结构力学§5-5 图乘法
合集下载
结构力学第05章 虚功原理与结构位移计算-3
6、把复杂图形分为简单图形 、 使其易于计算面积和判断形心位置) (使其易于计算面积和判断形心位置)
•
取作面积的图形有时是不规则图形, 取作面积的图形有时是不规则图形,面积 的大小或形心的位置不好确定。 的大小或形心的位置不好确定。可考虑把图形 分解为简单图形(规则图形) 分解为简单图形(规则图形)分别图乘后再叠 加。
FP
⊿CV
l/2 l/2 AP FP l
3、正确的作法 、
AP1=1/2×FP l×l/2=FP l2/4 AP2=1/2×FP l/2×l/2=FP l2/8 AP3=1/2×FP l/2×l/2=FP l2/8 y1=l/3 y2=l/6 FP y3 = 0
⊿CV=∑AP·yC/EI
=(FP l2/4×l/3+ FP l2/8×l/6 × +FP l2/8 ×0) / EI =5FP l3/48EI (↓)
32
32
• θC=2[(1/2·80·5)·(2/3·5/8)+(1/2·80·5)·(2/3·5/8+1/3·1) • -(2/3·32·5)·(1/2·5/8+1/2·1)]/EI • kN·m m kN/m2 • =0.005867 (弧度) • 方向与虚拟力方向一致。
思考题:判断下列图乘是否正确?
由此可见,当满足上述三个条件时, 由此可见,当满足上述三个条件时,积分式 的值⊿就等于M 图的面积A乘其形心所对应 乘其形心所对应M 的值⊿就等于 P图的面积 乘其形心所对应 图上的竖标y 再除以EI。 图上的竖标 C,再除以 。 正负号规定: 正负号规定: A与yC在基线的同一侧时为正,反之为负。 与 在基线的同一侧时为正,反之为负。
第五章
虚功原理与结构位移 计算
谈结构力学图乘法应用中复杂图形的图乘技巧
基金项目:辽宁工程技术大学应用创新型人才培养立项课题资助项目(YB083033)。 作者简介:孙庆巍,男,辽宁阜新人,硕士,j工宁工程技术大学建筑与工程学院讲师。
2009年第ll卷
孙庆巍
谈结构力学图乘法应用中复杂图形的图乘技巧
-27・
狰衄+狰—一弘
E岛一
图l圈乘法示意图
解法一:将原结构中的荷载分解,如图4。
算的求解过程,大大减少求解的计算量。
譬睑
【1)
相应地嗨图也分解为两个,见图5。
+
(b)
3复杂问题的图乘技巧
从图乘法公式可知,要想顺利采用图乘法求出 位移,必须要知道Mp的面积和形心位置,对于简单
图S
这时原来的Mi图与M,图进行图乘的过程转
变为丽。图分别与(a)、(b)的%图进行图乘再将结
果相加的过程。此时(a)弯矩图是标准的二次抛物 线,其面积公式与形心位置都已知,(b)弯矩图为三 角形,其面积公式与形心位置自然也已知,所以,将
求出原题中的位移。 总之,遇到复杂图形进行图乘时,均可参考上面 的思路,想办法把原来的复杂图形分解为可确定面
弘2
2
积与形心位置的标准图形,或将原结构的复杂荷载 分解为单一荷载分别与单位力作用下的M图进行
+
图乘再求和,这样,就可解决复杂图形的图乘问题。
图9
2∞9年第ll卷
孙庆巍
谈结构力学图乘法应用中复杂图形的图乘技巧
解法一:根据分段叠加法对AC段的M,图分
解,分解为直线(两端截面弯矩纵坐标的连线)与曲 线(AC段的简支梁形式在均布荷载作用下的弯矩 图)相叠加,见图9。
声 譬p 卜j譬仁爿 卜j)T红一) 一)孚p)
荷载形式 弯矩图 圈11
5结构力学图乘法.
(1)常见图形面积和形心:
矩 形
a
l
A al
xc 1 l 2 xc 1 3l
xc 1 4l
3 xc 8 l
三角形
a
l
A 1 2 al A 1 3 al A 2 3 al
l
a
l
标准二次 抛物线
a
l
a
A 2 3 al
xc 1 l 2
(2) 梯形相乘
A1
A2
M M
i
K
dx A1 y1 A2 y 2
1 M M P dx EI
(M x tanα)
yc
xc x
M
x
图乘法是Vereshagin于1925年 提出的,他当时为莫斯科铁路 运输学院的学生。
4、 注意事项
KP AP yc EI
还记得 吗?
