 °. 2.在△ABC中,已知∠A: ∠B:∠C= 2:3:5,则. △ABC是 直角 三角形 3.什么是三角形的内角?其和等于多少? 三角形相邻两边组成的角叫做三角形的内角, 它们的和是180 °.
∠BCE=20 °,试求∠AEC的度数.
解:根据三角形外角的性质有 ∠ADC= ∠B+ ∠BCE, ∠AEC= ∠ADC+ ∠BAE. 所以∠AEC= ∠B+BCE+ ∠BAE=45 °+20 °+36 °=101 °.
4 .如图,D是△ABC的BC边上一点,∠B=∠BAD, ∠ADC=80°, ∠BAC=70°,求:(1)∠B 的度数; (2)∠C的度数.
有(1)中这种关系呢?
A
∠ACD= ∠A+ ∠B.
B
CD
知识要点
A
三角形内角和定理的推论
三角形的外角等于与它不相邻的
两个内角的和. 应用格式:
B
∵ ∠ACD是△ABC的一个外角
∴ ∠ACD= ∠A+ ∠B.
注意 三角形外角与内角的关系: (1)位置关系:相邻和不相邻. (2)数量关系:外角与相邻内角互补, 外角大于不相邻的任何一个内角.
30 ° C
程同解法二)
重要发现: ∠BDC= ∠1+ ∠2+ ∠3.
2 B
A 1
D 3 C
当堂练习
1.判断下列命题的对错.
(1)三角形的外角和是指三角形的所有外角的和. ( )
(2)三角形的外角和等于它的内角和的2倍.
()
(3)三角形的一个外角等于两个内角的和.
()
(4)三角形的一个外角等于与它不相邻的两个内角的和.( )
30 ° C
=51° +20°+30°=101°.
(解法二)延长BD交AC于点E. 在△ABE中,∠1=∠ABE+∠BAE, 在△ECD中,∠BDC=∠1+∠ECD.
A 51 °
E
所以∠BDC =∠BAC+∠ABD+∠ACD =51° +20°+30°=101°.
20 ° D B
(解法三)连接延长CD交AB于点F.(解题过
A 51 °
20 ° D
30 °
B CC
E
思路点拨:添加适当的辅助线将四边形问题转化为三角形问题.
解:(解法一)连接AD并延长于点E. 在△ABD中,∠1+∠ABD=∠3,
A 51 °
在△ACD中,∠2+∠ACD=∠4. 因为∠BDC=∠3+∠4,
20 ° D
∠BAC=∠1+∠2,
B
E
所以∠BDC=∠BAC+∠ABD+∠ACD
你还有其他 解法吗?
E A
1
又知∠1+ ∠2+ ∠3=180 °,
B2
所以∠BAE+ ∠CBF+ ∠ACD
=2(∠1+ ∠2+ ∠3)=360 °.
F
3
C
D
方法二:如图,∠BAE+∠1=180 ° ① ,
E
∠CBF +∠2=180 ° ②,
A
∠ACD +∠3=180 ° ∠3=180 °, ①+ ②+ ③得
(5)三角形的一个外角大于任何一个内角.
()
(6)三角形的一个内角小于任何一个与它不相邻的外角.( )
2.下面的推理题把小明难住了.他希望同学们能尽快的帮他解
决下面的问题. 根据下列线索推理出这个三角形有关的角.
A 100°
线索1:在△ABC中,∠B=∠C ;
线索2:它的一个外角是100º; B
问题:它的各个内角各是多少度?
讲授新课
一 三角形的外角的概念
定义
A
如图,把△ABC的一边BC延长,
得到∠ACD,像这样,三角形的一
边与另一边的延长线组成的角,叫 B
CD
做三角形的外角.
∠ACD是△ABC的一个外角
画一画:画出△ABC的所有外角,请 指出来有哪几个.
有6个,它们是∠1, ∠2, ∠3, ∠4, ∠5, ∠6.