(1)必须符合图乘法的适用条件; (2) 必须取自直线图形; (3)同侧弯矩图相乘为正,反之为负; (4)拱、曲杆结构和连续变截面的结构只能通过积 分的方式求解; (5)应用图乘法首先熟练掌握常用图形面积及形心 位置。
如果将AC段的 M P图如下图那样分块,就比 16 较麻烦。 4kN 4 2kN/m 8 M P图 4 A C C A 2m 4kN.m 例2 求 B, EI等于常数。 12kN.m 4kN C 4m
2kN/m
4kN.m 4m B 7kN
A
5kN
解: 作 M 图 M P 图,如下页图所示。
12
c
y2
d
M图
(3)一般形式的二次抛物线图形相乘 (4)曲线图形与折线图形相乘
M M
i
K
矩 形
a
l
A al
xc 1 l 2 xc 1 3l
xc 1 4l
3 xc 8 l
三角形
a
l
A 1 2 al A 1 3 al A 2 3 al
l
a
l
标准二次 抛物线
a
l
a
A 2 3 al
xc 1 l 2
(2) 梯形相乘
A1
A2
M M
i
K
dx A1 y1 A2 y 2
1 M M P dx EI
(M x tanα)
yc
xc x
M
x
图乘法是Vereshagin于1925年 提出的,他当时为莫斯科铁路 运输学院的学生。
4、 注意事项
KP AP yc EI
还记得 吗?
(1)必须符合图乘法的适用条件; (2) 必须取自直线图形; (3)同侧弯矩图相乘为正,反之为负; (4)拱、曲杆结构和连续变截面的结构只能通过积 分的方式求解; (5)应用图乘法首先熟练掌握常用图形面积及形心 位置。
如果将AC段的 M P图如下图那样分块,就比 16 较麻烦。 4kN 4 2kN/m 8 M P图 4 A C C A 2m 4kN.m 例2 求 B, EI等于常数。 12kN.m 4kN C 4m
2kN/m
4kN.m 4m B 7kN
A
5kN
解: 作 M 图 M P 图,如下页图所示。
12
c
y2
d
M图
(3)一般形式的二次抛物线图形相乘 (4)曲线图形与折线图形相乘
M M
i
K
结构力学§5-5_图乘法
L M P M ds L FNP F N ds FNP F N L
o EI
o EA
EA1
(曲杆)
(曲杆)
(拉杆)
§5-5 图乘法
1.图乘原理公式
——将积分转变为图形相乘
y
dω
形心
积分式: L MP M ds
o EI
等直杆EI常数: 1
EI
L
o M P M ds
A
C dx
MP图 B
EI
L o
M
P
M
ds
1 EI
yC
乘积“+、-”规定—— 与 yC 同侧为+,不同侧为-
其中:
— M P 图的面积 (教材用A表示)
yC — M P 图形心位置所对应的 M 图中的竖标
2.图乘注意事项
1)杆件是直杆,EI必须是常数;
2) yC必须取自直线图 ( M P 均M为直线时可互换);
3)M 图为折线或 M P 在基线两侧时都需分段图乘;
MM P EI
dx
1 EI
Ay0
1 2 ql 2 1
ql 3
EI
3
8
l
2
24 EI
Cy
1 EI
(
2 l 1 ql 2 38
)
l 4
B
Cy
1 EI
(
2 3
l 2
1 8
ql 2 )
(85
4l )
2
5 ql4 () 384 EI
分段图乘
[例2] 计算悬臂梁在集中荷载作用下的C点的竖向位移 C 。
o EI
o GA
o EA
2. 各种静定结构位移的计算公式 (1)梁、刚架 —只考虑弯曲变形
结构力学I-第五章 虚功原理与结构位移计算(荷载位移,图乘法)
局部变形时静定结构的位移计算
⑴ 在要求的位移处,施加相应的单位荷载; ⑵ 利用力平衡条件,求出局部变形处对应的 内力M,FN,FQ; ⑶ 由虚力方程解出拟求位移: dΔ = ( Mκ + FNε + FQγ0 ) ds
Page 7
Δ A 1
B M
θ
14:32
LOGO
结构体位移计算的单位荷载法
真实荷载 弯曲 剪切
A
x
虚设荷载
B
b 截面参数 1 bh3 I=— 12 A =bh,k = 1.2
ql 4 1 2 qx dx 1.5 0 x Ebh3 2
l
变形类型
M P 0.5qx2
M x
FQP qx
F Q 1
MM P 1 ⑴ 弯曲变形引起的位移 M ds EI EI
Page 12
14:32
LOGO
荷载作用下的位移计算及举例
k F Q FQP F N FNP MM P ds ds ds EI EA GA
弯曲变形 拉伸变形 剪切变形
各类结构的位移公式
各类结构中三种变形的影响所占比重各不相同,故可简化; 例5-3 试求图示悬臂梁在A端的竖直 位移 Δ ,并比较弯曲变形和剪切变 形对位移的影响。设梁的截面为矩 形,泊松比1/3。 解:应用单位荷载法 A 1 q A x B
单位荷载法
单位荷载法求刚体体系位移
虚力原理
⑴ 虚力方程,实质为几何方程;
⑵ 虚力与实际位移状态无关,故可设 单位广义力 P = 1;单位荷载法 ⑶ 关键是找出找出虚力状态的静力平
衡关系。
Page 6
14:32
结构力学图乘法详述
6
Pl 2 16 EI
积分常可用图形相乘来代替
§6-5 图乘法
直杆 EI C
位移计算举例
MiMk MiMk 1 EI ds EI dx EI M i M k dx M i是直线 B B 1 1 tg xM k dx M k xtgdx A EI EI A tg B 1 1 y w ×w x0 y tg xd w 0 EI EI EI A
适用范围与特点: 1) 适于小变形,可用叠加原理。 2) 形式上是虚功方程,实质是几何方程。 关于公式普遍性的讨论: (1)变形类型:轴向变形、剪切变形、弯曲变形。 (2)变形原因:荷载与非荷载。 (3)结构类型:各种杆件结构。 (4)材料种类:各种变形固体材料。
2
三、位移计算的一般步骤: K
t1 t2
MP EI
NP EA
QP k GA
10 9
k--为截面形状系数 (3) 荷载作用下的位移计算公式
1.2
A
A1
MM P NN P kQ QP ds ds ds EI EA GA
4
二、各类结构的位移计算公式
(1)梁与刚架
MM P ds EI
1 1 ql 2 3 ql 4 B l l EI 3 2 4 8EI
⑥当图乘法的适用条件不满足时的处理方法: a)曲杆或 EI=EI(x)时,只能用积 分法求位移; 9 b)当 EI 分段为常数或 M、MP 均非直线时,应分段图乘再叠加。
例:求图示梁中点的挠度。
1 1 3a 3a Pa EI 2 4
求B点的竖向位移。
ql2/2
4
1 1 ql 3l ql B l EI 3 2 4 8 EI 1 1 3ql 2 l B y 0 L 2 EI 3 8 2
Pl 2 16 EI
积分常可用图形相乘来代替
§6-5 图乘法
直杆 EI C
位移计算举例
MiMk MiMk 1 EI ds EI dx EI M i M k dx M i是直线 B B 1 1 tg xM k dx M k xtgdx A EI EI A tg B 1 1 y w ×w x0 y tg xd w 0 EI EI EI A
适用范围与特点: 1) 适于小变形,可用叠加原理。 2) 形式上是虚功方程,实质是几何方程。 关于公式普遍性的讨论: (1)变形类型:轴向变形、剪切变形、弯曲变形。 (2)变形原因:荷载与非荷载。 (3)结构类型:各种杆件结构。 (4)材料种类:各种变形固体材料。
2
三、位移计算的一般步骤: K
t1 t2
MP EI
NP EA
QP k GA
10 9
k--为截面形状系数 (3) 荷载作用下的位移计算公式
1.2
A
A1
MM P NN P kQ QP ds ds ds EI EA GA
4
二、各类结构的位移计算公式
(1)梁与刚架
MM P ds EI
1 1 ql 2 3 ql 4 B l l EI 3 2 4 8EI
⑥当图乘法的适用条件不满足时的处理方法: a)曲杆或 EI=EI(x)时,只能用积 分法求位移; 9 b)当 EI 分段为常数或 M、MP 均非直线时,应分段图乘再叠加。
例:求图示梁中点的挠度。
1 1 3a 3a Pa EI 2 4
求B点的竖向位移。
ql2/2
4
1 1 ql 3l ql B l EI 3 2 4 8 EI 1 1 3ql 2 l B y 0 L 2 EI 3 8 2
图乘法
分析: 分析: 在直杆结构中总是直线。 M在直杆结构中总是直线。 满足上式推导中f(x)的条件 满足上式推导中f(x)的条件 f(x)
y0 o A
MM P 1 ∆ = ∑∫ ds = ωy 0 EI EI
武汉理工大学土木工程与建筑学院 结构力学教研室 李保德副教授
MM P 1 ds = ∑ ωy 0 ∆ = ∑∫ EI EI
1 1 2 ω 3 = × qL 2 8 3 y3 = L 4
C
B L/2
1 L 1 2 ω1 = × × qL 3 2 8
1 L 1 2 ω 2 = × × y2 = L 6
∆B =
1 (ω1 y1 + ω 2 y 2 + ω 3 y3 ) EI
41qL4 = 384 EI
武汉理工大学土木工程与建筑学院
结构力学教研室
李保德副教授
3. 常见图形的面积和形心
武汉理工大学土木工程与建筑学院
结构力学教研室
李保德副教授
注意: 注意:
标准抛物线
武汉理工大学土木工程与建筑学院
结构力学教研室
李保德副教授
4. 图乘的一般方法
两图均是直线图形,y0可取其中的任一图形
ω
y0
y0
ω
武汉理工大学土木工程与建筑学院
武汉理工大学土木工程与建筑学院
C
B L/2
∆B =
1 ωM P y EI
1 1 2 PL3 = × L × PL × L = EI 2 3 EI
B
MP
或
1 ∆B = ωM y EI
1 1 2 PL3 = × L × L × PL = EI 2 3 EI
M
结构力学教研室
李保德副教授
y0 o A
MM P 1 ∆ = ∑∫ ds = ωy 0 EI EI
武汉理工大学土木工程与建筑学院 结构力学教研室 李保德副教授
MM P 1 ds = ∑ ωy 0 ∆ = ∑∫ EI EI
1 1 2 ω 3 = × qL 2 8 3 y3 = L 4
C
B L/2
1 L 1 2 ω1 = × × qL 3 2 8
1 L 1 2 ω 2 = × × y2 = L 6
∆B =
1 (ω1 y1 + ω 2 y 2 + ω 3 y3 ) EI
41qL4 = 384 EI
武汉理工大学土木工程与建筑学院
结构力学教研室
李保德副教授
3. 常见图形的面积和形心
武汉理工大学土木工程与建筑学院
结构力学教研室
李保德副教授
注意: 注意:
标准抛物线
武汉理工大学土木工程与建筑学院
结构力学教研室
李保德副教授
4. 图乘的一般方法
两图均是直线图形,y0可取其中的任一图形
ω
y0
y0
ω
武汉理工大学土木工程与建筑学院
武汉理工大学土木工程与建筑学院
C
B L/2
∆B =
1 ωM P y EI
1 1 2 PL3 = × L × PL × L = EI 2 3 EI
B
MP
或
1 ∆B = ωM y EI
1 1 2 PL3 = × L × L × PL = EI 2 3 EI
M
结构力学教研室
李保德副教授
结构力学教学 虚功原理与结构位移计算
解:虚设力系如图(b)
M 1 (0 x l)
实际荷载作用下的弯矩图虚设力系如图(c)
MP
FPb l
x
(0 x a)
MP
FP a(1
x) l
(a x l)
MM P ds FPab(
EI
2EI
)
§5-5 图乘法
图乘法应用条件:杆件为直杆,有一个弯矩图是直线图, 截面抗弯刚度EI为一常数。
§5-5 图乘法
例5-7 试用图乘法计算图(a)所示简支梁B端转角△B。
解:荷载作用下的MP图如图(a) 虚设单位力偶作用下的 M 如图(b)
虚功方程为 1 M 0
解得
M
§5-2 结构位移计算的一般公式
例5-2 在图中,截面B有相对剪切位移η,试求A点与杆轴成α
角的斜向位移分量△。
解:图(a)的实际位移状态可改用 图(b)来表示。
虚设力系如图(c) FQ sin
虚功方程为 1 FQ 0
解得 FQ
§5-2 结构位移计算的一般公式
AB的圆心角为α,半径为R。试求B点的竖向位移△。
解:虚设荷载如图(b)
图(a)中
MP
1 2
qx2
FNP qx sin
FQP qx cos
图(b)中
M x
FN sin FQ cos
M
AMPM B EI
ds qR4 ( 2 cos 1 cos3 )
2EI 3
3
N
A FNPFN ds qR2 ( 2 cos 1 cos3 )
M
MM P ds ql4
EI
8EI
Q k
FQ FQP ds 0.6 ql 2
《结构力学图乘法》PPT课件
EI
E1I1 E2 I 2 E3 I3
Ei Ii
对于等直杆有
Δ
1 EI
l M ( x)M ( x)dx
M(x)
MC
EI
ω
C
即 积分可用M(x)图的面积 ω 和与M(x)
xc
x
图形心C对应的 Mc 的乘积来代替
M(x)
当M图为正弯矩时,
Δ MC
EI
ω应代以正号. 当M图为负弯矩时, ω应代以负号.
(3)图 M 图 M P中至少有一个是直线
图形。
3、图乘法公式
KP
Ap yc EI
M M P ds EI
←杆轴为直线
M M P dx EI
←杆段EI为常数
1 EI
M M Pdx
(M x tan α)
1
EI x tan α M Pdx
tan α EI
注意
有时M(x)图为连续光滑曲线,而 M(x) 为折线,则应以 折线的转折点为界,把积分分成几段,逐段使用图乘法, 然后求其和.
例1 求CV , EI等于常数。
解:
2kN/m
作 M 图 MP 图,如右图所示。 A 2m C 2m B
分段:M ,M P 分为AC、CB两段。16
分块: M P图的AC段分为两块。
还记得 吗?
(3)同侧弯矩图相乘为正,反之为负;
(4)拱、曲杆结构和连续变截面的结构只能通过积 分的方式求解;
(5)应用图乘法首先熟练掌握常用图形面积及形心 位置。
几中常见图形的面积和形心的计算公式
a
b
C
lb
la
3
图乘法
2、求ΔCV ① MP图如图(b)所示。 ② 单位弯矩图M如图(d)所示。 ③ 计算A、yC。 2×l/2=ql3/24 A=2/3×1/8ql yC=5/8×l/4=5l/32 ④ 计算ΔCV ΔCV=2(1/EI*A*yC)= 5ql4/384EI (↓)
【课后作业】习题8-6(用图乘法)
【预习】:静定结构的位计算习题课
三、几个规则图形的面积和形心位置
顶点:指曲线上切线平行于底边的点 标准抛物线:指顶点在中点或端点的抛物线
四、图乘法技巧
1、图形分解图乘 当图形的面积和形心不 便确定时,可以将其分 解成几个简单的图形, 分别与另一图形相应的 纵坐标相乘。
(1)梯-梯同侧组合(三角形为特殊情况)
(2)、梯-梯同侧组合:
剪力与轴力项能用图乘法?
3、图乘法求位移的一般表达式
注意:
y [1]. c
应取自直线图中。 [2].若 A 与 yc 在杆件的同侧, 取正值;反之,取负值(不是MP与M 图位于杆件同侧或异侧)。 [3]. 如图形较复杂,可分解为几个简 单图形。
二、图乘法步骤 (1) 画出结构在实际荷载作用下的弯 矩图(荷载弯矩图)MP; (2) 根据所求位移选定相应的虚拟力 状态,画出单位弯矩图M(注:M图不标 单位); (3) 分段计算一个弯矩图形的面积A 及其形心所对应的另一个弯矩图形的竖 标yC; (4) 将A、yC代入图乘法公式计算所 求位移。
解:1、求φA ① 实际荷载作用 下的弯矩图MP如图(b) 所示。 ② 在A端加单位力 偶m=1,其单位弯矩图M 如图(c)所示。
③ MP图面积及其形心 对应M图竖标分别为:
A=2/3*l*1/8*ql2=ql3/12 yC=1/2 ④ 计算φA φA=1/EI*A*yC =1/EI*ql3/12*1/2=ql3/24 EI
朱明zhubob结构力学5-5图乘法
直角三角形
三角形
二次抛物线
A1
2 3
hl
A2
1 3
hl
二次抛物线
A1
3 4
hl
A2
1 4
hl
三次抛物线
⒊ 应用图乘法时的几个具体问题 ⑴ 如果两个图形都是直线, 则标距y0可取自其中任一个图形。 ⑵ 如果一个图形是曲线, 另一个图形是由几段直线组成的折
线, 则应分段考虑。
Mi Mkdx A1 y1 A2 y2 A3 y3
1
y0
A
1 ql 2 8
⑶ 求位移(用图乘法)。
MMP dx
EI
1 EI
Ay0
1 EI
2 3
ql 2 8
l
1 2
ql 3 24EI
例2 求中点C的挠度ΔC
FP l
y0
1
解:⑴ 虚设单位荷载。 ⑶ 求位移(用图乘法)。
A 1 l l l2 2 22 8
⑵ 用图乘法求位移。
方法一:
ql 2 MP图
ql 2 8
8
ql 2 4
1 M图
ql 2 8
例5-4 求图示悬臂梁C点的竖向位移, 设EI=常数。
ql 2
2
ql 2
8
A3
ql 2 4
A2
ql 2 8
ql 2
A1
8
l 2
y3 y2 y1
1
yC
17ql 4 384EI
解:⑴ 作荷载作用下的弯矩图和单位 荷载作用下的弯矩图。
结构力学5-5图乘法
ql 2 ql 2 l a , b , c , d 0 2 8 2
整理后, 得: yC
17ql 4 384 EI
2
yC
2 1 2 l ql 1 l ql 2 l l ql l 2 2 2 0 0 8 2 EI 3 2 32 2 2 12 EI
§5-5 图乘法
MM P 求积分: ds EI
MM P 1 ds MM P dx EI EI
xdA A x ,
0
1 tan xM P dx EI 1 tan xdA EI
x0 tan y0
⑴ 只适用于等截面直杆; ⑵ 至少有一个弯矩图是直线图形; ⑶ y0只能取自直线图形; ⑷ 可采用分段图乘的方法解决不满足 上述适用条件的杆件和弯矩图。
5 2 3 y1 10m, y2 y4 10, y3 10, 6 3 4 4 5 y5 10kN , y6 10m, y7 0 3 3
⑵求B点水平位移。
M P图
M图
xB
3188kN m 3 EI
1 1 A1 5m 50kN m , A2 A4 5m 25kN m , 2 2 1 1 A3 5m 25kN m , A5 10m 10kN m , 3 2 1 1 A6 10m 20kN m , A7 5m 35kN m 2 2
1 1 120 103 2m EA 2 160 103 N m 2.1 105 MPa 1.6 104 m 4 120 103 N m 2.1 105 MPa 5.0 104 m 2
结构力学图乘法及其应用
ql2 / 8
练习
图示结构 EI 为常数,求AB两点(1)相对竖向位 移,(2)相对水平位移,(3)相对转角 。 Pl P yc P ABY 对称结构的对称弯矩图与 EI A B 其反对称弯矩图图乘,结果 1 1 为零. 2 MP ( l Pl l 4 l Pl l 2) EI 2 3 反对称弯矩图 l l 10 Pl 3 1 1 () l 3 EI yc y c Mi 0 AB 0 ABX EI EI
二次抛物线
hl n 1
C
h
l n2
( n 1)l n2
例:求图示梁(EI=常数,跨长为l)B截面转角 B
q
A B
1 2 ql 8 1 2
1
MP 图
M
图
解:
1 2 1 2 1 B [( l ql ) ] EI 3 8 2 3 1 ql ( ) 24 EI
2 Pl
A
MP
2l
P
Pl
l
B
A
MP
1
l
B
l
l
解:作荷载弯矩图和单位荷载弯矩图
1 1 2 1 2l 3l B [ l Pl l Pl l l Pl l (l ) Pl l ] EI EI 2 3 2 3 2 11Pl 3 ( ) 3EI
yc
已知: E、I、A为常数,求 Cy 。
D
P
a
B
l 2
A
C
l 2
解:作荷载内力图和单位荷载内力图
D
P A
l 2
NP P / 2
D P
Ni 1 / 2
结构力学图乘法
FN FPb M FQ 状态II FPa
M ds ds EI FN ds ds EA
ds 0
kFQ GA
ds
令状态I的平衡力系在状态II的位移上做虚功,得到:
0 ds FN ds W12 FP M ds FQ FQ kFQ FN FN M M ds ds ds EI GA EA
yc
几中常见图形的面积和形心的计算公式
a b 顶点
C
lb 3
C
5l 8
la 3
3l 8
l
l
三角形
l h AP 2
二次抛物线
2 Ap h l 3
顶点
c
顶点
( n 1) l n2
c
l n2
3l/4 l
l/4
l
二次抛物线
l h Ap 3
N 次抛物线
lh n1
3. 图形相乘的几种情况
1
作业:
4-3 (a);(c)
§4-5 互等定理
互等定理适用于线性变形体系,即体系产生的 是小变形,且杆件材料服从虎克定律。
一、 功的互等定理
功的互等本质上是虚功互等。
下图给出状态I和状态II。
FP1 2 FP
FPa
FPb
A
1 2 a b
a
b
B
A
1 2 B a 1 b 2
所以
即
F F
P P
11 FP 2 FP 2 FPa a FPb b
在任一线性变形体系中,第一状态的外力 在第二状态的位移上所做的虚功W12等于第二状 态的外力在第一状态的位移上所做的虚功W21。
结构力学-图乘法
实例分析:圆轴扭转内力计算
第一段
M1 = (T1 + T2) × L/2
第二段
M2 = (T2 + T1) × L/2
实例分析:圆轴扭转内力计算
01
4. 比较M1和M2的大小,取较大 者作为圆轴内的最大扭矩。
02
5. 根据扭矩的正负号,绘制扭矩 图。
Part
04
组合变形图乘法
组合变形基本概念及分类
者联系起来,从而求解结构位移。
图乘法适用条件及限制
适用条件Βιβλιοθήκη 01载荷作用下,结构的变形是线性的,即变 形量与载荷成正比。
03
02
结构变形符合小变形假设,即变形量与结构 尺寸相比很小。
04 限制
图乘法只适用于线性弹性问题,对于非线 性问题或塑性变形问题不适用。
05
06
在应用图乘法时,需要保证图形函数的准 确性,否则会影响计算结果的精度。
Part
02
弯曲内力图乘法
弯曲内力基本概念
01
02
03
弯曲内力
指构件在受到外力作用时, 其内部产生的抵抗弯曲变 形的力。
剪力
作用于构件横截面上的内 力,其方向与构件轴线垂 直。
弯矩
作用于构件横截面上的内 力偶矩,其大小等于该截 面左侧或右侧所有外力对 截面形心的力矩之和。
弯曲内力图乘法求解步骤
图乘法优点总结
直观性
图乘法通过图形表示结构 中的力学元素和它们之间 的关系,使得分析结果更 直观,易于理解和解释。
高效性
相较于数值分析方法,图 乘法能够更快地给出结构 分析的近似解,适用于初 步设计和快速评估。
适用性广
图乘法可应用于各种不同 类型的结构,包括静定结 构和超静定结构,具有较 广泛的适用性。
结构力学第五章结构位移计算
M K ads
QK ads
N K ads RK Ca
( a , a , a , Ca )
(MK ,QK , N K ,RK )
经分析:
a ds t0ds ;
ads 0
;
ads
t h
ds
;
RCA 0
将以上各式代入求位移的一般公式,可得温度改变位移计算式:
y
d
MP(x)
dx
MK(X)
y yo
o
xA
Bx
xo
M K M P ds l EI
1 EI
B
A M K M Pdx
1 EI
B
A x tgM Pdx
1 tg
EI
b
a xM Pdx
1
tg
B
xd
EI
A
1 EI
tg
x0 P
1 EI
P
y0
(Mp图)
(Mk1图)
(Mk2图)
CV
M K M P ds 1 [( 6 6) ( 2 300) ( 2 6 45) ( 6 ) (6 6) (300)] 13860 0.0924m()
l EI
EI 2
3
3
2
EI
C
1 EI
[(300 6)(1) ( 2
位移状态,则前者的外力由于后者的位移所做的虚外功T等于前者的切割 面内力由于后者的变形所作的虚变形功V”。
用式子表达就是下面的虚功方程:
T=V
虚功方程也可以简述为:“外力的虚功等于内力的虚变形功”。 其具体表达式为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[例4] 计算图示刚架在分布荷载作用下的B点的水平位移 。 各杆截面为矩形bh,惯性矩相等。只考虑弯曲变形的影响。
ql 2
ql
ql 2
M P图
M图
解: MP图面积可分为三块: A1、A2 、 A3
1 ql 2 ql 3 A1 l 2 2 4 2 y1 l 3 ql 3 A2 4 2 y2 l 3 2 ql 2 ql 3 A3 l 3 8 12 l y3 2
(3)组合结构
FNP F N MP M ds L o EI EA
l
(受弯构件)
(链杆)
(4)三铰拱 — 曲杆要考虑弯曲变形和轴向变形,拉杆只有轴向变形。
L
o
(曲杆)
L F FN FNP F N MP M NP ds ds L o EI EA EA1
(曲杆)
(拉杆)
1 1
2) 在C、D两点加一对 反向的单位水平力, 并作弯矩图
M图
M P图
M图
4 4 1 q 2 ——(三次抛物线) y1 1m m A1 1m m 5 5 4 6
q 2 A2 m 2m ——(矩形) 6
y2 1m
2 q 2 A3 m 2m ——(二次抛物线) y3 1m 3 2
1
C
A
1 2 l 2 Cy ( 3 l 8 ql ) 4 B 1 ( 2 l 1 ql 2 ) ( 5 l ) 2 Cy EI 3 2 8 8 4 1 EI
l 4
5 ql 4 () 384 EI
分段图乘
[例2] 计算悬臂梁在集中荷载作用下的C点的竖向位移 C 。 解:M P 图的面积 (教材用A表示)
yC
2.图乘注意事项
M P 图形心位置所对应的 M 图中的竖标
1)杆件是直杆,EI必须是常数;
2) yC 必须取自直线图 ( M P M 均为直线时可互换); 3)M 图为折线或 M P 在基线两侧时都需分段图乘; 4)图形的
或 yC 很难计算时,不宜用图乘法。
A
6m 300
B
6m
C
A
300 6 1 1 300 2 3
45
不是顶点
(2)求C点的竖向位移
叠加图乘
1
M P图 M A图
1
CV
300 6 2 6 2 3 2 2 6 45 3 3 6660
1
6
MC 图
1 q 4 4 2 A1 y1 A2 y2 A3 y3 m EI EI 15
结 束
(第二版)作业:5—17, 19, 24
§5-5 图乘法
1.图乘原理公式
——将积分转变为图形相乘
y
积分式:
dω
L
o
MP M ds EI
形心 C A
dx
1 等直杆EI常数: EI
M P图
L
o
M P Mds
考察MP和M图
MP ——曲线
B
0
α
M x A xC
yC
M图
由图可见: M x tg 代入积分式有:
M ——直线
MM P 1 3ql 4 A1 y1 A2 y2 A3 y3 ds 8EI EI EI
[例5] 试求图示刚架在水压力作用下C、D两点的相对水平 位移。设各杆EI为常数。 解: 作荷载作用下的弯矩图 1)
M P图
q M A q x dx 1 x q x 1 x dx 0 0 6
技巧:恰当运用叠加原理
3.常用图形的 面积及形心
注意: “顶点”与基线切点, 若不是则公式无效。
4. 图乘的分段 示例(1): M 图 为折线
MP图
M图
L
o
M P Mds A1 y1 A2 y2 A3 y3
示例(2): M 图 为特殊折线
C1 C2
M P图
y1
M图
y2=0
L
o
M P Mds A1 y1 0
5. 图乘的叠加 (1) 两个直线图形图乘的叠加法
MP图 M图
L
o
M P Mds A1 y1 A2 y2
3 3 2 1 y2 d c 3 3
其中 y 2 c 1 d 1
两个直线图形图乘的通用公式: (注意代入abcd的正负) L (2ac 2bd ad bc) 6 EI
yc取自MP图
MM P 1 C dx Ayc EI EI
5FP l 3 1 l2 5 FP l EI 8 6 48EI 1 l l l2 A 2 2 2 8
[例3] 求A点的转角和C点的竖向位移。 (EI=1)
10kN/m
20kN
解:(1)求A点的转角
B x
B A
M P Mdx x tg M P dx
B
MP图对oy的面积矩
tg x M P dx
A B
A
B
d
P xc
yc
tg x d A tg xc P yc P
得图乘法公式: 1
1 o M P Mds EI yC EI 乘积“+、-”规定—— 与 yC 同侧为+,不同侧为-
l
力场(虚)
1 [ Md F Q d F N d ] F Rk Ck
0 0 0
(弯曲)
(剪切)
(轴向)
(已知支座移动)
位移场(实)
仅考虑荷载作用, Ck 0 由材料力学可知 :
FQP GA
代入得 :
l
MP d ds EI
d k
ds
d
FNP ds EA
l k FQP F Q l F FN MP M 1 ds ds NP ds o o o EI GA EA
2. 各种静定结构位移的计算公式
(1)梁、刚架 —只考虑弯曲变形
MP M ds o EI
l
(2)桁架 —只有轴向变形
FNP F N L EA
第5章 结构位移计算与虚功-能量法
§5-1 刚体体系的虚功原理与位移计算 §5-2 结构位移计算的一般公式 §5-3 荷载作用下的位移计算
§5-4 荷载作用下的位移计算举例
§5-5 图乘法 §5-6 温度变化时的位移计算 §5-7 互等定理
1.荷载作用下的位移计算公式:
位移计算的一般公式:
l l
回顾
公式适用所有直线图形的情况,例:
a
{
c
×
{
b d
×
{
×
(2) 复杂图形的图乘叠加法 (有q作用的梁段)
M P图
×
M图
=
×
+
×
×
=
×
+
×
6. 举例
[例1] 试用图乘法计算简支梁在均布 荷载q作用下的B端转角 B, 以及AB梁中点的竖向位移。
解:
MM P 1 B dx Ay0 EI EI 1 2 ql 2 1 ql 3 l EI 3 8 2 24EI